perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath10k / htt_rx.c
blobffec98f7be5054d5ed1d0d9855755b02eb99aaf6
1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
4 * Copyright (c) 2018, The Linux Foundation. All rights reserved.
6 * Permission to use, copy, modify, and/or distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 #include "core.h"
20 #include "htc.h"
21 #include "htt.h"
22 #include "txrx.h"
23 #include "debug.h"
24 #include "trace.h"
25 #include "mac.h"
27 #include <linux/log2.h>
28 #include <linux/bitfield.h>
30 /* when under memory pressure rx ring refill may fail and needs a retry */
31 #define HTT_RX_RING_REFILL_RETRY_MS 50
33 #define HTT_RX_RING_REFILL_RESCHED_MS 5
35 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
37 static struct sk_buff *
38 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u64 paddr)
40 struct ath10k_skb_rxcb *rxcb;
42 hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
43 if (rxcb->paddr == paddr)
44 return ATH10K_RXCB_SKB(rxcb);
46 WARN_ON_ONCE(1);
47 return NULL;
50 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
52 struct sk_buff *skb;
53 struct ath10k_skb_rxcb *rxcb;
54 struct hlist_node *n;
55 int i;
57 if (htt->rx_ring.in_ord_rx) {
58 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
59 skb = ATH10K_RXCB_SKB(rxcb);
60 dma_unmap_single(htt->ar->dev, rxcb->paddr,
61 skb->len + skb_tailroom(skb),
62 DMA_FROM_DEVICE);
63 hash_del(&rxcb->hlist);
64 dev_kfree_skb_any(skb);
66 } else {
67 for (i = 0; i < htt->rx_ring.size; i++) {
68 skb = htt->rx_ring.netbufs_ring[i];
69 if (!skb)
70 continue;
72 rxcb = ATH10K_SKB_RXCB(skb);
73 dma_unmap_single(htt->ar->dev, rxcb->paddr,
74 skb->len + skb_tailroom(skb),
75 DMA_FROM_DEVICE);
76 dev_kfree_skb_any(skb);
80 htt->rx_ring.fill_cnt = 0;
81 hash_init(htt->rx_ring.skb_table);
82 memset(htt->rx_ring.netbufs_ring, 0,
83 htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
86 static size_t ath10k_htt_get_rx_ring_size_32(struct ath10k_htt *htt)
88 return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_32);
91 static size_t ath10k_htt_get_rx_ring_size_64(struct ath10k_htt *htt)
93 return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_64);
96 static void ath10k_htt_config_paddrs_ring_32(struct ath10k_htt *htt,
97 void *vaddr)
99 htt->rx_ring.paddrs_ring_32 = vaddr;
102 static void ath10k_htt_config_paddrs_ring_64(struct ath10k_htt *htt,
103 void *vaddr)
105 htt->rx_ring.paddrs_ring_64 = vaddr;
108 static void ath10k_htt_set_paddrs_ring_32(struct ath10k_htt *htt,
109 dma_addr_t paddr, int idx)
111 htt->rx_ring.paddrs_ring_32[idx] = __cpu_to_le32(paddr);
114 static void ath10k_htt_set_paddrs_ring_64(struct ath10k_htt *htt,
115 dma_addr_t paddr, int idx)
117 htt->rx_ring.paddrs_ring_64[idx] = __cpu_to_le64(paddr);
120 static void ath10k_htt_reset_paddrs_ring_32(struct ath10k_htt *htt, int idx)
122 htt->rx_ring.paddrs_ring_32[idx] = 0;
125 static void ath10k_htt_reset_paddrs_ring_64(struct ath10k_htt *htt, int idx)
127 htt->rx_ring.paddrs_ring_64[idx] = 0;
130 static void *ath10k_htt_get_vaddr_ring_32(struct ath10k_htt *htt)
132 return (void *)htt->rx_ring.paddrs_ring_32;
135 static void *ath10k_htt_get_vaddr_ring_64(struct ath10k_htt *htt)
137 return (void *)htt->rx_ring.paddrs_ring_64;
140 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
142 struct htt_rx_desc *rx_desc;
143 struct ath10k_skb_rxcb *rxcb;
144 struct sk_buff *skb;
145 dma_addr_t paddr;
146 int ret = 0, idx;
148 /* The Full Rx Reorder firmware has no way of telling the host
149 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
150 * To keep things simple make sure ring is always half empty. This
151 * guarantees there'll be no replenishment overruns possible.
153 BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
155 idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
156 while (num > 0) {
157 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
158 if (!skb) {
159 ret = -ENOMEM;
160 goto fail;
163 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
164 skb_pull(skb,
165 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
166 skb->data);
168 /* Clear rx_desc attention word before posting to Rx ring */
169 rx_desc = (struct htt_rx_desc *)skb->data;
170 rx_desc->attention.flags = __cpu_to_le32(0);
172 paddr = dma_map_single(htt->ar->dev, skb->data,
173 skb->len + skb_tailroom(skb),
174 DMA_FROM_DEVICE);
176 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
177 dev_kfree_skb_any(skb);
178 ret = -ENOMEM;
179 goto fail;
182 rxcb = ATH10K_SKB_RXCB(skb);
183 rxcb->paddr = paddr;
184 htt->rx_ring.netbufs_ring[idx] = skb;
185 ath10k_htt_set_paddrs_ring(htt, paddr, idx);
186 htt->rx_ring.fill_cnt++;
188 if (htt->rx_ring.in_ord_rx) {
189 hash_add(htt->rx_ring.skb_table,
190 &ATH10K_SKB_RXCB(skb)->hlist,
191 paddr);
194 num--;
195 idx++;
196 idx &= htt->rx_ring.size_mask;
199 fail:
201 * Make sure the rx buffer is updated before available buffer
202 * index to avoid any potential rx ring corruption.
204 mb();
205 *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
206 return ret;
209 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
211 lockdep_assert_held(&htt->rx_ring.lock);
212 return __ath10k_htt_rx_ring_fill_n(htt, num);
215 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
217 int ret, num_deficit, num_to_fill;
219 /* Refilling the whole RX ring buffer proves to be a bad idea. The
220 * reason is RX may take up significant amount of CPU cycles and starve
221 * other tasks, e.g. TX on an ethernet device while acting as a bridge
222 * with ath10k wlan interface. This ended up with very poor performance
223 * once CPU the host system was overwhelmed with RX on ath10k.
225 * By limiting the number of refills the replenishing occurs
226 * progressively. This in turns makes use of the fact tasklets are
227 * processed in FIFO order. This means actual RX processing can starve
228 * out refilling. If there's not enough buffers on RX ring FW will not
229 * report RX until it is refilled with enough buffers. This
230 * automatically balances load wrt to CPU power.
232 * This probably comes at a cost of lower maximum throughput but
233 * improves the average and stability.
235 spin_lock_bh(&htt->rx_ring.lock);
236 num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
237 num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
238 num_deficit -= num_to_fill;
239 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
240 if (ret == -ENOMEM) {
242 * Failed to fill it to the desired level -
243 * we'll start a timer and try again next time.
244 * As long as enough buffers are left in the ring for
245 * another A-MPDU rx, no special recovery is needed.
247 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
248 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
249 } else if (num_deficit > 0) {
250 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
251 msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
253 spin_unlock_bh(&htt->rx_ring.lock);
256 static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t)
258 struct ath10k_htt *htt = from_timer(htt, t, rx_ring.refill_retry_timer);
260 ath10k_htt_rx_msdu_buff_replenish(htt);
263 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
265 struct ath10k_htt *htt = &ar->htt;
266 int ret;
268 if (ar->dev_type == ATH10K_DEV_TYPE_HL)
269 return 0;
271 spin_lock_bh(&htt->rx_ring.lock);
272 ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
273 htt->rx_ring.fill_cnt));
275 if (ret)
276 ath10k_htt_rx_ring_free(htt);
278 spin_unlock_bh(&htt->rx_ring.lock);
280 return ret;
283 void ath10k_htt_rx_free(struct ath10k_htt *htt)
285 if (htt->ar->dev_type == ATH10K_DEV_TYPE_HL)
286 return;
288 del_timer_sync(&htt->rx_ring.refill_retry_timer);
290 skb_queue_purge(&htt->rx_msdus_q);
291 skb_queue_purge(&htt->rx_in_ord_compl_q);
292 skb_queue_purge(&htt->tx_fetch_ind_q);
294 spin_lock_bh(&htt->rx_ring.lock);
295 ath10k_htt_rx_ring_free(htt);
296 spin_unlock_bh(&htt->rx_ring.lock);
298 dma_free_coherent(htt->ar->dev,
299 ath10k_htt_get_rx_ring_size(htt),
300 ath10k_htt_get_vaddr_ring(htt),
301 htt->rx_ring.base_paddr);
303 dma_free_coherent(htt->ar->dev,
304 sizeof(*htt->rx_ring.alloc_idx.vaddr),
305 htt->rx_ring.alloc_idx.vaddr,
306 htt->rx_ring.alloc_idx.paddr);
308 kfree(htt->rx_ring.netbufs_ring);
311 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
313 struct ath10k *ar = htt->ar;
314 int idx;
315 struct sk_buff *msdu;
317 lockdep_assert_held(&htt->rx_ring.lock);
319 if (htt->rx_ring.fill_cnt == 0) {
320 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
321 return NULL;
324 idx = htt->rx_ring.sw_rd_idx.msdu_payld;
325 msdu = htt->rx_ring.netbufs_ring[idx];
326 htt->rx_ring.netbufs_ring[idx] = NULL;
327 ath10k_htt_reset_paddrs_ring(htt, idx);
329 idx++;
330 idx &= htt->rx_ring.size_mask;
331 htt->rx_ring.sw_rd_idx.msdu_payld = idx;
332 htt->rx_ring.fill_cnt--;
334 dma_unmap_single(htt->ar->dev,
335 ATH10K_SKB_RXCB(msdu)->paddr,
336 msdu->len + skb_tailroom(msdu),
337 DMA_FROM_DEVICE);
338 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
339 msdu->data, msdu->len + skb_tailroom(msdu));
341 return msdu;
344 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
345 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
346 struct sk_buff_head *amsdu)
348 struct ath10k *ar = htt->ar;
349 int msdu_len, msdu_chaining = 0;
350 struct sk_buff *msdu;
351 struct htt_rx_desc *rx_desc;
353 lockdep_assert_held(&htt->rx_ring.lock);
355 for (;;) {
356 int last_msdu, msdu_len_invalid, msdu_chained;
358 msdu = ath10k_htt_rx_netbuf_pop(htt);
359 if (!msdu) {
360 __skb_queue_purge(amsdu);
361 return -ENOENT;
364 __skb_queue_tail(amsdu, msdu);
366 rx_desc = (struct htt_rx_desc *)msdu->data;
368 /* FIXME: we must report msdu payload since this is what caller
369 * expects now
371 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
372 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
375 * Sanity check - confirm the HW is finished filling in the
376 * rx data.
377 * If the HW and SW are working correctly, then it's guaranteed
378 * that the HW's MAC DMA is done before this point in the SW.
379 * To prevent the case that we handle a stale Rx descriptor,
380 * just assert for now until we have a way to recover.
382 if (!(__le32_to_cpu(rx_desc->attention.flags)
383 & RX_ATTENTION_FLAGS_MSDU_DONE)) {
384 __skb_queue_purge(amsdu);
385 return -EIO;
388 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
389 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
390 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
391 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
392 RX_MSDU_START_INFO0_MSDU_LENGTH);
393 msdu_chained = rx_desc->frag_info.ring2_more_count;
395 if (msdu_len_invalid)
396 msdu_len = 0;
398 skb_trim(msdu, 0);
399 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
400 msdu_len -= msdu->len;
402 /* Note: Chained buffers do not contain rx descriptor */
403 while (msdu_chained--) {
404 msdu = ath10k_htt_rx_netbuf_pop(htt);
405 if (!msdu) {
406 __skb_queue_purge(amsdu);
407 return -ENOENT;
410 __skb_queue_tail(amsdu, msdu);
411 skb_trim(msdu, 0);
412 skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
413 msdu_len -= msdu->len;
414 msdu_chaining = 1;
417 last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
418 RX_MSDU_END_INFO0_LAST_MSDU;
420 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
421 sizeof(*rx_desc) - sizeof(u32));
423 if (last_msdu)
424 break;
427 if (skb_queue_empty(amsdu))
428 msdu_chaining = -1;
431 * Don't refill the ring yet.
433 * First, the elements popped here are still in use - it is not
434 * safe to overwrite them until the matching call to
435 * mpdu_desc_list_next. Second, for efficiency it is preferable to
436 * refill the rx ring with 1 PPDU's worth of rx buffers (something
437 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
438 * (something like 3 buffers). Consequently, we'll rely on the txrx
439 * SW to tell us when it is done pulling all the PPDU's rx buffers
440 * out of the rx ring, and then refill it just once.
443 return msdu_chaining;
446 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
447 u64 paddr)
449 struct ath10k *ar = htt->ar;
450 struct ath10k_skb_rxcb *rxcb;
451 struct sk_buff *msdu;
453 lockdep_assert_held(&htt->rx_ring.lock);
455 msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
456 if (!msdu)
457 return NULL;
459 rxcb = ATH10K_SKB_RXCB(msdu);
460 hash_del(&rxcb->hlist);
461 htt->rx_ring.fill_cnt--;
463 dma_unmap_single(htt->ar->dev, rxcb->paddr,
464 msdu->len + skb_tailroom(msdu),
465 DMA_FROM_DEVICE);
466 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
467 msdu->data, msdu->len + skb_tailroom(msdu));
469 return msdu;
472 static int ath10k_htt_rx_pop_paddr32_list(struct ath10k_htt *htt,
473 struct htt_rx_in_ord_ind *ev,
474 struct sk_buff_head *list)
476 struct ath10k *ar = htt->ar;
477 struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs32;
478 struct htt_rx_desc *rxd;
479 struct sk_buff *msdu;
480 int msdu_count;
481 bool is_offload;
482 u32 paddr;
484 lockdep_assert_held(&htt->rx_ring.lock);
486 msdu_count = __le16_to_cpu(ev->msdu_count);
487 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
489 while (msdu_count--) {
490 paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
492 msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
493 if (!msdu) {
494 __skb_queue_purge(list);
495 return -ENOENT;
498 __skb_queue_tail(list, msdu);
500 if (!is_offload) {
501 rxd = (void *)msdu->data;
503 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
505 skb_put(msdu, sizeof(*rxd));
506 skb_pull(msdu, sizeof(*rxd));
507 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
509 if (!(__le32_to_cpu(rxd->attention.flags) &
510 RX_ATTENTION_FLAGS_MSDU_DONE)) {
511 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
512 return -EIO;
516 msdu_desc++;
519 return 0;
522 static int ath10k_htt_rx_pop_paddr64_list(struct ath10k_htt *htt,
523 struct htt_rx_in_ord_ind *ev,
524 struct sk_buff_head *list)
526 struct ath10k *ar = htt->ar;
527 struct htt_rx_in_ord_msdu_desc_ext *msdu_desc = ev->msdu_descs64;
528 struct htt_rx_desc *rxd;
529 struct sk_buff *msdu;
530 int msdu_count;
531 bool is_offload;
532 u64 paddr;
534 lockdep_assert_held(&htt->rx_ring.lock);
536 msdu_count = __le16_to_cpu(ev->msdu_count);
537 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
539 while (msdu_count--) {
540 paddr = __le64_to_cpu(msdu_desc->msdu_paddr);
541 msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
542 if (!msdu) {
543 __skb_queue_purge(list);
544 return -ENOENT;
547 __skb_queue_tail(list, msdu);
549 if (!is_offload) {
550 rxd = (void *)msdu->data;
552 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
554 skb_put(msdu, sizeof(*rxd));
555 skb_pull(msdu, sizeof(*rxd));
556 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
558 if (!(__le32_to_cpu(rxd->attention.flags) &
559 RX_ATTENTION_FLAGS_MSDU_DONE)) {
560 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
561 return -EIO;
565 msdu_desc++;
568 return 0;
571 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
573 struct ath10k *ar = htt->ar;
574 dma_addr_t paddr;
575 void *vaddr, *vaddr_ring;
576 size_t size;
577 struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
579 if (ar->dev_type == ATH10K_DEV_TYPE_HL)
580 return 0;
582 htt->rx_confused = false;
584 /* XXX: The fill level could be changed during runtime in response to
585 * the host processing latency. Is this really worth it?
587 htt->rx_ring.size = HTT_RX_RING_SIZE;
588 htt->rx_ring.size_mask = htt->rx_ring.size - 1;
589 htt->rx_ring.fill_level = ar->hw_params.rx_ring_fill_level;
591 if (!is_power_of_2(htt->rx_ring.size)) {
592 ath10k_warn(ar, "htt rx ring size is not power of 2\n");
593 return -EINVAL;
596 htt->rx_ring.netbufs_ring =
597 kcalloc(htt->rx_ring.size, sizeof(struct sk_buff *),
598 GFP_KERNEL);
599 if (!htt->rx_ring.netbufs_ring)
600 goto err_netbuf;
602 size = ath10k_htt_get_rx_ring_size(htt);
604 vaddr_ring = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
605 if (!vaddr_ring)
606 goto err_dma_ring;
608 ath10k_htt_config_paddrs_ring(htt, vaddr_ring);
609 htt->rx_ring.base_paddr = paddr;
611 vaddr = dma_alloc_coherent(htt->ar->dev,
612 sizeof(*htt->rx_ring.alloc_idx.vaddr),
613 &paddr, GFP_KERNEL);
614 if (!vaddr)
615 goto err_dma_idx;
617 htt->rx_ring.alloc_idx.vaddr = vaddr;
618 htt->rx_ring.alloc_idx.paddr = paddr;
619 htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
620 *htt->rx_ring.alloc_idx.vaddr = 0;
622 /* Initialize the Rx refill retry timer */
623 timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0);
625 spin_lock_init(&htt->rx_ring.lock);
627 htt->rx_ring.fill_cnt = 0;
628 htt->rx_ring.sw_rd_idx.msdu_payld = 0;
629 hash_init(htt->rx_ring.skb_table);
631 skb_queue_head_init(&htt->rx_msdus_q);
632 skb_queue_head_init(&htt->rx_in_ord_compl_q);
633 skb_queue_head_init(&htt->tx_fetch_ind_q);
634 atomic_set(&htt->num_mpdus_ready, 0);
636 ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
637 htt->rx_ring.size, htt->rx_ring.fill_level);
638 return 0;
640 err_dma_idx:
641 dma_free_coherent(htt->ar->dev,
642 ath10k_htt_get_rx_ring_size(htt),
643 vaddr_ring,
644 htt->rx_ring.base_paddr);
645 err_dma_ring:
646 kfree(htt->rx_ring.netbufs_ring);
647 err_netbuf:
648 return -ENOMEM;
651 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
652 enum htt_rx_mpdu_encrypt_type type)
654 switch (type) {
655 case HTT_RX_MPDU_ENCRYPT_NONE:
656 return 0;
657 case HTT_RX_MPDU_ENCRYPT_WEP40:
658 case HTT_RX_MPDU_ENCRYPT_WEP104:
659 return IEEE80211_WEP_IV_LEN;
660 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
661 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
662 return IEEE80211_TKIP_IV_LEN;
663 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
664 return IEEE80211_CCMP_HDR_LEN;
665 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
666 return IEEE80211_CCMP_256_HDR_LEN;
667 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
668 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
669 return IEEE80211_GCMP_HDR_LEN;
670 case HTT_RX_MPDU_ENCRYPT_WEP128:
671 case HTT_RX_MPDU_ENCRYPT_WAPI:
672 break;
675 ath10k_warn(ar, "unsupported encryption type %d\n", type);
676 return 0;
679 #define MICHAEL_MIC_LEN 8
681 static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar,
682 enum htt_rx_mpdu_encrypt_type type)
684 switch (type) {
685 case HTT_RX_MPDU_ENCRYPT_NONE:
686 case HTT_RX_MPDU_ENCRYPT_WEP40:
687 case HTT_RX_MPDU_ENCRYPT_WEP104:
688 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
689 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
690 return 0;
691 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
692 return IEEE80211_CCMP_MIC_LEN;
693 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
694 return IEEE80211_CCMP_256_MIC_LEN;
695 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
696 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
697 return IEEE80211_GCMP_MIC_LEN;
698 case HTT_RX_MPDU_ENCRYPT_WEP128:
699 case HTT_RX_MPDU_ENCRYPT_WAPI:
700 break;
703 ath10k_warn(ar, "unsupported encryption type %d\n", type);
704 return 0;
707 static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar,
708 enum htt_rx_mpdu_encrypt_type type)
710 switch (type) {
711 case HTT_RX_MPDU_ENCRYPT_NONE:
712 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
713 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
714 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
715 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
716 return 0;
717 case HTT_RX_MPDU_ENCRYPT_WEP40:
718 case HTT_RX_MPDU_ENCRYPT_WEP104:
719 return IEEE80211_WEP_ICV_LEN;
720 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
721 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
722 return IEEE80211_TKIP_ICV_LEN;
723 case HTT_RX_MPDU_ENCRYPT_WEP128:
724 case HTT_RX_MPDU_ENCRYPT_WAPI:
725 break;
728 ath10k_warn(ar, "unsupported encryption type %d\n", type);
729 return 0;
732 struct amsdu_subframe_hdr {
733 u8 dst[ETH_ALEN];
734 u8 src[ETH_ALEN];
735 __be16 len;
736 } __packed;
738 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
740 static inline u8 ath10k_bw_to_mac80211_bw(u8 bw)
742 u8 ret = 0;
744 switch (bw) {
745 case 0:
746 ret = RATE_INFO_BW_20;
747 break;
748 case 1:
749 ret = RATE_INFO_BW_40;
750 break;
751 case 2:
752 ret = RATE_INFO_BW_80;
753 break;
754 case 3:
755 ret = RATE_INFO_BW_160;
756 break;
759 return ret;
762 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
763 struct ieee80211_rx_status *status,
764 struct htt_rx_desc *rxd)
766 struct ieee80211_supported_band *sband;
767 u8 cck, rate, bw, sgi, mcs, nss;
768 u8 preamble = 0;
769 u8 group_id;
770 u32 info1, info2, info3;
772 info1 = __le32_to_cpu(rxd->ppdu_start.info1);
773 info2 = __le32_to_cpu(rxd->ppdu_start.info2);
774 info3 = __le32_to_cpu(rxd->ppdu_start.info3);
776 preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
778 switch (preamble) {
779 case HTT_RX_LEGACY:
780 /* To get legacy rate index band is required. Since band can't
781 * be undefined check if freq is non-zero.
783 if (!status->freq)
784 return;
786 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
787 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
788 rate &= ~RX_PPDU_START_RATE_FLAG;
790 sband = &ar->mac.sbands[status->band];
791 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
792 break;
793 case HTT_RX_HT:
794 case HTT_RX_HT_WITH_TXBF:
795 /* HT-SIG - Table 20-11 in info2 and info3 */
796 mcs = info2 & 0x1F;
797 nss = mcs >> 3;
798 bw = (info2 >> 7) & 1;
799 sgi = (info3 >> 7) & 1;
801 status->rate_idx = mcs;
802 status->encoding = RX_ENC_HT;
803 if (sgi)
804 status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
805 if (bw)
806 status->bw = RATE_INFO_BW_40;
807 break;
808 case HTT_RX_VHT:
809 case HTT_RX_VHT_WITH_TXBF:
810 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
811 * TODO check this
813 bw = info2 & 3;
814 sgi = info3 & 1;
815 group_id = (info2 >> 4) & 0x3F;
817 if (GROUP_ID_IS_SU_MIMO(group_id)) {
818 mcs = (info3 >> 4) & 0x0F;
819 nss = ((info2 >> 10) & 0x07) + 1;
820 } else {
821 /* Hardware doesn't decode VHT-SIG-B into Rx descriptor
822 * so it's impossible to decode MCS. Also since
823 * firmware consumes Group Id Management frames host
824 * has no knowledge regarding group/user position
825 * mapping so it's impossible to pick the correct Nsts
826 * from VHT-SIG-A1.
828 * Bandwidth and SGI are valid so report the rateinfo
829 * on best-effort basis.
831 mcs = 0;
832 nss = 1;
835 if (mcs > 0x09) {
836 ath10k_warn(ar, "invalid MCS received %u\n", mcs);
837 ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
838 __le32_to_cpu(rxd->attention.flags),
839 __le32_to_cpu(rxd->mpdu_start.info0),
840 __le32_to_cpu(rxd->mpdu_start.info1),
841 __le32_to_cpu(rxd->msdu_start.common.info0),
842 __le32_to_cpu(rxd->msdu_start.common.info1),
843 rxd->ppdu_start.info0,
844 __le32_to_cpu(rxd->ppdu_start.info1),
845 __le32_to_cpu(rxd->ppdu_start.info2),
846 __le32_to_cpu(rxd->ppdu_start.info3),
847 __le32_to_cpu(rxd->ppdu_start.info4));
849 ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
850 __le32_to_cpu(rxd->msdu_end.common.info0),
851 __le32_to_cpu(rxd->mpdu_end.info0));
853 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
854 "rx desc msdu payload: ",
855 rxd->msdu_payload, 50);
858 status->rate_idx = mcs;
859 status->nss = nss;
861 if (sgi)
862 status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
864 status->bw = ath10k_bw_to_mac80211_bw(bw);
865 status->encoding = RX_ENC_VHT;
866 break;
867 default:
868 break;
872 static struct ieee80211_channel *
873 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
875 struct ath10k_peer *peer;
876 struct ath10k_vif *arvif;
877 struct cfg80211_chan_def def;
878 u16 peer_id;
880 lockdep_assert_held(&ar->data_lock);
882 if (!rxd)
883 return NULL;
885 if (rxd->attention.flags &
886 __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
887 return NULL;
889 if (!(rxd->msdu_end.common.info0 &
890 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
891 return NULL;
893 peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
894 RX_MPDU_START_INFO0_PEER_IDX);
896 peer = ath10k_peer_find_by_id(ar, peer_id);
897 if (!peer)
898 return NULL;
900 arvif = ath10k_get_arvif(ar, peer->vdev_id);
901 if (WARN_ON_ONCE(!arvif))
902 return NULL;
904 if (ath10k_mac_vif_chan(arvif->vif, &def))
905 return NULL;
907 return def.chan;
910 static struct ieee80211_channel *
911 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
913 struct ath10k_vif *arvif;
914 struct cfg80211_chan_def def;
916 lockdep_assert_held(&ar->data_lock);
918 list_for_each_entry(arvif, &ar->arvifs, list) {
919 if (arvif->vdev_id == vdev_id &&
920 ath10k_mac_vif_chan(arvif->vif, &def) == 0)
921 return def.chan;
924 return NULL;
927 static void
928 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
929 struct ieee80211_chanctx_conf *conf,
930 void *data)
932 struct cfg80211_chan_def *def = data;
934 *def = conf->def;
937 static struct ieee80211_channel *
938 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
940 struct cfg80211_chan_def def = {};
942 ieee80211_iter_chan_contexts_atomic(ar->hw,
943 ath10k_htt_rx_h_any_chan_iter,
944 &def);
946 return def.chan;
949 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
950 struct ieee80211_rx_status *status,
951 struct htt_rx_desc *rxd,
952 u32 vdev_id)
954 struct ieee80211_channel *ch;
956 spin_lock_bh(&ar->data_lock);
957 ch = ar->scan_channel;
958 if (!ch)
959 ch = ar->rx_channel;
960 if (!ch)
961 ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
962 if (!ch)
963 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
964 if (!ch)
965 ch = ath10k_htt_rx_h_any_channel(ar);
966 if (!ch)
967 ch = ar->tgt_oper_chan;
968 spin_unlock_bh(&ar->data_lock);
970 if (!ch)
971 return false;
973 status->band = ch->band;
974 status->freq = ch->center_freq;
976 return true;
979 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
980 struct ieee80211_rx_status *status,
981 struct htt_rx_desc *rxd)
983 int i;
985 for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) {
986 status->chains &= ~BIT(i);
988 if (rxd->ppdu_start.rssi_chains[i].pri20_mhz != 0x80) {
989 status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR +
990 rxd->ppdu_start.rssi_chains[i].pri20_mhz;
992 status->chains |= BIT(i);
996 /* FIXME: Get real NF */
997 status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
998 rxd->ppdu_start.rssi_comb;
999 status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
1002 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
1003 struct ieee80211_rx_status *status,
1004 struct htt_rx_desc *rxd)
1006 /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
1007 * means all prior MSDUs in a PPDU are reported to mac80211 without the
1008 * TSF. Is it worth holding frames until end of PPDU is known?
1010 * FIXME: Can we get/compute 64bit TSF?
1012 status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
1013 status->flag |= RX_FLAG_MACTIME_END;
1016 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
1017 struct sk_buff_head *amsdu,
1018 struct ieee80211_rx_status *status,
1019 u32 vdev_id)
1021 struct sk_buff *first;
1022 struct htt_rx_desc *rxd;
1023 bool is_first_ppdu;
1024 bool is_last_ppdu;
1026 if (skb_queue_empty(amsdu))
1027 return;
1029 first = skb_peek(amsdu);
1030 rxd = (void *)first->data - sizeof(*rxd);
1032 is_first_ppdu = !!(rxd->attention.flags &
1033 __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
1034 is_last_ppdu = !!(rxd->attention.flags &
1035 __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
1037 if (is_first_ppdu) {
1038 /* New PPDU starts so clear out the old per-PPDU status. */
1039 status->freq = 0;
1040 status->rate_idx = 0;
1041 status->nss = 0;
1042 status->encoding = RX_ENC_LEGACY;
1043 status->bw = RATE_INFO_BW_20;
1045 status->flag &= ~RX_FLAG_MACTIME_END;
1046 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1048 status->flag &= ~(RX_FLAG_AMPDU_IS_LAST);
1049 status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
1050 status->ampdu_reference = ar->ampdu_reference;
1052 ath10k_htt_rx_h_signal(ar, status, rxd);
1053 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
1054 ath10k_htt_rx_h_rates(ar, status, rxd);
1057 if (is_last_ppdu) {
1058 ath10k_htt_rx_h_mactime(ar, status, rxd);
1060 /* set ampdu last segment flag */
1061 status->flag |= RX_FLAG_AMPDU_IS_LAST;
1062 ar->ampdu_reference++;
1066 static const char * const tid_to_ac[] = {
1067 "BE",
1068 "BK",
1069 "BK",
1070 "BE",
1071 "VI",
1072 "VI",
1073 "VO",
1074 "VO",
1077 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
1079 u8 *qc;
1080 int tid;
1082 if (!ieee80211_is_data_qos(hdr->frame_control))
1083 return "";
1085 qc = ieee80211_get_qos_ctl(hdr);
1086 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1087 if (tid < 8)
1088 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
1089 else
1090 snprintf(out, size, "tid %d", tid);
1092 return out;
1095 static void ath10k_htt_rx_h_queue_msdu(struct ath10k *ar,
1096 struct ieee80211_rx_status *rx_status,
1097 struct sk_buff *skb)
1099 struct ieee80211_rx_status *status;
1101 status = IEEE80211_SKB_RXCB(skb);
1102 *status = *rx_status;
1104 skb_queue_tail(&ar->htt.rx_msdus_q, skb);
1107 static void ath10k_process_rx(struct ath10k *ar, struct sk_buff *skb)
1109 struct ieee80211_rx_status *status;
1110 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1111 char tid[32];
1113 status = IEEE80211_SKB_RXCB(skb);
1115 ath10k_dbg(ar, ATH10K_DBG_DATA,
1116 "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
1117 skb,
1118 skb->len,
1119 ieee80211_get_SA(hdr),
1120 ath10k_get_tid(hdr, tid, sizeof(tid)),
1121 is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
1122 "mcast" : "ucast",
1123 (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
1124 (status->encoding == RX_ENC_LEGACY) ? "legacy" : "",
1125 (status->encoding == RX_ENC_HT) ? "ht" : "",
1126 (status->encoding == RX_ENC_VHT) ? "vht" : "",
1127 (status->bw == RATE_INFO_BW_40) ? "40" : "",
1128 (status->bw == RATE_INFO_BW_80) ? "80" : "",
1129 (status->bw == RATE_INFO_BW_160) ? "160" : "",
1130 status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "",
1131 status->rate_idx,
1132 status->nss,
1133 status->freq,
1134 status->band, status->flag,
1135 !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
1136 !!(status->flag & RX_FLAG_MMIC_ERROR),
1137 !!(status->flag & RX_FLAG_AMSDU_MORE));
1138 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
1139 skb->data, skb->len);
1140 trace_ath10k_rx_hdr(ar, skb->data, skb->len);
1141 trace_ath10k_rx_payload(ar, skb->data, skb->len);
1143 ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
1146 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
1147 struct ieee80211_hdr *hdr)
1149 int len = ieee80211_hdrlen(hdr->frame_control);
1151 if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
1152 ar->running_fw->fw_file.fw_features))
1153 len = round_up(len, 4);
1155 return len;
1158 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
1159 struct sk_buff *msdu,
1160 struct ieee80211_rx_status *status,
1161 enum htt_rx_mpdu_encrypt_type enctype,
1162 bool is_decrypted)
1164 struct ieee80211_hdr *hdr;
1165 struct htt_rx_desc *rxd;
1166 size_t hdr_len;
1167 size_t crypto_len;
1168 bool is_first;
1169 bool is_last;
1171 rxd = (void *)msdu->data - sizeof(*rxd);
1172 is_first = !!(rxd->msdu_end.common.info0 &
1173 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1174 is_last = !!(rxd->msdu_end.common.info0 &
1175 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1177 /* Delivered decapped frame:
1178 * [802.11 header]
1179 * [crypto param] <-- can be trimmed if !fcs_err &&
1180 * !decrypt_err && !peer_idx_invalid
1181 * [amsdu header] <-- only if A-MSDU
1182 * [rfc1042/llc]
1183 * [payload]
1184 * [FCS] <-- at end, needs to be trimmed
1187 /* This probably shouldn't happen but warn just in case */
1188 if (WARN_ON_ONCE(!is_first))
1189 return;
1191 /* This probably shouldn't happen but warn just in case */
1192 if (WARN_ON_ONCE(!(is_first && is_last)))
1193 return;
1195 skb_trim(msdu, msdu->len - FCS_LEN);
1197 /* In most cases this will be true for sniffed frames. It makes sense
1198 * to deliver them as-is without stripping the crypto param. This is
1199 * necessary for software based decryption.
1201 * If there's no error then the frame is decrypted. At least that is
1202 * the case for frames that come in via fragmented rx indication.
1204 if (!is_decrypted)
1205 return;
1207 /* The payload is decrypted so strip crypto params. Start from tail
1208 * since hdr is used to compute some stuff.
1211 hdr = (void *)msdu->data;
1213 /* Tail */
1214 if (status->flag & RX_FLAG_IV_STRIPPED) {
1215 skb_trim(msdu, msdu->len -
1216 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1218 skb_trim(msdu, msdu->len -
1219 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1220 } else {
1221 /* MIC */
1222 if (status->flag & RX_FLAG_MIC_STRIPPED)
1223 skb_trim(msdu, msdu->len -
1224 ath10k_htt_rx_crypto_mic_len(ar, enctype));
1226 /* ICV */
1227 if (status->flag & RX_FLAG_ICV_STRIPPED)
1228 skb_trim(msdu, msdu->len -
1229 ath10k_htt_rx_crypto_icv_len(ar, enctype));
1232 /* MMIC */
1233 if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1234 !ieee80211_has_morefrags(hdr->frame_control) &&
1235 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1236 skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN);
1238 /* Head */
1239 if (status->flag & RX_FLAG_IV_STRIPPED) {
1240 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1241 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1243 memmove((void *)msdu->data + crypto_len,
1244 (void *)msdu->data, hdr_len);
1245 skb_pull(msdu, crypto_len);
1249 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1250 struct sk_buff *msdu,
1251 struct ieee80211_rx_status *status,
1252 const u8 first_hdr[64],
1253 enum htt_rx_mpdu_encrypt_type enctype)
1255 struct ieee80211_hdr *hdr;
1256 struct htt_rx_desc *rxd;
1257 size_t hdr_len;
1258 u8 da[ETH_ALEN];
1259 u8 sa[ETH_ALEN];
1260 int l3_pad_bytes;
1261 int bytes_aligned = ar->hw_params.decap_align_bytes;
1263 /* Delivered decapped frame:
1264 * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1265 * [rfc1042/llc]
1267 * Note: The nwifi header doesn't have QoS Control and is
1268 * (always?) a 3addr frame.
1270 * Note2: There's no A-MSDU subframe header. Even if it's part
1271 * of an A-MSDU.
1274 /* pull decapped header and copy SA & DA */
1275 rxd = (void *)msdu->data - sizeof(*rxd);
1277 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1278 skb_put(msdu, l3_pad_bytes);
1280 hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes);
1282 hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1283 ether_addr_copy(da, ieee80211_get_DA(hdr));
1284 ether_addr_copy(sa, ieee80211_get_SA(hdr));
1285 skb_pull(msdu, hdr_len);
1287 /* push original 802.11 header */
1288 hdr = (struct ieee80211_hdr *)first_hdr;
1289 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1291 if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1292 memcpy(skb_push(msdu,
1293 ath10k_htt_rx_crypto_param_len(ar, enctype)),
1294 (void *)hdr + round_up(hdr_len, bytes_aligned),
1295 ath10k_htt_rx_crypto_param_len(ar, enctype));
1298 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1300 /* original 802.11 header has a different DA and in
1301 * case of 4addr it may also have different SA
1303 hdr = (struct ieee80211_hdr *)msdu->data;
1304 ether_addr_copy(ieee80211_get_DA(hdr), da);
1305 ether_addr_copy(ieee80211_get_SA(hdr), sa);
1308 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1309 struct sk_buff *msdu,
1310 enum htt_rx_mpdu_encrypt_type enctype)
1312 struct ieee80211_hdr *hdr;
1313 struct htt_rx_desc *rxd;
1314 size_t hdr_len, crypto_len;
1315 void *rfc1042;
1316 bool is_first, is_last, is_amsdu;
1317 int bytes_aligned = ar->hw_params.decap_align_bytes;
1319 rxd = (void *)msdu->data - sizeof(*rxd);
1320 hdr = (void *)rxd->rx_hdr_status;
1322 is_first = !!(rxd->msdu_end.common.info0 &
1323 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1324 is_last = !!(rxd->msdu_end.common.info0 &
1325 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1326 is_amsdu = !(is_first && is_last);
1328 rfc1042 = hdr;
1330 if (is_first) {
1331 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1332 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1334 rfc1042 += round_up(hdr_len, bytes_aligned) +
1335 round_up(crypto_len, bytes_aligned);
1338 if (is_amsdu)
1339 rfc1042 += sizeof(struct amsdu_subframe_hdr);
1341 return rfc1042;
1344 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1345 struct sk_buff *msdu,
1346 struct ieee80211_rx_status *status,
1347 const u8 first_hdr[64],
1348 enum htt_rx_mpdu_encrypt_type enctype)
1350 struct ieee80211_hdr *hdr;
1351 struct ethhdr *eth;
1352 size_t hdr_len;
1353 void *rfc1042;
1354 u8 da[ETH_ALEN];
1355 u8 sa[ETH_ALEN];
1356 int l3_pad_bytes;
1357 struct htt_rx_desc *rxd;
1358 int bytes_aligned = ar->hw_params.decap_align_bytes;
1360 /* Delivered decapped frame:
1361 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1362 * [payload]
1365 rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1366 if (WARN_ON_ONCE(!rfc1042))
1367 return;
1369 rxd = (void *)msdu->data - sizeof(*rxd);
1370 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1371 skb_put(msdu, l3_pad_bytes);
1372 skb_pull(msdu, l3_pad_bytes);
1374 /* pull decapped header and copy SA & DA */
1375 eth = (struct ethhdr *)msdu->data;
1376 ether_addr_copy(da, eth->h_dest);
1377 ether_addr_copy(sa, eth->h_source);
1378 skb_pull(msdu, sizeof(struct ethhdr));
1380 /* push rfc1042/llc/snap */
1381 memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1382 sizeof(struct rfc1042_hdr));
1384 /* push original 802.11 header */
1385 hdr = (struct ieee80211_hdr *)first_hdr;
1386 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1388 if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1389 memcpy(skb_push(msdu,
1390 ath10k_htt_rx_crypto_param_len(ar, enctype)),
1391 (void *)hdr + round_up(hdr_len, bytes_aligned),
1392 ath10k_htt_rx_crypto_param_len(ar, enctype));
1395 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1397 /* original 802.11 header has a different DA and in
1398 * case of 4addr it may also have different SA
1400 hdr = (struct ieee80211_hdr *)msdu->data;
1401 ether_addr_copy(ieee80211_get_DA(hdr), da);
1402 ether_addr_copy(ieee80211_get_SA(hdr), sa);
1405 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1406 struct sk_buff *msdu,
1407 struct ieee80211_rx_status *status,
1408 const u8 first_hdr[64],
1409 enum htt_rx_mpdu_encrypt_type enctype)
1411 struct ieee80211_hdr *hdr;
1412 size_t hdr_len;
1413 int l3_pad_bytes;
1414 struct htt_rx_desc *rxd;
1415 int bytes_aligned = ar->hw_params.decap_align_bytes;
1417 /* Delivered decapped frame:
1418 * [amsdu header] <-- replaced with 802.11 hdr
1419 * [rfc1042/llc]
1420 * [payload]
1423 rxd = (void *)msdu->data - sizeof(*rxd);
1424 l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1426 skb_put(msdu, l3_pad_bytes);
1427 skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes);
1429 hdr = (struct ieee80211_hdr *)first_hdr;
1430 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1432 if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1433 memcpy(skb_push(msdu,
1434 ath10k_htt_rx_crypto_param_len(ar, enctype)),
1435 (void *)hdr + round_up(hdr_len, bytes_aligned),
1436 ath10k_htt_rx_crypto_param_len(ar, enctype));
1439 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1442 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1443 struct sk_buff *msdu,
1444 struct ieee80211_rx_status *status,
1445 u8 first_hdr[64],
1446 enum htt_rx_mpdu_encrypt_type enctype,
1447 bool is_decrypted)
1449 struct htt_rx_desc *rxd;
1450 enum rx_msdu_decap_format decap;
1452 /* First msdu's decapped header:
1453 * [802.11 header] <-- padded to 4 bytes long
1454 * [crypto param] <-- padded to 4 bytes long
1455 * [amsdu header] <-- only if A-MSDU
1456 * [rfc1042/llc]
1458 * Other (2nd, 3rd, ..) msdu's decapped header:
1459 * [amsdu header] <-- only if A-MSDU
1460 * [rfc1042/llc]
1463 rxd = (void *)msdu->data - sizeof(*rxd);
1464 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1465 RX_MSDU_START_INFO1_DECAP_FORMAT);
1467 switch (decap) {
1468 case RX_MSDU_DECAP_RAW:
1469 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1470 is_decrypted);
1471 break;
1472 case RX_MSDU_DECAP_NATIVE_WIFI:
1473 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr,
1474 enctype);
1475 break;
1476 case RX_MSDU_DECAP_ETHERNET2_DIX:
1477 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1478 break;
1479 case RX_MSDU_DECAP_8023_SNAP_LLC:
1480 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr,
1481 enctype);
1482 break;
1486 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1488 struct htt_rx_desc *rxd;
1489 u32 flags, info;
1490 bool is_ip4, is_ip6;
1491 bool is_tcp, is_udp;
1492 bool ip_csum_ok, tcpudp_csum_ok;
1494 rxd = (void *)skb->data - sizeof(*rxd);
1495 flags = __le32_to_cpu(rxd->attention.flags);
1496 info = __le32_to_cpu(rxd->msdu_start.common.info1);
1498 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1499 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1500 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1501 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1502 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1503 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1505 if (!is_ip4 && !is_ip6)
1506 return CHECKSUM_NONE;
1507 if (!is_tcp && !is_udp)
1508 return CHECKSUM_NONE;
1509 if (!ip_csum_ok)
1510 return CHECKSUM_NONE;
1511 if (!tcpudp_csum_ok)
1512 return CHECKSUM_NONE;
1514 return CHECKSUM_UNNECESSARY;
1517 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1519 msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1522 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1523 struct sk_buff_head *amsdu,
1524 struct ieee80211_rx_status *status,
1525 bool fill_crypt_header,
1526 u8 *rx_hdr,
1527 enum ath10k_pkt_rx_err *err)
1529 struct sk_buff *first;
1530 struct sk_buff *last;
1531 struct sk_buff *msdu;
1532 struct htt_rx_desc *rxd;
1533 struct ieee80211_hdr *hdr;
1534 enum htt_rx_mpdu_encrypt_type enctype;
1535 u8 first_hdr[64];
1536 u8 *qos;
1537 bool has_fcs_err;
1538 bool has_crypto_err;
1539 bool has_tkip_err;
1540 bool has_peer_idx_invalid;
1541 bool is_decrypted;
1542 bool is_mgmt;
1543 u32 attention;
1545 if (skb_queue_empty(amsdu))
1546 return;
1548 first = skb_peek(amsdu);
1549 rxd = (void *)first->data - sizeof(*rxd);
1551 is_mgmt = !!(rxd->attention.flags &
1552 __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1554 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1555 RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1557 /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1558 * decapped header. It'll be used for undecapping of each MSDU.
1560 hdr = (void *)rxd->rx_hdr_status;
1561 memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1563 if (rx_hdr)
1564 memcpy(rx_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1566 /* Each A-MSDU subframe will use the original header as the base and be
1567 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1569 hdr = (void *)first_hdr;
1571 if (ieee80211_is_data_qos(hdr->frame_control)) {
1572 qos = ieee80211_get_qos_ctl(hdr);
1573 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1576 /* Some attention flags are valid only in the last MSDU. */
1577 last = skb_peek_tail(amsdu);
1578 rxd = (void *)last->data - sizeof(*rxd);
1579 attention = __le32_to_cpu(rxd->attention.flags);
1581 has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1582 has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1583 has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1584 has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1586 /* Note: If hardware captures an encrypted frame that it can't decrypt,
1587 * e.g. due to fcs error, missing peer or invalid key data it will
1588 * report the frame as raw.
1590 is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1591 !has_fcs_err &&
1592 !has_crypto_err &&
1593 !has_peer_idx_invalid);
1595 /* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1596 status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1597 RX_FLAG_MMIC_ERROR |
1598 RX_FLAG_DECRYPTED |
1599 RX_FLAG_IV_STRIPPED |
1600 RX_FLAG_ONLY_MONITOR |
1601 RX_FLAG_MMIC_STRIPPED);
1603 if (has_fcs_err)
1604 status->flag |= RX_FLAG_FAILED_FCS_CRC;
1606 if (has_tkip_err)
1607 status->flag |= RX_FLAG_MMIC_ERROR;
1609 if (err) {
1610 if (has_fcs_err)
1611 *err = ATH10K_PKT_RX_ERR_FCS;
1612 else if (has_tkip_err)
1613 *err = ATH10K_PKT_RX_ERR_TKIP;
1614 else if (has_crypto_err)
1615 *err = ATH10K_PKT_RX_ERR_CRYPT;
1616 else if (has_peer_idx_invalid)
1617 *err = ATH10K_PKT_RX_ERR_PEER_IDX_INVAL;
1620 /* Firmware reports all necessary management frames via WMI already.
1621 * They are not reported to monitor interfaces at all so pass the ones
1622 * coming via HTT to monitor interfaces instead. This simplifies
1623 * matters a lot.
1625 if (is_mgmt)
1626 status->flag |= RX_FLAG_ONLY_MONITOR;
1628 if (is_decrypted) {
1629 status->flag |= RX_FLAG_DECRYPTED;
1631 if (likely(!is_mgmt))
1632 status->flag |= RX_FLAG_MMIC_STRIPPED;
1634 if (fill_crypt_header)
1635 status->flag |= RX_FLAG_MIC_STRIPPED |
1636 RX_FLAG_ICV_STRIPPED;
1637 else
1638 status->flag |= RX_FLAG_IV_STRIPPED;
1641 skb_queue_walk(amsdu, msdu) {
1642 ath10k_htt_rx_h_csum_offload(msdu);
1643 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1644 is_decrypted);
1646 /* Undecapping involves copying the original 802.11 header back
1647 * to sk_buff. If frame is protected and hardware has decrypted
1648 * it then remove the protected bit.
1650 if (!is_decrypted)
1651 continue;
1652 if (is_mgmt)
1653 continue;
1655 if (fill_crypt_header)
1656 continue;
1658 hdr = (void *)msdu->data;
1659 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1663 static void ath10k_htt_rx_h_enqueue(struct ath10k *ar,
1664 struct sk_buff_head *amsdu,
1665 struct ieee80211_rx_status *status)
1667 struct sk_buff *msdu;
1668 struct sk_buff *first_subframe;
1670 first_subframe = skb_peek(amsdu);
1672 while ((msdu = __skb_dequeue(amsdu))) {
1673 /* Setup per-MSDU flags */
1674 if (skb_queue_empty(amsdu))
1675 status->flag &= ~RX_FLAG_AMSDU_MORE;
1676 else
1677 status->flag |= RX_FLAG_AMSDU_MORE;
1679 if (msdu == first_subframe) {
1680 first_subframe = NULL;
1681 status->flag &= ~RX_FLAG_ALLOW_SAME_PN;
1682 } else {
1683 status->flag |= RX_FLAG_ALLOW_SAME_PN;
1686 ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
1690 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu,
1691 unsigned long int *unchain_cnt)
1693 struct sk_buff *skb, *first;
1694 int space;
1695 int total_len = 0;
1696 int amsdu_len = skb_queue_len(amsdu);
1698 /* TODO: Might could optimize this by using
1699 * skb_try_coalesce or similar method to
1700 * decrease copying, or maybe get mac80211 to
1701 * provide a way to just receive a list of
1702 * skb?
1705 first = __skb_dequeue(amsdu);
1707 /* Allocate total length all at once. */
1708 skb_queue_walk(amsdu, skb)
1709 total_len += skb->len;
1711 space = total_len - skb_tailroom(first);
1712 if ((space > 0) &&
1713 (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1714 /* TODO: bump some rx-oom error stat */
1715 /* put it back together so we can free the
1716 * whole list at once.
1718 __skb_queue_head(amsdu, first);
1719 return -1;
1722 /* Walk list again, copying contents into
1723 * msdu_head
1725 while ((skb = __skb_dequeue(amsdu))) {
1726 skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1727 skb->len);
1728 dev_kfree_skb_any(skb);
1731 __skb_queue_head(amsdu, first);
1733 *unchain_cnt += amsdu_len - 1;
1735 return 0;
1738 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1739 struct sk_buff_head *amsdu,
1740 unsigned long int *drop_cnt,
1741 unsigned long int *unchain_cnt)
1743 struct sk_buff *first;
1744 struct htt_rx_desc *rxd;
1745 enum rx_msdu_decap_format decap;
1747 first = skb_peek(amsdu);
1748 rxd = (void *)first->data - sizeof(*rxd);
1749 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1750 RX_MSDU_START_INFO1_DECAP_FORMAT);
1752 /* FIXME: Current unchaining logic can only handle simple case of raw
1753 * msdu chaining. If decapping is other than raw the chaining may be
1754 * more complex and this isn't handled by the current code. Don't even
1755 * try re-constructing such frames - it'll be pretty much garbage.
1757 if (decap != RX_MSDU_DECAP_RAW ||
1758 skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1759 *drop_cnt += skb_queue_len(amsdu);
1760 __skb_queue_purge(amsdu);
1761 return;
1764 ath10k_unchain_msdu(amsdu, unchain_cnt);
1767 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1768 struct sk_buff_head *amsdu,
1769 struct ieee80211_rx_status *rx_status)
1771 /* FIXME: It might be a good idea to do some fuzzy-testing to drop
1772 * invalid/dangerous frames.
1775 if (!rx_status->freq) {
1776 ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n");
1777 return false;
1780 if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1781 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1782 return false;
1785 return true;
1788 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1789 struct sk_buff_head *amsdu,
1790 struct ieee80211_rx_status *rx_status,
1791 unsigned long int *drop_cnt)
1793 if (skb_queue_empty(amsdu))
1794 return;
1796 if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1797 return;
1799 if (drop_cnt)
1800 *drop_cnt += skb_queue_len(amsdu);
1802 __skb_queue_purge(amsdu);
1805 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
1807 struct ath10k *ar = htt->ar;
1808 struct ieee80211_rx_status *rx_status = &htt->rx_status;
1809 struct sk_buff_head amsdu;
1810 int ret;
1811 unsigned long int drop_cnt = 0;
1812 unsigned long int unchain_cnt = 0;
1813 unsigned long int drop_cnt_filter = 0;
1814 unsigned long int msdus_to_queue, num_msdus;
1815 enum ath10k_pkt_rx_err err = ATH10K_PKT_RX_ERR_MAX;
1816 u8 first_hdr[RX_HTT_HDR_STATUS_LEN];
1818 __skb_queue_head_init(&amsdu);
1820 spin_lock_bh(&htt->rx_ring.lock);
1821 if (htt->rx_confused) {
1822 spin_unlock_bh(&htt->rx_ring.lock);
1823 return -EIO;
1825 ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
1826 spin_unlock_bh(&htt->rx_ring.lock);
1828 if (ret < 0) {
1829 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1830 __skb_queue_purge(&amsdu);
1831 /* FIXME: It's probably a good idea to reboot the
1832 * device instead of leaving it inoperable.
1834 htt->rx_confused = true;
1835 return ret;
1838 num_msdus = skb_queue_len(&amsdu);
1840 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
1842 /* only for ret = 1 indicates chained msdus */
1843 if (ret > 0)
1844 ath10k_htt_rx_h_unchain(ar, &amsdu, &drop_cnt, &unchain_cnt);
1846 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status, &drop_cnt_filter);
1847 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true, first_hdr, &err);
1848 msdus_to_queue = skb_queue_len(&amsdu);
1849 ath10k_htt_rx_h_enqueue(ar, &amsdu, rx_status);
1851 ath10k_sta_update_rx_tid_stats(ar, first_hdr, num_msdus, err,
1852 unchain_cnt, drop_cnt, drop_cnt_filter,
1853 msdus_to_queue);
1855 return 0;
1858 static bool ath10k_htt_rx_proc_rx_ind_hl(struct ath10k_htt *htt,
1859 struct htt_rx_indication_hl *rx,
1860 struct sk_buff *skb)
1862 struct ath10k *ar = htt->ar;
1863 struct ath10k_peer *peer;
1864 struct htt_rx_indication_mpdu_range *mpdu_ranges;
1865 struct fw_rx_desc_hl *fw_desc;
1866 struct ieee80211_hdr *hdr;
1867 struct ieee80211_rx_status *rx_status;
1868 u16 peer_id;
1869 u8 rx_desc_len;
1870 int num_mpdu_ranges;
1871 size_t tot_hdr_len;
1872 struct ieee80211_channel *ch;
1874 peer_id = __le16_to_cpu(rx->hdr.peer_id);
1876 spin_lock_bh(&ar->data_lock);
1877 peer = ath10k_peer_find_by_id(ar, peer_id);
1878 spin_unlock_bh(&ar->data_lock);
1879 if (!peer)
1880 ath10k_warn(ar, "Got RX ind from invalid peer: %u\n", peer_id);
1882 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1883 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1884 mpdu_ranges = htt_rx_ind_get_mpdu_ranges_hl(rx);
1885 fw_desc = &rx->fw_desc;
1886 rx_desc_len = fw_desc->len;
1888 /* I have not yet seen any case where num_mpdu_ranges > 1.
1889 * qcacld does not seem handle that case either, so we introduce the
1890 * same limitiation here as well.
1892 if (num_mpdu_ranges > 1)
1893 ath10k_warn(ar,
1894 "Unsupported number of MPDU ranges: %d, ignoring all but the first\n",
1895 num_mpdu_ranges);
1897 if (mpdu_ranges->mpdu_range_status !=
1898 HTT_RX_IND_MPDU_STATUS_OK) {
1899 ath10k_warn(ar, "MPDU range status: %d\n",
1900 mpdu_ranges->mpdu_range_status);
1901 goto err;
1904 /* Strip off all headers before the MAC header before delivery to
1905 * mac80211
1907 tot_hdr_len = sizeof(struct htt_resp_hdr) + sizeof(rx->hdr) +
1908 sizeof(rx->ppdu) + sizeof(rx->prefix) +
1909 sizeof(rx->fw_desc) +
1910 sizeof(*mpdu_ranges) * num_mpdu_ranges + rx_desc_len;
1911 skb_pull(skb, tot_hdr_len);
1913 hdr = (struct ieee80211_hdr *)skb->data;
1914 rx_status = IEEE80211_SKB_RXCB(skb);
1915 rx_status->chains |= BIT(0);
1916 rx_status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
1917 rx->ppdu.combined_rssi;
1918 rx_status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
1920 spin_lock_bh(&ar->data_lock);
1921 ch = ar->scan_channel;
1922 if (!ch)
1923 ch = ar->rx_channel;
1924 if (!ch)
1925 ch = ath10k_htt_rx_h_any_channel(ar);
1926 if (!ch)
1927 ch = ar->tgt_oper_chan;
1928 spin_unlock_bh(&ar->data_lock);
1930 if (ch) {
1931 rx_status->band = ch->band;
1932 rx_status->freq = ch->center_freq;
1934 if (rx->fw_desc.flags & FW_RX_DESC_FLAGS_LAST_MSDU)
1935 rx_status->flag &= ~RX_FLAG_AMSDU_MORE;
1936 else
1937 rx_status->flag |= RX_FLAG_AMSDU_MORE;
1939 /* Not entirely sure about this, but all frames from the chipset has
1940 * the protected flag set even though they have already been decrypted.
1941 * Unmasking this flag is necessary in order for mac80211 not to drop
1942 * the frame.
1943 * TODO: Verify this is always the case or find out a way to check
1944 * if there has been hw decryption.
1946 if (ieee80211_has_protected(hdr->frame_control)) {
1947 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1948 rx_status->flag |= RX_FLAG_DECRYPTED |
1949 RX_FLAG_IV_STRIPPED |
1950 RX_FLAG_MMIC_STRIPPED;
1953 ieee80211_rx_ni(ar->hw, skb);
1955 /* We have delivered the skb to the upper layers (mac80211) so we
1956 * must not free it.
1958 return false;
1959 err:
1960 /* Tell the caller that it must free the skb since we have not
1961 * consumed it
1963 return true;
1966 static void ath10k_htt_rx_proc_rx_ind_ll(struct ath10k_htt *htt,
1967 struct htt_rx_indication *rx)
1969 struct ath10k *ar = htt->ar;
1970 struct htt_rx_indication_mpdu_range *mpdu_ranges;
1971 int num_mpdu_ranges;
1972 int i, mpdu_count = 0;
1973 u16 peer_id;
1974 u8 tid;
1976 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1977 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1978 peer_id = __le16_to_cpu(rx->hdr.peer_id);
1979 tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
1981 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1983 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1984 rx, sizeof(*rx) +
1985 (sizeof(struct htt_rx_indication_mpdu_range) *
1986 num_mpdu_ranges));
1988 for (i = 0; i < num_mpdu_ranges; i++)
1989 mpdu_count += mpdu_ranges[i].mpdu_count;
1991 atomic_add(mpdu_count, &htt->num_mpdus_ready);
1993 ath10k_sta_update_rx_tid_stats_ampdu(ar, peer_id, tid, mpdu_ranges,
1994 num_mpdu_ranges);
1997 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
1998 struct sk_buff *skb)
2000 struct ath10k_htt *htt = &ar->htt;
2001 struct htt_resp *resp = (struct htt_resp *)skb->data;
2002 struct htt_tx_done tx_done = {};
2003 int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
2004 __le16 msdu_id, *msdus;
2005 bool rssi_enabled = false;
2006 u8 msdu_count = 0;
2007 int i;
2009 switch (status) {
2010 case HTT_DATA_TX_STATUS_NO_ACK:
2011 tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2012 break;
2013 case HTT_DATA_TX_STATUS_OK:
2014 tx_done.status = HTT_TX_COMPL_STATE_ACK;
2015 break;
2016 case HTT_DATA_TX_STATUS_DISCARD:
2017 case HTT_DATA_TX_STATUS_POSTPONE:
2018 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
2019 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2020 break;
2021 default:
2022 ath10k_warn(ar, "unhandled tx completion status %d\n", status);
2023 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2024 break;
2027 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
2028 resp->data_tx_completion.num_msdus);
2030 msdu_count = resp->data_tx_completion.num_msdus;
2032 if (resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_DATA_RSSI)
2033 rssi_enabled = true;
2035 for (i = 0; i < msdu_count; i++) {
2036 msdus = resp->data_tx_completion.msdus;
2037 msdu_id = msdus[i];
2038 tx_done.msdu_id = __le16_to_cpu(msdu_id);
2040 if (rssi_enabled) {
2041 /* Total no of MSDUs should be even,
2042 * if odd MSDUs are sent firmware fills
2043 * last msdu id with 0xffff
2045 if (msdu_count & 0x01) {
2046 msdu_id = msdus[msdu_count + i + 1];
2047 tx_done.ack_rssi = __le16_to_cpu(msdu_id);
2048 } else {
2049 msdu_id = msdus[msdu_count + i];
2050 tx_done.ack_rssi = __le16_to_cpu(msdu_id);
2054 /* kfifo_put: In practice firmware shouldn't fire off per-CE
2055 * interrupt and main interrupt (MSI/-X range case) for the same
2056 * HTC service so it should be safe to use kfifo_put w/o lock.
2058 * From kfifo_put() documentation:
2059 * Note that with only one concurrent reader and one concurrent
2060 * writer, you don't need extra locking to use these macro.
2062 if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
2063 ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
2064 tx_done.msdu_id, tx_done.status);
2065 ath10k_txrx_tx_unref(htt, &tx_done);
2070 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
2072 struct htt_rx_addba *ev = &resp->rx_addba;
2073 struct ath10k_peer *peer;
2074 struct ath10k_vif *arvif;
2075 u16 info0, tid, peer_id;
2077 info0 = __le16_to_cpu(ev->info0);
2078 tid = MS(info0, HTT_RX_BA_INFO0_TID);
2079 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
2081 ath10k_dbg(ar, ATH10K_DBG_HTT,
2082 "htt rx addba tid %hu peer_id %hu size %hhu\n",
2083 tid, peer_id, ev->window_size);
2085 spin_lock_bh(&ar->data_lock);
2086 peer = ath10k_peer_find_by_id(ar, peer_id);
2087 if (!peer) {
2088 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
2089 peer_id);
2090 spin_unlock_bh(&ar->data_lock);
2091 return;
2094 arvif = ath10k_get_arvif(ar, peer->vdev_id);
2095 if (!arvif) {
2096 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
2097 peer->vdev_id);
2098 spin_unlock_bh(&ar->data_lock);
2099 return;
2102 ath10k_dbg(ar, ATH10K_DBG_HTT,
2103 "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
2104 peer->addr, tid, ev->window_size);
2106 ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
2107 spin_unlock_bh(&ar->data_lock);
2110 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
2112 struct htt_rx_delba *ev = &resp->rx_delba;
2113 struct ath10k_peer *peer;
2114 struct ath10k_vif *arvif;
2115 u16 info0, tid, peer_id;
2117 info0 = __le16_to_cpu(ev->info0);
2118 tid = MS(info0, HTT_RX_BA_INFO0_TID);
2119 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
2121 ath10k_dbg(ar, ATH10K_DBG_HTT,
2122 "htt rx delba tid %hu peer_id %hu\n",
2123 tid, peer_id);
2125 spin_lock_bh(&ar->data_lock);
2126 peer = ath10k_peer_find_by_id(ar, peer_id);
2127 if (!peer) {
2128 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
2129 peer_id);
2130 spin_unlock_bh(&ar->data_lock);
2131 return;
2134 arvif = ath10k_get_arvif(ar, peer->vdev_id);
2135 if (!arvif) {
2136 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
2137 peer->vdev_id);
2138 spin_unlock_bh(&ar->data_lock);
2139 return;
2142 ath10k_dbg(ar, ATH10K_DBG_HTT,
2143 "htt rx stop rx ba session sta %pM tid %hu\n",
2144 peer->addr, tid);
2146 ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
2147 spin_unlock_bh(&ar->data_lock);
2150 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
2151 struct sk_buff_head *amsdu)
2153 struct sk_buff *msdu;
2154 struct htt_rx_desc *rxd;
2156 if (skb_queue_empty(list))
2157 return -ENOBUFS;
2159 if (WARN_ON(!skb_queue_empty(amsdu)))
2160 return -EINVAL;
2162 while ((msdu = __skb_dequeue(list))) {
2163 __skb_queue_tail(amsdu, msdu);
2165 rxd = (void *)msdu->data - sizeof(*rxd);
2166 if (rxd->msdu_end.common.info0 &
2167 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
2168 break;
2171 msdu = skb_peek_tail(amsdu);
2172 rxd = (void *)msdu->data - sizeof(*rxd);
2173 if (!(rxd->msdu_end.common.info0 &
2174 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
2175 skb_queue_splice_init(amsdu, list);
2176 return -EAGAIN;
2179 return 0;
2182 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
2183 struct sk_buff *skb)
2185 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2187 if (!ieee80211_has_protected(hdr->frame_control))
2188 return;
2190 /* Offloaded frames are already decrypted but firmware insists they are
2191 * protected in the 802.11 header. Strip the flag. Otherwise mac80211
2192 * will drop the frame.
2195 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2196 status->flag |= RX_FLAG_DECRYPTED |
2197 RX_FLAG_IV_STRIPPED |
2198 RX_FLAG_MMIC_STRIPPED;
2201 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
2202 struct sk_buff_head *list)
2204 struct ath10k_htt *htt = &ar->htt;
2205 struct ieee80211_rx_status *status = &htt->rx_status;
2206 struct htt_rx_offload_msdu *rx;
2207 struct sk_buff *msdu;
2208 size_t offset;
2210 while ((msdu = __skb_dequeue(list))) {
2211 /* Offloaded frames don't have Rx descriptor. Instead they have
2212 * a short meta information header.
2215 rx = (void *)msdu->data;
2217 skb_put(msdu, sizeof(*rx));
2218 skb_pull(msdu, sizeof(*rx));
2220 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
2221 ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
2222 dev_kfree_skb_any(msdu);
2223 continue;
2226 skb_put(msdu, __le16_to_cpu(rx->msdu_len));
2228 /* Offloaded rx header length isn't multiple of 2 nor 4 so the
2229 * actual payload is unaligned. Align the frame. Otherwise
2230 * mac80211 complains. This shouldn't reduce performance much
2231 * because these offloaded frames are rare.
2233 offset = 4 - ((unsigned long)msdu->data & 3);
2234 skb_put(msdu, offset);
2235 memmove(msdu->data + offset, msdu->data, msdu->len);
2236 skb_pull(msdu, offset);
2238 /* FIXME: The frame is NWifi. Re-construct QoS Control
2239 * if possible later.
2242 memset(status, 0, sizeof(*status));
2243 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
2245 ath10k_htt_rx_h_rx_offload_prot(status, msdu);
2246 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
2247 ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
2251 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
2253 struct ath10k_htt *htt = &ar->htt;
2254 struct htt_resp *resp = (void *)skb->data;
2255 struct ieee80211_rx_status *status = &htt->rx_status;
2256 struct sk_buff_head list;
2257 struct sk_buff_head amsdu;
2258 u16 peer_id;
2259 u16 msdu_count;
2260 u8 vdev_id;
2261 u8 tid;
2262 bool offload;
2263 bool frag;
2264 int ret;
2266 lockdep_assert_held(&htt->rx_ring.lock);
2268 if (htt->rx_confused)
2269 return -EIO;
2271 skb_pull(skb, sizeof(resp->hdr));
2272 skb_pull(skb, sizeof(resp->rx_in_ord_ind));
2274 peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
2275 msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
2276 vdev_id = resp->rx_in_ord_ind.vdev_id;
2277 tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
2278 offload = !!(resp->rx_in_ord_ind.info &
2279 HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
2280 frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
2282 ath10k_dbg(ar, ATH10K_DBG_HTT,
2283 "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
2284 vdev_id, peer_id, tid, offload, frag, msdu_count);
2286 if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs32)) {
2287 ath10k_warn(ar, "dropping invalid in order rx indication\n");
2288 return -EINVAL;
2291 /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
2292 * extracted and processed.
2294 __skb_queue_head_init(&list);
2295 if (ar->hw_params.target_64bit)
2296 ret = ath10k_htt_rx_pop_paddr64_list(htt, &resp->rx_in_ord_ind,
2297 &list);
2298 else
2299 ret = ath10k_htt_rx_pop_paddr32_list(htt, &resp->rx_in_ord_ind,
2300 &list);
2302 if (ret < 0) {
2303 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
2304 htt->rx_confused = true;
2305 return -EIO;
2308 /* Offloaded frames are very different and need to be handled
2309 * separately.
2311 if (offload)
2312 ath10k_htt_rx_h_rx_offload(ar, &list);
2314 while (!skb_queue_empty(&list)) {
2315 __skb_queue_head_init(&amsdu);
2316 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
2317 switch (ret) {
2318 case 0:
2319 /* Note: The in-order indication may report interleaved
2320 * frames from different PPDUs meaning reported rx rate
2321 * to mac80211 isn't accurate/reliable. It's still
2322 * better to report something than nothing though. This
2323 * should still give an idea about rx rate to the user.
2325 ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
2326 ath10k_htt_rx_h_filter(ar, &amsdu, status, NULL);
2327 ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false, NULL,
2328 NULL);
2329 ath10k_htt_rx_h_enqueue(ar, &amsdu, status);
2330 break;
2331 case -EAGAIN:
2332 /* fall through */
2333 default:
2334 /* Should not happen. */
2335 ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
2336 htt->rx_confused = true;
2337 __skb_queue_purge(&list);
2338 return -EIO;
2341 return ret;
2344 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
2345 const __le32 *resp_ids,
2346 int num_resp_ids)
2348 int i;
2349 u32 resp_id;
2351 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
2352 num_resp_ids);
2354 for (i = 0; i < num_resp_ids; i++) {
2355 resp_id = le32_to_cpu(resp_ids[i]);
2357 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
2358 resp_id);
2360 /* TODO: free resp_id */
2364 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
2366 struct ieee80211_hw *hw = ar->hw;
2367 struct ieee80211_txq *txq;
2368 struct htt_resp *resp = (struct htt_resp *)skb->data;
2369 struct htt_tx_fetch_record *record;
2370 size_t len;
2371 size_t max_num_bytes;
2372 size_t max_num_msdus;
2373 size_t num_bytes;
2374 size_t num_msdus;
2375 const __le32 *resp_ids;
2376 u16 num_records;
2377 u16 num_resp_ids;
2378 u16 peer_id;
2379 u8 tid;
2380 int ret;
2381 int i;
2383 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
2385 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
2386 if (unlikely(skb->len < len)) {
2387 ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
2388 return;
2391 num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
2392 num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
2394 len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
2395 len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
2397 if (unlikely(skb->len < len)) {
2398 ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
2399 return;
2402 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
2403 num_records, num_resp_ids,
2404 le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
2406 if (!ar->htt.tx_q_state.enabled) {
2407 ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
2408 return;
2411 if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
2412 ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
2413 return;
2416 rcu_read_lock();
2418 for (i = 0; i < num_records; i++) {
2419 record = &resp->tx_fetch_ind.records[i];
2420 peer_id = MS(le16_to_cpu(record->info),
2421 HTT_TX_FETCH_RECORD_INFO_PEER_ID);
2422 tid = MS(le16_to_cpu(record->info),
2423 HTT_TX_FETCH_RECORD_INFO_TID);
2424 max_num_msdus = le16_to_cpu(record->num_msdus);
2425 max_num_bytes = le32_to_cpu(record->num_bytes);
2427 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
2428 i, peer_id, tid, max_num_msdus, max_num_bytes);
2430 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2431 unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2432 ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2433 peer_id, tid);
2434 continue;
2437 spin_lock_bh(&ar->data_lock);
2438 txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2439 spin_unlock_bh(&ar->data_lock);
2441 /* It is okay to release the lock and use txq because RCU read
2442 * lock is held.
2445 if (unlikely(!txq)) {
2446 ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2447 peer_id, tid);
2448 continue;
2451 num_msdus = 0;
2452 num_bytes = 0;
2454 while (num_msdus < max_num_msdus &&
2455 num_bytes < max_num_bytes) {
2456 ret = ath10k_mac_tx_push_txq(hw, txq);
2457 if (ret < 0)
2458 break;
2460 num_msdus++;
2461 num_bytes += ret;
2464 record->num_msdus = cpu_to_le16(num_msdus);
2465 record->num_bytes = cpu_to_le32(num_bytes);
2467 ath10k_htt_tx_txq_recalc(hw, txq);
2470 rcu_read_unlock();
2472 resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
2473 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
2475 ret = ath10k_htt_tx_fetch_resp(ar,
2476 resp->tx_fetch_ind.token,
2477 resp->tx_fetch_ind.fetch_seq_num,
2478 resp->tx_fetch_ind.records,
2479 num_records);
2480 if (unlikely(ret)) {
2481 ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
2482 le32_to_cpu(resp->tx_fetch_ind.token), ret);
2483 /* FIXME: request fw restart */
2486 ath10k_htt_tx_txq_sync(ar);
2489 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
2490 struct sk_buff *skb)
2492 const struct htt_resp *resp = (void *)skb->data;
2493 size_t len;
2494 int num_resp_ids;
2496 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
2498 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
2499 if (unlikely(skb->len < len)) {
2500 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
2501 return;
2504 num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
2505 len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
2507 if (unlikely(skb->len < len)) {
2508 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
2509 return;
2512 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
2513 resp->tx_fetch_confirm.resp_ids,
2514 num_resp_ids);
2517 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
2518 struct sk_buff *skb)
2520 const struct htt_resp *resp = (void *)skb->data;
2521 const struct htt_tx_mode_switch_record *record;
2522 struct ieee80211_txq *txq;
2523 struct ath10k_txq *artxq;
2524 size_t len;
2525 size_t num_records;
2526 enum htt_tx_mode_switch_mode mode;
2527 bool enable;
2528 u16 info0;
2529 u16 info1;
2530 u16 threshold;
2531 u16 peer_id;
2532 u8 tid;
2533 int i;
2535 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
2537 len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
2538 if (unlikely(skb->len < len)) {
2539 ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
2540 return;
2543 info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
2544 info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
2546 enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
2547 num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2548 mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
2549 threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2551 ath10k_dbg(ar, ATH10K_DBG_HTT,
2552 "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
2553 info0, info1, enable, num_records, mode, threshold);
2555 len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
2557 if (unlikely(skb->len < len)) {
2558 ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
2559 return;
2562 switch (mode) {
2563 case HTT_TX_MODE_SWITCH_PUSH:
2564 case HTT_TX_MODE_SWITCH_PUSH_PULL:
2565 break;
2566 default:
2567 ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
2568 mode);
2569 return;
2572 if (!enable)
2573 return;
2575 ar->htt.tx_q_state.enabled = enable;
2576 ar->htt.tx_q_state.mode = mode;
2577 ar->htt.tx_q_state.num_push_allowed = threshold;
2579 rcu_read_lock();
2581 for (i = 0; i < num_records; i++) {
2582 record = &resp->tx_mode_switch_ind.records[i];
2583 info0 = le16_to_cpu(record->info0);
2584 peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
2585 tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
2587 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2588 unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2589 ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2590 peer_id, tid);
2591 continue;
2594 spin_lock_bh(&ar->data_lock);
2595 txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2596 spin_unlock_bh(&ar->data_lock);
2598 /* It is okay to release the lock and use txq because RCU read
2599 * lock is held.
2602 if (unlikely(!txq)) {
2603 ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2604 peer_id, tid);
2605 continue;
2608 spin_lock_bh(&ar->htt.tx_lock);
2609 artxq = (void *)txq->drv_priv;
2610 artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
2611 spin_unlock_bh(&ar->htt.tx_lock);
2614 rcu_read_unlock();
2616 ath10k_mac_tx_push_pending(ar);
2619 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2621 bool release;
2623 release = ath10k_htt_t2h_msg_handler(ar, skb);
2625 /* Free the indication buffer */
2626 if (release)
2627 dev_kfree_skb_any(skb);
2630 static inline int ath10k_get_legacy_rate_idx(struct ath10k *ar, u8 rate)
2632 static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12,
2633 18, 24, 36, 48, 54};
2634 int i;
2636 for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) {
2637 if (rate == legacy_rates[i])
2638 return i;
2641 ath10k_warn(ar, "Invalid legacy rate %hhd peer stats", rate);
2642 return -EINVAL;
2645 static void
2646 ath10k_accumulate_per_peer_tx_stats(struct ath10k *ar,
2647 struct ath10k_sta *arsta,
2648 struct ath10k_per_peer_tx_stats *pstats,
2649 u8 legacy_rate_idx)
2651 struct rate_info *txrate = &arsta->txrate;
2652 struct ath10k_htt_tx_stats *tx_stats;
2653 int ht_idx, gi, mcs, bw, nss;
2655 if (!arsta->tx_stats)
2656 return;
2658 tx_stats = arsta->tx_stats;
2659 gi = (arsta->txrate.flags & RATE_INFO_FLAGS_SHORT_GI);
2660 ht_idx = txrate->mcs + txrate->nss * 8;
2661 mcs = txrate->mcs;
2662 bw = txrate->bw;
2663 nss = txrate->nss;
2665 #define STATS_OP_FMT(name) tx_stats->stats[ATH10K_STATS_TYPE_##name]
2667 if (txrate->flags == RATE_INFO_FLAGS_VHT_MCS) {
2668 STATS_OP_FMT(SUCC).vht[0][mcs] += pstats->succ_bytes;
2669 STATS_OP_FMT(SUCC).vht[1][mcs] += pstats->succ_pkts;
2670 STATS_OP_FMT(FAIL).vht[0][mcs] += pstats->failed_bytes;
2671 STATS_OP_FMT(FAIL).vht[1][mcs] += pstats->failed_pkts;
2672 STATS_OP_FMT(RETRY).vht[0][mcs] += pstats->retry_bytes;
2673 STATS_OP_FMT(RETRY).vht[1][mcs] += pstats->retry_pkts;
2674 } else if (txrate->flags == RATE_INFO_FLAGS_MCS) {
2675 STATS_OP_FMT(SUCC).ht[0][ht_idx] += pstats->succ_bytes;
2676 STATS_OP_FMT(SUCC).ht[1][ht_idx] += pstats->succ_pkts;
2677 STATS_OP_FMT(FAIL).ht[0][ht_idx] += pstats->failed_bytes;
2678 STATS_OP_FMT(FAIL).ht[1][ht_idx] += pstats->failed_pkts;
2679 STATS_OP_FMT(RETRY).ht[0][ht_idx] += pstats->retry_bytes;
2680 STATS_OP_FMT(RETRY).ht[1][ht_idx] += pstats->retry_pkts;
2681 } else {
2682 mcs = legacy_rate_idx;
2684 STATS_OP_FMT(SUCC).legacy[0][mcs] += pstats->succ_bytes;
2685 STATS_OP_FMT(SUCC).legacy[1][mcs] += pstats->succ_pkts;
2686 STATS_OP_FMT(FAIL).legacy[0][mcs] += pstats->failed_bytes;
2687 STATS_OP_FMT(FAIL).legacy[1][mcs] += pstats->failed_pkts;
2688 STATS_OP_FMT(RETRY).legacy[0][mcs] += pstats->retry_bytes;
2689 STATS_OP_FMT(RETRY).legacy[1][mcs] += pstats->retry_pkts;
2692 if (ATH10K_HW_AMPDU(pstats->flags)) {
2693 tx_stats->ba_fails += ATH10K_HW_BA_FAIL(pstats->flags);
2695 if (txrate->flags == RATE_INFO_FLAGS_MCS) {
2696 STATS_OP_FMT(AMPDU).ht[0][ht_idx] +=
2697 pstats->succ_bytes + pstats->retry_bytes;
2698 STATS_OP_FMT(AMPDU).ht[1][ht_idx] +=
2699 pstats->succ_pkts + pstats->retry_pkts;
2700 } else {
2701 STATS_OP_FMT(AMPDU).vht[0][mcs] +=
2702 pstats->succ_bytes + pstats->retry_bytes;
2703 STATS_OP_FMT(AMPDU).vht[1][mcs] +=
2704 pstats->succ_pkts + pstats->retry_pkts;
2706 STATS_OP_FMT(AMPDU).bw[0][bw] +=
2707 pstats->succ_bytes + pstats->retry_bytes;
2708 STATS_OP_FMT(AMPDU).nss[0][nss] +=
2709 pstats->succ_bytes + pstats->retry_bytes;
2710 STATS_OP_FMT(AMPDU).gi[0][gi] +=
2711 pstats->succ_bytes + pstats->retry_bytes;
2712 STATS_OP_FMT(AMPDU).bw[1][bw] +=
2713 pstats->succ_pkts + pstats->retry_pkts;
2714 STATS_OP_FMT(AMPDU).nss[1][nss] +=
2715 pstats->succ_pkts + pstats->retry_pkts;
2716 STATS_OP_FMT(AMPDU).gi[1][gi] +=
2717 pstats->succ_pkts + pstats->retry_pkts;
2718 } else {
2719 tx_stats->ack_fails +=
2720 ATH10K_HW_BA_FAIL(pstats->flags);
2723 STATS_OP_FMT(SUCC).bw[0][bw] += pstats->succ_bytes;
2724 STATS_OP_FMT(SUCC).nss[0][nss] += pstats->succ_bytes;
2725 STATS_OP_FMT(SUCC).gi[0][gi] += pstats->succ_bytes;
2727 STATS_OP_FMT(SUCC).bw[1][bw] += pstats->succ_pkts;
2728 STATS_OP_FMT(SUCC).nss[1][nss] += pstats->succ_pkts;
2729 STATS_OP_FMT(SUCC).gi[1][gi] += pstats->succ_pkts;
2731 STATS_OP_FMT(FAIL).bw[0][bw] += pstats->failed_bytes;
2732 STATS_OP_FMT(FAIL).nss[0][nss] += pstats->failed_bytes;
2733 STATS_OP_FMT(FAIL).gi[0][gi] += pstats->failed_bytes;
2735 STATS_OP_FMT(FAIL).bw[1][bw] += pstats->failed_pkts;
2736 STATS_OP_FMT(FAIL).nss[1][nss] += pstats->failed_pkts;
2737 STATS_OP_FMT(FAIL).gi[1][gi] += pstats->failed_pkts;
2739 STATS_OP_FMT(RETRY).bw[0][bw] += pstats->retry_bytes;
2740 STATS_OP_FMT(RETRY).nss[0][nss] += pstats->retry_bytes;
2741 STATS_OP_FMT(RETRY).gi[0][gi] += pstats->retry_bytes;
2743 STATS_OP_FMT(RETRY).bw[1][bw] += pstats->retry_pkts;
2744 STATS_OP_FMT(RETRY).nss[1][nss] += pstats->retry_pkts;
2745 STATS_OP_FMT(RETRY).gi[1][gi] += pstats->retry_pkts;
2748 static void
2749 ath10k_update_per_peer_tx_stats(struct ath10k *ar,
2750 struct ieee80211_sta *sta,
2751 struct ath10k_per_peer_tx_stats *peer_stats)
2753 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
2754 u8 rate = 0, sgi;
2755 s8 rate_idx = 0;
2756 struct rate_info txrate;
2758 lockdep_assert_held(&ar->data_lock);
2760 txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode);
2761 txrate.bw = ATH10K_HW_BW(peer_stats->flags);
2762 txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode);
2763 txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode);
2764 sgi = ATH10K_HW_GI(peer_stats->flags);
2766 if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) {
2767 ath10k_warn(ar, "Invalid VHT mcs %hhd peer stats", txrate.mcs);
2768 return;
2771 if (txrate.flags == WMI_RATE_PREAMBLE_HT &&
2772 (txrate.mcs > 7 || txrate.nss < 1)) {
2773 ath10k_warn(ar, "Invalid HT mcs %hhd nss %hhd peer stats",
2774 txrate.mcs, txrate.nss);
2775 return;
2778 memset(&arsta->txrate, 0, sizeof(arsta->txrate));
2780 if (txrate.flags == WMI_RATE_PREAMBLE_CCK ||
2781 txrate.flags == WMI_RATE_PREAMBLE_OFDM) {
2782 rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode);
2783 /* This is hacky, FW sends CCK rate 5.5Mbps as 6 */
2784 if (rate == 6 && txrate.flags == WMI_RATE_PREAMBLE_CCK)
2785 rate = 5;
2786 rate_idx = ath10k_get_legacy_rate_idx(ar, rate);
2787 if (rate_idx < 0)
2788 return;
2789 arsta->txrate.legacy = rate;
2790 } else if (txrate.flags == WMI_RATE_PREAMBLE_HT) {
2791 arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
2792 arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1);
2793 } else {
2794 arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
2795 arsta->txrate.mcs = txrate.mcs;
2798 if (sgi)
2799 arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
2801 arsta->txrate.nss = txrate.nss;
2802 arsta->txrate.bw = ath10k_bw_to_mac80211_bw(txrate.bw);
2804 if (ath10k_debug_is_extd_tx_stats_enabled(ar))
2805 ath10k_accumulate_per_peer_tx_stats(ar, arsta, peer_stats,
2806 rate_idx);
2809 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar,
2810 struct sk_buff *skb)
2812 struct htt_resp *resp = (struct htt_resp *)skb->data;
2813 struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
2814 struct htt_per_peer_tx_stats_ind *tx_stats;
2815 struct ieee80211_sta *sta;
2816 struct ath10k_peer *peer;
2817 int peer_id, i;
2818 u8 ppdu_len, num_ppdu;
2820 num_ppdu = resp->peer_tx_stats.num_ppdu;
2821 ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32);
2823 if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) {
2824 ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len);
2825 return;
2828 tx_stats = (struct htt_per_peer_tx_stats_ind *)
2829 (resp->peer_tx_stats.payload);
2830 peer_id = __le16_to_cpu(tx_stats->peer_id);
2832 rcu_read_lock();
2833 spin_lock_bh(&ar->data_lock);
2834 peer = ath10k_peer_find_by_id(ar, peer_id);
2835 if (!peer) {
2836 ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n",
2837 peer_id);
2838 goto out;
2841 sta = peer->sta;
2842 for (i = 0; i < num_ppdu; i++) {
2843 tx_stats = (struct htt_per_peer_tx_stats_ind *)
2844 (resp->peer_tx_stats.payload + i * ppdu_len);
2846 p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes);
2847 p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes);
2848 p_tx_stats->failed_bytes =
2849 __le32_to_cpu(tx_stats->failed_bytes);
2850 p_tx_stats->ratecode = tx_stats->ratecode;
2851 p_tx_stats->flags = tx_stats->flags;
2852 p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts);
2853 p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts);
2854 p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts);
2856 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
2859 out:
2860 spin_unlock_bh(&ar->data_lock);
2861 rcu_read_unlock();
2864 static void ath10k_fetch_10_2_tx_stats(struct ath10k *ar, u8 *data)
2866 struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)data;
2867 struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
2868 struct ath10k_10_2_peer_tx_stats *tx_stats;
2869 struct ieee80211_sta *sta;
2870 struct ath10k_peer *peer;
2871 u16 log_type = __le16_to_cpu(hdr->log_type);
2872 u32 peer_id = 0, i;
2874 if (log_type != ATH_PKTLOG_TYPE_TX_STAT)
2875 return;
2877 tx_stats = (struct ath10k_10_2_peer_tx_stats *)((hdr->payload) +
2878 ATH10K_10_2_TX_STATS_OFFSET);
2880 if (!tx_stats->tx_ppdu_cnt)
2881 return;
2883 peer_id = tx_stats->peer_id;
2885 rcu_read_lock();
2886 spin_lock_bh(&ar->data_lock);
2887 peer = ath10k_peer_find_by_id(ar, peer_id);
2888 if (!peer) {
2889 ath10k_warn(ar, "Invalid peer id %d in peer stats buffer\n",
2890 peer_id);
2891 goto out;
2894 sta = peer->sta;
2895 for (i = 0; i < tx_stats->tx_ppdu_cnt; i++) {
2896 p_tx_stats->succ_bytes =
2897 __le16_to_cpu(tx_stats->success_bytes[i]);
2898 p_tx_stats->retry_bytes =
2899 __le16_to_cpu(tx_stats->retry_bytes[i]);
2900 p_tx_stats->failed_bytes =
2901 __le16_to_cpu(tx_stats->failed_bytes[i]);
2902 p_tx_stats->ratecode = tx_stats->ratecode[i];
2903 p_tx_stats->flags = tx_stats->flags[i];
2904 p_tx_stats->succ_pkts = tx_stats->success_pkts[i];
2905 p_tx_stats->retry_pkts = tx_stats->retry_pkts[i];
2906 p_tx_stats->failed_pkts = tx_stats->failed_pkts[i];
2908 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
2910 spin_unlock_bh(&ar->data_lock);
2911 rcu_read_unlock();
2913 return;
2915 out:
2916 spin_unlock_bh(&ar->data_lock);
2917 rcu_read_unlock();
2920 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2922 struct ath10k_htt *htt = &ar->htt;
2923 struct htt_resp *resp = (struct htt_resp *)skb->data;
2924 enum htt_t2h_msg_type type;
2926 /* confirm alignment */
2927 if (!IS_ALIGNED((unsigned long)skb->data, 4))
2928 ath10k_warn(ar, "unaligned htt message, expect trouble\n");
2930 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
2931 resp->hdr.msg_type);
2933 if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
2934 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
2935 resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
2936 return true;
2938 type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
2940 switch (type) {
2941 case HTT_T2H_MSG_TYPE_VERSION_CONF: {
2942 htt->target_version_major = resp->ver_resp.major;
2943 htt->target_version_minor = resp->ver_resp.minor;
2944 complete(&htt->target_version_received);
2945 break;
2947 case HTT_T2H_MSG_TYPE_RX_IND:
2948 if (ar->dev_type == ATH10K_DEV_TYPE_HL)
2949 return ath10k_htt_rx_proc_rx_ind_hl(htt,
2950 &resp->rx_ind_hl,
2951 skb);
2952 else
2953 ath10k_htt_rx_proc_rx_ind_ll(htt, &resp->rx_ind);
2954 break;
2955 case HTT_T2H_MSG_TYPE_PEER_MAP: {
2956 struct htt_peer_map_event ev = {
2957 .vdev_id = resp->peer_map.vdev_id,
2958 .peer_id = __le16_to_cpu(resp->peer_map.peer_id),
2960 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
2961 ath10k_peer_map_event(htt, &ev);
2962 break;
2964 case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
2965 struct htt_peer_unmap_event ev = {
2966 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
2968 ath10k_peer_unmap_event(htt, &ev);
2969 break;
2971 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
2972 struct htt_tx_done tx_done = {};
2973 int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
2974 int info = __le32_to_cpu(resp->mgmt_tx_completion.info);
2976 tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
2978 switch (status) {
2979 case HTT_MGMT_TX_STATUS_OK:
2980 tx_done.status = HTT_TX_COMPL_STATE_ACK;
2981 if (test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS,
2982 ar->wmi.svc_map) &&
2983 (resp->mgmt_tx_completion.flags &
2984 HTT_MGMT_TX_CMPL_FLAG_ACK_RSSI)) {
2985 tx_done.ack_rssi =
2986 FIELD_GET(HTT_MGMT_TX_CMPL_INFO_ACK_RSSI_MASK,
2987 info);
2989 break;
2990 case HTT_MGMT_TX_STATUS_RETRY:
2991 tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2992 break;
2993 case HTT_MGMT_TX_STATUS_DROP:
2994 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2995 break;
2998 status = ath10k_txrx_tx_unref(htt, &tx_done);
2999 if (!status) {
3000 spin_lock_bh(&htt->tx_lock);
3001 ath10k_htt_tx_mgmt_dec_pending(htt);
3002 spin_unlock_bh(&htt->tx_lock);
3004 break;
3006 case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
3007 ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
3008 break;
3009 case HTT_T2H_MSG_TYPE_SEC_IND: {
3010 struct ath10k *ar = htt->ar;
3011 struct htt_security_indication *ev = &resp->security_indication;
3013 ath10k_dbg(ar, ATH10K_DBG_HTT,
3014 "sec ind peer_id %d unicast %d type %d\n",
3015 __le16_to_cpu(ev->peer_id),
3016 !!(ev->flags & HTT_SECURITY_IS_UNICAST),
3017 MS(ev->flags, HTT_SECURITY_TYPE));
3018 complete(&ar->install_key_done);
3019 break;
3021 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
3022 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
3023 skb->data, skb->len);
3024 atomic_inc(&htt->num_mpdus_ready);
3025 break;
3027 case HTT_T2H_MSG_TYPE_TEST:
3028 break;
3029 case HTT_T2H_MSG_TYPE_STATS_CONF:
3030 trace_ath10k_htt_stats(ar, skb->data, skb->len);
3031 break;
3032 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
3033 /* Firmware can return tx frames if it's unable to fully
3034 * process them and suspects host may be able to fix it. ath10k
3035 * sends all tx frames as already inspected so this shouldn't
3036 * happen unless fw has a bug.
3038 ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
3039 break;
3040 case HTT_T2H_MSG_TYPE_RX_ADDBA:
3041 ath10k_htt_rx_addba(ar, resp);
3042 break;
3043 case HTT_T2H_MSG_TYPE_RX_DELBA:
3044 ath10k_htt_rx_delba(ar, resp);
3045 break;
3046 case HTT_T2H_MSG_TYPE_PKTLOG: {
3047 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
3048 skb->len -
3049 offsetof(struct htt_resp,
3050 pktlog_msg.payload));
3052 if (ath10k_peer_stats_enabled(ar))
3053 ath10k_fetch_10_2_tx_stats(ar,
3054 resp->pktlog_msg.payload);
3055 break;
3057 case HTT_T2H_MSG_TYPE_RX_FLUSH: {
3058 /* Ignore this event because mac80211 takes care of Rx
3059 * aggregation reordering.
3061 break;
3063 case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
3064 skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
3065 return false;
3067 case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
3068 break;
3069 case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
3070 u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
3071 u32 freq = __le32_to_cpu(resp->chan_change.freq);
3073 ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq);
3074 ath10k_dbg(ar, ATH10K_DBG_HTT,
3075 "htt chan change freq %u phymode %s\n",
3076 freq, ath10k_wmi_phymode_str(phymode));
3077 break;
3079 case HTT_T2H_MSG_TYPE_AGGR_CONF:
3080 break;
3081 case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
3082 struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
3084 if (!tx_fetch_ind) {
3085 ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
3086 break;
3088 skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
3089 break;
3091 case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
3092 ath10k_htt_rx_tx_fetch_confirm(ar, skb);
3093 break;
3094 case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
3095 ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
3096 break;
3097 case HTT_T2H_MSG_TYPE_PEER_STATS:
3098 ath10k_htt_fetch_peer_stats(ar, skb);
3099 break;
3100 case HTT_T2H_MSG_TYPE_EN_STATS:
3101 default:
3102 ath10k_warn(ar, "htt event (%d) not handled\n",
3103 resp->hdr.msg_type);
3104 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
3105 skb->data, skb->len);
3106 break;
3108 return true;
3110 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
3112 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
3113 struct sk_buff *skb)
3115 trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
3116 dev_kfree_skb_any(skb);
3118 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
3120 static int ath10k_htt_rx_deliver_msdu(struct ath10k *ar, int quota, int budget)
3122 struct sk_buff *skb;
3124 while (quota < budget) {
3125 if (skb_queue_empty(&ar->htt.rx_msdus_q))
3126 break;
3128 skb = skb_dequeue(&ar->htt.rx_msdus_q);
3129 if (!skb)
3130 break;
3131 ath10k_process_rx(ar, skb);
3132 quota++;
3135 return quota;
3138 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget)
3140 struct ath10k_htt *htt = &ar->htt;
3141 struct htt_tx_done tx_done = {};
3142 struct sk_buff_head tx_ind_q;
3143 struct sk_buff *skb;
3144 unsigned long flags;
3145 int quota = 0, done, ret;
3146 bool resched_napi = false;
3148 __skb_queue_head_init(&tx_ind_q);
3150 /* Process pending frames before dequeuing more data
3151 * from hardware.
3153 quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
3154 if (quota == budget) {
3155 resched_napi = true;
3156 goto exit;
3159 while ((skb = skb_dequeue(&htt->rx_in_ord_compl_q))) {
3160 spin_lock_bh(&htt->rx_ring.lock);
3161 ret = ath10k_htt_rx_in_ord_ind(ar, skb);
3162 spin_unlock_bh(&htt->rx_ring.lock);
3164 dev_kfree_skb_any(skb);
3165 if (ret == -EIO) {
3166 resched_napi = true;
3167 goto exit;
3171 while (atomic_read(&htt->num_mpdus_ready)) {
3172 ret = ath10k_htt_rx_handle_amsdu(htt);
3173 if (ret == -EIO) {
3174 resched_napi = true;
3175 goto exit;
3177 atomic_dec(&htt->num_mpdus_ready);
3180 /* Deliver received data after processing data from hardware */
3181 quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
3183 /* From NAPI documentation:
3184 * The napi poll() function may also process TX completions, in which
3185 * case if it processes the entire TX ring then it should count that
3186 * work as the rest of the budget.
3188 if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo))
3189 quota = budget;
3191 /* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
3192 * From kfifo_get() documentation:
3193 * Note that with only one concurrent reader and one concurrent writer,
3194 * you don't need extra locking to use these macro.
3196 while (kfifo_get(&htt->txdone_fifo, &tx_done))
3197 ath10k_txrx_tx_unref(htt, &tx_done);
3199 ath10k_mac_tx_push_pending(ar);
3201 spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
3202 skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
3203 spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
3205 while ((skb = __skb_dequeue(&tx_ind_q))) {
3206 ath10k_htt_rx_tx_fetch_ind(ar, skb);
3207 dev_kfree_skb_any(skb);
3210 exit:
3211 ath10k_htt_rx_msdu_buff_replenish(htt);
3212 /* In case of rx failure or more data to read, report budget
3213 * to reschedule NAPI poll
3215 done = resched_napi ? budget : quota;
3217 return done;
3219 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task);
3221 static const struct ath10k_htt_rx_ops htt_rx_ops_32 = {
3222 .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_32,
3223 .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_32,
3224 .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_32,
3225 .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_32,
3226 .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_32,
3229 static const struct ath10k_htt_rx_ops htt_rx_ops_64 = {
3230 .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_64,
3231 .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_64,
3232 .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_64,
3233 .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_64,
3234 .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_64,
3237 static const struct ath10k_htt_rx_ops htt_rx_ops_hl = {
3240 void ath10k_htt_set_rx_ops(struct ath10k_htt *htt)
3242 struct ath10k *ar = htt->ar;
3244 if (ar->dev_type == ATH10K_DEV_TYPE_HL)
3245 htt->rx_ops = &htt_rx_ops_hl;
3246 else if (ar->hw_params.target_64bit)
3247 htt->rx_ops = &htt_rx_ops_64;
3248 else
3249 htt->rx_ops = &htt_rx_ops_32;