1 // SPDX-License-Identifier: GPL-2.0
3 * Volume Management Device driver
4 * Copyright (c) 2015, Intel Corporation.
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/srcu.h>
15 #include <linux/rculist.h>
16 #include <linux/rcupdate.h>
18 #include <asm/irqdomain.h>
19 #include <asm/device.h>
21 #include <asm/msidef.h>
27 #define PCI_REG_VMCAP 0x40
28 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
29 #define PCI_REG_VMCONFIG 0x44
30 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
31 #define PCI_REG_VMLOCK 0x70
32 #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2)
36 * Device may contain registers which hint the physical location of the
37 * membars, in order to allow proper address translation during
38 * resource assignment to enable guest virtualization
40 VMD_FEAT_HAS_MEMBAR_SHADOW
= (1 << 0),
43 * Device may provide root port configuration information which limits
46 VMD_FEAT_HAS_BUS_RESTRICTIONS
= (1 << 1),
50 * Lock for manipulating VMD IRQ lists.
52 static DEFINE_RAW_SPINLOCK(list_lock
);
55 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
56 * @node: list item for parent traversal.
57 * @irq: back pointer to parent.
58 * @enabled: true if driver enabled IRQ
59 * @virq: the virtual IRQ value provided to the requesting driver.
61 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
62 * a VMD IRQ using this structure.
65 struct list_head node
;
66 struct vmd_irq_list
*irq
;
72 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
73 * @irq_list: the list of irq's the VMD one demuxes to.
74 * @srcu: SRCU struct for local synchronization.
75 * @count: number of child IRQs assigned to this vector; used to track
79 struct list_head irq_list
;
80 struct srcu_struct srcu
;
91 struct vmd_irq_list
*irqs
;
93 struct pci_sysdata sysdata
;
94 struct resource resources
[3];
95 struct irq_domain
*irq_domain
;
98 #ifdef CONFIG_X86_DEV_DMA_OPS
99 struct dma_map_ops dma_ops
;
100 struct dma_domain dma_domain
;
104 static inline struct vmd_dev
*vmd_from_bus(struct pci_bus
*bus
)
106 return container_of(bus
->sysdata
, struct vmd_dev
, sysdata
);
109 static inline unsigned int index_from_irqs(struct vmd_dev
*vmd
,
110 struct vmd_irq_list
*irqs
)
112 return irqs
- vmd
->irqs
;
116 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
117 * but the MSI entry for the hardware it's driving will be programmed with a
118 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
119 * domain into one of its own, and the VMD driver de-muxes these for the
120 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
121 * and irq_chip to set this up.
123 static void vmd_compose_msi_msg(struct irq_data
*data
, struct msi_msg
*msg
)
125 struct vmd_irq
*vmdirq
= data
->chip_data
;
126 struct vmd_irq_list
*irq
= vmdirq
->irq
;
127 struct vmd_dev
*vmd
= irq_data_get_irq_handler_data(data
);
129 msg
->address_hi
= MSI_ADDR_BASE_HI
;
130 msg
->address_lo
= MSI_ADDR_BASE_LO
|
131 MSI_ADDR_DEST_ID(index_from_irqs(vmd
, irq
));
136 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
138 static void vmd_irq_enable(struct irq_data
*data
)
140 struct vmd_irq
*vmdirq
= data
->chip_data
;
143 raw_spin_lock_irqsave(&list_lock
, flags
);
144 WARN_ON(vmdirq
->enabled
);
145 list_add_tail_rcu(&vmdirq
->node
, &vmdirq
->irq
->irq_list
);
146 vmdirq
->enabled
= true;
147 raw_spin_unlock_irqrestore(&list_lock
, flags
);
149 data
->chip
->irq_unmask(data
);
152 static void vmd_irq_disable(struct irq_data
*data
)
154 struct vmd_irq
*vmdirq
= data
->chip_data
;
157 data
->chip
->irq_mask(data
);
159 raw_spin_lock_irqsave(&list_lock
, flags
);
160 if (vmdirq
->enabled
) {
161 list_del_rcu(&vmdirq
->node
);
162 vmdirq
->enabled
= false;
164 raw_spin_unlock_irqrestore(&list_lock
, flags
);
168 * XXX: Stubbed until we develop acceptable way to not create conflicts with
169 * other devices sharing the same vector.
171 static int vmd_irq_set_affinity(struct irq_data
*data
,
172 const struct cpumask
*dest
, bool force
)
177 static struct irq_chip vmd_msi_controller
= {
179 .irq_enable
= vmd_irq_enable
,
180 .irq_disable
= vmd_irq_disable
,
181 .irq_compose_msi_msg
= vmd_compose_msi_msg
,
182 .irq_set_affinity
= vmd_irq_set_affinity
,
185 static irq_hw_number_t
vmd_get_hwirq(struct msi_domain_info
*info
,
186 msi_alloc_info_t
*arg
)
192 * XXX: We can be even smarter selecting the best IRQ once we solve the
195 static struct vmd_irq_list
*vmd_next_irq(struct vmd_dev
*vmd
, struct msi_desc
*desc
)
200 if (vmd
->msix_count
== 1)
201 return &vmd
->irqs
[0];
204 * White list for fast-interrupt handlers. All others will share the
205 * "slow" interrupt vector.
207 switch (msi_desc_to_pci_dev(desc
)->class) {
208 case PCI_CLASS_STORAGE_EXPRESS
:
211 return &vmd
->irqs
[0];
214 raw_spin_lock_irqsave(&list_lock
, flags
);
215 for (i
= 1; i
< vmd
->msix_count
; i
++)
216 if (vmd
->irqs
[i
].count
< vmd
->irqs
[best
].count
)
218 vmd
->irqs
[best
].count
++;
219 raw_spin_unlock_irqrestore(&list_lock
, flags
);
221 return &vmd
->irqs
[best
];
224 static int vmd_msi_init(struct irq_domain
*domain
, struct msi_domain_info
*info
,
225 unsigned int virq
, irq_hw_number_t hwirq
,
226 msi_alloc_info_t
*arg
)
228 struct msi_desc
*desc
= arg
->desc
;
229 struct vmd_dev
*vmd
= vmd_from_bus(msi_desc_to_pci_dev(desc
)->bus
);
230 struct vmd_irq
*vmdirq
= kzalloc(sizeof(*vmdirq
), GFP_KERNEL
);
231 unsigned int index
, vector
;
236 INIT_LIST_HEAD(&vmdirq
->node
);
237 vmdirq
->irq
= vmd_next_irq(vmd
, desc
);
239 index
= index_from_irqs(vmd
, vmdirq
->irq
);
240 vector
= pci_irq_vector(vmd
->dev
, index
);
242 irq_domain_set_info(domain
, virq
, vector
, info
->chip
, vmdirq
,
243 handle_untracked_irq
, vmd
, NULL
);
247 static void vmd_msi_free(struct irq_domain
*domain
,
248 struct msi_domain_info
*info
, unsigned int virq
)
250 struct vmd_irq
*vmdirq
= irq_get_chip_data(virq
);
253 synchronize_srcu(&vmdirq
->irq
->srcu
);
255 /* XXX: Potential optimization to rebalance */
256 raw_spin_lock_irqsave(&list_lock
, flags
);
257 vmdirq
->irq
->count
--;
258 raw_spin_unlock_irqrestore(&list_lock
, flags
);
263 static int vmd_msi_prepare(struct irq_domain
*domain
, struct device
*dev
,
264 int nvec
, msi_alloc_info_t
*arg
)
266 struct pci_dev
*pdev
= to_pci_dev(dev
);
267 struct vmd_dev
*vmd
= vmd_from_bus(pdev
->bus
);
269 if (nvec
> vmd
->msix_count
)
270 return vmd
->msix_count
;
272 memset(arg
, 0, sizeof(*arg
));
276 static void vmd_set_desc(msi_alloc_info_t
*arg
, struct msi_desc
*desc
)
281 static struct msi_domain_ops vmd_msi_domain_ops
= {
282 .get_hwirq
= vmd_get_hwirq
,
283 .msi_init
= vmd_msi_init
,
284 .msi_free
= vmd_msi_free
,
285 .msi_prepare
= vmd_msi_prepare
,
286 .set_desc
= vmd_set_desc
,
289 static struct msi_domain_info vmd_msi_domain_info
= {
290 .flags
= MSI_FLAG_USE_DEF_DOM_OPS
| MSI_FLAG_USE_DEF_CHIP_OPS
|
292 .ops
= &vmd_msi_domain_ops
,
293 .chip
= &vmd_msi_controller
,
296 #ifdef CONFIG_X86_DEV_DMA_OPS
298 * VMD replaces the requester ID with its own. DMA mappings for devices in a
299 * VMD domain need to be mapped for the VMD, not the device requiring
302 static struct device
*to_vmd_dev(struct device
*dev
)
304 struct pci_dev
*pdev
= to_pci_dev(dev
);
305 struct vmd_dev
*vmd
= vmd_from_bus(pdev
->bus
);
307 return &vmd
->dev
->dev
;
310 static const struct dma_map_ops
*vmd_dma_ops(struct device
*dev
)
312 return get_dma_ops(to_vmd_dev(dev
));
315 static void *vmd_alloc(struct device
*dev
, size_t size
, dma_addr_t
*addr
,
316 gfp_t flag
, unsigned long attrs
)
318 return vmd_dma_ops(dev
)->alloc(to_vmd_dev(dev
), size
, addr
, flag
,
322 static void vmd_free(struct device
*dev
, size_t size
, void *vaddr
,
323 dma_addr_t addr
, unsigned long attrs
)
325 return vmd_dma_ops(dev
)->free(to_vmd_dev(dev
), size
, vaddr
, addr
,
329 static int vmd_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
330 void *cpu_addr
, dma_addr_t addr
, size_t size
,
333 return vmd_dma_ops(dev
)->mmap(to_vmd_dev(dev
), vma
, cpu_addr
, addr
,
337 static int vmd_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
338 void *cpu_addr
, dma_addr_t addr
, size_t size
,
341 return vmd_dma_ops(dev
)->get_sgtable(to_vmd_dev(dev
), sgt
, cpu_addr
,
345 static dma_addr_t
vmd_map_page(struct device
*dev
, struct page
*page
,
346 unsigned long offset
, size_t size
,
347 enum dma_data_direction dir
,
350 return vmd_dma_ops(dev
)->map_page(to_vmd_dev(dev
), page
, offset
, size
,
354 static void vmd_unmap_page(struct device
*dev
, dma_addr_t addr
, size_t size
,
355 enum dma_data_direction dir
, unsigned long attrs
)
357 vmd_dma_ops(dev
)->unmap_page(to_vmd_dev(dev
), addr
, size
, dir
, attrs
);
360 static int vmd_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
361 enum dma_data_direction dir
, unsigned long attrs
)
363 return vmd_dma_ops(dev
)->map_sg(to_vmd_dev(dev
), sg
, nents
, dir
, attrs
);
366 static void vmd_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
367 enum dma_data_direction dir
, unsigned long attrs
)
369 vmd_dma_ops(dev
)->unmap_sg(to_vmd_dev(dev
), sg
, nents
, dir
, attrs
);
372 static void vmd_sync_single_for_cpu(struct device
*dev
, dma_addr_t addr
,
373 size_t size
, enum dma_data_direction dir
)
375 vmd_dma_ops(dev
)->sync_single_for_cpu(to_vmd_dev(dev
), addr
, size
, dir
);
378 static void vmd_sync_single_for_device(struct device
*dev
, dma_addr_t addr
,
379 size_t size
, enum dma_data_direction dir
)
381 vmd_dma_ops(dev
)->sync_single_for_device(to_vmd_dev(dev
), addr
, size
,
385 static void vmd_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
386 int nents
, enum dma_data_direction dir
)
388 vmd_dma_ops(dev
)->sync_sg_for_cpu(to_vmd_dev(dev
), sg
, nents
, dir
);
391 static void vmd_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
392 int nents
, enum dma_data_direction dir
)
394 vmd_dma_ops(dev
)->sync_sg_for_device(to_vmd_dev(dev
), sg
, nents
, dir
);
397 static int vmd_mapping_error(struct device
*dev
, dma_addr_t addr
)
399 return vmd_dma_ops(dev
)->mapping_error(to_vmd_dev(dev
), addr
);
402 static int vmd_dma_supported(struct device
*dev
, u64 mask
)
404 return vmd_dma_ops(dev
)->dma_supported(to_vmd_dev(dev
), mask
);
407 static u64
vmd_get_required_mask(struct device
*dev
)
409 return vmd_dma_ops(dev
)->get_required_mask(to_vmd_dev(dev
));
412 static void vmd_teardown_dma_ops(struct vmd_dev
*vmd
)
414 struct dma_domain
*domain
= &vmd
->dma_domain
;
416 if (get_dma_ops(&vmd
->dev
->dev
))
417 del_dma_domain(domain
);
420 #define ASSIGN_VMD_DMA_OPS(source, dest, fn) \
423 dest->fn = vmd_##fn; \
426 static void vmd_setup_dma_ops(struct vmd_dev
*vmd
)
428 const struct dma_map_ops
*source
= get_dma_ops(&vmd
->dev
->dev
);
429 struct dma_map_ops
*dest
= &vmd
->dma_ops
;
430 struct dma_domain
*domain
= &vmd
->dma_domain
;
432 domain
->domain_nr
= vmd
->sysdata
.domain
;
433 domain
->dma_ops
= dest
;
437 ASSIGN_VMD_DMA_OPS(source
, dest
, alloc
);
438 ASSIGN_VMD_DMA_OPS(source
, dest
, free
);
439 ASSIGN_VMD_DMA_OPS(source
, dest
, mmap
);
440 ASSIGN_VMD_DMA_OPS(source
, dest
, get_sgtable
);
441 ASSIGN_VMD_DMA_OPS(source
, dest
, map_page
);
442 ASSIGN_VMD_DMA_OPS(source
, dest
, unmap_page
);
443 ASSIGN_VMD_DMA_OPS(source
, dest
, map_sg
);
444 ASSIGN_VMD_DMA_OPS(source
, dest
, unmap_sg
);
445 ASSIGN_VMD_DMA_OPS(source
, dest
, sync_single_for_cpu
);
446 ASSIGN_VMD_DMA_OPS(source
, dest
, sync_single_for_device
);
447 ASSIGN_VMD_DMA_OPS(source
, dest
, sync_sg_for_cpu
);
448 ASSIGN_VMD_DMA_OPS(source
, dest
, sync_sg_for_device
);
449 ASSIGN_VMD_DMA_OPS(source
, dest
, mapping_error
);
450 ASSIGN_VMD_DMA_OPS(source
, dest
, dma_supported
);
451 ASSIGN_VMD_DMA_OPS(source
, dest
, get_required_mask
);
452 add_dma_domain(domain
);
454 #undef ASSIGN_VMD_DMA_OPS
456 static void vmd_teardown_dma_ops(struct vmd_dev
*vmd
) {}
457 static void vmd_setup_dma_ops(struct vmd_dev
*vmd
) {}
460 static char __iomem
*vmd_cfg_addr(struct vmd_dev
*vmd
, struct pci_bus
*bus
,
461 unsigned int devfn
, int reg
, int len
)
463 char __iomem
*addr
= vmd
->cfgbar
+
464 (bus
->number
<< 20) + (devfn
<< 12) + reg
;
466 if ((addr
- vmd
->cfgbar
) + len
>=
467 resource_size(&vmd
->dev
->resource
[VMD_CFGBAR
]))
474 * CPU may deadlock if config space is not serialized on some versions of this
475 * hardware, so all config space access is done under a spinlock.
477 static int vmd_pci_read(struct pci_bus
*bus
, unsigned int devfn
, int reg
,
480 struct vmd_dev
*vmd
= vmd_from_bus(bus
);
481 char __iomem
*addr
= vmd_cfg_addr(vmd
, bus
, devfn
, reg
, len
);
488 spin_lock_irqsave(&vmd
->cfg_lock
, flags
);
491 *value
= readb(addr
);
494 *value
= readw(addr
);
497 *value
= readl(addr
);
503 spin_unlock_irqrestore(&vmd
->cfg_lock
, flags
);
508 * VMD h/w converts non-posted config writes to posted memory writes. The
509 * read-back in this function forces the completion so it returns only after
510 * the config space was written, as expected.
512 static int vmd_pci_write(struct pci_bus
*bus
, unsigned int devfn
, int reg
,
515 struct vmd_dev
*vmd
= vmd_from_bus(bus
);
516 char __iomem
*addr
= vmd_cfg_addr(vmd
, bus
, devfn
, reg
, len
);
523 spin_lock_irqsave(&vmd
->cfg_lock
, flags
);
541 spin_unlock_irqrestore(&vmd
->cfg_lock
, flags
);
545 static struct pci_ops vmd_ops
= {
546 .read
= vmd_pci_read
,
547 .write
= vmd_pci_write
,
550 static void vmd_attach_resources(struct vmd_dev
*vmd
)
552 vmd
->dev
->resource
[VMD_MEMBAR1
].child
= &vmd
->resources
[1];
553 vmd
->dev
->resource
[VMD_MEMBAR2
].child
= &vmd
->resources
[2];
556 static void vmd_detach_resources(struct vmd_dev
*vmd
)
558 vmd
->dev
->resource
[VMD_MEMBAR1
].child
= NULL
;
559 vmd
->dev
->resource
[VMD_MEMBAR2
].child
= NULL
;
563 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
564 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower
565 * 16 bits are the PCI Segment Group (domain) number. Other bits are
566 * currently reserved.
568 static int vmd_find_free_domain(void)
571 struct pci_bus
*bus
= NULL
;
573 while ((bus
= pci_find_next_bus(bus
)) != NULL
)
574 domain
= max_t(int, domain
, pci_domain_nr(bus
));
578 static int vmd_enable_domain(struct vmd_dev
*vmd
, unsigned long features
)
580 struct pci_sysdata
*sd
= &vmd
->sysdata
;
581 struct fwnode_handle
*fn
;
582 struct resource
*res
;
585 LIST_HEAD(resources
);
586 resource_size_t offset
[2] = {0};
587 resource_size_t membar2_offset
= 0x2000, busn_start
= 0;
590 * Shadow registers may exist in certain VMD device ids which allow
591 * guests to correctly assign host physical addresses to the root ports
592 * and child devices. These registers will either return the host value
593 * or 0, depending on an enable bit in the VMD device.
595 if (features
& VMD_FEAT_HAS_MEMBAR_SHADOW
) {
599 membar2_offset
= 0x2018;
600 ret
= pci_read_config_dword(vmd
->dev
, PCI_REG_VMLOCK
, &vmlock
);
601 if (ret
|| vmlock
== ~0)
604 if (MB2_SHADOW_EN(vmlock
)) {
605 void __iomem
*membar2
;
607 membar2
= pci_iomap(vmd
->dev
, VMD_MEMBAR2
, 0);
610 offset
[0] = vmd
->dev
->resource
[VMD_MEMBAR1
].start
-
611 readq(membar2
+ 0x2008);
612 offset
[1] = vmd
->dev
->resource
[VMD_MEMBAR2
].start
-
613 readq(membar2
+ 0x2010);
614 pci_iounmap(vmd
->dev
, membar2
);
619 * Certain VMD devices may have a root port configuration option which
620 * limits the bus range to between 0-127 or 128-255
622 if (features
& VMD_FEAT_HAS_BUS_RESTRICTIONS
) {
625 pci_read_config_dword(vmd
->dev
, PCI_REG_VMCAP
, &vmcap
);
626 pci_read_config_dword(vmd
->dev
, PCI_REG_VMCONFIG
, &vmconfig
);
627 if (BUS_RESTRICT_CAP(vmcap
) &&
628 (BUS_RESTRICT_CFG(vmconfig
) == 0x1))
632 res
= &vmd
->dev
->resource
[VMD_CFGBAR
];
633 vmd
->resources
[0] = (struct resource
) {
634 .name
= "VMD CFGBAR",
636 .end
= busn_start
+ (resource_size(res
) >> 20) - 1,
637 .flags
= IORESOURCE_BUS
| IORESOURCE_PCI_FIXED
,
641 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
642 * put 32-bit resources in the window.
644 * There's no hardware reason why a 64-bit window *couldn't*
645 * contain a 32-bit resource, but pbus_size_mem() computes the
646 * bridge window size assuming a 64-bit window will contain no
647 * 32-bit resources. __pci_assign_resource() enforces that
648 * artificial restriction to make sure everything will fit.
650 * The only way we could use a 64-bit non-prefechable MEMBAR is
651 * if its address is <4GB so that we can convert it to a 32-bit
652 * resource. To be visible to the host OS, all VMD endpoints must
653 * be initially configured by platform BIOS, which includes setting
654 * up these resources. We can assume the device is configured
655 * according to the platform needs.
657 res
= &vmd
->dev
->resource
[VMD_MEMBAR1
];
658 upper_bits
= upper_32_bits(res
->end
);
659 flags
= res
->flags
& ~IORESOURCE_SIZEALIGN
;
661 flags
&= ~IORESOURCE_MEM_64
;
662 vmd
->resources
[1] = (struct resource
) {
663 .name
= "VMD MEMBAR1",
670 res
= &vmd
->dev
->resource
[VMD_MEMBAR2
];
671 upper_bits
= upper_32_bits(res
->end
);
672 flags
= res
->flags
& ~IORESOURCE_SIZEALIGN
;
674 flags
&= ~IORESOURCE_MEM_64
;
675 vmd
->resources
[2] = (struct resource
) {
676 .name
= "VMD MEMBAR2",
677 .start
= res
->start
+ membar2_offset
,
683 sd
->vmd_domain
= true;
684 sd
->domain
= vmd_find_free_domain();
688 sd
->node
= pcibus_to_node(vmd
->dev
->bus
);
690 fn
= irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd
->sysdata
.domain
);
694 vmd
->irq_domain
= pci_msi_create_irq_domain(fn
, &vmd_msi_domain_info
,
696 irq_domain_free_fwnode(fn
);
697 if (!vmd
->irq_domain
)
700 pci_add_resource(&resources
, &vmd
->resources
[0]);
701 pci_add_resource_offset(&resources
, &vmd
->resources
[1], offset
[0]);
702 pci_add_resource_offset(&resources
, &vmd
->resources
[2], offset
[1]);
704 vmd
->bus
= pci_create_root_bus(&vmd
->dev
->dev
, busn_start
, &vmd_ops
,
707 pci_free_resource_list(&resources
);
708 irq_domain_remove(vmd
->irq_domain
);
712 vmd_attach_resources(vmd
);
713 vmd_setup_dma_ops(vmd
);
714 dev_set_msi_domain(&vmd
->bus
->dev
, vmd
->irq_domain
);
715 pci_rescan_bus(vmd
->bus
);
717 WARN(sysfs_create_link(&vmd
->dev
->dev
.kobj
, &vmd
->bus
->dev
.kobj
,
718 "domain"), "Can't create symlink to domain\n");
722 static irqreturn_t
vmd_irq(int irq
, void *data
)
724 struct vmd_irq_list
*irqs
= data
;
725 struct vmd_irq
*vmdirq
;
728 idx
= srcu_read_lock(&irqs
->srcu
);
729 list_for_each_entry_rcu(vmdirq
, &irqs
->irq_list
, node
)
730 generic_handle_irq(vmdirq
->virq
);
731 srcu_read_unlock(&irqs
->srcu
, idx
);
736 static int vmd_probe(struct pci_dev
*dev
, const struct pci_device_id
*id
)
741 if (resource_size(&dev
->resource
[VMD_CFGBAR
]) < (1 << 20))
744 vmd
= devm_kzalloc(&dev
->dev
, sizeof(*vmd
), GFP_KERNEL
);
749 err
= pcim_enable_device(dev
);
753 vmd
->cfgbar
= pcim_iomap(dev
, VMD_CFGBAR
, 0);
758 if (dma_set_mask_and_coherent(&dev
->dev
, DMA_BIT_MASK(64)) &&
759 dma_set_mask_and_coherent(&dev
->dev
, DMA_BIT_MASK(32)))
762 vmd
->msix_count
= pci_msix_vec_count(dev
);
763 if (vmd
->msix_count
< 0)
766 vmd
->msix_count
= pci_alloc_irq_vectors(dev
, 1, vmd
->msix_count
,
768 if (vmd
->msix_count
< 0)
769 return vmd
->msix_count
;
771 vmd
->irqs
= devm_kcalloc(&dev
->dev
, vmd
->msix_count
, sizeof(*vmd
->irqs
),
776 for (i
= 0; i
< vmd
->msix_count
; i
++) {
777 err
= init_srcu_struct(&vmd
->irqs
[i
].srcu
);
781 INIT_LIST_HEAD(&vmd
->irqs
[i
].irq_list
);
782 err
= devm_request_irq(&dev
->dev
, pci_irq_vector(dev
, i
),
783 vmd_irq
, IRQF_NO_THREAD
,
784 "vmd", &vmd
->irqs
[i
]);
789 spin_lock_init(&vmd
->cfg_lock
);
790 pci_set_drvdata(dev
, vmd
);
791 err
= vmd_enable_domain(vmd
, (unsigned long) id
->driver_data
);
795 dev_info(&vmd
->dev
->dev
, "Bound to PCI domain %04x\n",
796 vmd
->sysdata
.domain
);
800 static void vmd_cleanup_srcu(struct vmd_dev
*vmd
)
804 for (i
= 0; i
< vmd
->msix_count
; i
++)
805 cleanup_srcu_struct(&vmd
->irqs
[i
].srcu
);
808 static void vmd_remove(struct pci_dev
*dev
)
810 struct vmd_dev
*vmd
= pci_get_drvdata(dev
);
812 sysfs_remove_link(&vmd
->dev
->dev
.kobj
, "domain");
813 pci_stop_root_bus(vmd
->bus
);
814 pci_remove_root_bus(vmd
->bus
);
815 vmd_cleanup_srcu(vmd
);
816 vmd_teardown_dma_ops(vmd
);
817 vmd_detach_resources(vmd
);
818 irq_domain_remove(vmd
->irq_domain
);
821 #ifdef CONFIG_PM_SLEEP
822 static int vmd_suspend(struct device
*dev
)
824 struct pci_dev
*pdev
= to_pci_dev(dev
);
825 struct vmd_dev
*vmd
= pci_get_drvdata(pdev
);
828 for (i
= 0; i
< vmd
->msix_count
; i
++)
829 devm_free_irq(dev
, pci_irq_vector(pdev
, i
), &vmd
->irqs
[i
]);
831 pci_save_state(pdev
);
835 static int vmd_resume(struct device
*dev
)
837 struct pci_dev
*pdev
= to_pci_dev(dev
);
838 struct vmd_dev
*vmd
= pci_get_drvdata(pdev
);
841 for (i
= 0; i
< vmd
->msix_count
; i
++) {
842 err
= devm_request_irq(dev
, pci_irq_vector(pdev
, i
),
843 vmd_irq
, IRQF_NO_THREAD
,
844 "vmd", &vmd
->irqs
[i
]);
849 pci_restore_state(pdev
);
853 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops
, vmd_suspend
, vmd_resume
);
855 static const struct pci_device_id vmd_ids
[] = {
856 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_VMD_201D
),},
857 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_VMD_28C0
),
858 .driver_data
= VMD_FEAT_HAS_MEMBAR_SHADOW
|
859 VMD_FEAT_HAS_BUS_RESTRICTIONS
,},
862 MODULE_DEVICE_TABLE(pci
, vmd_ids
);
864 static struct pci_driver vmd_drv
= {
868 .remove
= vmd_remove
,
870 .pm
= &vmd_dev_pm_ops
,
873 module_pci_driver(vmd_drv
);
875 MODULE_AUTHOR("Intel Corporation");
876 MODULE_LICENSE("GPL v2");
877 MODULE_VERSION("0.6");