1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pci-ats.h>
33 #include <asm/setup.h>
35 #include <linux/aer.h>
38 DEFINE_MUTEX(pci_slot_mutex
);
40 const char *pci_power_names
[] = {
41 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
43 EXPORT_SYMBOL_GPL(pci_power_names
);
45 int isa_dma_bridge_buggy
;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy
);
49 EXPORT_SYMBOL(pci_pci_problems
);
51 unsigned int pci_pm_d3_delay
;
53 static void pci_pme_list_scan(struct work_struct
*work
);
55 static LIST_HEAD(pci_pme_list
);
56 static DEFINE_MUTEX(pci_pme_list_mutex
);
57 static DECLARE_DELAYED_WORK(pci_pme_work
, pci_pme_list_scan
);
59 struct pci_pme_device
{
60 struct list_head list
;
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 static void pci_dev_d3_sleep(struct pci_dev
*dev
)
68 unsigned int delay
= dev
->d3_delay
;
70 if (delay
< pci_pm_d3_delay
)
71 delay
= pci_pm_d3_delay
;
77 #ifdef CONFIG_PCI_DOMAINS
78 int pci_domains_supported
= 1;
81 #define DEFAULT_CARDBUS_IO_SIZE (256)
82 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
83 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
84 unsigned long pci_cardbus_io_size
= DEFAULT_CARDBUS_IO_SIZE
;
85 unsigned long pci_cardbus_mem_size
= DEFAULT_CARDBUS_MEM_SIZE
;
87 #define DEFAULT_HOTPLUG_IO_SIZE (256)
88 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
89 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
90 unsigned long pci_hotplug_io_size
= DEFAULT_HOTPLUG_IO_SIZE
;
91 unsigned long pci_hotplug_mem_size
= DEFAULT_HOTPLUG_MEM_SIZE
;
93 #define DEFAULT_HOTPLUG_BUS_SIZE 1
94 unsigned long pci_hotplug_bus_size
= DEFAULT_HOTPLUG_BUS_SIZE
;
96 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_DEFAULT
;
99 * The default CLS is used if arch didn't set CLS explicitly and not
100 * all pci devices agree on the same value. Arch can override either
101 * the dfl or actual value as it sees fit. Don't forget this is
102 * measured in 32-bit words, not bytes.
104 u8 pci_dfl_cache_line_size
= L1_CACHE_BYTES
>> 2;
105 u8 pci_cache_line_size
;
108 * If we set up a device for bus mastering, we need to check the latency
109 * timer as certain BIOSes forget to set it properly.
111 unsigned int pcibios_max_latency
= 255;
113 /* If set, the PCIe ARI capability will not be used. */
114 static bool pcie_ari_disabled
;
116 /* If set, the PCIe ATS capability will not be used. */
117 static bool pcie_ats_disabled
;
119 /* If set, the PCI config space of each device is printed during boot. */
122 bool pci_ats_disabled(void)
124 return pcie_ats_disabled
;
127 /* Disable bridge_d3 for all PCIe ports */
128 static bool pci_bridge_d3_disable
;
129 /* Force bridge_d3 for all PCIe ports */
130 static bool pci_bridge_d3_force
;
132 static int __init
pcie_port_pm_setup(char *str
)
134 if (!strcmp(str
, "off"))
135 pci_bridge_d3_disable
= true;
136 else if (!strcmp(str
, "force"))
137 pci_bridge_d3_force
= true;
140 __setup("pcie_port_pm=", pcie_port_pm_setup
);
142 /* Time to wait after a reset for device to become responsive */
143 #define PCIE_RESET_READY_POLL_MS 60000
146 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
147 * @bus: pointer to PCI bus structure to search
149 * Given a PCI bus, returns the highest PCI bus number present in the set
150 * including the given PCI bus and its list of child PCI buses.
152 unsigned char pci_bus_max_busnr(struct pci_bus
*bus
)
155 unsigned char max
, n
;
157 max
= bus
->busn_res
.end
;
158 list_for_each_entry(tmp
, &bus
->children
, node
) {
159 n
= pci_bus_max_busnr(tmp
);
165 EXPORT_SYMBOL_GPL(pci_bus_max_busnr
);
167 #ifdef CONFIG_HAS_IOMEM
168 void __iomem
*pci_ioremap_bar(struct pci_dev
*pdev
, int bar
)
170 struct resource
*res
= &pdev
->resource
[bar
];
173 * Make sure the BAR is actually a memory resource, not an IO resource
175 if (res
->flags
& IORESOURCE_UNSET
|| !(res
->flags
& IORESOURCE_MEM
)) {
176 pci_warn(pdev
, "can't ioremap BAR %d: %pR\n", bar
, res
);
179 return ioremap_nocache(res
->start
, resource_size(res
));
181 EXPORT_SYMBOL_GPL(pci_ioremap_bar
);
183 void __iomem
*pci_ioremap_wc_bar(struct pci_dev
*pdev
, int bar
)
186 * Make sure the BAR is actually a memory resource, not an IO resource
188 if (!(pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)) {
192 return ioremap_wc(pci_resource_start(pdev
, bar
),
193 pci_resource_len(pdev
, bar
));
195 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar
);
199 * pci_dev_str_match_path - test if a path string matches a device
200 * @dev: the PCI device to test
201 * @path: string to match the device against
202 * @endptr: pointer to the string after the match
204 * Test if a string (typically from a kernel parameter) formatted as a
205 * path of device/function addresses matches a PCI device. The string must
208 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
210 * A path for a device can be obtained using 'lspci -t'. Using a path
211 * is more robust against bus renumbering than using only a single bus,
212 * device and function address.
214 * Returns 1 if the string matches the device, 0 if it does not and
215 * a negative error code if it fails to parse the string.
217 static int pci_dev_str_match_path(struct pci_dev
*dev
, const char *path
,
221 int seg
, bus
, slot
, func
;
225 *endptr
= strchrnul(path
, ';');
227 wpath
= kmemdup_nul(path
, *endptr
- path
, GFP_KERNEL
);
232 p
= strrchr(wpath
, '/');
235 ret
= sscanf(p
, "/%x.%x%c", &slot
, &func
, &end
);
241 if (dev
->devfn
!= PCI_DEVFN(slot
, func
)) {
247 * Note: we don't need to get a reference to the upstream
248 * bridge because we hold a reference to the top level
249 * device which should hold a reference to the bridge,
252 dev
= pci_upstream_bridge(dev
);
261 ret
= sscanf(wpath
, "%x:%x:%x.%x%c", &seg
, &bus
, &slot
,
265 ret
= sscanf(wpath
, "%x:%x.%x%c", &bus
, &slot
, &func
, &end
);
272 ret
= (seg
== pci_domain_nr(dev
->bus
) &&
273 bus
== dev
->bus
->number
&&
274 dev
->devfn
== PCI_DEVFN(slot
, func
));
282 * pci_dev_str_match - test if a string matches a device
283 * @dev: the PCI device to test
284 * @p: string to match the device against
285 * @endptr: pointer to the string after the match
287 * Test if a string (typically from a kernel parameter) matches a specified
288 * PCI device. The string may be of one of the following formats:
290 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
291 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
293 * The first format specifies a PCI bus/device/function address which
294 * may change if new hardware is inserted, if motherboard firmware changes,
295 * or due to changes caused in kernel parameters. If the domain is
296 * left unspecified, it is taken to be 0. In order to be robust against
297 * bus renumbering issues, a path of PCI device/function numbers may be used
298 * to address the specific device. The path for a device can be determined
299 * through the use of 'lspci -t'.
301 * The second format matches devices using IDs in the configuration
302 * space which may match multiple devices in the system. A value of 0
303 * for any field will match all devices. (Note: this differs from
304 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
305 * legacy reasons and convenience so users don't have to specify
306 * FFFFFFFFs on the command line.)
308 * Returns 1 if the string matches the device, 0 if it does not and
309 * a negative error code if the string cannot be parsed.
311 static int pci_dev_str_match(struct pci_dev
*dev
, const char *p
,
316 unsigned short vendor
, device
, subsystem_vendor
, subsystem_device
;
318 if (strncmp(p
, "pci:", 4) == 0) {
319 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
321 ret
= sscanf(p
, "%hx:%hx:%hx:%hx%n", &vendor
, &device
,
322 &subsystem_vendor
, &subsystem_device
, &count
);
324 ret
= sscanf(p
, "%hx:%hx%n", &vendor
, &device
, &count
);
328 subsystem_vendor
= 0;
329 subsystem_device
= 0;
334 if ((!vendor
|| vendor
== dev
->vendor
) &&
335 (!device
|| device
== dev
->device
) &&
336 (!subsystem_vendor
||
337 subsystem_vendor
== dev
->subsystem_vendor
) &&
338 (!subsystem_device
||
339 subsystem_device
== dev
->subsystem_device
))
343 * PCI Bus, Device, Function IDs are specified
344 * (optionally, may include a path of devfns following it)
346 ret
= pci_dev_str_match_path(dev
, p
, &p
);
361 static int __pci_find_next_cap_ttl(struct pci_bus
*bus
, unsigned int devfn
,
362 u8 pos
, int cap
, int *ttl
)
367 pci_bus_read_config_byte(bus
, devfn
, pos
, &pos
);
373 pci_bus_read_config_word(bus
, devfn
, pos
, &ent
);
385 static int __pci_find_next_cap(struct pci_bus
*bus
, unsigned int devfn
,
388 int ttl
= PCI_FIND_CAP_TTL
;
390 return __pci_find_next_cap_ttl(bus
, devfn
, pos
, cap
, &ttl
);
393 int pci_find_next_capability(struct pci_dev
*dev
, u8 pos
, int cap
)
395 return __pci_find_next_cap(dev
->bus
, dev
->devfn
,
396 pos
+ PCI_CAP_LIST_NEXT
, cap
);
398 EXPORT_SYMBOL_GPL(pci_find_next_capability
);
400 static int __pci_bus_find_cap_start(struct pci_bus
*bus
,
401 unsigned int devfn
, u8 hdr_type
)
405 pci_bus_read_config_word(bus
, devfn
, PCI_STATUS
, &status
);
406 if (!(status
& PCI_STATUS_CAP_LIST
))
410 case PCI_HEADER_TYPE_NORMAL
:
411 case PCI_HEADER_TYPE_BRIDGE
:
412 return PCI_CAPABILITY_LIST
;
413 case PCI_HEADER_TYPE_CARDBUS
:
414 return PCI_CB_CAPABILITY_LIST
;
421 * pci_find_capability - query for devices' capabilities
422 * @dev: PCI device to query
423 * @cap: capability code
425 * Tell if a device supports a given PCI capability.
426 * Returns the address of the requested capability structure within the
427 * device's PCI configuration space or 0 in case the device does not
428 * support it. Possible values for @cap:
430 * %PCI_CAP_ID_PM Power Management
431 * %PCI_CAP_ID_AGP Accelerated Graphics Port
432 * %PCI_CAP_ID_VPD Vital Product Data
433 * %PCI_CAP_ID_SLOTID Slot Identification
434 * %PCI_CAP_ID_MSI Message Signalled Interrupts
435 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
436 * %PCI_CAP_ID_PCIX PCI-X
437 * %PCI_CAP_ID_EXP PCI Express
439 int pci_find_capability(struct pci_dev
*dev
, int cap
)
443 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
445 pos
= __pci_find_next_cap(dev
->bus
, dev
->devfn
, pos
, cap
);
449 EXPORT_SYMBOL(pci_find_capability
);
452 * pci_bus_find_capability - query for devices' capabilities
453 * @bus: the PCI bus to query
454 * @devfn: PCI device to query
455 * @cap: capability code
457 * Like pci_find_capability() but works for pci devices that do not have a
458 * pci_dev structure set up yet.
460 * Returns the address of the requested capability structure within the
461 * device's PCI configuration space or 0 in case the device does not
464 int pci_bus_find_capability(struct pci_bus
*bus
, unsigned int devfn
, int cap
)
469 pci_bus_read_config_byte(bus
, devfn
, PCI_HEADER_TYPE
, &hdr_type
);
471 pos
= __pci_bus_find_cap_start(bus
, devfn
, hdr_type
& 0x7f);
473 pos
= __pci_find_next_cap(bus
, devfn
, pos
, cap
);
477 EXPORT_SYMBOL(pci_bus_find_capability
);
480 * pci_find_next_ext_capability - Find an extended capability
481 * @dev: PCI device to query
482 * @start: address at which to start looking (0 to start at beginning of list)
483 * @cap: capability code
485 * Returns the address of the next matching extended capability structure
486 * within the device's PCI configuration space or 0 if the device does
487 * not support it. Some capabilities can occur several times, e.g., the
488 * vendor-specific capability, and this provides a way to find them all.
490 int pci_find_next_ext_capability(struct pci_dev
*dev
, int start
, int cap
)
494 int pos
= PCI_CFG_SPACE_SIZE
;
496 /* minimum 8 bytes per capability */
497 ttl
= (PCI_CFG_SPACE_EXP_SIZE
- PCI_CFG_SPACE_SIZE
) / 8;
499 if (dev
->cfg_size
<= PCI_CFG_SPACE_SIZE
)
505 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
509 * If we have no capabilities, this is indicated by cap ID,
510 * cap version and next pointer all being 0.
516 if (PCI_EXT_CAP_ID(header
) == cap
&& pos
!= start
)
519 pos
= PCI_EXT_CAP_NEXT(header
);
520 if (pos
< PCI_CFG_SPACE_SIZE
)
523 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
529 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability
);
532 * pci_find_ext_capability - Find an extended capability
533 * @dev: PCI device to query
534 * @cap: capability code
536 * Returns the address of the requested extended capability structure
537 * within the device's PCI configuration space or 0 if the device does
538 * not support it. Possible values for @cap:
540 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
541 * %PCI_EXT_CAP_ID_VC Virtual Channel
542 * %PCI_EXT_CAP_ID_DSN Device Serial Number
543 * %PCI_EXT_CAP_ID_PWR Power Budgeting
545 int pci_find_ext_capability(struct pci_dev
*dev
, int cap
)
547 return pci_find_next_ext_capability(dev
, 0, cap
);
549 EXPORT_SYMBOL_GPL(pci_find_ext_capability
);
551 static int __pci_find_next_ht_cap(struct pci_dev
*dev
, int pos
, int ht_cap
)
553 int rc
, ttl
= PCI_FIND_CAP_TTL
;
556 if (ht_cap
== HT_CAPTYPE_SLAVE
|| ht_cap
== HT_CAPTYPE_HOST
)
557 mask
= HT_3BIT_CAP_MASK
;
559 mask
= HT_5BIT_CAP_MASK
;
561 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
, pos
,
562 PCI_CAP_ID_HT
, &ttl
);
564 rc
= pci_read_config_byte(dev
, pos
+ 3, &cap
);
565 if (rc
!= PCIBIOS_SUCCESSFUL
)
568 if ((cap
& mask
) == ht_cap
)
571 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
,
572 pos
+ PCI_CAP_LIST_NEXT
,
573 PCI_CAP_ID_HT
, &ttl
);
579 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
580 * @dev: PCI device to query
581 * @pos: Position from which to continue searching
582 * @ht_cap: Hypertransport capability code
584 * To be used in conjunction with pci_find_ht_capability() to search for
585 * all capabilities matching @ht_cap. @pos should always be a value returned
586 * from pci_find_ht_capability().
588 * NB. To be 100% safe against broken PCI devices, the caller should take
589 * steps to avoid an infinite loop.
591 int pci_find_next_ht_capability(struct pci_dev
*dev
, int pos
, int ht_cap
)
593 return __pci_find_next_ht_cap(dev
, pos
+ PCI_CAP_LIST_NEXT
, ht_cap
);
595 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability
);
598 * pci_find_ht_capability - query a device's Hypertransport capabilities
599 * @dev: PCI device to query
600 * @ht_cap: Hypertransport capability code
602 * Tell if a device supports a given Hypertransport capability.
603 * Returns an address within the device's PCI configuration space
604 * or 0 in case the device does not support the request capability.
605 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
606 * which has a Hypertransport capability matching @ht_cap.
608 int pci_find_ht_capability(struct pci_dev
*dev
, int ht_cap
)
612 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
614 pos
= __pci_find_next_ht_cap(dev
, pos
, ht_cap
);
618 EXPORT_SYMBOL_GPL(pci_find_ht_capability
);
621 * pci_find_parent_resource - return resource region of parent bus of given region
622 * @dev: PCI device structure contains resources to be searched
623 * @res: child resource record for which parent is sought
625 * For given resource region of given device, return the resource
626 * region of parent bus the given region is contained in.
628 struct resource
*pci_find_parent_resource(const struct pci_dev
*dev
,
629 struct resource
*res
)
631 const struct pci_bus
*bus
= dev
->bus
;
635 pci_bus_for_each_resource(bus
, r
, i
) {
638 if (resource_contains(r
, res
)) {
641 * If the window is prefetchable but the BAR is
642 * not, the allocator made a mistake.
644 if (r
->flags
& IORESOURCE_PREFETCH
&&
645 !(res
->flags
& IORESOURCE_PREFETCH
))
649 * If we're below a transparent bridge, there may
650 * be both a positively-decoded aperture and a
651 * subtractively-decoded region that contain the BAR.
652 * We want the positively-decoded one, so this depends
653 * on pci_bus_for_each_resource() giving us those
661 EXPORT_SYMBOL(pci_find_parent_resource
);
664 * pci_find_resource - Return matching PCI device resource
665 * @dev: PCI device to query
666 * @res: Resource to look for
668 * Goes over standard PCI resources (BARs) and checks if the given resource
669 * is partially or fully contained in any of them. In that case the
670 * matching resource is returned, %NULL otherwise.
672 struct resource
*pci_find_resource(struct pci_dev
*dev
, struct resource
*res
)
676 for (i
= 0; i
< PCI_ROM_RESOURCE
; i
++) {
677 struct resource
*r
= &dev
->resource
[i
];
679 if (r
->start
&& resource_contains(r
, res
))
685 EXPORT_SYMBOL(pci_find_resource
);
688 * pci_find_pcie_root_port - return PCIe Root Port
689 * @dev: PCI device to query
691 * Traverse up the parent chain and return the PCIe Root Port PCI Device
692 * for a given PCI Device.
694 struct pci_dev
*pci_find_pcie_root_port(struct pci_dev
*dev
)
696 struct pci_dev
*bridge
, *highest_pcie_bridge
= dev
;
698 bridge
= pci_upstream_bridge(dev
);
699 while (bridge
&& pci_is_pcie(bridge
)) {
700 highest_pcie_bridge
= bridge
;
701 bridge
= pci_upstream_bridge(bridge
);
704 if (pci_pcie_type(highest_pcie_bridge
) != PCI_EXP_TYPE_ROOT_PORT
)
707 return highest_pcie_bridge
;
709 EXPORT_SYMBOL(pci_find_pcie_root_port
);
712 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
713 * @dev: the PCI device to operate on
714 * @pos: config space offset of status word
715 * @mask: mask of bit(s) to care about in status word
717 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
719 int pci_wait_for_pending(struct pci_dev
*dev
, int pos
, u16 mask
)
723 /* Wait for Transaction Pending bit clean */
724 for (i
= 0; i
< 4; i
++) {
727 msleep((1 << (i
- 1)) * 100);
729 pci_read_config_word(dev
, pos
, &status
);
730 if (!(status
& mask
))
738 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
739 * @dev: PCI device to have its BARs restored
741 * Restore the BAR values for a given device, so as to make it
742 * accessible by its driver.
744 static void pci_restore_bars(struct pci_dev
*dev
)
748 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++)
749 pci_update_resource(dev
, i
);
752 static const struct pci_platform_pm_ops
*pci_platform_pm
;
754 int pci_set_platform_pm(const struct pci_platform_pm_ops
*ops
)
756 if (!ops
->is_manageable
|| !ops
->set_state
|| !ops
->get_state
||
757 !ops
->choose_state
|| !ops
->set_wakeup
|| !ops
->need_resume
)
759 pci_platform_pm
= ops
;
763 static inline bool platform_pci_power_manageable(struct pci_dev
*dev
)
765 return pci_platform_pm
? pci_platform_pm
->is_manageable(dev
) : false;
768 static inline int platform_pci_set_power_state(struct pci_dev
*dev
,
771 return pci_platform_pm
? pci_platform_pm
->set_state(dev
, t
) : -ENOSYS
;
774 static inline pci_power_t
platform_pci_get_power_state(struct pci_dev
*dev
)
776 return pci_platform_pm
? pci_platform_pm
->get_state(dev
) : PCI_UNKNOWN
;
779 static inline pci_power_t
platform_pci_choose_state(struct pci_dev
*dev
)
781 return pci_platform_pm
?
782 pci_platform_pm
->choose_state(dev
) : PCI_POWER_ERROR
;
785 static inline int platform_pci_set_wakeup(struct pci_dev
*dev
, bool enable
)
787 return pci_platform_pm
?
788 pci_platform_pm
->set_wakeup(dev
, enable
) : -ENODEV
;
791 static inline bool platform_pci_need_resume(struct pci_dev
*dev
)
793 return pci_platform_pm
? pci_platform_pm
->need_resume(dev
) : false;
796 static inline bool platform_pci_bridge_d3(struct pci_dev
*dev
)
798 return pci_platform_pm
? pci_platform_pm
->bridge_d3(dev
) : false;
802 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
804 * @dev: PCI device to handle.
805 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
808 * -EINVAL if the requested state is invalid.
809 * -EIO if device does not support PCI PM or its PM capabilities register has a
810 * wrong version, or device doesn't support the requested state.
811 * 0 if device already is in the requested state.
812 * 0 if device's power state has been successfully changed.
814 static int pci_raw_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
817 bool need_restore
= false;
819 /* Check if we're already there */
820 if (dev
->current_state
== state
)
826 if (state
< PCI_D0
|| state
> PCI_D3hot
)
829 /* Validate current state:
830 * Can enter D0 from any state, but if we can only go deeper
831 * to sleep if we're already in a low power state
833 if (state
!= PCI_D0
&& dev
->current_state
<= PCI_D3cold
834 && dev
->current_state
> state
) {
835 pci_err(dev
, "invalid power transition (from state %d to %d)\n",
836 dev
->current_state
, state
);
840 /* check if this device supports the desired state */
841 if ((state
== PCI_D1
&& !dev
->d1_support
)
842 || (state
== PCI_D2
&& !dev
->d2_support
))
845 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
847 /* If we're (effectively) in D3, force entire word to 0.
848 * This doesn't affect PME_Status, disables PME_En, and
849 * sets PowerState to 0.
851 switch (dev
->current_state
) {
855 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
860 case PCI_UNKNOWN
: /* Boot-up */
861 if ((pmcsr
& PCI_PM_CTRL_STATE_MASK
) == PCI_D3hot
862 && !(pmcsr
& PCI_PM_CTRL_NO_SOFT_RESET
))
864 /* Fall-through: force to D0 */
870 /* enter specified state */
871 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
873 /* Mandatory power management transition delays */
874 /* see PCI PM 1.1 5.6.1 table 18 */
875 if (state
== PCI_D3hot
|| dev
->current_state
== PCI_D3hot
)
876 pci_dev_d3_sleep(dev
);
877 else if (state
== PCI_D2
|| dev
->current_state
== PCI_D2
)
878 udelay(PCI_PM_D2_DELAY
);
880 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
881 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
882 if (dev
->current_state
!= state
&& printk_ratelimit())
883 pci_info(dev
, "Refused to change power state, currently in D%d\n",
887 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
888 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
889 * from D3hot to D0 _may_ perform an internal reset, thereby
890 * going to "D0 Uninitialized" rather than "D0 Initialized".
891 * For example, at least some versions of the 3c905B and the
892 * 3c556B exhibit this behaviour.
894 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
895 * devices in a D3hot state at boot. Consequently, we need to
896 * restore at least the BARs so that the device will be
897 * accessible to its driver.
900 pci_restore_bars(dev
);
903 pcie_aspm_pm_state_change(dev
->bus
->self
);
909 * pci_update_current_state - Read power state of given device and cache it
910 * @dev: PCI device to handle.
911 * @state: State to cache in case the device doesn't have the PM capability
913 * The power state is read from the PMCSR register, which however is
914 * inaccessible in D3cold. The platform firmware is therefore queried first
915 * to detect accessibility of the register. In case the platform firmware
916 * reports an incorrect state or the device isn't power manageable by the
917 * platform at all, we try to detect D3cold by testing accessibility of the
918 * vendor ID in config space.
920 void pci_update_current_state(struct pci_dev
*dev
, pci_power_t state
)
922 if (platform_pci_get_power_state(dev
) == PCI_D3cold
||
923 !pci_device_is_present(dev
)) {
924 dev
->current_state
= PCI_D3cold
;
925 } else if (dev
->pm_cap
) {
928 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
929 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
931 dev
->current_state
= state
;
936 * pci_power_up - Put the given device into D0 forcibly
937 * @dev: PCI device to power up
939 void pci_power_up(struct pci_dev
*dev
)
941 if (platform_pci_power_manageable(dev
))
942 platform_pci_set_power_state(dev
, PCI_D0
);
944 pci_raw_set_power_state(dev
, PCI_D0
);
945 pci_update_current_state(dev
, PCI_D0
);
949 * pci_platform_power_transition - Use platform to change device power state
950 * @dev: PCI device to handle.
951 * @state: State to put the device into.
953 static int pci_platform_power_transition(struct pci_dev
*dev
, pci_power_t state
)
957 if (platform_pci_power_manageable(dev
)) {
958 error
= platform_pci_set_power_state(dev
, state
);
960 pci_update_current_state(dev
, state
);
964 if (error
&& !dev
->pm_cap
) /* Fall back to PCI_D0 */
965 dev
->current_state
= PCI_D0
;
971 * pci_wakeup - Wake up a PCI device
972 * @pci_dev: Device to handle.
973 * @ign: ignored parameter
975 static int pci_wakeup(struct pci_dev
*pci_dev
, void *ign
)
977 pci_wakeup_event(pci_dev
);
978 pm_request_resume(&pci_dev
->dev
);
983 * pci_wakeup_bus - Walk given bus and wake up devices on it
984 * @bus: Top bus of the subtree to walk.
986 void pci_wakeup_bus(struct pci_bus
*bus
)
989 pci_walk_bus(bus
, pci_wakeup
, NULL
);
993 * __pci_start_power_transition - Start power transition of a PCI device
994 * @dev: PCI device to handle.
995 * @state: State to put the device into.
997 static void __pci_start_power_transition(struct pci_dev
*dev
, pci_power_t state
)
999 if (state
== PCI_D0
) {
1000 pci_platform_power_transition(dev
, PCI_D0
);
1002 * Mandatory power management transition delays, see
1003 * PCI Express Base Specification Revision 2.0 Section
1004 * 6.6.1: Conventional Reset. Do not delay for
1005 * devices powered on/off by corresponding bridge,
1006 * because have already delayed for the bridge.
1008 if (dev
->runtime_d3cold
) {
1009 if (dev
->d3cold_delay
&& !dev
->imm_ready
)
1010 msleep(dev
->d3cold_delay
);
1012 * When powering on a bridge from D3cold, the
1013 * whole hierarchy may be powered on into
1014 * D0uninitialized state, resume them to give
1015 * them a chance to suspend again
1017 pci_wakeup_bus(dev
->subordinate
);
1023 * __pci_dev_set_current_state - Set current state of a PCI device
1024 * @dev: Device to handle
1025 * @data: pointer to state to be set
1027 static int __pci_dev_set_current_state(struct pci_dev
*dev
, void *data
)
1029 pci_power_t state
= *(pci_power_t
*)data
;
1031 dev
->current_state
= state
;
1036 * pci_bus_set_current_state - Walk given bus and set current state of devices
1037 * @bus: Top bus of the subtree to walk.
1038 * @state: state to be set
1040 void pci_bus_set_current_state(struct pci_bus
*bus
, pci_power_t state
)
1043 pci_walk_bus(bus
, __pci_dev_set_current_state
, &state
);
1047 * __pci_complete_power_transition - Complete power transition of a PCI device
1048 * @dev: PCI device to handle.
1049 * @state: State to put the device into.
1051 * This function should not be called directly by device drivers.
1053 int __pci_complete_power_transition(struct pci_dev
*dev
, pci_power_t state
)
1057 if (state
<= PCI_D0
)
1059 ret
= pci_platform_power_transition(dev
, state
);
1060 /* Power off the bridge may power off the whole hierarchy */
1061 if (!ret
&& state
== PCI_D3cold
)
1062 pci_bus_set_current_state(dev
->subordinate
, PCI_D3cold
);
1065 EXPORT_SYMBOL_GPL(__pci_complete_power_transition
);
1068 * pci_set_power_state - Set the power state of a PCI device
1069 * @dev: PCI device to handle.
1070 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1072 * Transition a device to a new power state, using the platform firmware and/or
1073 * the device's PCI PM registers.
1076 * -EINVAL if the requested state is invalid.
1077 * -EIO if device does not support PCI PM or its PM capabilities register has a
1078 * wrong version, or device doesn't support the requested state.
1079 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1080 * 0 if device already is in the requested state.
1081 * 0 if the transition is to D3 but D3 is not supported.
1082 * 0 if device's power state has been successfully changed.
1084 int pci_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
1088 /* bound the state we're entering */
1089 if (state
> PCI_D3cold
)
1091 else if (state
< PCI_D0
)
1093 else if ((state
== PCI_D1
|| state
== PCI_D2
) && pci_no_d1d2(dev
))
1095 * If the device or the parent bridge do not support PCI PM,
1096 * ignore the request if we're doing anything other than putting
1097 * it into D0 (which would only happen on boot).
1101 /* Check if we're already there */
1102 if (dev
->current_state
== state
)
1105 __pci_start_power_transition(dev
, state
);
1107 /* This device is quirked not to be put into D3, so
1108 don't put it in D3 */
1109 if (state
>= PCI_D3hot
&& (dev
->dev_flags
& PCI_DEV_FLAGS_NO_D3
))
1113 * To put device in D3cold, we put device into D3hot in native
1114 * way, then put device into D3cold with platform ops
1116 error
= pci_raw_set_power_state(dev
, state
> PCI_D3hot
?
1119 if (!__pci_complete_power_transition(dev
, state
))
1124 EXPORT_SYMBOL(pci_set_power_state
);
1127 * pci_choose_state - Choose the power state of a PCI device
1128 * @dev: PCI device to be suspended
1129 * @state: target sleep state for the whole system. This is the value
1130 * that is passed to suspend() function.
1132 * Returns PCI power state suitable for given device and given system
1136 pci_power_t
pci_choose_state(struct pci_dev
*dev
, pm_message_t state
)
1143 ret
= platform_pci_choose_state(dev
);
1144 if (ret
!= PCI_POWER_ERROR
)
1147 switch (state
.event
) {
1150 case PM_EVENT_FREEZE
:
1151 case PM_EVENT_PRETHAW
:
1152 /* REVISIT both freeze and pre-thaw "should" use D0 */
1153 case PM_EVENT_SUSPEND
:
1154 case PM_EVENT_HIBERNATE
:
1157 pci_info(dev
, "unrecognized suspend event %d\n",
1163 EXPORT_SYMBOL(pci_choose_state
);
1165 #define PCI_EXP_SAVE_REGS 7
1167 static struct pci_cap_saved_state
*_pci_find_saved_cap(struct pci_dev
*pci_dev
,
1168 u16 cap
, bool extended
)
1170 struct pci_cap_saved_state
*tmp
;
1172 hlist_for_each_entry(tmp
, &pci_dev
->saved_cap_space
, next
) {
1173 if (tmp
->cap
.cap_extended
== extended
&& tmp
->cap
.cap_nr
== cap
)
1179 struct pci_cap_saved_state
*pci_find_saved_cap(struct pci_dev
*dev
, char cap
)
1181 return _pci_find_saved_cap(dev
, cap
, false);
1184 struct pci_cap_saved_state
*pci_find_saved_ext_cap(struct pci_dev
*dev
, u16 cap
)
1186 return _pci_find_saved_cap(dev
, cap
, true);
1189 static int pci_save_pcie_state(struct pci_dev
*dev
)
1192 struct pci_cap_saved_state
*save_state
;
1195 if (!pci_is_pcie(dev
))
1198 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
1200 pci_err(dev
, "buffer not found in %s\n", __func__
);
1204 cap
= (u16
*)&save_state
->cap
.data
[0];
1205 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &cap
[i
++]);
1206 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL
, &cap
[i
++]);
1207 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL
, &cap
[i
++]);
1208 pcie_capability_read_word(dev
, PCI_EXP_RTCTL
, &cap
[i
++]);
1209 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL2
, &cap
[i
++]);
1210 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL2
, &cap
[i
++]);
1211 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL2
, &cap
[i
++]);
1216 static void pci_restore_pcie_state(struct pci_dev
*dev
)
1219 struct pci_cap_saved_state
*save_state
;
1222 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
1226 cap
= (u16
*)&save_state
->cap
.data
[0];
1227 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL
, cap
[i
++]);
1228 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL
, cap
[i
++]);
1229 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL
, cap
[i
++]);
1230 pcie_capability_write_word(dev
, PCI_EXP_RTCTL
, cap
[i
++]);
1231 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL2
, cap
[i
++]);
1232 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL2
, cap
[i
++]);
1233 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL2
, cap
[i
++]);
1237 static int pci_save_pcix_state(struct pci_dev
*dev
)
1240 struct pci_cap_saved_state
*save_state
;
1242 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1246 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1248 pci_err(dev
, "buffer not found in %s\n", __func__
);
1252 pci_read_config_word(dev
, pos
+ PCI_X_CMD
,
1253 (u16
*)save_state
->cap
.data
);
1258 static void pci_restore_pcix_state(struct pci_dev
*dev
)
1261 struct pci_cap_saved_state
*save_state
;
1264 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1265 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1266 if (!save_state
|| !pos
)
1268 cap
= (u16
*)&save_state
->cap
.data
[0];
1270 pci_write_config_word(dev
, pos
+ PCI_X_CMD
, cap
[i
++]);
1275 * pci_save_state - save the PCI configuration space of a device before suspending
1276 * @dev: - PCI device that we're dealing with
1278 int pci_save_state(struct pci_dev
*dev
)
1281 /* XXX: 100% dword access ok here? */
1282 for (i
= 0; i
< 16; i
++)
1283 pci_read_config_dword(dev
, i
* 4, &dev
->saved_config_space
[i
]);
1284 dev
->state_saved
= true;
1286 i
= pci_save_pcie_state(dev
);
1290 i
= pci_save_pcix_state(dev
);
1294 pci_save_dpc_state(dev
);
1295 return pci_save_vc_state(dev
);
1297 EXPORT_SYMBOL(pci_save_state
);
1299 static void pci_restore_config_dword(struct pci_dev
*pdev
, int offset
,
1300 u32 saved_val
, int retry
, bool force
)
1304 pci_read_config_dword(pdev
, offset
, &val
);
1305 if (!force
&& val
== saved_val
)
1309 pci_dbg(pdev
, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1310 offset
, val
, saved_val
);
1311 pci_write_config_dword(pdev
, offset
, saved_val
);
1315 pci_read_config_dword(pdev
, offset
, &val
);
1316 if (val
== saved_val
)
1323 static void pci_restore_config_space_range(struct pci_dev
*pdev
,
1324 int start
, int end
, int retry
,
1329 for (index
= end
; index
>= start
; index
--)
1330 pci_restore_config_dword(pdev
, 4 * index
,
1331 pdev
->saved_config_space
[index
],
1335 static void pci_restore_config_space(struct pci_dev
*pdev
)
1337 if (pdev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
) {
1338 pci_restore_config_space_range(pdev
, 10, 15, 0, false);
1339 /* Restore BARs before the command register. */
1340 pci_restore_config_space_range(pdev
, 4, 9, 10, false);
1341 pci_restore_config_space_range(pdev
, 0, 3, 0, false);
1342 } else if (pdev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
1343 pci_restore_config_space_range(pdev
, 12, 15, 0, false);
1346 * Force rewriting of prefetch registers to avoid S3 resume
1347 * issues on Intel PCI bridges that occur when these
1348 * registers are not explicitly written.
1350 pci_restore_config_space_range(pdev
, 9, 11, 0, true);
1351 pci_restore_config_space_range(pdev
, 0, 8, 0, false);
1353 pci_restore_config_space_range(pdev
, 0, 15, 0, false);
1357 static void pci_restore_rebar_state(struct pci_dev
*pdev
)
1359 unsigned int pos
, nbars
, i
;
1362 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_REBAR
);
1366 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
1367 nbars
= (ctrl
& PCI_REBAR_CTRL_NBAR_MASK
) >>
1368 PCI_REBAR_CTRL_NBAR_SHIFT
;
1370 for (i
= 0; i
< nbars
; i
++, pos
+= 8) {
1371 struct resource
*res
;
1374 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
1375 bar_idx
= ctrl
& PCI_REBAR_CTRL_BAR_IDX
;
1376 res
= pdev
->resource
+ bar_idx
;
1377 size
= order_base_2((resource_size(res
) >> 20) | 1) - 1;
1378 ctrl
&= ~PCI_REBAR_CTRL_BAR_SIZE
;
1379 ctrl
|= size
<< PCI_REBAR_CTRL_BAR_SHIFT
;
1380 pci_write_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, ctrl
);
1385 * pci_restore_state - Restore the saved state of a PCI device
1386 * @dev: - PCI device that we're dealing with
1388 void pci_restore_state(struct pci_dev
*dev
)
1390 if (!dev
->state_saved
)
1393 /* PCI Express register must be restored first */
1394 pci_restore_pcie_state(dev
);
1395 pci_restore_pasid_state(dev
);
1396 pci_restore_pri_state(dev
);
1397 pci_restore_ats_state(dev
);
1398 pci_restore_vc_state(dev
);
1399 pci_restore_rebar_state(dev
);
1400 pci_restore_dpc_state(dev
);
1402 pci_cleanup_aer_error_status_regs(dev
);
1404 pci_restore_config_space(dev
);
1406 pci_restore_pcix_state(dev
);
1407 pci_restore_msi_state(dev
);
1409 /* Restore ACS and IOV configuration state */
1410 pci_enable_acs(dev
);
1411 pci_restore_iov_state(dev
);
1413 dev
->state_saved
= false;
1415 EXPORT_SYMBOL(pci_restore_state
);
1417 struct pci_saved_state
{
1418 u32 config_space
[16];
1419 struct pci_cap_saved_data cap
[0];
1423 * pci_store_saved_state - Allocate and return an opaque struct containing
1424 * the device saved state.
1425 * @dev: PCI device that we're dealing with
1427 * Return NULL if no state or error.
1429 struct pci_saved_state
*pci_store_saved_state(struct pci_dev
*dev
)
1431 struct pci_saved_state
*state
;
1432 struct pci_cap_saved_state
*tmp
;
1433 struct pci_cap_saved_data
*cap
;
1436 if (!dev
->state_saved
)
1439 size
= sizeof(*state
) + sizeof(struct pci_cap_saved_data
);
1441 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
)
1442 size
+= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1444 state
= kzalloc(size
, GFP_KERNEL
);
1448 memcpy(state
->config_space
, dev
->saved_config_space
,
1449 sizeof(state
->config_space
));
1452 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
) {
1453 size_t len
= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1454 memcpy(cap
, &tmp
->cap
, len
);
1455 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+ len
);
1457 /* Empty cap_save terminates list */
1461 EXPORT_SYMBOL_GPL(pci_store_saved_state
);
1464 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1465 * @dev: PCI device that we're dealing with
1466 * @state: Saved state returned from pci_store_saved_state()
1468 int pci_load_saved_state(struct pci_dev
*dev
,
1469 struct pci_saved_state
*state
)
1471 struct pci_cap_saved_data
*cap
;
1473 dev
->state_saved
= false;
1478 memcpy(dev
->saved_config_space
, state
->config_space
,
1479 sizeof(state
->config_space
));
1483 struct pci_cap_saved_state
*tmp
;
1485 tmp
= _pci_find_saved_cap(dev
, cap
->cap_nr
, cap
->cap_extended
);
1486 if (!tmp
|| tmp
->cap
.size
!= cap
->size
)
1489 memcpy(tmp
->cap
.data
, cap
->data
, tmp
->cap
.size
);
1490 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+
1491 sizeof(struct pci_cap_saved_data
) + cap
->size
);
1494 dev
->state_saved
= true;
1497 EXPORT_SYMBOL_GPL(pci_load_saved_state
);
1500 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1501 * and free the memory allocated for it.
1502 * @dev: PCI device that we're dealing with
1503 * @state: Pointer to saved state returned from pci_store_saved_state()
1505 int pci_load_and_free_saved_state(struct pci_dev
*dev
,
1506 struct pci_saved_state
**state
)
1508 int ret
= pci_load_saved_state(dev
, *state
);
1513 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state
);
1515 int __weak
pcibios_enable_device(struct pci_dev
*dev
, int bars
)
1517 return pci_enable_resources(dev
, bars
);
1520 static int do_pci_enable_device(struct pci_dev
*dev
, int bars
)
1523 struct pci_dev
*bridge
;
1527 err
= pci_set_power_state(dev
, PCI_D0
);
1528 if (err
< 0 && err
!= -EIO
)
1531 bridge
= pci_upstream_bridge(dev
);
1533 pcie_aspm_powersave_config_link(bridge
);
1535 err
= pcibios_enable_device(dev
, bars
);
1538 pci_fixup_device(pci_fixup_enable
, dev
);
1540 if (dev
->msi_enabled
|| dev
->msix_enabled
)
1543 pci_read_config_byte(dev
, PCI_INTERRUPT_PIN
, &pin
);
1545 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
1546 if (cmd
& PCI_COMMAND_INTX_DISABLE
)
1547 pci_write_config_word(dev
, PCI_COMMAND
,
1548 cmd
& ~PCI_COMMAND_INTX_DISABLE
);
1555 * pci_reenable_device - Resume abandoned device
1556 * @dev: PCI device to be resumed
1558 * Note this function is a backend of pci_default_resume and is not supposed
1559 * to be called by normal code, write proper resume handler and use it instead.
1561 int pci_reenable_device(struct pci_dev
*dev
)
1563 if (pci_is_enabled(dev
))
1564 return do_pci_enable_device(dev
, (1 << PCI_NUM_RESOURCES
) - 1);
1567 EXPORT_SYMBOL(pci_reenable_device
);
1569 static void pci_enable_bridge(struct pci_dev
*dev
)
1571 struct pci_dev
*bridge
;
1574 bridge
= pci_upstream_bridge(dev
);
1576 pci_enable_bridge(bridge
);
1578 if (pci_is_enabled(dev
)) {
1579 if (!dev
->is_busmaster
)
1580 pci_set_master(dev
);
1584 retval
= pci_enable_device(dev
);
1586 pci_err(dev
, "Error enabling bridge (%d), continuing\n",
1588 pci_set_master(dev
);
1591 static int pci_enable_device_flags(struct pci_dev
*dev
, unsigned long flags
)
1593 struct pci_dev
*bridge
;
1598 * Power state could be unknown at this point, either due to a fresh
1599 * boot or a device removal call. So get the current power state
1600 * so that things like MSI message writing will behave as expected
1601 * (e.g. if the device really is in D0 at enable time).
1605 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1606 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
1609 if (atomic_inc_return(&dev
->enable_cnt
) > 1)
1610 return 0; /* already enabled */
1612 bridge
= pci_upstream_bridge(dev
);
1614 pci_enable_bridge(bridge
);
1616 /* only skip sriov related */
1617 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
1618 if (dev
->resource
[i
].flags
& flags
)
1620 for (i
= PCI_BRIDGE_RESOURCES
; i
< DEVICE_COUNT_RESOURCE
; i
++)
1621 if (dev
->resource
[i
].flags
& flags
)
1624 err
= do_pci_enable_device(dev
, bars
);
1626 atomic_dec(&dev
->enable_cnt
);
1631 * pci_enable_device_io - Initialize a device for use with IO space
1632 * @dev: PCI device to be initialized
1634 * Initialize device before it's used by a driver. Ask low-level code
1635 * to enable I/O resources. Wake up the device if it was suspended.
1636 * Beware, this function can fail.
1638 int pci_enable_device_io(struct pci_dev
*dev
)
1640 return pci_enable_device_flags(dev
, IORESOURCE_IO
);
1642 EXPORT_SYMBOL(pci_enable_device_io
);
1645 * pci_enable_device_mem - Initialize a device for use with Memory space
1646 * @dev: PCI device to be initialized
1648 * Initialize device before it's used by a driver. Ask low-level code
1649 * to enable Memory resources. Wake up the device if it was suspended.
1650 * Beware, this function can fail.
1652 int pci_enable_device_mem(struct pci_dev
*dev
)
1654 return pci_enable_device_flags(dev
, IORESOURCE_MEM
);
1656 EXPORT_SYMBOL(pci_enable_device_mem
);
1659 * pci_enable_device - Initialize device before it's used by a driver.
1660 * @dev: PCI device to be initialized
1662 * Initialize device before it's used by a driver. Ask low-level code
1663 * to enable I/O and memory. Wake up the device if it was suspended.
1664 * Beware, this function can fail.
1666 * Note we don't actually enable the device many times if we call
1667 * this function repeatedly (we just increment the count).
1669 int pci_enable_device(struct pci_dev
*dev
)
1671 return pci_enable_device_flags(dev
, IORESOURCE_MEM
| IORESOURCE_IO
);
1673 EXPORT_SYMBOL(pci_enable_device
);
1676 * Managed PCI resources. This manages device on/off, intx/msi/msix
1677 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1678 * there's no need to track it separately. pci_devres is initialized
1679 * when a device is enabled using managed PCI device enable interface.
1682 unsigned int enabled
:1;
1683 unsigned int pinned
:1;
1684 unsigned int orig_intx
:1;
1685 unsigned int restore_intx
:1;
1690 static void pcim_release(struct device
*gendev
, void *res
)
1692 struct pci_dev
*dev
= to_pci_dev(gendev
);
1693 struct pci_devres
*this = res
;
1696 if (dev
->msi_enabled
)
1697 pci_disable_msi(dev
);
1698 if (dev
->msix_enabled
)
1699 pci_disable_msix(dev
);
1701 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
1702 if (this->region_mask
& (1 << i
))
1703 pci_release_region(dev
, i
);
1708 if (this->restore_intx
)
1709 pci_intx(dev
, this->orig_intx
);
1711 if (this->enabled
&& !this->pinned
)
1712 pci_disable_device(dev
);
1715 static struct pci_devres
*get_pci_dr(struct pci_dev
*pdev
)
1717 struct pci_devres
*dr
, *new_dr
;
1719 dr
= devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1723 new_dr
= devres_alloc(pcim_release
, sizeof(*new_dr
), GFP_KERNEL
);
1726 return devres_get(&pdev
->dev
, new_dr
, NULL
, NULL
);
1729 static struct pci_devres
*find_pci_dr(struct pci_dev
*pdev
)
1731 if (pci_is_managed(pdev
))
1732 return devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1737 * pcim_enable_device - Managed pci_enable_device()
1738 * @pdev: PCI device to be initialized
1740 * Managed pci_enable_device().
1742 int pcim_enable_device(struct pci_dev
*pdev
)
1744 struct pci_devres
*dr
;
1747 dr
= get_pci_dr(pdev
);
1753 rc
= pci_enable_device(pdev
);
1755 pdev
->is_managed
= 1;
1760 EXPORT_SYMBOL(pcim_enable_device
);
1763 * pcim_pin_device - Pin managed PCI device
1764 * @pdev: PCI device to pin
1766 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1767 * driver detach. @pdev must have been enabled with
1768 * pcim_enable_device().
1770 void pcim_pin_device(struct pci_dev
*pdev
)
1772 struct pci_devres
*dr
;
1774 dr
= find_pci_dr(pdev
);
1775 WARN_ON(!dr
|| !dr
->enabled
);
1779 EXPORT_SYMBOL(pcim_pin_device
);
1782 * pcibios_add_device - provide arch specific hooks when adding device dev
1783 * @dev: the PCI device being added
1785 * Permits the platform to provide architecture specific functionality when
1786 * devices are added. This is the default implementation. Architecture
1787 * implementations can override this.
1789 int __weak
pcibios_add_device(struct pci_dev
*dev
)
1795 * pcibios_release_device - provide arch specific hooks when releasing device dev
1796 * @dev: the PCI device being released
1798 * Permits the platform to provide architecture specific functionality when
1799 * devices are released. This is the default implementation. Architecture
1800 * implementations can override this.
1802 void __weak
pcibios_release_device(struct pci_dev
*dev
) {}
1805 * pcibios_disable_device - disable arch specific PCI resources for device dev
1806 * @dev: the PCI device to disable
1808 * Disables architecture specific PCI resources for the device. This
1809 * is the default implementation. Architecture implementations can
1812 void __weak
pcibios_disable_device(struct pci_dev
*dev
) {}
1815 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1816 * @irq: ISA IRQ to penalize
1817 * @active: IRQ active or not
1819 * Permits the platform to provide architecture-specific functionality when
1820 * penalizing ISA IRQs. This is the default implementation. Architecture
1821 * implementations can override this.
1823 void __weak
pcibios_penalize_isa_irq(int irq
, int active
) {}
1825 static void do_pci_disable_device(struct pci_dev
*dev
)
1829 pci_read_config_word(dev
, PCI_COMMAND
, &pci_command
);
1830 if (pci_command
& PCI_COMMAND_MASTER
) {
1831 pci_command
&= ~PCI_COMMAND_MASTER
;
1832 pci_write_config_word(dev
, PCI_COMMAND
, pci_command
);
1835 pcibios_disable_device(dev
);
1839 * pci_disable_enabled_device - Disable device without updating enable_cnt
1840 * @dev: PCI device to disable
1842 * NOTE: This function is a backend of PCI power management routines and is
1843 * not supposed to be called drivers.
1845 void pci_disable_enabled_device(struct pci_dev
*dev
)
1847 if (pci_is_enabled(dev
))
1848 do_pci_disable_device(dev
);
1852 * pci_disable_device - Disable PCI device after use
1853 * @dev: PCI device to be disabled
1855 * Signal to the system that the PCI device is not in use by the system
1856 * anymore. This only involves disabling PCI bus-mastering, if active.
1858 * Note we don't actually disable the device until all callers of
1859 * pci_enable_device() have called pci_disable_device().
1861 void pci_disable_device(struct pci_dev
*dev
)
1863 struct pci_devres
*dr
;
1865 dr
= find_pci_dr(dev
);
1869 dev_WARN_ONCE(&dev
->dev
, atomic_read(&dev
->enable_cnt
) <= 0,
1870 "disabling already-disabled device");
1872 if (atomic_dec_return(&dev
->enable_cnt
) != 0)
1875 do_pci_disable_device(dev
);
1877 dev
->is_busmaster
= 0;
1879 EXPORT_SYMBOL(pci_disable_device
);
1882 * pcibios_set_pcie_reset_state - set reset state for device dev
1883 * @dev: the PCIe device reset
1884 * @state: Reset state to enter into
1887 * Sets the PCIe reset state for the device. This is the default
1888 * implementation. Architecture implementations can override this.
1890 int __weak
pcibios_set_pcie_reset_state(struct pci_dev
*dev
,
1891 enum pcie_reset_state state
)
1897 * pci_set_pcie_reset_state - set reset state for device dev
1898 * @dev: the PCIe device reset
1899 * @state: Reset state to enter into
1902 * Sets the PCI reset state for the device.
1904 int pci_set_pcie_reset_state(struct pci_dev
*dev
, enum pcie_reset_state state
)
1906 return pcibios_set_pcie_reset_state(dev
, state
);
1908 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state
);
1911 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1912 * @dev: PCIe root port or event collector.
1914 void pcie_clear_root_pme_status(struct pci_dev
*dev
)
1916 pcie_capability_set_dword(dev
, PCI_EXP_RTSTA
, PCI_EXP_RTSTA_PME
);
1920 * pci_check_pme_status - Check if given device has generated PME.
1921 * @dev: Device to check.
1923 * Check the PME status of the device and if set, clear it and clear PME enable
1924 * (if set). Return 'true' if PME status and PME enable were both set or
1925 * 'false' otherwise.
1927 bool pci_check_pme_status(struct pci_dev
*dev
)
1936 pmcsr_pos
= dev
->pm_cap
+ PCI_PM_CTRL
;
1937 pci_read_config_word(dev
, pmcsr_pos
, &pmcsr
);
1938 if (!(pmcsr
& PCI_PM_CTRL_PME_STATUS
))
1941 /* Clear PME status. */
1942 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
1943 if (pmcsr
& PCI_PM_CTRL_PME_ENABLE
) {
1944 /* Disable PME to avoid interrupt flood. */
1945 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1949 pci_write_config_word(dev
, pmcsr_pos
, pmcsr
);
1955 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1956 * @dev: Device to handle.
1957 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1959 * Check if @dev has generated PME and queue a resume request for it in that
1962 static int pci_pme_wakeup(struct pci_dev
*dev
, void *pme_poll_reset
)
1964 if (pme_poll_reset
&& dev
->pme_poll
)
1965 dev
->pme_poll
= false;
1967 if (pci_check_pme_status(dev
)) {
1968 pci_wakeup_event(dev
);
1969 pm_request_resume(&dev
->dev
);
1975 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1976 * @bus: Top bus of the subtree to walk.
1978 void pci_pme_wakeup_bus(struct pci_bus
*bus
)
1981 pci_walk_bus(bus
, pci_pme_wakeup
, (void *)true);
1986 * pci_pme_capable - check the capability of PCI device to generate PME#
1987 * @dev: PCI device to handle.
1988 * @state: PCI state from which device will issue PME#.
1990 bool pci_pme_capable(struct pci_dev
*dev
, pci_power_t state
)
1995 return !!(dev
->pme_support
& (1 << state
));
1997 EXPORT_SYMBOL(pci_pme_capable
);
1999 static void pci_pme_list_scan(struct work_struct
*work
)
2001 struct pci_pme_device
*pme_dev
, *n
;
2003 mutex_lock(&pci_pme_list_mutex
);
2004 list_for_each_entry_safe(pme_dev
, n
, &pci_pme_list
, list
) {
2005 if (pme_dev
->dev
->pme_poll
) {
2006 struct pci_dev
*bridge
;
2008 bridge
= pme_dev
->dev
->bus
->self
;
2010 * If bridge is in low power state, the
2011 * configuration space of subordinate devices
2012 * may be not accessible
2014 if (bridge
&& bridge
->current_state
!= PCI_D0
)
2016 pci_pme_wakeup(pme_dev
->dev
, NULL
);
2018 list_del(&pme_dev
->list
);
2022 if (!list_empty(&pci_pme_list
))
2023 queue_delayed_work(system_freezable_wq
, &pci_pme_work
,
2024 msecs_to_jiffies(PME_TIMEOUT
));
2025 mutex_unlock(&pci_pme_list_mutex
);
2028 static void __pci_pme_active(struct pci_dev
*dev
, bool enable
)
2032 if (!dev
->pme_support
)
2035 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
2036 /* Clear PME_Status by writing 1 to it and enable PME# */
2037 pmcsr
|= PCI_PM_CTRL_PME_STATUS
| PCI_PM_CTRL_PME_ENABLE
;
2039 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
2041 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
2045 * pci_pme_restore - Restore PME configuration after config space restore.
2046 * @dev: PCI device to update.
2048 void pci_pme_restore(struct pci_dev
*dev
)
2052 if (!dev
->pme_support
)
2055 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
2056 if (dev
->wakeup_prepared
) {
2057 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
2058 pmcsr
&= ~PCI_PM_CTRL_PME_STATUS
;
2060 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
2061 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
2063 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
2067 * pci_pme_active - enable or disable PCI device's PME# function
2068 * @dev: PCI device to handle.
2069 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2071 * The caller must verify that the device is capable of generating PME# before
2072 * calling this function with @enable equal to 'true'.
2074 void pci_pme_active(struct pci_dev
*dev
, bool enable
)
2076 __pci_pme_active(dev
, enable
);
2079 * PCI (as opposed to PCIe) PME requires that the device have
2080 * its PME# line hooked up correctly. Not all hardware vendors
2081 * do this, so the PME never gets delivered and the device
2082 * remains asleep. The easiest way around this is to
2083 * periodically walk the list of suspended devices and check
2084 * whether any have their PME flag set. The assumption is that
2085 * we'll wake up often enough anyway that this won't be a huge
2086 * hit, and the power savings from the devices will still be a
2089 * Although PCIe uses in-band PME message instead of PME# line
2090 * to report PME, PME does not work for some PCIe devices in
2091 * reality. For example, there are devices that set their PME
2092 * status bits, but don't really bother to send a PME message;
2093 * there are PCI Express Root Ports that don't bother to
2094 * trigger interrupts when they receive PME messages from the
2095 * devices below. So PME poll is used for PCIe devices too.
2098 if (dev
->pme_poll
) {
2099 struct pci_pme_device
*pme_dev
;
2101 pme_dev
= kmalloc(sizeof(struct pci_pme_device
),
2104 pci_warn(dev
, "can't enable PME#\n");
2108 mutex_lock(&pci_pme_list_mutex
);
2109 list_add(&pme_dev
->list
, &pci_pme_list
);
2110 if (list_is_singular(&pci_pme_list
))
2111 queue_delayed_work(system_freezable_wq
,
2113 msecs_to_jiffies(PME_TIMEOUT
));
2114 mutex_unlock(&pci_pme_list_mutex
);
2116 mutex_lock(&pci_pme_list_mutex
);
2117 list_for_each_entry(pme_dev
, &pci_pme_list
, list
) {
2118 if (pme_dev
->dev
== dev
) {
2119 list_del(&pme_dev
->list
);
2124 mutex_unlock(&pci_pme_list_mutex
);
2128 pci_dbg(dev
, "PME# %s\n", enable
? "enabled" : "disabled");
2130 EXPORT_SYMBOL(pci_pme_active
);
2133 * __pci_enable_wake - enable PCI device as wakeup event source
2134 * @dev: PCI device affected
2135 * @state: PCI state from which device will issue wakeup events
2136 * @enable: True to enable event generation; false to disable
2138 * This enables the device as a wakeup event source, or disables it.
2139 * When such events involves platform-specific hooks, those hooks are
2140 * called automatically by this routine.
2142 * Devices with legacy power management (no standard PCI PM capabilities)
2143 * always require such platform hooks.
2146 * 0 is returned on success
2147 * -EINVAL is returned if device is not supposed to wake up the system
2148 * Error code depending on the platform is returned if both the platform and
2149 * the native mechanism fail to enable the generation of wake-up events
2151 static int __pci_enable_wake(struct pci_dev
*dev
, pci_power_t state
, bool enable
)
2156 * Bridges that are not power-manageable directly only signal
2157 * wakeup on behalf of subordinate devices which is set up
2158 * elsewhere, so skip them. However, bridges that are
2159 * power-manageable may signal wakeup for themselves (for example,
2160 * on a hotplug event) and they need to be covered here.
2162 if (!pci_power_manageable(dev
))
2165 /* Don't do the same thing twice in a row for one device. */
2166 if (!!enable
== !!dev
->wakeup_prepared
)
2170 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2171 * Anderson we should be doing PME# wake enable followed by ACPI wake
2172 * enable. To disable wake-up we call the platform first, for symmetry.
2178 if (pci_pme_capable(dev
, state
))
2179 pci_pme_active(dev
, true);
2182 error
= platform_pci_set_wakeup(dev
, true);
2186 dev
->wakeup_prepared
= true;
2188 platform_pci_set_wakeup(dev
, false);
2189 pci_pme_active(dev
, false);
2190 dev
->wakeup_prepared
= false;
2197 * pci_enable_wake - change wakeup settings for a PCI device
2198 * @pci_dev: Target device
2199 * @state: PCI state from which device will issue wakeup events
2200 * @enable: Whether or not to enable event generation
2202 * If @enable is set, check device_may_wakeup() for the device before calling
2203 * __pci_enable_wake() for it.
2205 int pci_enable_wake(struct pci_dev
*pci_dev
, pci_power_t state
, bool enable
)
2207 if (enable
&& !device_may_wakeup(&pci_dev
->dev
))
2210 return __pci_enable_wake(pci_dev
, state
, enable
);
2212 EXPORT_SYMBOL(pci_enable_wake
);
2215 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2216 * @dev: PCI device to prepare
2217 * @enable: True to enable wake-up event generation; false to disable
2219 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2220 * and this function allows them to set that up cleanly - pci_enable_wake()
2221 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2222 * ordering constraints.
2224 * This function only returns error code if the device is not allowed to wake
2225 * up the system from sleep or it is not capable of generating PME# from both
2226 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2228 int pci_wake_from_d3(struct pci_dev
*dev
, bool enable
)
2230 return pci_pme_capable(dev
, PCI_D3cold
) ?
2231 pci_enable_wake(dev
, PCI_D3cold
, enable
) :
2232 pci_enable_wake(dev
, PCI_D3hot
, enable
);
2234 EXPORT_SYMBOL(pci_wake_from_d3
);
2237 * pci_target_state - find an appropriate low power state for a given PCI dev
2239 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2241 * Use underlying platform code to find a supported low power state for @dev.
2242 * If the platform can't manage @dev, return the deepest state from which it
2243 * can generate wake events, based on any available PME info.
2245 static pci_power_t
pci_target_state(struct pci_dev
*dev
, bool wakeup
)
2247 pci_power_t target_state
= PCI_D3hot
;
2249 if (platform_pci_power_manageable(dev
)) {
2251 * Call the platform to find the target state for the device.
2253 pci_power_t state
= platform_pci_choose_state(dev
);
2256 case PCI_POWER_ERROR
:
2261 if (pci_no_d1d2(dev
))
2263 /* else: fall through */
2265 target_state
= state
;
2268 return target_state
;
2272 target_state
= PCI_D0
;
2275 * If the device is in D3cold even though it's not power-manageable by
2276 * the platform, it may have been powered down by non-standard means.
2277 * Best to let it slumber.
2279 if (dev
->current_state
== PCI_D3cold
)
2280 target_state
= PCI_D3cold
;
2284 * Find the deepest state from which the device can generate
2287 if (dev
->pme_support
) {
2289 && !(dev
->pme_support
& (1 << target_state
)))
2294 return target_state
;
2298 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2299 * @dev: Device to handle.
2301 * Choose the power state appropriate for the device depending on whether
2302 * it can wake up the system and/or is power manageable by the platform
2303 * (PCI_D3hot is the default) and put the device into that state.
2305 int pci_prepare_to_sleep(struct pci_dev
*dev
)
2307 bool wakeup
= device_may_wakeup(&dev
->dev
);
2308 pci_power_t target_state
= pci_target_state(dev
, wakeup
);
2311 if (target_state
== PCI_POWER_ERROR
)
2314 pci_enable_wake(dev
, target_state
, wakeup
);
2316 error
= pci_set_power_state(dev
, target_state
);
2319 pci_enable_wake(dev
, target_state
, false);
2323 EXPORT_SYMBOL(pci_prepare_to_sleep
);
2326 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2327 * @dev: Device to handle.
2329 * Disable device's system wake-up capability and put it into D0.
2331 int pci_back_from_sleep(struct pci_dev
*dev
)
2333 pci_enable_wake(dev
, PCI_D0
, false);
2334 return pci_set_power_state(dev
, PCI_D0
);
2336 EXPORT_SYMBOL(pci_back_from_sleep
);
2339 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2340 * @dev: PCI device being suspended.
2342 * Prepare @dev to generate wake-up events at run time and put it into a low
2345 int pci_finish_runtime_suspend(struct pci_dev
*dev
)
2347 pci_power_t target_state
;
2350 target_state
= pci_target_state(dev
, device_can_wakeup(&dev
->dev
));
2351 if (target_state
== PCI_POWER_ERROR
)
2354 dev
->runtime_d3cold
= target_state
== PCI_D3cold
;
2356 __pci_enable_wake(dev
, target_state
, pci_dev_run_wake(dev
));
2358 error
= pci_set_power_state(dev
, target_state
);
2361 pci_enable_wake(dev
, target_state
, false);
2362 dev
->runtime_d3cold
= false;
2369 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2370 * @dev: Device to check.
2372 * Return true if the device itself is capable of generating wake-up events
2373 * (through the platform or using the native PCIe PME) or if the device supports
2374 * PME and one of its upstream bridges can generate wake-up events.
2376 bool pci_dev_run_wake(struct pci_dev
*dev
)
2378 struct pci_bus
*bus
= dev
->bus
;
2380 if (!dev
->pme_support
)
2383 /* PME-capable in principle, but not from the target power state */
2384 if (!pci_pme_capable(dev
, pci_target_state(dev
, true)))
2387 if (device_can_wakeup(&dev
->dev
))
2390 while (bus
->parent
) {
2391 struct pci_dev
*bridge
= bus
->self
;
2393 if (device_can_wakeup(&bridge
->dev
))
2399 /* We have reached the root bus. */
2401 return device_can_wakeup(bus
->bridge
);
2405 EXPORT_SYMBOL_GPL(pci_dev_run_wake
);
2408 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2409 * @pci_dev: Device to check.
2411 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2412 * reconfigured due to wakeup settings difference between system and runtime
2413 * suspend and the current power state of it is suitable for the upcoming
2414 * (system) transition.
2416 * If the device is not configured for system wakeup, disable PME for it before
2417 * returning 'true' to prevent it from waking up the system unnecessarily.
2419 bool pci_dev_keep_suspended(struct pci_dev
*pci_dev
)
2421 struct device
*dev
= &pci_dev
->dev
;
2422 bool wakeup
= device_may_wakeup(dev
);
2424 if (!pm_runtime_suspended(dev
)
2425 || pci_target_state(pci_dev
, wakeup
) != pci_dev
->current_state
2426 || platform_pci_need_resume(pci_dev
))
2430 * At this point the device is good to go unless it's been configured
2431 * to generate PME at the runtime suspend time, but it is not supposed
2432 * to wake up the system. In that case, simply disable PME for it
2433 * (it will have to be re-enabled on exit from system resume).
2435 * If the device's power state is D3cold and the platform check above
2436 * hasn't triggered, the device's configuration is suitable and we don't
2437 * need to manipulate it at all.
2439 spin_lock_irq(&dev
->power
.lock
);
2441 if (pm_runtime_suspended(dev
) && pci_dev
->current_state
< PCI_D3cold
&&
2443 __pci_pme_active(pci_dev
, false);
2445 spin_unlock_irq(&dev
->power
.lock
);
2450 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2451 * @pci_dev: Device to handle.
2453 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2454 * it might have been disabled during the prepare phase of system suspend if
2455 * the device was not configured for system wakeup.
2457 void pci_dev_complete_resume(struct pci_dev
*pci_dev
)
2459 struct device
*dev
= &pci_dev
->dev
;
2461 if (!pci_dev_run_wake(pci_dev
))
2464 spin_lock_irq(&dev
->power
.lock
);
2466 if (pm_runtime_suspended(dev
) && pci_dev
->current_state
< PCI_D3cold
)
2467 __pci_pme_active(pci_dev
, true);
2469 spin_unlock_irq(&dev
->power
.lock
);
2472 void pci_config_pm_runtime_get(struct pci_dev
*pdev
)
2474 struct device
*dev
= &pdev
->dev
;
2475 struct device
*parent
= dev
->parent
;
2478 pm_runtime_get_sync(parent
);
2479 pm_runtime_get_noresume(dev
);
2481 * pdev->current_state is set to PCI_D3cold during suspending,
2482 * so wait until suspending completes
2484 pm_runtime_barrier(dev
);
2486 * Only need to resume devices in D3cold, because config
2487 * registers are still accessible for devices suspended but
2490 if (pdev
->current_state
== PCI_D3cold
)
2491 pm_runtime_resume(dev
);
2494 void pci_config_pm_runtime_put(struct pci_dev
*pdev
)
2496 struct device
*dev
= &pdev
->dev
;
2497 struct device
*parent
= dev
->parent
;
2499 pm_runtime_put(dev
);
2501 pm_runtime_put_sync(parent
);
2505 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2506 * @bridge: Bridge to check
2508 * This function checks if it is possible to move the bridge to D3.
2509 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2511 bool pci_bridge_d3_possible(struct pci_dev
*bridge
)
2513 if (!pci_is_pcie(bridge
))
2516 switch (pci_pcie_type(bridge
)) {
2517 case PCI_EXP_TYPE_ROOT_PORT
:
2518 case PCI_EXP_TYPE_UPSTREAM
:
2519 case PCI_EXP_TYPE_DOWNSTREAM
:
2520 if (pci_bridge_d3_disable
)
2524 * Hotplug ports handled by firmware in System Management Mode
2525 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2527 if (bridge
->is_hotplug_bridge
&& !pciehp_is_native(bridge
))
2530 if (pci_bridge_d3_force
)
2533 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2534 if (bridge
->is_thunderbolt
)
2537 /* Platform might know better if the bridge supports D3 */
2538 if (platform_pci_bridge_d3(bridge
))
2542 * Hotplug ports handled natively by the OS were not validated
2543 * by vendors for runtime D3 at least until 2018 because there
2544 * was no OS support.
2546 if (bridge
->is_hotplug_bridge
)
2550 * It should be safe to put PCIe ports from 2015 or newer
2553 if (dmi_get_bios_year() >= 2015)
2561 static int pci_dev_check_d3cold(struct pci_dev
*dev
, void *data
)
2563 bool *d3cold_ok
= data
;
2565 if (/* The device needs to be allowed to go D3cold ... */
2566 dev
->no_d3cold
|| !dev
->d3cold_allowed
||
2568 /* ... and if it is wakeup capable to do so from D3cold. */
2569 (device_may_wakeup(&dev
->dev
) &&
2570 !pci_pme_capable(dev
, PCI_D3cold
)) ||
2572 /* If it is a bridge it must be allowed to go to D3. */
2573 !pci_power_manageable(dev
))
2581 * pci_bridge_d3_update - Update bridge D3 capabilities
2582 * @dev: PCI device which is changed
2584 * Update upstream bridge PM capabilities accordingly depending on if the
2585 * device PM configuration was changed or the device is being removed. The
2586 * change is also propagated upstream.
2588 void pci_bridge_d3_update(struct pci_dev
*dev
)
2590 bool remove
= !device_is_registered(&dev
->dev
);
2591 struct pci_dev
*bridge
;
2592 bool d3cold_ok
= true;
2594 bridge
= pci_upstream_bridge(dev
);
2595 if (!bridge
|| !pci_bridge_d3_possible(bridge
))
2599 * If D3 is currently allowed for the bridge, removing one of its
2600 * children won't change that.
2602 if (remove
&& bridge
->bridge_d3
)
2606 * If D3 is currently allowed for the bridge and a child is added or
2607 * changed, disallowance of D3 can only be caused by that child, so
2608 * we only need to check that single device, not any of its siblings.
2610 * If D3 is currently not allowed for the bridge, checking the device
2611 * first may allow us to skip checking its siblings.
2614 pci_dev_check_d3cold(dev
, &d3cold_ok
);
2617 * If D3 is currently not allowed for the bridge, this may be caused
2618 * either by the device being changed/removed or any of its siblings,
2619 * so we need to go through all children to find out if one of them
2620 * continues to block D3.
2622 if (d3cold_ok
&& !bridge
->bridge_d3
)
2623 pci_walk_bus(bridge
->subordinate
, pci_dev_check_d3cold
,
2626 if (bridge
->bridge_d3
!= d3cold_ok
) {
2627 bridge
->bridge_d3
= d3cold_ok
;
2628 /* Propagate change to upstream bridges */
2629 pci_bridge_d3_update(bridge
);
2634 * pci_d3cold_enable - Enable D3cold for device
2635 * @dev: PCI device to handle
2637 * This function can be used in drivers to enable D3cold from the device
2638 * they handle. It also updates upstream PCI bridge PM capabilities
2641 void pci_d3cold_enable(struct pci_dev
*dev
)
2643 if (dev
->no_d3cold
) {
2644 dev
->no_d3cold
= false;
2645 pci_bridge_d3_update(dev
);
2648 EXPORT_SYMBOL_GPL(pci_d3cold_enable
);
2651 * pci_d3cold_disable - Disable D3cold for device
2652 * @dev: PCI device to handle
2654 * This function can be used in drivers to disable D3cold from the device
2655 * they handle. It also updates upstream PCI bridge PM capabilities
2658 void pci_d3cold_disable(struct pci_dev
*dev
)
2660 if (!dev
->no_d3cold
) {
2661 dev
->no_d3cold
= true;
2662 pci_bridge_d3_update(dev
);
2665 EXPORT_SYMBOL_GPL(pci_d3cold_disable
);
2668 * pci_pm_init - Initialize PM functions of given PCI device
2669 * @dev: PCI device to handle.
2671 void pci_pm_init(struct pci_dev
*dev
)
2677 pm_runtime_forbid(&dev
->dev
);
2678 pm_runtime_set_active(&dev
->dev
);
2679 pm_runtime_enable(&dev
->dev
);
2680 device_enable_async_suspend(&dev
->dev
);
2681 dev
->wakeup_prepared
= false;
2684 dev
->pme_support
= 0;
2686 /* find PCI PM capability in list */
2687 pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
2690 /* Check device's ability to generate PME# */
2691 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &pmc
);
2693 if ((pmc
& PCI_PM_CAP_VER_MASK
) > 3) {
2694 pci_err(dev
, "unsupported PM cap regs version (%u)\n",
2695 pmc
& PCI_PM_CAP_VER_MASK
);
2700 dev
->d3_delay
= PCI_PM_D3_WAIT
;
2701 dev
->d3cold_delay
= PCI_PM_D3COLD_WAIT
;
2702 dev
->bridge_d3
= pci_bridge_d3_possible(dev
);
2703 dev
->d3cold_allowed
= true;
2705 dev
->d1_support
= false;
2706 dev
->d2_support
= false;
2707 if (!pci_no_d1d2(dev
)) {
2708 if (pmc
& PCI_PM_CAP_D1
)
2709 dev
->d1_support
= true;
2710 if (pmc
& PCI_PM_CAP_D2
)
2711 dev
->d2_support
= true;
2713 if (dev
->d1_support
|| dev
->d2_support
)
2714 pci_printk(KERN_DEBUG
, dev
, "supports%s%s\n",
2715 dev
->d1_support
? " D1" : "",
2716 dev
->d2_support
? " D2" : "");
2719 pmc
&= PCI_PM_CAP_PME_MASK
;
2721 pci_printk(KERN_DEBUG
, dev
, "PME# supported from%s%s%s%s%s\n",
2722 (pmc
& PCI_PM_CAP_PME_D0
) ? " D0" : "",
2723 (pmc
& PCI_PM_CAP_PME_D1
) ? " D1" : "",
2724 (pmc
& PCI_PM_CAP_PME_D2
) ? " D2" : "",
2725 (pmc
& PCI_PM_CAP_PME_D3
) ? " D3hot" : "",
2726 (pmc
& PCI_PM_CAP_PME_D3cold
) ? " D3cold" : "");
2727 dev
->pme_support
= pmc
>> PCI_PM_CAP_PME_SHIFT
;
2728 dev
->pme_poll
= true;
2730 * Make device's PM flags reflect the wake-up capability, but
2731 * let the user space enable it to wake up the system as needed.
2733 device_set_wakeup_capable(&dev
->dev
, true);
2734 /* Disable the PME# generation functionality */
2735 pci_pme_active(dev
, false);
2738 pci_read_config_word(dev
, PCI_STATUS
, &status
);
2739 if (status
& PCI_STATUS_IMM_READY
)
2743 static unsigned long pci_ea_flags(struct pci_dev
*dev
, u8 prop
)
2745 unsigned long flags
= IORESOURCE_PCI_FIXED
| IORESOURCE_PCI_EA_BEI
;
2749 case PCI_EA_P_VF_MEM
:
2750 flags
|= IORESOURCE_MEM
;
2752 case PCI_EA_P_MEM_PREFETCH
:
2753 case PCI_EA_P_VF_MEM_PREFETCH
:
2754 flags
|= IORESOURCE_MEM
| IORESOURCE_PREFETCH
;
2757 flags
|= IORESOURCE_IO
;
2766 static struct resource
*pci_ea_get_resource(struct pci_dev
*dev
, u8 bei
,
2769 if (bei
<= PCI_EA_BEI_BAR5
&& prop
<= PCI_EA_P_IO
)
2770 return &dev
->resource
[bei
];
2771 #ifdef CONFIG_PCI_IOV
2772 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
&&
2773 (prop
== PCI_EA_P_VF_MEM
|| prop
== PCI_EA_P_VF_MEM_PREFETCH
))
2774 return &dev
->resource
[PCI_IOV_RESOURCES
+
2775 bei
- PCI_EA_BEI_VF_BAR0
];
2777 else if (bei
== PCI_EA_BEI_ROM
)
2778 return &dev
->resource
[PCI_ROM_RESOURCE
];
2783 /* Read an Enhanced Allocation (EA) entry */
2784 static int pci_ea_read(struct pci_dev
*dev
, int offset
)
2786 struct resource
*res
;
2787 int ent_size
, ent_offset
= offset
;
2788 resource_size_t start
, end
;
2789 unsigned long flags
;
2790 u32 dw0
, bei
, base
, max_offset
;
2792 bool support_64
= (sizeof(resource_size_t
) >= 8);
2794 pci_read_config_dword(dev
, ent_offset
, &dw0
);
2797 /* Entry size field indicates DWORDs after 1st */
2798 ent_size
= ((dw0
& PCI_EA_ES
) + 1) << 2;
2800 if (!(dw0
& PCI_EA_ENABLE
)) /* Entry not enabled */
2803 bei
= (dw0
& PCI_EA_BEI
) >> 4;
2804 prop
= (dw0
& PCI_EA_PP
) >> 8;
2807 * If the Property is in the reserved range, try the Secondary
2810 if (prop
> PCI_EA_P_BRIDGE_IO
&& prop
< PCI_EA_P_MEM_RESERVED
)
2811 prop
= (dw0
& PCI_EA_SP
) >> 16;
2812 if (prop
> PCI_EA_P_BRIDGE_IO
)
2815 res
= pci_ea_get_resource(dev
, bei
, prop
);
2817 pci_err(dev
, "Unsupported EA entry BEI: %u\n", bei
);
2821 flags
= pci_ea_flags(dev
, prop
);
2823 pci_err(dev
, "Unsupported EA properties: %#x\n", prop
);
2828 pci_read_config_dword(dev
, ent_offset
, &base
);
2829 start
= (base
& PCI_EA_FIELD_MASK
);
2832 /* Read MaxOffset */
2833 pci_read_config_dword(dev
, ent_offset
, &max_offset
);
2836 /* Read Base MSBs (if 64-bit entry) */
2837 if (base
& PCI_EA_IS_64
) {
2840 pci_read_config_dword(dev
, ent_offset
, &base_upper
);
2843 flags
|= IORESOURCE_MEM_64
;
2845 /* entry starts above 32-bit boundary, can't use */
2846 if (!support_64
&& base_upper
)
2850 start
|= ((u64
)base_upper
<< 32);
2853 end
= start
+ (max_offset
| 0x03);
2855 /* Read MaxOffset MSBs (if 64-bit entry) */
2856 if (max_offset
& PCI_EA_IS_64
) {
2857 u32 max_offset_upper
;
2859 pci_read_config_dword(dev
, ent_offset
, &max_offset_upper
);
2862 flags
|= IORESOURCE_MEM_64
;
2864 /* entry too big, can't use */
2865 if (!support_64
&& max_offset_upper
)
2869 end
+= ((u64
)max_offset_upper
<< 32);
2873 pci_err(dev
, "EA Entry crosses address boundary\n");
2877 if (ent_size
!= ent_offset
- offset
) {
2878 pci_err(dev
, "EA Entry Size (%d) does not match length read (%d)\n",
2879 ent_size
, ent_offset
- offset
);
2883 res
->name
= pci_name(dev
);
2888 if (bei
<= PCI_EA_BEI_BAR5
)
2889 pci_printk(KERN_DEBUG
, dev
, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2891 else if (bei
== PCI_EA_BEI_ROM
)
2892 pci_printk(KERN_DEBUG
, dev
, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2894 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
)
2895 pci_printk(KERN_DEBUG
, dev
, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2896 bei
- PCI_EA_BEI_VF_BAR0
, res
, prop
);
2898 pci_printk(KERN_DEBUG
, dev
, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2902 return offset
+ ent_size
;
2905 /* Enhanced Allocation Initialization */
2906 void pci_ea_init(struct pci_dev
*dev
)
2913 /* find PCI EA capability in list */
2914 ea
= pci_find_capability(dev
, PCI_CAP_ID_EA
);
2918 /* determine the number of entries */
2919 pci_bus_read_config_byte(dev
->bus
, dev
->devfn
, ea
+ PCI_EA_NUM_ENT
,
2921 num_ent
&= PCI_EA_NUM_ENT_MASK
;
2923 offset
= ea
+ PCI_EA_FIRST_ENT
;
2925 /* Skip DWORD 2 for type 1 functions */
2926 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
)
2929 /* parse each EA entry */
2930 for (i
= 0; i
< num_ent
; ++i
)
2931 offset
= pci_ea_read(dev
, offset
);
2934 static void pci_add_saved_cap(struct pci_dev
*pci_dev
,
2935 struct pci_cap_saved_state
*new_cap
)
2937 hlist_add_head(&new_cap
->next
, &pci_dev
->saved_cap_space
);
2941 * _pci_add_cap_save_buffer - allocate buffer for saving given
2942 * capability registers
2943 * @dev: the PCI device
2944 * @cap: the capability to allocate the buffer for
2945 * @extended: Standard or Extended capability ID
2946 * @size: requested size of the buffer
2948 static int _pci_add_cap_save_buffer(struct pci_dev
*dev
, u16 cap
,
2949 bool extended
, unsigned int size
)
2952 struct pci_cap_saved_state
*save_state
;
2955 pos
= pci_find_ext_capability(dev
, cap
);
2957 pos
= pci_find_capability(dev
, cap
);
2962 save_state
= kzalloc(sizeof(*save_state
) + size
, GFP_KERNEL
);
2966 save_state
->cap
.cap_nr
= cap
;
2967 save_state
->cap
.cap_extended
= extended
;
2968 save_state
->cap
.size
= size
;
2969 pci_add_saved_cap(dev
, save_state
);
2974 int pci_add_cap_save_buffer(struct pci_dev
*dev
, char cap
, unsigned int size
)
2976 return _pci_add_cap_save_buffer(dev
, cap
, false, size
);
2979 int pci_add_ext_cap_save_buffer(struct pci_dev
*dev
, u16 cap
, unsigned int size
)
2981 return _pci_add_cap_save_buffer(dev
, cap
, true, size
);
2985 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2986 * @dev: the PCI device
2988 void pci_allocate_cap_save_buffers(struct pci_dev
*dev
)
2992 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_EXP
,
2993 PCI_EXP_SAVE_REGS
* sizeof(u16
));
2995 pci_err(dev
, "unable to preallocate PCI Express save buffer\n");
2997 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_PCIX
, sizeof(u16
));
2999 pci_err(dev
, "unable to preallocate PCI-X save buffer\n");
3001 pci_allocate_vc_save_buffers(dev
);
3004 void pci_free_cap_save_buffers(struct pci_dev
*dev
)
3006 struct pci_cap_saved_state
*tmp
;
3007 struct hlist_node
*n
;
3009 hlist_for_each_entry_safe(tmp
, n
, &dev
->saved_cap_space
, next
)
3014 * pci_configure_ari - enable or disable ARI forwarding
3015 * @dev: the PCI device
3017 * If @dev and its upstream bridge both support ARI, enable ARI in the
3018 * bridge. Otherwise, disable ARI in the bridge.
3020 void pci_configure_ari(struct pci_dev
*dev
)
3023 struct pci_dev
*bridge
;
3025 if (pcie_ari_disabled
|| !pci_is_pcie(dev
) || dev
->devfn
)
3028 bridge
= dev
->bus
->self
;
3032 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
3033 if (!(cap
& PCI_EXP_DEVCAP2_ARI
))
3036 if (pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ARI
)) {
3037 pcie_capability_set_word(bridge
, PCI_EXP_DEVCTL2
,
3038 PCI_EXP_DEVCTL2_ARI
);
3039 bridge
->ari_enabled
= 1;
3041 pcie_capability_clear_word(bridge
, PCI_EXP_DEVCTL2
,
3042 PCI_EXP_DEVCTL2_ARI
);
3043 bridge
->ari_enabled
= 0;
3047 static int pci_acs_enable
;
3050 * pci_request_acs - ask for ACS to be enabled if supported
3052 void pci_request_acs(void)
3057 static const char *disable_acs_redir_param
;
3060 * pci_disable_acs_redir - disable ACS redirect capabilities
3061 * @dev: the PCI device
3063 * For only devices specified in the disable_acs_redir parameter.
3065 static void pci_disable_acs_redir(struct pci_dev
*dev
)
3072 if (!disable_acs_redir_param
)
3075 p
= disable_acs_redir_param
;
3077 ret
= pci_dev_str_match(dev
, p
, &p
);
3079 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3080 disable_acs_redir_param
);
3083 } else if (ret
== 1) {
3088 if (*p
!= ';' && *p
!= ',') {
3089 /* End of param or invalid format */
3098 if (!pci_dev_specific_disable_acs_redir(dev
))
3101 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ACS
);
3103 pci_warn(dev
, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3107 pci_read_config_word(dev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
3109 /* P2P Request & Completion Redirect */
3110 ctrl
&= ~(PCI_ACS_RR
| PCI_ACS_CR
| PCI_ACS_EC
);
3112 pci_write_config_word(dev
, pos
+ PCI_ACS_CTRL
, ctrl
);
3114 pci_info(dev
, "disabled ACS redirect\n");
3118 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
3119 * @dev: the PCI device
3121 static void pci_std_enable_acs(struct pci_dev
*dev
)
3127 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ACS
);
3131 pci_read_config_word(dev
, pos
+ PCI_ACS_CAP
, &cap
);
3132 pci_read_config_word(dev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
3134 /* Source Validation */
3135 ctrl
|= (cap
& PCI_ACS_SV
);
3137 /* P2P Request Redirect */
3138 ctrl
|= (cap
& PCI_ACS_RR
);
3140 /* P2P Completion Redirect */
3141 ctrl
|= (cap
& PCI_ACS_CR
);
3143 /* Upstream Forwarding */
3144 ctrl
|= (cap
& PCI_ACS_UF
);
3146 pci_write_config_word(dev
, pos
+ PCI_ACS_CTRL
, ctrl
);
3150 * pci_enable_acs - enable ACS if hardware support it
3151 * @dev: the PCI device
3153 void pci_enable_acs(struct pci_dev
*dev
)
3155 if (!pci_acs_enable
)
3156 goto disable_acs_redir
;
3158 if (!pci_dev_specific_enable_acs(dev
))
3159 goto disable_acs_redir
;
3161 pci_std_enable_acs(dev
);
3165 * Note: pci_disable_acs_redir() must be called even if ACS was not
3166 * enabled by the kernel because it may have been enabled by
3167 * platform firmware. So if we are told to disable it, we should
3168 * always disable it after setting the kernel's default
3171 pci_disable_acs_redir(dev
);
3174 static bool pci_acs_flags_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
3179 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ACS
);
3184 * Except for egress control, capabilities are either required
3185 * or only required if controllable. Features missing from the
3186 * capability field can therefore be assumed as hard-wired enabled.
3188 pci_read_config_word(pdev
, pos
+ PCI_ACS_CAP
, &cap
);
3189 acs_flags
&= (cap
| PCI_ACS_EC
);
3191 pci_read_config_word(pdev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
3192 return (ctrl
& acs_flags
) == acs_flags
;
3196 * pci_acs_enabled - test ACS against required flags for a given device
3197 * @pdev: device to test
3198 * @acs_flags: required PCI ACS flags
3200 * Return true if the device supports the provided flags. Automatically
3201 * filters out flags that are not implemented on multifunction devices.
3203 * Note that this interface checks the effective ACS capabilities of the
3204 * device rather than the actual capabilities. For instance, most single
3205 * function endpoints are not required to support ACS because they have no
3206 * opportunity for peer-to-peer access. We therefore return 'true'
3207 * regardless of whether the device exposes an ACS capability. This makes
3208 * it much easier for callers of this function to ignore the actual type
3209 * or topology of the device when testing ACS support.
3211 bool pci_acs_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
3215 ret
= pci_dev_specific_acs_enabled(pdev
, acs_flags
);
3220 * Conventional PCI and PCI-X devices never support ACS, either
3221 * effectively or actually. The shared bus topology implies that
3222 * any device on the bus can receive or snoop DMA.
3224 if (!pci_is_pcie(pdev
))
3227 switch (pci_pcie_type(pdev
)) {
3229 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3230 * but since their primary interface is PCI/X, we conservatively
3231 * handle them as we would a non-PCIe device.
3233 case PCI_EXP_TYPE_PCIE_BRIDGE
:
3235 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3236 * applicable... must never implement an ACS Extended Capability...".
3237 * This seems arbitrary, but we take a conservative interpretation
3238 * of this statement.
3240 case PCI_EXP_TYPE_PCI_BRIDGE
:
3241 case PCI_EXP_TYPE_RC_EC
:
3244 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3245 * implement ACS in order to indicate their peer-to-peer capabilities,
3246 * regardless of whether they are single- or multi-function devices.
3248 case PCI_EXP_TYPE_DOWNSTREAM
:
3249 case PCI_EXP_TYPE_ROOT_PORT
:
3250 return pci_acs_flags_enabled(pdev
, acs_flags
);
3252 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3253 * implemented by the remaining PCIe types to indicate peer-to-peer
3254 * capabilities, but only when they are part of a multifunction
3255 * device. The footnote for section 6.12 indicates the specific
3256 * PCIe types included here.
3258 case PCI_EXP_TYPE_ENDPOINT
:
3259 case PCI_EXP_TYPE_UPSTREAM
:
3260 case PCI_EXP_TYPE_LEG_END
:
3261 case PCI_EXP_TYPE_RC_END
:
3262 if (!pdev
->multifunction
)
3265 return pci_acs_flags_enabled(pdev
, acs_flags
);
3269 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3270 * to single function devices with the exception of downstream ports.
3276 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3277 * @start: starting downstream device
3278 * @end: ending upstream device or NULL to search to the root bus
3279 * @acs_flags: required flags
3281 * Walk up a device tree from start to end testing PCI ACS support. If
3282 * any step along the way does not support the required flags, return false.
3284 bool pci_acs_path_enabled(struct pci_dev
*start
,
3285 struct pci_dev
*end
, u16 acs_flags
)
3287 struct pci_dev
*pdev
, *parent
= start
;
3292 if (!pci_acs_enabled(pdev
, acs_flags
))
3295 if (pci_is_root_bus(pdev
->bus
))
3296 return (end
== NULL
);
3298 parent
= pdev
->bus
->self
;
3299 } while (pdev
!= end
);
3305 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3309 * Helper to find the position of the ctrl register for a BAR.
3310 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3311 * Returns -ENOENT if no ctrl register for the BAR could be found.
3313 static int pci_rebar_find_pos(struct pci_dev
*pdev
, int bar
)
3315 unsigned int pos
, nbars
, i
;
3318 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_REBAR
);
3322 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3323 nbars
= (ctrl
& PCI_REBAR_CTRL_NBAR_MASK
) >>
3324 PCI_REBAR_CTRL_NBAR_SHIFT
;
3326 for (i
= 0; i
< nbars
; i
++, pos
+= 8) {
3329 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3330 bar_idx
= ctrl
& PCI_REBAR_CTRL_BAR_IDX
;
3339 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3341 * @bar: BAR to query
3343 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3344 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3346 u32
pci_rebar_get_possible_sizes(struct pci_dev
*pdev
, int bar
)
3351 pos
= pci_rebar_find_pos(pdev
, bar
);
3355 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CAP
, &cap
);
3356 return (cap
& PCI_REBAR_CAP_SIZES
) >> 4;
3360 * pci_rebar_get_current_size - get the current size of a BAR
3362 * @bar: BAR to set size to
3364 * Read the size of a BAR from the resizable BAR config.
3365 * Returns size if found or negative error code.
3367 int pci_rebar_get_current_size(struct pci_dev
*pdev
, int bar
)
3372 pos
= pci_rebar_find_pos(pdev
, bar
);
3376 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3377 return (ctrl
& PCI_REBAR_CTRL_BAR_SIZE
) >> PCI_REBAR_CTRL_BAR_SHIFT
;
3381 * pci_rebar_set_size - set a new size for a BAR
3383 * @bar: BAR to set size to
3384 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3386 * Set the new size of a BAR as defined in the spec.
3387 * Returns zero if resizing was successful, error code otherwise.
3389 int pci_rebar_set_size(struct pci_dev
*pdev
, int bar
, int size
)
3394 pos
= pci_rebar_find_pos(pdev
, bar
);
3398 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3399 ctrl
&= ~PCI_REBAR_CTRL_BAR_SIZE
;
3400 ctrl
|= size
<< PCI_REBAR_CTRL_BAR_SHIFT
;
3401 pci_write_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, ctrl
);
3406 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3407 * @dev: the PCI device
3408 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3409 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3410 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3411 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3413 * Return 0 if all upstream bridges support AtomicOp routing, egress
3414 * blocking is disabled on all upstream ports, and the root port supports
3415 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3416 * AtomicOp completion), or negative otherwise.
3418 int pci_enable_atomic_ops_to_root(struct pci_dev
*dev
, u32 cap_mask
)
3420 struct pci_bus
*bus
= dev
->bus
;
3421 struct pci_dev
*bridge
;
3424 if (!pci_is_pcie(dev
))
3428 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3429 * AtomicOp requesters. For now, we only support endpoints as
3430 * requesters and root ports as completers. No endpoints as
3431 * completers, and no peer-to-peer.
3434 switch (pci_pcie_type(dev
)) {
3435 case PCI_EXP_TYPE_ENDPOINT
:
3436 case PCI_EXP_TYPE_LEG_END
:
3437 case PCI_EXP_TYPE_RC_END
:
3443 while (bus
->parent
) {
3446 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
3448 switch (pci_pcie_type(bridge
)) {
3449 /* Ensure switch ports support AtomicOp routing */
3450 case PCI_EXP_TYPE_UPSTREAM
:
3451 case PCI_EXP_TYPE_DOWNSTREAM
:
3452 if (!(cap
& PCI_EXP_DEVCAP2_ATOMIC_ROUTE
))
3456 /* Ensure root port supports all the sizes we care about */
3457 case PCI_EXP_TYPE_ROOT_PORT
:
3458 if ((cap
& cap_mask
) != cap_mask
)
3463 /* Ensure upstream ports don't block AtomicOps on egress */
3464 if (!bridge
->has_secondary_link
) {
3465 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCTL2
,
3467 if (ctl2
& PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK
)
3474 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL2
,
3475 PCI_EXP_DEVCTL2_ATOMIC_REQ
);
3478 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root
);
3481 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3482 * @dev: the PCI device
3483 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3485 * Perform INTx swizzling for a device behind one level of bridge. This is
3486 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3487 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3488 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3489 * the PCI Express Base Specification, Revision 2.1)
3491 u8
pci_swizzle_interrupt_pin(const struct pci_dev
*dev
, u8 pin
)
3495 if (pci_ari_enabled(dev
->bus
))
3498 slot
= PCI_SLOT(dev
->devfn
);
3500 return (((pin
- 1) + slot
) % 4) + 1;
3503 int pci_get_interrupt_pin(struct pci_dev
*dev
, struct pci_dev
**bridge
)
3511 while (!pci_is_root_bus(dev
->bus
)) {
3512 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
3513 dev
= dev
->bus
->self
;
3520 * pci_common_swizzle - swizzle INTx all the way to root bridge
3521 * @dev: the PCI device
3522 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3524 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3525 * bridges all the way up to a PCI root bus.
3527 u8
pci_common_swizzle(struct pci_dev
*dev
, u8
*pinp
)
3531 while (!pci_is_root_bus(dev
->bus
)) {
3532 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
3533 dev
= dev
->bus
->self
;
3536 return PCI_SLOT(dev
->devfn
);
3538 EXPORT_SYMBOL_GPL(pci_common_swizzle
);
3541 * pci_release_region - Release a PCI bar
3542 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3543 * @bar: BAR to release
3545 * Releases the PCI I/O and memory resources previously reserved by a
3546 * successful call to pci_request_region. Call this function only
3547 * after all use of the PCI regions has ceased.
3549 void pci_release_region(struct pci_dev
*pdev
, int bar
)
3551 struct pci_devres
*dr
;
3553 if (pci_resource_len(pdev
, bar
) == 0)
3555 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
)
3556 release_region(pci_resource_start(pdev
, bar
),
3557 pci_resource_len(pdev
, bar
));
3558 else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)
3559 release_mem_region(pci_resource_start(pdev
, bar
),
3560 pci_resource_len(pdev
, bar
));
3562 dr
= find_pci_dr(pdev
);
3564 dr
->region_mask
&= ~(1 << bar
);
3566 EXPORT_SYMBOL(pci_release_region
);
3569 * __pci_request_region - Reserved PCI I/O and memory resource
3570 * @pdev: PCI device whose resources are to be reserved
3571 * @bar: BAR to be reserved
3572 * @res_name: Name to be associated with resource.
3573 * @exclusive: whether the region access is exclusive or not
3575 * Mark the PCI region associated with PCI device @pdev BR @bar as
3576 * being reserved by owner @res_name. Do not access any
3577 * address inside the PCI regions unless this call returns
3580 * If @exclusive is set, then the region is marked so that userspace
3581 * is explicitly not allowed to map the resource via /dev/mem or
3582 * sysfs MMIO access.
3584 * Returns 0 on success, or %EBUSY on error. A warning
3585 * message is also printed on failure.
3587 static int __pci_request_region(struct pci_dev
*pdev
, int bar
,
3588 const char *res_name
, int exclusive
)
3590 struct pci_devres
*dr
;
3592 if (pci_resource_len(pdev
, bar
) == 0)
3595 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
) {
3596 if (!request_region(pci_resource_start(pdev
, bar
),
3597 pci_resource_len(pdev
, bar
), res_name
))
3599 } else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
) {
3600 if (!__request_mem_region(pci_resource_start(pdev
, bar
),
3601 pci_resource_len(pdev
, bar
), res_name
,
3606 dr
= find_pci_dr(pdev
);
3608 dr
->region_mask
|= 1 << bar
;
3613 pci_warn(pdev
, "BAR %d: can't reserve %pR\n", bar
,
3614 &pdev
->resource
[bar
]);
3619 * pci_request_region - Reserve PCI I/O and memory resource
3620 * @pdev: PCI device whose resources are to be reserved
3621 * @bar: BAR to be reserved
3622 * @res_name: Name to be associated with resource
3624 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3625 * being reserved by owner @res_name. Do not access any
3626 * address inside the PCI regions unless this call returns
3629 * Returns 0 on success, or %EBUSY on error. A warning
3630 * message is also printed on failure.
3632 int pci_request_region(struct pci_dev
*pdev
, int bar
, const char *res_name
)
3634 return __pci_request_region(pdev
, bar
, res_name
, 0);
3636 EXPORT_SYMBOL(pci_request_region
);
3639 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3640 * @pdev: PCI device whose resources are to be reserved
3641 * @bar: BAR to be reserved
3642 * @res_name: Name to be associated with resource.
3644 * Mark the PCI region associated with PCI device @pdev BR @bar as
3645 * being reserved by owner @res_name. Do not access any
3646 * address inside the PCI regions unless this call returns
3649 * Returns 0 on success, or %EBUSY on error. A warning
3650 * message is also printed on failure.
3652 * The key difference that _exclusive makes it that userspace is
3653 * explicitly not allowed to map the resource via /dev/mem or
3656 int pci_request_region_exclusive(struct pci_dev
*pdev
, int bar
,
3657 const char *res_name
)
3659 return __pci_request_region(pdev
, bar
, res_name
, IORESOURCE_EXCLUSIVE
);
3661 EXPORT_SYMBOL(pci_request_region_exclusive
);
3664 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3665 * @pdev: PCI device whose resources were previously reserved
3666 * @bars: Bitmask of BARs to be released
3668 * Release selected PCI I/O and memory resources previously reserved.
3669 * Call this function only after all use of the PCI regions has ceased.
3671 void pci_release_selected_regions(struct pci_dev
*pdev
, int bars
)
3675 for (i
= 0; i
< 6; i
++)
3676 if (bars
& (1 << i
))
3677 pci_release_region(pdev
, i
);
3679 EXPORT_SYMBOL(pci_release_selected_regions
);
3681 static int __pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
3682 const char *res_name
, int excl
)
3686 for (i
= 0; i
< 6; i
++)
3687 if (bars
& (1 << i
))
3688 if (__pci_request_region(pdev
, i
, res_name
, excl
))
3694 if (bars
& (1 << i
))
3695 pci_release_region(pdev
, i
);
3702 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3703 * @pdev: PCI device whose resources are to be reserved
3704 * @bars: Bitmask of BARs to be requested
3705 * @res_name: Name to be associated with resource
3707 int pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
3708 const char *res_name
)
3710 return __pci_request_selected_regions(pdev
, bars
, res_name
, 0);
3712 EXPORT_SYMBOL(pci_request_selected_regions
);
3714 int pci_request_selected_regions_exclusive(struct pci_dev
*pdev
, int bars
,
3715 const char *res_name
)
3717 return __pci_request_selected_regions(pdev
, bars
, res_name
,
3718 IORESOURCE_EXCLUSIVE
);
3720 EXPORT_SYMBOL(pci_request_selected_regions_exclusive
);
3723 * pci_release_regions - Release reserved PCI I/O and memory resources
3724 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3726 * Releases all PCI I/O and memory resources previously reserved by a
3727 * successful call to pci_request_regions. Call this function only
3728 * after all use of the PCI regions has ceased.
3731 void pci_release_regions(struct pci_dev
*pdev
)
3733 pci_release_selected_regions(pdev
, (1 << 6) - 1);
3735 EXPORT_SYMBOL(pci_release_regions
);
3738 * pci_request_regions - Reserved PCI I/O and memory resources
3739 * @pdev: PCI device whose resources are to be reserved
3740 * @res_name: Name to be associated with resource.
3742 * Mark all PCI regions associated with PCI device @pdev as
3743 * being reserved by owner @res_name. Do not access any
3744 * address inside the PCI regions unless this call returns
3747 * Returns 0 on success, or %EBUSY on error. A warning
3748 * message is also printed on failure.
3750 int pci_request_regions(struct pci_dev
*pdev
, const char *res_name
)
3752 return pci_request_selected_regions(pdev
, ((1 << 6) - 1), res_name
);
3754 EXPORT_SYMBOL(pci_request_regions
);
3757 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3758 * @pdev: PCI device whose resources are to be reserved
3759 * @res_name: Name to be associated with resource.
3761 * Mark all PCI regions associated with PCI device @pdev as
3762 * being reserved by owner @res_name. Do not access any
3763 * address inside the PCI regions unless this call returns
3766 * pci_request_regions_exclusive() will mark the region so that
3767 * /dev/mem and the sysfs MMIO access will not be allowed.
3769 * Returns 0 on success, or %EBUSY on error. A warning
3770 * message is also printed on failure.
3772 int pci_request_regions_exclusive(struct pci_dev
*pdev
, const char *res_name
)
3774 return pci_request_selected_regions_exclusive(pdev
,
3775 ((1 << 6) - 1), res_name
);
3777 EXPORT_SYMBOL(pci_request_regions_exclusive
);
3780 * Record the PCI IO range (expressed as CPU physical address + size).
3781 * Return a negative value if an error has occured, zero otherwise
3783 int pci_register_io_range(struct fwnode_handle
*fwnode
, phys_addr_t addr
,
3784 resource_size_t size
)
3788 struct logic_pio_hwaddr
*range
;
3790 if (!size
|| addr
+ size
< addr
)
3793 range
= kzalloc(sizeof(*range
), GFP_ATOMIC
);
3797 range
->fwnode
= fwnode
;
3799 range
->hw_start
= addr
;
3800 range
->flags
= LOGIC_PIO_CPU_MMIO
;
3802 ret
= logic_pio_register_range(range
);
3810 phys_addr_t
pci_pio_to_address(unsigned long pio
)
3812 phys_addr_t address
= (phys_addr_t
)OF_BAD_ADDR
;
3815 if (pio
>= MMIO_UPPER_LIMIT
)
3818 address
= logic_pio_to_hwaddr(pio
);
3824 unsigned long __weak
pci_address_to_pio(phys_addr_t address
)
3827 return logic_pio_trans_cpuaddr(address
);
3829 if (address
> IO_SPACE_LIMIT
)
3830 return (unsigned long)-1;
3832 return (unsigned long) address
;
3837 * pci_remap_iospace - Remap the memory mapped I/O space
3838 * @res: Resource describing the I/O space
3839 * @phys_addr: physical address of range to be mapped
3841 * Remap the memory mapped I/O space described by the @res
3842 * and the CPU physical address @phys_addr into virtual address space.
3843 * Only architectures that have memory mapped IO functions defined
3844 * (and the PCI_IOBASE value defined) should call this function.
3846 int pci_remap_iospace(const struct resource
*res
, phys_addr_t phys_addr
)
3848 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3849 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
3851 if (!(res
->flags
& IORESOURCE_IO
))
3854 if (res
->end
> IO_SPACE_LIMIT
)
3857 return ioremap_page_range(vaddr
, vaddr
+ resource_size(res
), phys_addr
,
3858 pgprot_device(PAGE_KERNEL
));
3860 /* this architecture does not have memory mapped I/O space,
3861 so this function should never be called */
3862 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3866 EXPORT_SYMBOL(pci_remap_iospace
);
3869 * pci_unmap_iospace - Unmap the memory mapped I/O space
3870 * @res: resource to be unmapped
3872 * Unmap the CPU virtual address @res from virtual address space.
3873 * Only architectures that have memory mapped IO functions defined
3874 * (and the PCI_IOBASE value defined) should call this function.
3876 void pci_unmap_iospace(struct resource
*res
)
3878 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3879 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
3881 unmap_kernel_range(vaddr
, resource_size(res
));
3884 EXPORT_SYMBOL(pci_unmap_iospace
);
3886 static void devm_pci_unmap_iospace(struct device
*dev
, void *ptr
)
3888 struct resource
**res
= ptr
;
3890 pci_unmap_iospace(*res
);
3894 * devm_pci_remap_iospace - Managed pci_remap_iospace()
3895 * @dev: Generic device to remap IO address for
3896 * @res: Resource describing the I/O space
3897 * @phys_addr: physical address of range to be mapped
3899 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
3902 int devm_pci_remap_iospace(struct device
*dev
, const struct resource
*res
,
3903 phys_addr_t phys_addr
)
3905 const struct resource
**ptr
;
3908 ptr
= devres_alloc(devm_pci_unmap_iospace
, sizeof(*ptr
), GFP_KERNEL
);
3912 error
= pci_remap_iospace(res
, phys_addr
);
3917 devres_add(dev
, ptr
);
3922 EXPORT_SYMBOL(devm_pci_remap_iospace
);
3925 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3926 * @dev: Generic device to remap IO address for
3927 * @offset: Resource address to map
3928 * @size: Size of map
3930 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3933 void __iomem
*devm_pci_remap_cfgspace(struct device
*dev
,
3934 resource_size_t offset
,
3935 resource_size_t size
)
3937 void __iomem
**ptr
, *addr
;
3939 ptr
= devres_alloc(devm_ioremap_release
, sizeof(*ptr
), GFP_KERNEL
);
3943 addr
= pci_remap_cfgspace(offset
, size
);
3946 devres_add(dev
, ptr
);
3952 EXPORT_SYMBOL(devm_pci_remap_cfgspace
);
3955 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3956 * @dev: generic device to handle the resource for
3957 * @res: configuration space resource to be handled
3959 * Checks that a resource is a valid memory region, requests the memory
3960 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3961 * proper PCI configuration space memory attributes are guaranteed.
3963 * All operations are managed and will be undone on driver detach.
3965 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3966 * on failure. Usage example::
3968 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3969 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3971 * return PTR_ERR(base);
3973 void __iomem
*devm_pci_remap_cfg_resource(struct device
*dev
,
3974 struct resource
*res
)
3976 resource_size_t size
;
3978 void __iomem
*dest_ptr
;
3982 if (!res
|| resource_type(res
) != IORESOURCE_MEM
) {
3983 dev_err(dev
, "invalid resource\n");
3984 return IOMEM_ERR_PTR(-EINVAL
);
3987 size
= resource_size(res
);
3988 name
= res
->name
?: dev_name(dev
);
3990 if (!devm_request_mem_region(dev
, res
->start
, size
, name
)) {
3991 dev_err(dev
, "can't request region for resource %pR\n", res
);
3992 return IOMEM_ERR_PTR(-EBUSY
);
3995 dest_ptr
= devm_pci_remap_cfgspace(dev
, res
->start
, size
);
3997 dev_err(dev
, "ioremap failed for resource %pR\n", res
);
3998 devm_release_mem_region(dev
, res
->start
, size
);
3999 dest_ptr
= IOMEM_ERR_PTR(-ENOMEM
);
4004 EXPORT_SYMBOL(devm_pci_remap_cfg_resource
);
4006 static void __pci_set_master(struct pci_dev
*dev
, bool enable
)
4010 pci_read_config_word(dev
, PCI_COMMAND
, &old_cmd
);
4012 cmd
= old_cmd
| PCI_COMMAND_MASTER
;
4014 cmd
= old_cmd
& ~PCI_COMMAND_MASTER
;
4015 if (cmd
!= old_cmd
) {
4016 pci_dbg(dev
, "%s bus mastering\n",
4017 enable
? "enabling" : "disabling");
4018 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4020 dev
->is_busmaster
= enable
;
4024 * pcibios_setup - process "pci=" kernel boot arguments
4025 * @str: string used to pass in "pci=" kernel boot arguments
4027 * Process kernel boot arguments. This is the default implementation.
4028 * Architecture specific implementations can override this as necessary.
4030 char * __weak __init
pcibios_setup(char *str
)
4036 * pcibios_set_master - enable PCI bus-mastering for device dev
4037 * @dev: the PCI device to enable
4039 * Enables PCI bus-mastering for the device. This is the default
4040 * implementation. Architecture specific implementations can override
4041 * this if necessary.
4043 void __weak
pcibios_set_master(struct pci_dev
*dev
)
4047 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4048 if (pci_is_pcie(dev
))
4051 pci_read_config_byte(dev
, PCI_LATENCY_TIMER
, &lat
);
4053 lat
= (64 <= pcibios_max_latency
) ? 64 : pcibios_max_latency
;
4054 else if (lat
> pcibios_max_latency
)
4055 lat
= pcibios_max_latency
;
4059 pci_write_config_byte(dev
, PCI_LATENCY_TIMER
, lat
);
4063 * pci_set_master - enables bus-mastering for device dev
4064 * @dev: the PCI device to enable
4066 * Enables bus-mastering on the device and calls pcibios_set_master()
4067 * to do the needed arch specific settings.
4069 void pci_set_master(struct pci_dev
*dev
)
4071 __pci_set_master(dev
, true);
4072 pcibios_set_master(dev
);
4074 EXPORT_SYMBOL(pci_set_master
);
4077 * pci_clear_master - disables bus-mastering for device dev
4078 * @dev: the PCI device to disable
4080 void pci_clear_master(struct pci_dev
*dev
)
4082 __pci_set_master(dev
, false);
4084 EXPORT_SYMBOL(pci_clear_master
);
4087 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4088 * @dev: the PCI device for which MWI is to be enabled
4090 * Helper function for pci_set_mwi.
4091 * Originally copied from drivers/net/acenic.c.
4092 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4094 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4096 int pci_set_cacheline_size(struct pci_dev
*dev
)
4100 if (!pci_cache_line_size
)
4103 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4104 equal to or multiple of the right value. */
4105 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
4106 if (cacheline_size
>= pci_cache_line_size
&&
4107 (cacheline_size
% pci_cache_line_size
) == 0)
4110 /* Write the correct value. */
4111 pci_write_config_byte(dev
, PCI_CACHE_LINE_SIZE
, pci_cache_line_size
);
4113 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
4114 if (cacheline_size
== pci_cache_line_size
)
4117 pci_printk(KERN_DEBUG
, dev
, "cache line size of %d is not supported\n",
4118 pci_cache_line_size
<< 2);
4122 EXPORT_SYMBOL_GPL(pci_set_cacheline_size
);
4125 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4126 * @dev: the PCI device for which MWI is enabled
4128 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4130 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4132 int pci_set_mwi(struct pci_dev
*dev
)
4134 #ifdef PCI_DISABLE_MWI
4140 rc
= pci_set_cacheline_size(dev
);
4144 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
4145 if (!(cmd
& PCI_COMMAND_INVALIDATE
)) {
4146 pci_dbg(dev
, "enabling Mem-Wr-Inval\n");
4147 cmd
|= PCI_COMMAND_INVALIDATE
;
4148 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4153 EXPORT_SYMBOL(pci_set_mwi
);
4156 * pcim_set_mwi - a device-managed pci_set_mwi()
4157 * @dev: the PCI device for which MWI is enabled
4159 * Managed pci_set_mwi().
4161 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4163 int pcim_set_mwi(struct pci_dev
*dev
)
4165 struct pci_devres
*dr
;
4167 dr
= find_pci_dr(dev
);
4172 return pci_set_mwi(dev
);
4174 EXPORT_SYMBOL(pcim_set_mwi
);
4177 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4178 * @dev: the PCI device for which MWI is enabled
4180 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4181 * Callers are not required to check the return value.
4183 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4185 int pci_try_set_mwi(struct pci_dev
*dev
)
4187 #ifdef PCI_DISABLE_MWI
4190 return pci_set_mwi(dev
);
4193 EXPORT_SYMBOL(pci_try_set_mwi
);
4196 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4197 * @dev: the PCI device to disable
4199 * Disables PCI Memory-Write-Invalidate transaction on the device
4201 void pci_clear_mwi(struct pci_dev
*dev
)
4203 #ifndef PCI_DISABLE_MWI
4206 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
4207 if (cmd
& PCI_COMMAND_INVALIDATE
) {
4208 cmd
&= ~PCI_COMMAND_INVALIDATE
;
4209 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4213 EXPORT_SYMBOL(pci_clear_mwi
);
4216 * pci_intx - enables/disables PCI INTx for device dev
4217 * @pdev: the PCI device to operate on
4218 * @enable: boolean: whether to enable or disable PCI INTx
4220 * Enables/disables PCI INTx for device dev
4222 void pci_intx(struct pci_dev
*pdev
, int enable
)
4224 u16 pci_command
, new;
4226 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_command
);
4229 new = pci_command
& ~PCI_COMMAND_INTX_DISABLE
;
4231 new = pci_command
| PCI_COMMAND_INTX_DISABLE
;
4233 if (new != pci_command
) {
4234 struct pci_devres
*dr
;
4236 pci_write_config_word(pdev
, PCI_COMMAND
, new);
4238 dr
= find_pci_dr(pdev
);
4239 if (dr
&& !dr
->restore_intx
) {
4240 dr
->restore_intx
= 1;
4241 dr
->orig_intx
= !enable
;
4245 EXPORT_SYMBOL_GPL(pci_intx
);
4247 static bool pci_check_and_set_intx_mask(struct pci_dev
*dev
, bool mask
)
4249 struct pci_bus
*bus
= dev
->bus
;
4250 bool mask_updated
= true;
4251 u32 cmd_status_dword
;
4252 u16 origcmd
, newcmd
;
4253 unsigned long flags
;
4257 * We do a single dword read to retrieve both command and status.
4258 * Document assumptions that make this possible.
4260 BUILD_BUG_ON(PCI_COMMAND
% 4);
4261 BUILD_BUG_ON(PCI_COMMAND
+ 2 != PCI_STATUS
);
4263 raw_spin_lock_irqsave(&pci_lock
, flags
);
4265 bus
->ops
->read(bus
, dev
->devfn
, PCI_COMMAND
, 4, &cmd_status_dword
);
4267 irq_pending
= (cmd_status_dword
>> 16) & PCI_STATUS_INTERRUPT
;
4270 * Check interrupt status register to see whether our device
4271 * triggered the interrupt (when masking) or the next IRQ is
4272 * already pending (when unmasking).
4274 if (mask
!= irq_pending
) {
4275 mask_updated
= false;
4279 origcmd
= cmd_status_dword
;
4280 newcmd
= origcmd
& ~PCI_COMMAND_INTX_DISABLE
;
4282 newcmd
|= PCI_COMMAND_INTX_DISABLE
;
4283 if (newcmd
!= origcmd
)
4284 bus
->ops
->write(bus
, dev
->devfn
, PCI_COMMAND
, 2, newcmd
);
4287 raw_spin_unlock_irqrestore(&pci_lock
, flags
);
4289 return mask_updated
;
4293 * pci_check_and_mask_intx - mask INTx on pending interrupt
4294 * @dev: the PCI device to operate on
4296 * Check if the device dev has its INTx line asserted, mask it and
4297 * return true in that case. False is returned if no interrupt was
4300 bool pci_check_and_mask_intx(struct pci_dev
*dev
)
4302 return pci_check_and_set_intx_mask(dev
, true);
4304 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx
);
4307 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4308 * @dev: the PCI device to operate on
4310 * Check if the device dev has its INTx line asserted, unmask it if not
4311 * and return true. False is returned and the mask remains active if
4312 * there was still an interrupt pending.
4314 bool pci_check_and_unmask_intx(struct pci_dev
*dev
)
4316 return pci_check_and_set_intx_mask(dev
, false);
4318 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx
);
4321 * pci_wait_for_pending_transaction - waits for pending transaction
4322 * @dev: the PCI device to operate on
4324 * Return 0 if transaction is pending 1 otherwise.
4326 int pci_wait_for_pending_transaction(struct pci_dev
*dev
)
4328 if (!pci_is_pcie(dev
))
4331 return pci_wait_for_pending(dev
, pci_pcie_cap(dev
) + PCI_EXP_DEVSTA
,
4332 PCI_EXP_DEVSTA_TRPND
);
4334 EXPORT_SYMBOL(pci_wait_for_pending_transaction
);
4336 static int pci_dev_wait(struct pci_dev
*dev
, char *reset_type
, int timeout
)
4342 * After reset, the device should not silently discard config
4343 * requests, but it may still indicate that it needs more time by
4344 * responding to them with CRS completions. The Root Port will
4345 * generally synthesize ~0 data to complete the read (except when
4346 * CRS SV is enabled and the read was for the Vendor ID; in that
4347 * case it synthesizes 0x0001 data).
4349 * Wait for the device to return a non-CRS completion. Read the
4350 * Command register instead of Vendor ID so we don't have to
4351 * contend with the CRS SV value.
4353 pci_read_config_dword(dev
, PCI_COMMAND
, &id
);
4355 if (delay
> timeout
) {
4356 pci_warn(dev
, "not ready %dms after %s; giving up\n",
4357 delay
- 1, reset_type
);
4362 pci_info(dev
, "not ready %dms after %s; waiting\n",
4363 delay
- 1, reset_type
);
4367 pci_read_config_dword(dev
, PCI_COMMAND
, &id
);
4371 pci_info(dev
, "ready %dms after %s\n", delay
- 1,
4378 * pcie_has_flr - check if a device supports function level resets
4379 * @dev: device to check
4381 * Returns true if the device advertises support for PCIe function level
4384 bool pcie_has_flr(struct pci_dev
*dev
)
4388 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_FLR_RESET
)
4391 pcie_capability_read_dword(dev
, PCI_EXP_DEVCAP
, &cap
);
4392 return cap
& PCI_EXP_DEVCAP_FLR
;
4394 EXPORT_SYMBOL_GPL(pcie_has_flr
);
4397 * pcie_flr - initiate a PCIe function level reset
4398 * @dev: device to reset
4400 * Initiate a function level reset on @dev. The caller should ensure the
4401 * device supports FLR before calling this function, e.g. by using the
4402 * pcie_has_flr() helper.
4404 int pcie_flr(struct pci_dev
*dev
)
4406 if (!pci_wait_for_pending_transaction(dev
))
4407 pci_err(dev
, "timed out waiting for pending transaction; performing function level reset anyway\n");
4409 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL
, PCI_EXP_DEVCTL_BCR_FLR
);
4415 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4416 * 100ms, but may silently discard requests while the FLR is in
4417 * progress. Wait 100ms before trying to access the device.
4421 return pci_dev_wait(dev
, "FLR", PCIE_RESET_READY_POLL_MS
);
4423 EXPORT_SYMBOL_GPL(pcie_flr
);
4425 static int pci_af_flr(struct pci_dev
*dev
, int probe
)
4430 pos
= pci_find_capability(dev
, PCI_CAP_ID_AF
);
4434 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_FLR_RESET
)
4437 pci_read_config_byte(dev
, pos
+ PCI_AF_CAP
, &cap
);
4438 if (!(cap
& PCI_AF_CAP_TP
) || !(cap
& PCI_AF_CAP_FLR
))
4445 * Wait for Transaction Pending bit to clear. A word-aligned test
4446 * is used, so we use the conrol offset rather than status and shift
4447 * the test bit to match.
4449 if (!pci_wait_for_pending(dev
, pos
+ PCI_AF_CTRL
,
4450 PCI_AF_STATUS_TP
<< 8))
4451 pci_err(dev
, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4453 pci_write_config_byte(dev
, pos
+ PCI_AF_CTRL
, PCI_AF_CTRL_FLR
);
4459 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4460 * updated 27 July 2006; a device must complete an FLR within
4461 * 100ms, but may silently discard requests while the FLR is in
4462 * progress. Wait 100ms before trying to access the device.
4466 return pci_dev_wait(dev
, "AF_FLR", PCIE_RESET_READY_POLL_MS
);
4470 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4471 * @dev: Device to reset.
4472 * @probe: If set, only check if the device can be reset this way.
4474 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4475 * unset, it will be reinitialized internally when going from PCI_D3hot to
4476 * PCI_D0. If that's the case and the device is not in a low-power state
4477 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4479 * NOTE: This causes the caller to sleep for twice the device power transition
4480 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4481 * by default (i.e. unless the @dev's d3_delay field has a different value).
4482 * Moreover, only devices in D0 can be reset by this function.
4484 static int pci_pm_reset(struct pci_dev
*dev
, int probe
)
4488 if (!dev
->pm_cap
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_PM_RESET
)
4491 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &csr
);
4492 if (csr
& PCI_PM_CTRL_NO_SOFT_RESET
)
4498 if (dev
->current_state
!= PCI_D0
)
4501 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
4503 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
4504 pci_dev_d3_sleep(dev
);
4506 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
4508 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
4509 pci_dev_d3_sleep(dev
);
4511 return pci_dev_wait(dev
, "PM D3->D0", PCIE_RESET_READY_POLL_MS
);
4514 * pcie_wait_for_link - Wait until link is active or inactive
4515 * @pdev: Bridge device
4516 * @active: waiting for active or inactive?
4518 * Use this to wait till link becomes active or inactive.
4520 bool pcie_wait_for_link(struct pci_dev
*pdev
, bool active
)
4527 * Some controllers might not implement link active reporting. In this
4528 * case, we wait for 1000 + 100 ms.
4530 if (!pdev
->link_active_reporting
) {
4536 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4537 * after which we should expect an link active if the reset was
4538 * successful. If so, software must wait a minimum 100ms before sending
4539 * configuration requests to devices downstream this port.
4541 * If the link fails to activate, either the device was physically
4542 * removed or the link is permanently failed.
4547 pcie_capability_read_word(pdev
, PCI_EXP_LNKSTA
, &lnk_status
);
4548 ret
= !!(lnk_status
& PCI_EXP_LNKSTA_DLLLA
);
4558 else if (ret
!= active
)
4559 pci_info(pdev
, "Data Link Layer Link Active not %s in 1000 msec\n",
4560 active
? "set" : "cleared");
4561 return ret
== active
;
4564 void pci_reset_secondary_bus(struct pci_dev
*dev
)
4568 pci_read_config_word(dev
, PCI_BRIDGE_CONTROL
, &ctrl
);
4569 ctrl
|= PCI_BRIDGE_CTL_BUS_RESET
;
4570 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
4573 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4574 * this to 2ms to ensure that we meet the minimum requirement.
4578 ctrl
&= ~PCI_BRIDGE_CTL_BUS_RESET
;
4579 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
4582 * Trhfa for conventional PCI is 2^25 clock cycles.
4583 * Assuming a minimum 33MHz clock this results in a 1s
4584 * delay before we can consider subordinate devices to
4585 * be re-initialized. PCIe has some ways to shorten this,
4586 * but we don't make use of them yet.
4591 void __weak
pcibios_reset_secondary_bus(struct pci_dev
*dev
)
4593 pci_reset_secondary_bus(dev
);
4597 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4598 * @dev: Bridge device
4600 * Use the bridge control register to assert reset on the secondary bus.
4601 * Devices on the secondary bus are left in power-on state.
4603 int pci_bridge_secondary_bus_reset(struct pci_dev
*dev
)
4605 pcibios_reset_secondary_bus(dev
);
4607 return pci_dev_wait(dev
, "bus reset", PCIE_RESET_READY_POLL_MS
);
4609 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset
);
4611 static int pci_parent_bus_reset(struct pci_dev
*dev
, int probe
)
4613 struct pci_dev
*pdev
;
4615 if (pci_is_root_bus(dev
->bus
) || dev
->subordinate
||
4616 !dev
->bus
->self
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
4619 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
4626 return pci_bridge_secondary_bus_reset(dev
->bus
->self
);
4629 static int pci_reset_hotplug_slot(struct hotplug_slot
*hotplug
, int probe
)
4633 if (!hotplug
|| !try_module_get(hotplug
->owner
))
4636 if (hotplug
->ops
->reset_slot
)
4637 rc
= hotplug
->ops
->reset_slot(hotplug
, probe
);
4639 module_put(hotplug
->owner
);
4644 static int pci_dev_reset_slot_function(struct pci_dev
*dev
, int probe
)
4646 struct pci_dev
*pdev
;
4648 if (dev
->subordinate
|| !dev
->slot
||
4649 dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
4652 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
4653 if (pdev
!= dev
&& pdev
->slot
== dev
->slot
)
4656 return pci_reset_hotplug_slot(dev
->slot
->hotplug
, probe
);
4659 static void pci_dev_lock(struct pci_dev
*dev
)
4661 pci_cfg_access_lock(dev
);
4662 /* block PM suspend, driver probe, etc. */
4663 device_lock(&dev
->dev
);
4666 /* Return 1 on successful lock, 0 on contention */
4667 static int pci_dev_trylock(struct pci_dev
*dev
)
4669 if (pci_cfg_access_trylock(dev
)) {
4670 if (device_trylock(&dev
->dev
))
4672 pci_cfg_access_unlock(dev
);
4678 static void pci_dev_unlock(struct pci_dev
*dev
)
4680 device_unlock(&dev
->dev
);
4681 pci_cfg_access_unlock(dev
);
4684 static void pci_dev_save_and_disable(struct pci_dev
*dev
)
4686 const struct pci_error_handlers
*err_handler
=
4687 dev
->driver
? dev
->driver
->err_handler
: NULL
;
4690 * dev->driver->err_handler->reset_prepare() is protected against
4691 * races with ->remove() by the device lock, which must be held by
4694 if (err_handler
&& err_handler
->reset_prepare
)
4695 err_handler
->reset_prepare(dev
);
4698 * Wake-up device prior to save. PM registers default to D0 after
4699 * reset and a simple register restore doesn't reliably return
4700 * to a non-D0 state anyway.
4702 pci_set_power_state(dev
, PCI_D0
);
4704 pci_save_state(dev
);
4706 * Disable the device by clearing the Command register, except for
4707 * INTx-disable which is set. This not only disables MMIO and I/O port
4708 * BARs, but also prevents the device from being Bus Master, preventing
4709 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4710 * compliant devices, INTx-disable prevents legacy interrupts.
4712 pci_write_config_word(dev
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
);
4715 static void pci_dev_restore(struct pci_dev
*dev
)
4717 const struct pci_error_handlers
*err_handler
=
4718 dev
->driver
? dev
->driver
->err_handler
: NULL
;
4720 pci_restore_state(dev
);
4723 * dev->driver->err_handler->reset_done() is protected against
4724 * races with ->remove() by the device lock, which must be held by
4727 if (err_handler
&& err_handler
->reset_done
)
4728 err_handler
->reset_done(dev
);
4732 * __pci_reset_function_locked - reset a PCI device function while holding
4733 * the @dev mutex lock.
4734 * @dev: PCI device to reset
4736 * Some devices allow an individual function to be reset without affecting
4737 * other functions in the same device. The PCI device must be responsive
4738 * to PCI config space in order to use this function.
4740 * The device function is presumed to be unused and the caller is holding
4741 * the device mutex lock when this function is called.
4742 * Resetting the device will make the contents of PCI configuration space
4743 * random, so any caller of this must be prepared to reinitialise the
4744 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4747 * Returns 0 if the device function was successfully reset or negative if the
4748 * device doesn't support resetting a single function.
4750 int __pci_reset_function_locked(struct pci_dev
*dev
)
4757 * A reset method returns -ENOTTY if it doesn't support this device
4758 * and we should try the next method.
4760 * If it returns 0 (success), we're finished. If it returns any
4761 * other error, we're also finished: this indicates that further
4762 * reset mechanisms might be broken on the device.
4764 rc
= pci_dev_specific_reset(dev
, 0);
4767 if (pcie_has_flr(dev
)) {
4772 rc
= pci_af_flr(dev
, 0);
4775 rc
= pci_pm_reset(dev
, 0);
4778 rc
= pci_dev_reset_slot_function(dev
, 0);
4781 return pci_parent_bus_reset(dev
, 0);
4783 EXPORT_SYMBOL_GPL(__pci_reset_function_locked
);
4786 * pci_probe_reset_function - check whether the device can be safely reset
4787 * @dev: PCI device to reset
4789 * Some devices allow an individual function to be reset without affecting
4790 * other functions in the same device. The PCI device must be responsive
4791 * to PCI config space in order to use this function.
4793 * Returns 0 if the device function can be reset or negative if the
4794 * device doesn't support resetting a single function.
4796 int pci_probe_reset_function(struct pci_dev
*dev
)
4802 rc
= pci_dev_specific_reset(dev
, 1);
4805 if (pcie_has_flr(dev
))
4807 rc
= pci_af_flr(dev
, 1);
4810 rc
= pci_pm_reset(dev
, 1);
4813 rc
= pci_dev_reset_slot_function(dev
, 1);
4817 return pci_parent_bus_reset(dev
, 1);
4821 * pci_reset_function - quiesce and reset a PCI device function
4822 * @dev: PCI device to reset
4824 * Some devices allow an individual function to be reset without affecting
4825 * other functions in the same device. The PCI device must be responsive
4826 * to PCI config space in order to use this function.
4828 * This function does not just reset the PCI portion of a device, but
4829 * clears all the state associated with the device. This function differs
4830 * from __pci_reset_function_locked() in that it saves and restores device state
4831 * over the reset and takes the PCI device lock.
4833 * Returns 0 if the device function was successfully reset or negative if the
4834 * device doesn't support resetting a single function.
4836 int pci_reset_function(struct pci_dev
*dev
)
4844 pci_dev_save_and_disable(dev
);
4846 rc
= __pci_reset_function_locked(dev
);
4848 pci_dev_restore(dev
);
4849 pci_dev_unlock(dev
);
4853 EXPORT_SYMBOL_GPL(pci_reset_function
);
4856 * pci_reset_function_locked - quiesce and reset a PCI device function
4857 * @dev: PCI device to reset
4859 * Some devices allow an individual function to be reset without affecting
4860 * other functions in the same device. The PCI device must be responsive
4861 * to PCI config space in order to use this function.
4863 * This function does not just reset the PCI portion of a device, but
4864 * clears all the state associated with the device. This function differs
4865 * from __pci_reset_function_locked() in that it saves and restores device state
4866 * over the reset. It also differs from pci_reset_function() in that it
4867 * requires the PCI device lock to be held.
4869 * Returns 0 if the device function was successfully reset or negative if the
4870 * device doesn't support resetting a single function.
4872 int pci_reset_function_locked(struct pci_dev
*dev
)
4879 pci_dev_save_and_disable(dev
);
4881 rc
= __pci_reset_function_locked(dev
);
4883 pci_dev_restore(dev
);
4887 EXPORT_SYMBOL_GPL(pci_reset_function_locked
);
4890 * pci_try_reset_function - quiesce and reset a PCI device function
4891 * @dev: PCI device to reset
4893 * Same as above, except return -EAGAIN if unable to lock device.
4895 int pci_try_reset_function(struct pci_dev
*dev
)
4902 if (!pci_dev_trylock(dev
))
4905 pci_dev_save_and_disable(dev
);
4906 rc
= __pci_reset_function_locked(dev
);
4907 pci_dev_restore(dev
);
4908 pci_dev_unlock(dev
);
4912 EXPORT_SYMBOL_GPL(pci_try_reset_function
);
4914 /* Do any devices on or below this bus prevent a bus reset? */
4915 static bool pci_bus_resetable(struct pci_bus
*bus
)
4917 struct pci_dev
*dev
;
4920 if (bus
->self
&& (bus
->self
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
))
4923 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4924 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
4925 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
4932 /* Lock devices from the top of the tree down */
4933 static void pci_bus_lock(struct pci_bus
*bus
)
4935 struct pci_dev
*dev
;
4937 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4939 if (dev
->subordinate
)
4940 pci_bus_lock(dev
->subordinate
);
4944 /* Unlock devices from the bottom of the tree up */
4945 static void pci_bus_unlock(struct pci_bus
*bus
)
4947 struct pci_dev
*dev
;
4949 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4950 if (dev
->subordinate
)
4951 pci_bus_unlock(dev
->subordinate
);
4952 pci_dev_unlock(dev
);
4956 /* Return 1 on successful lock, 0 on contention */
4957 static int pci_bus_trylock(struct pci_bus
*bus
)
4959 struct pci_dev
*dev
;
4961 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4962 if (!pci_dev_trylock(dev
))
4964 if (dev
->subordinate
) {
4965 if (!pci_bus_trylock(dev
->subordinate
)) {
4966 pci_dev_unlock(dev
);
4974 list_for_each_entry_continue_reverse(dev
, &bus
->devices
, bus_list
) {
4975 if (dev
->subordinate
)
4976 pci_bus_unlock(dev
->subordinate
);
4977 pci_dev_unlock(dev
);
4982 /* Do any devices on or below this slot prevent a bus reset? */
4983 static bool pci_slot_resetable(struct pci_slot
*slot
)
4985 struct pci_dev
*dev
;
4987 if (slot
->bus
->self
&&
4988 (slot
->bus
->self
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
))
4991 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4992 if (!dev
->slot
|| dev
->slot
!= slot
)
4994 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
4995 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
5002 /* Lock devices from the top of the tree down */
5003 static void pci_slot_lock(struct pci_slot
*slot
)
5005 struct pci_dev
*dev
;
5007 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5008 if (!dev
->slot
|| dev
->slot
!= slot
)
5011 if (dev
->subordinate
)
5012 pci_bus_lock(dev
->subordinate
);
5016 /* Unlock devices from the bottom of the tree up */
5017 static void pci_slot_unlock(struct pci_slot
*slot
)
5019 struct pci_dev
*dev
;
5021 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5022 if (!dev
->slot
|| dev
->slot
!= slot
)
5024 if (dev
->subordinate
)
5025 pci_bus_unlock(dev
->subordinate
);
5026 pci_dev_unlock(dev
);
5030 /* Return 1 on successful lock, 0 on contention */
5031 static int pci_slot_trylock(struct pci_slot
*slot
)
5033 struct pci_dev
*dev
;
5035 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5036 if (!dev
->slot
|| dev
->slot
!= slot
)
5038 if (!pci_dev_trylock(dev
))
5040 if (dev
->subordinate
) {
5041 if (!pci_bus_trylock(dev
->subordinate
)) {
5042 pci_dev_unlock(dev
);
5050 list_for_each_entry_continue_reverse(dev
,
5051 &slot
->bus
->devices
, bus_list
) {
5052 if (!dev
->slot
|| dev
->slot
!= slot
)
5054 if (dev
->subordinate
)
5055 pci_bus_unlock(dev
->subordinate
);
5056 pci_dev_unlock(dev
);
5061 /* Save and disable devices from the top of the tree down */
5062 static void pci_bus_save_and_disable(struct pci_bus
*bus
)
5064 struct pci_dev
*dev
;
5066 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5068 pci_dev_save_and_disable(dev
);
5069 pci_dev_unlock(dev
);
5070 if (dev
->subordinate
)
5071 pci_bus_save_and_disable(dev
->subordinate
);
5076 * Restore devices from top of the tree down - parent bridges need to be
5077 * restored before we can get to subordinate devices.
5079 static void pci_bus_restore(struct pci_bus
*bus
)
5081 struct pci_dev
*dev
;
5083 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5085 pci_dev_restore(dev
);
5086 pci_dev_unlock(dev
);
5087 if (dev
->subordinate
)
5088 pci_bus_restore(dev
->subordinate
);
5092 /* Save and disable devices from the top of the tree down */
5093 static void pci_slot_save_and_disable(struct pci_slot
*slot
)
5095 struct pci_dev
*dev
;
5097 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5098 if (!dev
->slot
|| dev
->slot
!= slot
)
5100 pci_dev_save_and_disable(dev
);
5101 if (dev
->subordinate
)
5102 pci_bus_save_and_disable(dev
->subordinate
);
5107 * Restore devices from top of the tree down - parent bridges need to be
5108 * restored before we can get to subordinate devices.
5110 static void pci_slot_restore(struct pci_slot
*slot
)
5112 struct pci_dev
*dev
;
5114 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5115 if (!dev
->slot
|| dev
->slot
!= slot
)
5118 pci_dev_restore(dev
);
5119 pci_dev_unlock(dev
);
5120 if (dev
->subordinate
)
5121 pci_bus_restore(dev
->subordinate
);
5125 static int pci_slot_reset(struct pci_slot
*slot
, int probe
)
5129 if (!slot
|| !pci_slot_resetable(slot
))
5133 pci_slot_lock(slot
);
5137 rc
= pci_reset_hotplug_slot(slot
->hotplug
, probe
);
5140 pci_slot_unlock(slot
);
5146 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5147 * @slot: PCI slot to probe
5149 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5151 int pci_probe_reset_slot(struct pci_slot
*slot
)
5153 return pci_slot_reset(slot
, 1);
5155 EXPORT_SYMBOL_GPL(pci_probe_reset_slot
);
5158 * __pci_reset_slot - Try to reset a PCI slot
5159 * @slot: PCI slot to reset
5161 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5162 * independent of other slots. For instance, some slots may support slot power
5163 * control. In the case of a 1:1 bus to slot architecture, this function may
5164 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5165 * Generally a slot reset should be attempted before a bus reset. All of the
5166 * function of the slot and any subordinate buses behind the slot are reset
5167 * through this function. PCI config space of all devices in the slot and
5168 * behind the slot is saved before and restored after reset.
5170 * Same as above except return -EAGAIN if the slot cannot be locked
5172 static int __pci_reset_slot(struct pci_slot
*slot
)
5176 rc
= pci_slot_reset(slot
, 1);
5180 pci_slot_save_and_disable(slot
);
5182 if (pci_slot_trylock(slot
)) {
5184 rc
= pci_reset_hotplug_slot(slot
->hotplug
, 0);
5185 pci_slot_unlock(slot
);
5189 pci_slot_restore(slot
);
5194 static int pci_bus_reset(struct pci_bus
*bus
, int probe
)
5198 if (!bus
->self
|| !pci_bus_resetable(bus
))
5208 ret
= pci_bridge_secondary_bus_reset(bus
->self
);
5210 pci_bus_unlock(bus
);
5216 * pci_bus_error_reset - reset the bridge's subordinate bus
5217 * @bridge: The parent device that connects to the bus to reset
5219 * This function will first try to reset the slots on this bus if the method is
5220 * available. If slot reset fails or is not available, this will fall back to a
5221 * secondary bus reset.
5223 int pci_bus_error_reset(struct pci_dev
*bridge
)
5225 struct pci_bus
*bus
= bridge
->subordinate
;
5226 struct pci_slot
*slot
;
5231 mutex_lock(&pci_slot_mutex
);
5232 if (list_empty(&bus
->slots
))
5235 list_for_each_entry(slot
, &bus
->slots
, list
)
5236 if (pci_probe_reset_slot(slot
))
5239 list_for_each_entry(slot
, &bus
->slots
, list
)
5240 if (pci_slot_reset(slot
, 0))
5243 mutex_unlock(&pci_slot_mutex
);
5246 mutex_unlock(&pci_slot_mutex
);
5247 return pci_bus_reset(bridge
->subordinate
, 0);
5251 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5252 * @bus: PCI bus to probe
5254 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5256 int pci_probe_reset_bus(struct pci_bus
*bus
)
5258 return pci_bus_reset(bus
, 1);
5260 EXPORT_SYMBOL_GPL(pci_probe_reset_bus
);
5263 * __pci_reset_bus - Try to reset a PCI bus
5264 * @bus: top level PCI bus to reset
5266 * Same as above except return -EAGAIN if the bus cannot be locked
5268 static int __pci_reset_bus(struct pci_bus
*bus
)
5272 rc
= pci_bus_reset(bus
, 1);
5276 pci_bus_save_and_disable(bus
);
5278 if (pci_bus_trylock(bus
)) {
5280 rc
= pci_bridge_secondary_bus_reset(bus
->self
);
5281 pci_bus_unlock(bus
);
5285 pci_bus_restore(bus
);
5291 * pci_reset_bus - Try to reset a PCI bus
5292 * @pdev: top level PCI device to reset via slot/bus
5294 * Same as above except return -EAGAIN if the bus cannot be locked
5296 int pci_reset_bus(struct pci_dev
*pdev
)
5298 return (!pci_probe_reset_slot(pdev
->slot
)) ?
5299 __pci_reset_slot(pdev
->slot
) : __pci_reset_bus(pdev
->bus
);
5301 EXPORT_SYMBOL_GPL(pci_reset_bus
);
5304 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5305 * @dev: PCI device to query
5307 * Returns mmrbc: maximum designed memory read count in bytes
5308 * or appropriate error value.
5310 int pcix_get_max_mmrbc(struct pci_dev
*dev
)
5315 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
5319 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
5322 return 512 << ((stat
& PCI_X_STATUS_MAX_READ
) >> 21);
5324 EXPORT_SYMBOL(pcix_get_max_mmrbc
);
5327 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5328 * @dev: PCI device to query
5330 * Returns mmrbc: maximum memory read count in bytes
5331 * or appropriate error value.
5333 int pcix_get_mmrbc(struct pci_dev
*dev
)
5338 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
5342 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
5345 return 512 << ((cmd
& PCI_X_CMD_MAX_READ
) >> 2);
5347 EXPORT_SYMBOL(pcix_get_mmrbc
);
5350 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5351 * @dev: PCI device to query
5352 * @mmrbc: maximum memory read count in bytes
5353 * valid values are 512, 1024, 2048, 4096
5355 * If possible sets maximum memory read byte count, some bridges have erratas
5356 * that prevent this.
5358 int pcix_set_mmrbc(struct pci_dev
*dev
, int mmrbc
)
5364 if (mmrbc
< 512 || mmrbc
> 4096 || !is_power_of_2(mmrbc
))
5367 v
= ffs(mmrbc
) - 10;
5369 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
5373 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
5376 if (v
> (stat
& PCI_X_STATUS_MAX_READ
) >> 21)
5379 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
5382 o
= (cmd
& PCI_X_CMD_MAX_READ
) >> 2;
5384 if (v
> o
&& (dev
->bus
->bus_flags
& PCI_BUS_FLAGS_NO_MMRBC
))
5387 cmd
&= ~PCI_X_CMD_MAX_READ
;
5389 if (pci_write_config_word(dev
, cap
+ PCI_X_CMD
, cmd
))
5394 EXPORT_SYMBOL(pcix_set_mmrbc
);
5397 * pcie_get_readrq - get PCI Express read request size
5398 * @dev: PCI device to query
5400 * Returns maximum memory read request in bytes
5401 * or appropriate error value.
5403 int pcie_get_readrq(struct pci_dev
*dev
)
5407 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
5409 return 128 << ((ctl
& PCI_EXP_DEVCTL_READRQ
) >> 12);
5411 EXPORT_SYMBOL(pcie_get_readrq
);
5414 * pcie_set_readrq - set PCI Express maximum memory read request
5415 * @dev: PCI device to query
5416 * @rq: maximum memory read count in bytes
5417 * valid values are 128, 256, 512, 1024, 2048, 4096
5419 * If possible sets maximum memory read request in bytes
5421 int pcie_set_readrq(struct pci_dev
*dev
, int rq
)
5425 if (rq
< 128 || rq
> 4096 || !is_power_of_2(rq
))
5429 * If using the "performance" PCIe config, we clamp the
5430 * read rq size to the max packet size to prevent the
5431 * host bridge generating requests larger than we can
5434 if (pcie_bus_config
== PCIE_BUS_PERFORMANCE
) {
5435 int mps
= pcie_get_mps(dev
);
5441 v
= (ffs(rq
) - 8) << 12;
5443 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
5444 PCI_EXP_DEVCTL_READRQ
, v
);
5446 EXPORT_SYMBOL(pcie_set_readrq
);
5449 * pcie_get_mps - get PCI Express maximum payload size
5450 * @dev: PCI device to query
5452 * Returns maximum payload size in bytes
5454 int pcie_get_mps(struct pci_dev
*dev
)
5458 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
5460 return 128 << ((ctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5);
5462 EXPORT_SYMBOL(pcie_get_mps
);
5465 * pcie_set_mps - set PCI Express maximum payload size
5466 * @dev: PCI device to query
5467 * @mps: maximum payload size in bytes
5468 * valid values are 128, 256, 512, 1024, 2048, 4096
5470 * If possible sets maximum payload size
5472 int pcie_set_mps(struct pci_dev
*dev
, int mps
)
5476 if (mps
< 128 || mps
> 4096 || !is_power_of_2(mps
))
5480 if (v
> dev
->pcie_mpss
)
5484 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
5485 PCI_EXP_DEVCTL_PAYLOAD
, v
);
5487 EXPORT_SYMBOL(pcie_set_mps
);
5490 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5491 * device and its bandwidth limitation
5492 * @dev: PCI device to query
5493 * @limiting_dev: storage for device causing the bandwidth limitation
5494 * @speed: storage for speed of limiting device
5495 * @width: storage for width of limiting device
5497 * Walk up the PCI device chain and find the point where the minimum
5498 * bandwidth is available. Return the bandwidth available there and (if
5499 * limiting_dev, speed, and width pointers are supplied) information about
5500 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5503 u32
pcie_bandwidth_available(struct pci_dev
*dev
, struct pci_dev
**limiting_dev
,
5504 enum pci_bus_speed
*speed
,
5505 enum pcie_link_width
*width
)
5508 enum pci_bus_speed next_speed
;
5509 enum pcie_link_width next_width
;
5513 *speed
= PCI_SPEED_UNKNOWN
;
5515 *width
= PCIE_LNK_WIDTH_UNKNOWN
;
5520 pcie_capability_read_word(dev
, PCI_EXP_LNKSTA
, &lnksta
);
5522 next_speed
= pcie_link_speed
[lnksta
& PCI_EXP_LNKSTA_CLS
];
5523 next_width
= (lnksta
& PCI_EXP_LNKSTA_NLW
) >>
5524 PCI_EXP_LNKSTA_NLW_SHIFT
;
5526 next_bw
= next_width
* PCIE_SPEED2MBS_ENC(next_speed
);
5528 /* Check if current device limits the total bandwidth */
5529 if (!bw
|| next_bw
<= bw
) {
5533 *limiting_dev
= dev
;
5535 *speed
= next_speed
;
5537 *width
= next_width
;
5540 dev
= pci_upstream_bridge(dev
);
5545 EXPORT_SYMBOL(pcie_bandwidth_available
);
5548 * pcie_get_speed_cap - query for the PCI device's link speed capability
5549 * @dev: PCI device to query
5551 * Query the PCI device speed capability. Return the maximum link speed
5552 * supported by the device.
5554 enum pci_bus_speed
pcie_get_speed_cap(struct pci_dev
*dev
)
5556 u32 lnkcap2
, lnkcap
;
5559 * PCIe r4.0 sec 7.5.3.18 recommends using the Supported Link
5560 * Speeds Vector in Link Capabilities 2 when supported, falling
5561 * back to Max Link Speed in Link Capabilities otherwise.
5563 pcie_capability_read_dword(dev
, PCI_EXP_LNKCAP2
, &lnkcap2
);
5564 if (lnkcap2
) { /* PCIe r3.0-compliant */
5565 if (lnkcap2
& PCI_EXP_LNKCAP2_SLS_16_0GB
)
5566 return PCIE_SPEED_16_0GT
;
5567 else if (lnkcap2
& PCI_EXP_LNKCAP2_SLS_8_0GB
)
5568 return PCIE_SPEED_8_0GT
;
5569 else if (lnkcap2
& PCI_EXP_LNKCAP2_SLS_5_0GB
)
5570 return PCIE_SPEED_5_0GT
;
5571 else if (lnkcap2
& PCI_EXP_LNKCAP2_SLS_2_5GB
)
5572 return PCIE_SPEED_2_5GT
;
5573 return PCI_SPEED_UNKNOWN
;
5576 pcie_capability_read_dword(dev
, PCI_EXP_LNKCAP
, &lnkcap
);
5578 if (lnkcap
& PCI_EXP_LNKCAP_SLS_16_0GB
)
5579 return PCIE_SPEED_16_0GT
;
5580 else if (lnkcap
& PCI_EXP_LNKCAP_SLS_8_0GB
)
5581 return PCIE_SPEED_8_0GT
;
5582 else if (lnkcap
& PCI_EXP_LNKCAP_SLS_5_0GB
)
5583 return PCIE_SPEED_5_0GT
;
5584 else if (lnkcap
& PCI_EXP_LNKCAP_SLS_2_5GB
)
5585 return PCIE_SPEED_2_5GT
;
5588 return PCI_SPEED_UNKNOWN
;
5590 EXPORT_SYMBOL(pcie_get_speed_cap
);
5593 * pcie_get_width_cap - query for the PCI device's link width capability
5594 * @dev: PCI device to query
5596 * Query the PCI device width capability. Return the maximum link width
5597 * supported by the device.
5599 enum pcie_link_width
pcie_get_width_cap(struct pci_dev
*dev
)
5603 pcie_capability_read_dword(dev
, PCI_EXP_LNKCAP
, &lnkcap
);
5605 return (lnkcap
& PCI_EXP_LNKCAP_MLW
) >> 4;
5607 return PCIE_LNK_WIDTH_UNKNOWN
;
5609 EXPORT_SYMBOL(pcie_get_width_cap
);
5612 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5614 * @speed: storage for link speed
5615 * @width: storage for link width
5617 * Calculate a PCI device's link bandwidth by querying for its link speed
5618 * and width, multiplying them, and applying encoding overhead. The result
5619 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5621 u32
pcie_bandwidth_capable(struct pci_dev
*dev
, enum pci_bus_speed
*speed
,
5622 enum pcie_link_width
*width
)
5624 *speed
= pcie_get_speed_cap(dev
);
5625 *width
= pcie_get_width_cap(dev
);
5627 if (*speed
== PCI_SPEED_UNKNOWN
|| *width
== PCIE_LNK_WIDTH_UNKNOWN
)
5630 return *width
* PCIE_SPEED2MBS_ENC(*speed
);
5634 * __pcie_print_link_status - Report the PCI device's link speed and width
5635 * @dev: PCI device to query
5636 * @verbose: Print info even when enough bandwidth is available
5638 * If the available bandwidth at the device is less than the device is
5639 * capable of, report the device's maximum possible bandwidth and the
5640 * upstream link that limits its performance. If @verbose, always print
5641 * the available bandwidth, even if the device isn't constrained.
5643 void __pcie_print_link_status(struct pci_dev
*dev
, bool verbose
)
5645 enum pcie_link_width width
, width_cap
;
5646 enum pci_bus_speed speed
, speed_cap
;
5647 struct pci_dev
*limiting_dev
= NULL
;
5648 u32 bw_avail
, bw_cap
;
5650 bw_cap
= pcie_bandwidth_capable(dev
, &speed_cap
, &width_cap
);
5651 bw_avail
= pcie_bandwidth_available(dev
, &limiting_dev
, &speed
, &width
);
5653 if (bw_avail
>= bw_cap
&& verbose
)
5654 pci_info(dev
, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5655 bw_cap
/ 1000, bw_cap
% 1000,
5656 PCIE_SPEED2STR(speed_cap
), width_cap
);
5657 else if (bw_avail
< bw_cap
)
5658 pci_info(dev
, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5659 bw_avail
/ 1000, bw_avail
% 1000,
5660 PCIE_SPEED2STR(speed
), width
,
5661 limiting_dev
? pci_name(limiting_dev
) : "<unknown>",
5662 bw_cap
/ 1000, bw_cap
% 1000,
5663 PCIE_SPEED2STR(speed_cap
), width_cap
);
5667 * pcie_print_link_status - Report the PCI device's link speed and width
5668 * @dev: PCI device to query
5670 * Report the available bandwidth at the device.
5672 void pcie_print_link_status(struct pci_dev
*dev
)
5674 __pcie_print_link_status(dev
, true);
5676 EXPORT_SYMBOL(pcie_print_link_status
);
5679 * pci_select_bars - Make BAR mask from the type of resource
5680 * @dev: the PCI device for which BAR mask is made
5681 * @flags: resource type mask to be selected
5683 * This helper routine makes bar mask from the type of resource.
5685 int pci_select_bars(struct pci_dev
*dev
, unsigned long flags
)
5688 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++)
5689 if (pci_resource_flags(dev
, i
) & flags
)
5693 EXPORT_SYMBOL(pci_select_bars
);
5695 /* Some architectures require additional programming to enable VGA */
5696 static arch_set_vga_state_t arch_set_vga_state
;
5698 void __init
pci_register_set_vga_state(arch_set_vga_state_t func
)
5700 arch_set_vga_state
= func
; /* NULL disables */
5703 static int pci_set_vga_state_arch(struct pci_dev
*dev
, bool decode
,
5704 unsigned int command_bits
, u32 flags
)
5706 if (arch_set_vga_state
)
5707 return arch_set_vga_state(dev
, decode
, command_bits
,
5713 * pci_set_vga_state - set VGA decode state on device and parents if requested
5714 * @dev: the PCI device
5715 * @decode: true = enable decoding, false = disable decoding
5716 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5717 * @flags: traverse ancestors and change bridges
5718 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5720 int pci_set_vga_state(struct pci_dev
*dev
, bool decode
,
5721 unsigned int command_bits
, u32 flags
)
5723 struct pci_bus
*bus
;
5724 struct pci_dev
*bridge
;
5728 WARN_ON((flags
& PCI_VGA_STATE_CHANGE_DECODES
) && (command_bits
& ~(PCI_COMMAND_IO
|PCI_COMMAND_MEMORY
)));
5730 /* ARCH specific VGA enables */
5731 rc
= pci_set_vga_state_arch(dev
, decode
, command_bits
, flags
);
5735 if (flags
& PCI_VGA_STATE_CHANGE_DECODES
) {
5736 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
5738 cmd
|= command_bits
;
5740 cmd
&= ~command_bits
;
5741 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
5744 if (!(flags
& PCI_VGA_STATE_CHANGE_BRIDGE
))
5751 pci_read_config_word(bridge
, PCI_BRIDGE_CONTROL
,
5754 cmd
|= PCI_BRIDGE_CTL_VGA
;
5756 cmd
&= ~PCI_BRIDGE_CTL_VGA
;
5757 pci_write_config_word(bridge
, PCI_BRIDGE_CONTROL
,
5766 * pci_add_dma_alias - Add a DMA devfn alias for a device
5767 * @dev: the PCI device for which alias is added
5768 * @devfn: alias slot and function
5770 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5771 * which is used to program permissible bus-devfn source addresses for DMA
5772 * requests in an IOMMU. These aliases factor into IOMMU group creation
5773 * and are useful for devices generating DMA requests beyond or different
5774 * from their logical bus-devfn. Examples include device quirks where the
5775 * device simply uses the wrong devfn, as well as non-transparent bridges
5776 * where the alias may be a proxy for devices in another domain.
5778 * IOMMU group creation is performed during device discovery or addition,
5779 * prior to any potential DMA mapping and therefore prior to driver probing
5780 * (especially for userspace assigned devices where IOMMU group definition
5781 * cannot be left as a userspace activity). DMA aliases should therefore
5782 * be configured via quirks, such as the PCI fixup header quirk.
5784 void pci_add_dma_alias(struct pci_dev
*dev
, u8 devfn
)
5786 if (!dev
->dma_alias_mask
)
5787 dev
->dma_alias_mask
= bitmap_zalloc(U8_MAX
, GFP_KERNEL
);
5788 if (!dev
->dma_alias_mask
) {
5789 pci_warn(dev
, "Unable to allocate DMA alias mask\n");
5793 set_bit(devfn
, dev
->dma_alias_mask
);
5794 pci_info(dev
, "Enabling fixed DMA alias to %02x.%d\n",
5795 PCI_SLOT(devfn
), PCI_FUNC(devfn
));
5798 bool pci_devs_are_dma_aliases(struct pci_dev
*dev1
, struct pci_dev
*dev2
)
5800 return (dev1
->dma_alias_mask
&&
5801 test_bit(dev2
->devfn
, dev1
->dma_alias_mask
)) ||
5802 (dev2
->dma_alias_mask
&&
5803 test_bit(dev1
->devfn
, dev2
->dma_alias_mask
));
5806 bool pci_device_is_present(struct pci_dev
*pdev
)
5810 if (pci_dev_is_disconnected(pdev
))
5812 return pci_bus_read_dev_vendor_id(pdev
->bus
, pdev
->devfn
, &v
, 0);
5814 EXPORT_SYMBOL_GPL(pci_device_is_present
);
5816 void pci_ignore_hotplug(struct pci_dev
*dev
)
5818 struct pci_dev
*bridge
= dev
->bus
->self
;
5820 dev
->ignore_hotplug
= 1;
5821 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5823 bridge
->ignore_hotplug
= 1;
5825 EXPORT_SYMBOL_GPL(pci_ignore_hotplug
);
5827 resource_size_t __weak
pcibios_default_alignment(void)
5832 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5833 static char resource_alignment_param
[RESOURCE_ALIGNMENT_PARAM_SIZE
] = {0};
5834 static DEFINE_SPINLOCK(resource_alignment_lock
);
5837 * pci_specified_resource_alignment - get resource alignment specified by user.
5838 * @dev: the PCI device to get
5839 * @resize: whether or not to change resources' size when reassigning alignment
5841 * RETURNS: Resource alignment if it is specified.
5842 * Zero if it is not specified.
5844 static resource_size_t
pci_specified_resource_alignment(struct pci_dev
*dev
,
5847 int align_order
, count
;
5848 resource_size_t align
= pcibios_default_alignment();
5852 spin_lock(&resource_alignment_lock
);
5853 p
= resource_alignment_param
;
5856 if (pci_has_flag(PCI_PROBE_ONLY
)) {
5858 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5864 if (sscanf(p
, "%d%n", &align_order
, &count
) == 1 &&
5871 ret
= pci_dev_str_match(dev
, p
, &p
);
5874 if (align_order
== -1)
5877 align
= 1 << align_order
;
5879 } else if (ret
< 0) {
5880 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5885 if (*p
!= ';' && *p
!= ',') {
5886 /* End of param or invalid format */
5892 spin_unlock(&resource_alignment_lock
);
5896 static void pci_request_resource_alignment(struct pci_dev
*dev
, int bar
,
5897 resource_size_t align
, bool resize
)
5899 struct resource
*r
= &dev
->resource
[bar
];
5900 resource_size_t size
;
5902 if (!(r
->flags
& IORESOURCE_MEM
))
5905 if (r
->flags
& IORESOURCE_PCI_FIXED
) {
5906 pci_info(dev
, "BAR%d %pR: ignoring requested alignment %#llx\n",
5907 bar
, r
, (unsigned long long)align
);
5911 size
= resource_size(r
);
5916 * Increase the alignment of the resource. There are two ways we
5919 * 1) Increase the size of the resource. BARs are aligned on their
5920 * size, so when we reallocate space for this resource, we'll
5921 * allocate it with the larger alignment. This also prevents
5922 * assignment of any other BARs inside the alignment region, so
5923 * if we're requesting page alignment, this means no other BARs
5924 * will share the page.
5926 * The disadvantage is that this makes the resource larger than
5927 * the hardware BAR, which may break drivers that compute things
5928 * based on the resource size, e.g., to find registers at a
5929 * fixed offset before the end of the BAR.
5931 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5932 * set r->start to the desired alignment. By itself this
5933 * doesn't prevent other BARs being put inside the alignment
5934 * region, but if we realign *every* resource of every device in
5935 * the system, none of them will share an alignment region.
5937 * When the user has requested alignment for only some devices via
5938 * the "pci=resource_alignment" argument, "resize" is true and we
5939 * use the first method. Otherwise we assume we're aligning all
5940 * devices and we use the second.
5943 pci_info(dev
, "BAR%d %pR: requesting alignment to %#llx\n",
5944 bar
, r
, (unsigned long long)align
);
5950 r
->flags
&= ~IORESOURCE_SIZEALIGN
;
5951 r
->flags
|= IORESOURCE_STARTALIGN
;
5953 r
->end
= r
->start
+ size
- 1;
5955 r
->flags
|= IORESOURCE_UNSET
;
5959 * This function disables memory decoding and releases memory resources
5960 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5961 * It also rounds up size to specified alignment.
5962 * Later on, the kernel will assign page-aligned memory resource back
5965 void pci_reassigndev_resource_alignment(struct pci_dev
*dev
)
5969 resource_size_t align
;
5971 bool resize
= false;
5974 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5975 * 3.4.1.11. Their resources are allocated from the space
5976 * described by the VF BARx register in the PF's SR-IOV capability.
5977 * We can't influence their alignment here.
5982 /* check if specified PCI is target device to reassign */
5983 align
= pci_specified_resource_alignment(dev
, &resize
);
5987 if (dev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
&&
5988 (dev
->class >> 8) == PCI_CLASS_BRIDGE_HOST
) {
5989 pci_warn(dev
, "Can't reassign resources to host bridge\n");
5993 pci_read_config_word(dev
, PCI_COMMAND
, &command
);
5994 command
&= ~PCI_COMMAND_MEMORY
;
5995 pci_write_config_word(dev
, PCI_COMMAND
, command
);
5997 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
5998 pci_request_resource_alignment(dev
, i
, align
, resize
);
6001 * Need to disable bridge's resource window,
6002 * to enable the kernel to reassign new resource
6005 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
&&
6006 (dev
->class >> 8) == PCI_CLASS_BRIDGE_PCI
) {
6007 for (i
= PCI_BRIDGE_RESOURCES
; i
< PCI_NUM_RESOURCES
; i
++) {
6008 r
= &dev
->resource
[i
];
6009 if (!(r
->flags
& IORESOURCE_MEM
))
6011 r
->flags
|= IORESOURCE_UNSET
;
6012 r
->end
= resource_size(r
) - 1;
6015 pci_disable_bridge_window(dev
);
6019 static ssize_t
pci_set_resource_alignment_param(const char *buf
, size_t count
)
6021 if (count
> RESOURCE_ALIGNMENT_PARAM_SIZE
- 1)
6022 count
= RESOURCE_ALIGNMENT_PARAM_SIZE
- 1;
6023 spin_lock(&resource_alignment_lock
);
6024 strncpy(resource_alignment_param
, buf
, count
);
6025 resource_alignment_param
[count
] = '\0';
6026 spin_unlock(&resource_alignment_lock
);
6030 static ssize_t
pci_get_resource_alignment_param(char *buf
, size_t size
)
6033 spin_lock(&resource_alignment_lock
);
6034 count
= snprintf(buf
, size
, "%s", resource_alignment_param
);
6035 spin_unlock(&resource_alignment_lock
);
6039 static ssize_t
pci_resource_alignment_show(struct bus_type
*bus
, char *buf
)
6041 return pci_get_resource_alignment_param(buf
, PAGE_SIZE
);
6044 static ssize_t
pci_resource_alignment_store(struct bus_type
*bus
,
6045 const char *buf
, size_t count
)
6047 return pci_set_resource_alignment_param(buf
, count
);
6050 static BUS_ATTR(resource_alignment
, 0644, pci_resource_alignment_show
,
6051 pci_resource_alignment_store
);
6053 static int __init
pci_resource_alignment_sysfs_init(void)
6055 return bus_create_file(&pci_bus_type
,
6056 &bus_attr_resource_alignment
);
6058 late_initcall(pci_resource_alignment_sysfs_init
);
6060 static void pci_no_domains(void)
6062 #ifdef CONFIG_PCI_DOMAINS
6063 pci_domains_supported
= 0;
6067 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6068 static atomic_t __domain_nr
= ATOMIC_INIT(-1);
6070 static int pci_get_new_domain_nr(void)
6072 return atomic_inc_return(&__domain_nr
);
6075 static int of_pci_bus_find_domain_nr(struct device
*parent
)
6077 static int use_dt_domains
= -1;
6081 domain
= of_get_pci_domain_nr(parent
->of_node
);
6083 * Check DT domain and use_dt_domains values.
6085 * If DT domain property is valid (domain >= 0) and
6086 * use_dt_domains != 0, the DT assignment is valid since this means
6087 * we have not previously allocated a domain number by using
6088 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6089 * 1, to indicate that we have just assigned a domain number from
6092 * If DT domain property value is not valid (ie domain < 0), and we
6093 * have not previously assigned a domain number from DT
6094 * (use_dt_domains != 1) we should assign a domain number by
6097 * pci_get_new_domain_nr()
6099 * API and update the use_dt_domains value to keep track of method we
6100 * are using to assign domain numbers (use_dt_domains = 0).
6102 * All other combinations imply we have a platform that is trying
6103 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6104 * which is a recipe for domain mishandling and it is prevented by
6105 * invalidating the domain value (domain = -1) and printing a
6106 * corresponding error.
6108 if (domain
>= 0 && use_dt_domains
) {
6110 } else if (domain
< 0 && use_dt_domains
!= 1) {
6112 domain
= pci_get_new_domain_nr();
6115 pr_err("Node %pOF has ", parent
->of_node
);
6116 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6123 int pci_bus_find_domain_nr(struct pci_bus
*bus
, struct device
*parent
)
6125 return acpi_disabled
? of_pci_bus_find_domain_nr(parent
) :
6126 acpi_pci_bus_find_domain_nr(bus
);
6131 * pci_ext_cfg_avail - can we access extended PCI config space?
6133 * Returns 1 if we can access PCI extended config space (offsets
6134 * greater than 0xff). This is the default implementation. Architecture
6135 * implementations can override this.
6137 int __weak
pci_ext_cfg_avail(void)
6142 void __weak
pci_fixup_cardbus(struct pci_bus
*bus
)
6145 EXPORT_SYMBOL(pci_fixup_cardbus
);
6147 static int __init
pci_setup(char *str
)
6150 char *k
= strchr(str
, ',');
6153 if (*str
&& (str
= pcibios_setup(str
)) && *str
) {
6154 if (!strcmp(str
, "nomsi")) {
6156 } else if (!strncmp(str
, "noats", 5)) {
6157 pr_info("PCIe: ATS is disabled\n");
6158 pcie_ats_disabled
= true;
6159 } else if (!strcmp(str
, "noaer")) {
6161 } else if (!strcmp(str
, "earlydump")) {
6162 pci_early_dump
= true;
6163 } else if (!strncmp(str
, "realloc=", 8)) {
6164 pci_realloc_get_opt(str
+ 8);
6165 } else if (!strncmp(str
, "realloc", 7)) {
6166 pci_realloc_get_opt("on");
6167 } else if (!strcmp(str
, "nodomains")) {
6169 } else if (!strncmp(str
, "noari", 5)) {
6170 pcie_ari_disabled
= true;
6171 } else if (!strncmp(str
, "cbiosize=", 9)) {
6172 pci_cardbus_io_size
= memparse(str
+ 9, &str
);
6173 } else if (!strncmp(str
, "cbmemsize=", 10)) {
6174 pci_cardbus_mem_size
= memparse(str
+ 10, &str
);
6175 } else if (!strncmp(str
, "resource_alignment=", 19)) {
6176 pci_set_resource_alignment_param(str
+ 19,
6178 } else if (!strncmp(str
, "ecrc=", 5)) {
6179 pcie_ecrc_get_policy(str
+ 5);
6180 } else if (!strncmp(str
, "hpiosize=", 9)) {
6181 pci_hotplug_io_size
= memparse(str
+ 9, &str
);
6182 } else if (!strncmp(str
, "hpmemsize=", 10)) {
6183 pci_hotplug_mem_size
= memparse(str
+ 10, &str
);
6184 } else if (!strncmp(str
, "hpbussize=", 10)) {
6185 pci_hotplug_bus_size
=
6186 simple_strtoul(str
+ 10, &str
, 0);
6187 if (pci_hotplug_bus_size
> 0xff)
6188 pci_hotplug_bus_size
= DEFAULT_HOTPLUG_BUS_SIZE
;
6189 } else if (!strncmp(str
, "pcie_bus_tune_off", 17)) {
6190 pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
6191 } else if (!strncmp(str
, "pcie_bus_safe", 13)) {
6192 pcie_bus_config
= PCIE_BUS_SAFE
;
6193 } else if (!strncmp(str
, "pcie_bus_perf", 13)) {
6194 pcie_bus_config
= PCIE_BUS_PERFORMANCE
;
6195 } else if (!strncmp(str
, "pcie_bus_peer2peer", 18)) {
6196 pcie_bus_config
= PCIE_BUS_PEER2PEER
;
6197 } else if (!strncmp(str
, "pcie_scan_all", 13)) {
6198 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS
);
6199 } else if (!strncmp(str
, "disable_acs_redir=", 18)) {
6200 disable_acs_redir_param
= str
+ 18;
6202 printk(KERN_ERR
"PCI: Unknown option `%s'\n",
6210 early_param("pci", pci_setup
);