perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / drivers / rtc / rtc-armada38x.c
blobbde53c8ccee2cbbcac52120dde4cc217e9c10f93
1 /*
2 * RTC driver for the Armada 38x Marvell SoCs
4 * Copyright (C) 2015 Marvell
6 * Gregory Clement <gregory.clement@free-electrons.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of the
11 * License, or (at your option) any later version.
15 #include <linux/delay.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_device.h>
20 #include <linux/platform_device.h>
21 #include <linux/rtc.h>
23 #define RTC_STATUS 0x0
24 #define RTC_STATUS_ALARM1 BIT(0)
25 #define RTC_STATUS_ALARM2 BIT(1)
26 #define RTC_IRQ1_CONF 0x4
27 #define RTC_IRQ2_CONF 0x8
28 #define RTC_IRQ_AL_EN BIT(0)
29 #define RTC_IRQ_FREQ_EN BIT(1)
30 #define RTC_IRQ_FREQ_1HZ BIT(2)
31 #define RTC_CCR 0x18
32 #define RTC_CCR_MODE BIT(15)
33 #define RTC_CONF_TEST 0x1C
34 #define RTC_NOMINAL_TIMING BIT(13)
36 #define RTC_TIME 0xC
37 #define RTC_ALARM1 0x10
38 #define RTC_ALARM2 0x14
40 /* Armada38x SoC registers */
41 #define RTC_38X_BRIDGE_TIMING_CTL 0x0
42 #define RTC_38X_PERIOD_OFFS 0
43 #define RTC_38X_PERIOD_MASK (0x3FF << RTC_38X_PERIOD_OFFS)
44 #define RTC_38X_READ_DELAY_OFFS 26
45 #define RTC_38X_READ_DELAY_MASK (0x1F << RTC_38X_READ_DELAY_OFFS)
47 /* Armada 7K/8K registers */
48 #define RTC_8K_BRIDGE_TIMING_CTL0 0x0
49 #define RTC_8K_WRCLK_PERIOD_OFFS 0
50 #define RTC_8K_WRCLK_PERIOD_MASK (0xFFFF << RTC_8K_WRCLK_PERIOD_OFFS)
51 #define RTC_8K_WRCLK_SETUP_OFFS 16
52 #define RTC_8K_WRCLK_SETUP_MASK (0xFFFF << RTC_8K_WRCLK_SETUP_OFFS)
53 #define RTC_8K_BRIDGE_TIMING_CTL1 0x4
54 #define RTC_8K_READ_DELAY_OFFS 0
55 #define RTC_8K_READ_DELAY_MASK (0xFFFF << RTC_8K_READ_DELAY_OFFS)
57 #define RTC_8K_ISR 0x10
58 #define RTC_8K_IMR 0x14
59 #define RTC_8K_ALARM2 BIT(0)
61 #define SOC_RTC_INTERRUPT 0x8
62 #define SOC_RTC_ALARM1 BIT(0)
63 #define SOC_RTC_ALARM2 BIT(1)
64 #define SOC_RTC_ALARM1_MASK BIT(2)
65 #define SOC_RTC_ALARM2_MASK BIT(3)
67 #define SAMPLE_NR 100
69 struct value_to_freq {
70 u32 value;
71 u8 freq;
74 struct armada38x_rtc {
75 struct rtc_device *rtc_dev;
76 void __iomem *regs;
77 void __iomem *regs_soc;
78 spinlock_t lock;
79 int irq;
80 bool initialized;
81 struct value_to_freq *val_to_freq;
82 struct armada38x_rtc_data *data;
85 #define ALARM1 0
86 #define ALARM2 1
88 #define ALARM_REG(base, alarm) ((base) + (alarm) * sizeof(u32))
90 struct armada38x_rtc_data {
91 /* Initialize the RTC-MBUS bridge timing */
92 void (*update_mbus_timing)(struct armada38x_rtc *rtc);
93 u32 (*read_rtc_reg)(struct armada38x_rtc *rtc, u8 rtc_reg);
94 void (*clear_isr)(struct armada38x_rtc *rtc);
95 void (*unmask_interrupt)(struct armada38x_rtc *rtc);
96 u32 alarm;
100 * According to the datasheet, the OS should wait 5us after every
101 * register write to the RTC hard macro so that the required update
102 * can occur without holding off the system bus
103 * According to errata RES-3124064, Write to any RTC register
104 * may fail. As a workaround, before writing to RTC
105 * register, issue a dummy write of 0x0 twice to RTC Status
106 * register.
109 static void rtc_delayed_write(u32 val, struct armada38x_rtc *rtc, int offset)
111 writel(0, rtc->regs + RTC_STATUS);
112 writel(0, rtc->regs + RTC_STATUS);
113 writel(val, rtc->regs + offset);
114 udelay(5);
117 /* Update RTC-MBUS bridge timing parameters */
118 static void rtc_update_38x_mbus_timing_params(struct armada38x_rtc *rtc)
120 u32 reg;
122 reg = readl(rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
123 reg &= ~RTC_38X_PERIOD_MASK;
124 reg |= 0x3FF << RTC_38X_PERIOD_OFFS; /* Maximum value */
125 reg &= ~RTC_38X_READ_DELAY_MASK;
126 reg |= 0x1F << RTC_38X_READ_DELAY_OFFS; /* Maximum value */
127 writel(reg, rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
130 static void rtc_update_8k_mbus_timing_params(struct armada38x_rtc *rtc)
132 u32 reg;
134 reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
135 reg &= ~RTC_8K_WRCLK_PERIOD_MASK;
136 reg |= 0x3FF << RTC_8K_WRCLK_PERIOD_OFFS;
137 reg &= ~RTC_8K_WRCLK_SETUP_MASK;
138 reg |= 0x29 << RTC_8K_WRCLK_SETUP_OFFS;
139 writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
141 reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
142 reg &= ~RTC_8K_READ_DELAY_MASK;
143 reg |= 0x3F << RTC_8K_READ_DELAY_OFFS;
144 writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
147 static u32 read_rtc_register(struct armada38x_rtc *rtc, u8 rtc_reg)
149 return readl(rtc->regs + rtc_reg);
152 static u32 read_rtc_register_38x_wa(struct armada38x_rtc *rtc, u8 rtc_reg)
154 int i, index_max = 0, max = 0;
156 for (i = 0; i < SAMPLE_NR; i++) {
157 rtc->val_to_freq[i].value = readl(rtc->regs + rtc_reg);
158 rtc->val_to_freq[i].freq = 0;
161 for (i = 0; i < SAMPLE_NR; i++) {
162 int j = 0;
163 u32 value = rtc->val_to_freq[i].value;
165 while (rtc->val_to_freq[j].freq) {
166 if (rtc->val_to_freq[j].value == value) {
167 rtc->val_to_freq[j].freq++;
168 break;
170 j++;
173 if (!rtc->val_to_freq[j].freq) {
174 rtc->val_to_freq[j].value = value;
175 rtc->val_to_freq[j].freq = 1;
178 if (rtc->val_to_freq[j].freq > max) {
179 index_max = j;
180 max = rtc->val_to_freq[j].freq;
184 * If a value already has half of the sample this is the most
185 * frequent one and we can stop the research right now
187 if (max > SAMPLE_NR / 2)
188 break;
191 return rtc->val_to_freq[index_max].value;
194 static void armada38x_clear_isr(struct armada38x_rtc *rtc)
196 u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
198 writel(val & ~SOC_RTC_ALARM1, rtc->regs_soc + SOC_RTC_INTERRUPT);
201 static void armada38x_unmask_interrupt(struct armada38x_rtc *rtc)
203 u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
205 writel(val | SOC_RTC_ALARM1_MASK, rtc->regs_soc + SOC_RTC_INTERRUPT);
208 static void armada8k_clear_isr(struct armada38x_rtc *rtc)
210 writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_ISR);
213 static void armada8k_unmask_interrupt(struct armada38x_rtc *rtc)
215 writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_IMR);
218 static int armada38x_rtc_read_time(struct device *dev, struct rtc_time *tm)
220 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
221 unsigned long time, flags;
223 spin_lock_irqsave(&rtc->lock, flags);
224 time = rtc->data->read_rtc_reg(rtc, RTC_TIME);
225 spin_unlock_irqrestore(&rtc->lock, flags);
227 rtc_time_to_tm(time, tm);
229 return 0;
232 static void armada38x_rtc_reset(struct armada38x_rtc *rtc)
234 u32 reg;
236 reg = rtc->data->read_rtc_reg(rtc, RTC_CONF_TEST);
237 /* If bits [7:0] are non-zero, assume RTC was uninitialized */
238 if (reg & 0xff) {
239 rtc_delayed_write(0, rtc, RTC_CONF_TEST);
240 msleep(500); /* Oscillator startup time */
241 rtc_delayed_write(0, rtc, RTC_TIME);
242 rtc_delayed_write(SOC_RTC_ALARM1 | SOC_RTC_ALARM2, rtc,
243 RTC_STATUS);
244 rtc_delayed_write(RTC_NOMINAL_TIMING, rtc, RTC_CCR);
246 rtc->initialized = true;
249 static int armada38x_rtc_set_time(struct device *dev, struct rtc_time *tm)
251 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
252 int ret = 0;
253 unsigned long time, flags;
255 ret = rtc_tm_to_time(tm, &time);
257 if (ret)
258 goto out;
260 if (!rtc->initialized)
261 armada38x_rtc_reset(rtc);
263 spin_lock_irqsave(&rtc->lock, flags);
264 rtc_delayed_write(time, rtc, RTC_TIME);
265 spin_unlock_irqrestore(&rtc->lock, flags);
267 out:
268 return ret;
271 static int armada38x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
273 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
274 unsigned long time, flags;
275 u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
276 u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
277 u32 val;
279 spin_lock_irqsave(&rtc->lock, flags);
281 time = rtc->data->read_rtc_reg(rtc, reg);
282 val = rtc->data->read_rtc_reg(rtc, reg_irq) & RTC_IRQ_AL_EN;
284 spin_unlock_irqrestore(&rtc->lock, flags);
286 alrm->enabled = val ? 1 : 0;
287 rtc_time_to_tm(time, &alrm->time);
289 return 0;
292 static int armada38x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
294 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
295 u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
296 u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
297 unsigned long time, flags;
298 int ret = 0;
300 ret = rtc_tm_to_time(&alrm->time, &time);
302 if (ret)
303 goto out;
305 spin_lock_irqsave(&rtc->lock, flags);
307 rtc_delayed_write(time, rtc, reg);
309 if (alrm->enabled) {
310 rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
311 rtc->data->unmask_interrupt(rtc);
314 spin_unlock_irqrestore(&rtc->lock, flags);
316 out:
317 return ret;
320 static int armada38x_rtc_alarm_irq_enable(struct device *dev,
321 unsigned int enabled)
323 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
324 u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
325 unsigned long flags;
327 spin_lock_irqsave(&rtc->lock, flags);
329 if (enabled)
330 rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
331 else
332 rtc_delayed_write(0, rtc, reg_irq);
334 spin_unlock_irqrestore(&rtc->lock, flags);
336 return 0;
339 static irqreturn_t armada38x_rtc_alarm_irq(int irq, void *data)
341 struct armada38x_rtc *rtc = data;
342 u32 val;
343 int event = RTC_IRQF | RTC_AF;
344 u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
346 dev_dbg(&rtc->rtc_dev->dev, "%s:irq(%d)\n", __func__, irq);
348 spin_lock(&rtc->lock);
350 rtc->data->clear_isr(rtc);
351 val = rtc->data->read_rtc_reg(rtc, reg_irq);
352 /* disable all the interrupts for alarm*/
353 rtc_delayed_write(0, rtc, reg_irq);
354 /* Ack the event */
355 rtc_delayed_write(1 << rtc->data->alarm, rtc, RTC_STATUS);
357 spin_unlock(&rtc->lock);
359 if (val & RTC_IRQ_FREQ_EN) {
360 if (val & RTC_IRQ_FREQ_1HZ)
361 event |= RTC_UF;
362 else
363 event |= RTC_PF;
366 rtc_update_irq(rtc->rtc_dev, 1, event);
368 return IRQ_HANDLED;
372 * The information given in the Armada 388 functional spec is complex.
373 * They give two different formulas for calculating the offset value,
374 * but when considering "Offset" as an 8-bit signed integer, they both
375 * reduce down to (we shall rename "Offset" as "val" here):
377 * val = (f_ideal / f_measured - 1) / resolution where f_ideal = 32768
379 * Converting to time, f = 1/t:
380 * val = (t_measured / t_ideal - 1) / resolution where t_ideal = 1/32768
382 * => t_measured / t_ideal = val * resolution + 1
384 * "offset" in the RTC interface is defined as:
385 * t = t0 * (1 + offset * 1e-9)
386 * where t is the desired period, t0 is the measured period with a zero
387 * offset, which is t_measured above. With t0 = t_measured and t = t_ideal,
388 * offset = (t_ideal / t_measured - 1) / 1e-9
390 * => t_ideal / t_measured = offset * 1e-9 + 1
392 * so:
394 * offset * 1e-9 + 1 = 1 / (val * resolution + 1)
396 * We want "resolution" to be an integer, so resolution = R * 1e-9, giving
397 * offset = 1e18 / (val * R + 1e9) - 1e9
398 * val = (1e18 / (offset + 1e9) - 1e9) / R
399 * with a common transformation:
400 * f(x) = 1e18 / (x + 1e9) - 1e9
401 * offset = f(val * R)
402 * val = f(offset) / R
404 * Armada 38x supports two modes, fine mode (954ppb) and coarse mode (3815ppb).
406 static long armada38x_ppb_convert(long ppb)
408 long div = ppb + 1000000000L;
410 return div_s64(1000000000000000000LL + div / 2, div) - 1000000000L;
413 static int armada38x_rtc_read_offset(struct device *dev, long *offset)
415 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
416 unsigned long ccr, flags;
417 long ppb_cor;
419 spin_lock_irqsave(&rtc->lock, flags);
420 ccr = rtc->data->read_rtc_reg(rtc, RTC_CCR);
421 spin_unlock_irqrestore(&rtc->lock, flags);
423 ppb_cor = (ccr & RTC_CCR_MODE ? 3815 : 954) * (s8)ccr;
424 /* ppb_cor + 1000000000L can never be zero */
425 *offset = armada38x_ppb_convert(ppb_cor);
427 return 0;
430 static int armada38x_rtc_set_offset(struct device *dev, long offset)
432 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
433 unsigned long ccr = 0;
434 long ppb_cor, off;
437 * The maximum ppb_cor is -128 * 3815 .. 127 * 3815, but we
438 * need to clamp the input. This equates to -484270 .. 488558.
439 * Not only is this to stop out of range "off" but also to
440 * avoid the division by zero in armada38x_ppb_convert().
442 offset = clamp(offset, -484270L, 488558L);
444 ppb_cor = armada38x_ppb_convert(offset);
447 * Use low update mode where possible, which gives a better
448 * resolution of correction.
450 off = DIV_ROUND_CLOSEST(ppb_cor, 954);
451 if (off > 127 || off < -128) {
452 ccr = RTC_CCR_MODE;
453 off = DIV_ROUND_CLOSEST(ppb_cor, 3815);
457 * Armada 388 requires a bit pattern in bits 14..8 depending on
458 * the sign bit: { 0, ~S, S, S, S, S, S }
460 ccr |= (off & 0x3fff) ^ 0x2000;
461 rtc_delayed_write(ccr, rtc, RTC_CCR);
463 return 0;
466 static const struct rtc_class_ops armada38x_rtc_ops = {
467 .read_time = armada38x_rtc_read_time,
468 .set_time = armada38x_rtc_set_time,
469 .read_alarm = armada38x_rtc_read_alarm,
470 .set_alarm = armada38x_rtc_set_alarm,
471 .alarm_irq_enable = armada38x_rtc_alarm_irq_enable,
472 .read_offset = armada38x_rtc_read_offset,
473 .set_offset = armada38x_rtc_set_offset,
476 static const struct rtc_class_ops armada38x_rtc_ops_noirq = {
477 .read_time = armada38x_rtc_read_time,
478 .set_time = armada38x_rtc_set_time,
479 .read_alarm = armada38x_rtc_read_alarm,
480 .read_offset = armada38x_rtc_read_offset,
481 .set_offset = armada38x_rtc_set_offset,
484 static const struct armada38x_rtc_data armada38x_data = {
485 .update_mbus_timing = rtc_update_38x_mbus_timing_params,
486 .read_rtc_reg = read_rtc_register_38x_wa,
487 .clear_isr = armada38x_clear_isr,
488 .unmask_interrupt = armada38x_unmask_interrupt,
489 .alarm = ALARM1,
492 static const struct armada38x_rtc_data armada8k_data = {
493 .update_mbus_timing = rtc_update_8k_mbus_timing_params,
494 .read_rtc_reg = read_rtc_register,
495 .clear_isr = armada8k_clear_isr,
496 .unmask_interrupt = armada8k_unmask_interrupt,
497 .alarm = ALARM2,
500 #ifdef CONFIG_OF
501 static const struct of_device_id armada38x_rtc_of_match_table[] = {
503 .compatible = "marvell,armada-380-rtc",
504 .data = &armada38x_data,
507 .compatible = "marvell,armada-8k-rtc",
508 .data = &armada8k_data,
512 MODULE_DEVICE_TABLE(of, armada38x_rtc_of_match_table);
513 #endif
515 static __init int armada38x_rtc_probe(struct platform_device *pdev)
517 const struct rtc_class_ops *ops;
518 struct resource *res;
519 struct armada38x_rtc *rtc;
520 const struct of_device_id *match;
521 int ret;
523 match = of_match_device(armada38x_rtc_of_match_table, &pdev->dev);
524 if (!match)
525 return -ENODEV;
527 rtc = devm_kzalloc(&pdev->dev, sizeof(struct armada38x_rtc),
528 GFP_KERNEL);
529 if (!rtc)
530 return -ENOMEM;
532 rtc->val_to_freq = devm_kcalloc(&pdev->dev, SAMPLE_NR,
533 sizeof(struct value_to_freq), GFP_KERNEL);
534 if (!rtc->val_to_freq)
535 return -ENOMEM;
537 spin_lock_init(&rtc->lock);
539 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc");
540 rtc->regs = devm_ioremap_resource(&pdev->dev, res);
541 if (IS_ERR(rtc->regs))
542 return PTR_ERR(rtc->regs);
543 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc-soc");
544 rtc->regs_soc = devm_ioremap_resource(&pdev->dev, res);
545 if (IS_ERR(rtc->regs_soc))
546 return PTR_ERR(rtc->regs_soc);
548 rtc->irq = platform_get_irq(pdev, 0);
550 if (rtc->irq < 0) {
551 dev_err(&pdev->dev, "no irq\n");
552 return rtc->irq;
554 if (devm_request_irq(&pdev->dev, rtc->irq, armada38x_rtc_alarm_irq,
555 0, pdev->name, rtc) < 0) {
556 dev_warn(&pdev->dev, "Interrupt not available.\n");
557 rtc->irq = -1;
559 platform_set_drvdata(pdev, rtc);
561 if (rtc->irq != -1) {
562 device_init_wakeup(&pdev->dev, 1);
563 ops = &armada38x_rtc_ops;
564 } else {
566 * If there is no interrupt available then we can't
567 * use the alarm
569 ops = &armada38x_rtc_ops_noirq;
571 rtc->data = (struct armada38x_rtc_data *)match->data;
574 /* Update RTC-MBUS bridge timing parameters */
575 rtc->data->update_mbus_timing(rtc);
577 rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name,
578 ops, THIS_MODULE);
579 if (IS_ERR(rtc->rtc_dev)) {
580 ret = PTR_ERR(rtc->rtc_dev);
581 dev_err(&pdev->dev, "Failed to register RTC device: %d\n", ret);
582 return ret;
584 return 0;
587 #ifdef CONFIG_PM_SLEEP
588 static int armada38x_rtc_suspend(struct device *dev)
590 if (device_may_wakeup(dev)) {
591 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
593 return enable_irq_wake(rtc->irq);
596 return 0;
599 static int armada38x_rtc_resume(struct device *dev)
601 if (device_may_wakeup(dev)) {
602 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
604 /* Update RTC-MBUS bridge timing parameters */
605 rtc->data->update_mbus_timing(rtc);
607 return disable_irq_wake(rtc->irq);
610 return 0;
612 #endif
614 static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops,
615 armada38x_rtc_suspend, armada38x_rtc_resume);
617 static struct platform_driver armada38x_rtc_driver = {
618 .driver = {
619 .name = "armada38x-rtc",
620 .pm = &armada38x_rtc_pm_ops,
621 .of_match_table = of_match_ptr(armada38x_rtc_of_match_table),
625 module_platform_driver_probe(armada38x_rtc_driver, armada38x_rtc_probe);
627 MODULE_DESCRIPTION("Marvell Armada 38x RTC driver");
628 MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>");
629 MODULE_LICENSE("GPL");