perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / drivers / rtc / rtc-stmp3xxx.c
blobb76318fd5bb004b4fa492de45df151e9b46b9a35
1 /*
2 * Freescale STMP37XX/STMP378X Real Time Clock driver
4 * Copyright (c) 2007 Sigmatel, Inc.
5 * Peter Hartley, <peter.hartley@sigmatel.com>
7 * Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved.
8 * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
9 * Copyright 2011 Wolfram Sang, Pengutronix e.K.
13 * The code contained herein is licensed under the GNU General Public
14 * License. You may obtain a copy of the GNU General Public License
15 * Version 2 or later at the following locations:
17 * http://www.opensource.org/licenses/gpl-license.html
18 * http://www.gnu.org/copyleft/gpl.html
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/io.h>
23 #include <linux/init.h>
24 #include <linux/platform_device.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/rtc.h>
28 #include <linux/slab.h>
29 #include <linux/of_device.h>
30 #include <linux/of.h>
31 #include <linux/stmp_device.h>
32 #include <linux/stmp3xxx_rtc_wdt.h>
34 #define STMP3XXX_RTC_CTRL 0x0
35 #define STMP3XXX_RTC_CTRL_ALARM_IRQ_EN 0x00000001
36 #define STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN 0x00000002
37 #define STMP3XXX_RTC_CTRL_ALARM_IRQ 0x00000004
38 #define STMP3XXX_RTC_CTRL_WATCHDOGEN 0x00000010
40 #define STMP3XXX_RTC_STAT 0x10
41 #define STMP3XXX_RTC_STAT_STALE_SHIFT 16
42 #define STMP3XXX_RTC_STAT_RTC_PRESENT 0x80000000
43 #define STMP3XXX_RTC_STAT_XTAL32000_PRESENT 0x10000000
44 #define STMP3XXX_RTC_STAT_XTAL32768_PRESENT 0x08000000
46 #define STMP3XXX_RTC_SECONDS 0x30
48 #define STMP3XXX_RTC_ALARM 0x40
50 #define STMP3XXX_RTC_WATCHDOG 0x50
52 #define STMP3XXX_RTC_PERSISTENT0 0x60
53 #define STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE (1 << 0)
54 #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN (1 << 1)
55 #define STMP3XXX_RTC_PERSISTENT0_ALARM_EN (1 << 2)
56 #define STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP (1 << 4)
57 #define STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP (1 << 5)
58 #define STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ (1 << 6)
59 #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE (1 << 7)
61 #define STMP3XXX_RTC_PERSISTENT1 0x70
62 /* missing bitmask in headers */
63 #define STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER 0x80000000
65 struct stmp3xxx_rtc_data {
66 struct rtc_device *rtc;
67 void __iomem *io;
68 int irq_alarm;
71 #if IS_ENABLED(CONFIG_STMP3XXX_RTC_WATCHDOG)
72 /**
73 * stmp3xxx_wdt_set_timeout - configure the watchdog inside the STMP3xxx RTC
74 * @dev: the parent device of the watchdog (= the RTC)
75 * @timeout: the desired value for the timeout register of the watchdog.
76 * 0 disables the watchdog
78 * The watchdog needs one register and two bits which are in the RTC domain.
79 * To handle the resource conflict, the RTC driver will create another
80 * platform_device for the watchdog driver as a child of the RTC device.
81 * The watchdog driver is passed the below accessor function via platform_data
82 * to configure the watchdog. Locking is not needed because accessing SET/CLR
83 * registers is atomic.
86 static void stmp3xxx_wdt_set_timeout(struct device *dev, u32 timeout)
88 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
90 if (timeout) {
91 writel(timeout, rtc_data->io + STMP3XXX_RTC_WATCHDOG);
92 writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
93 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
94 writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
95 rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_SET);
96 } else {
97 writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
98 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
99 writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
100 rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_CLR);
104 static struct stmp3xxx_wdt_pdata wdt_pdata = {
105 .wdt_set_timeout = stmp3xxx_wdt_set_timeout,
108 static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
110 int rc = -1;
111 struct platform_device *wdt_pdev =
112 platform_device_alloc("stmp3xxx_rtc_wdt", rtc_pdev->id);
114 if (wdt_pdev) {
115 wdt_pdev->dev.parent = &rtc_pdev->dev;
116 wdt_pdev->dev.platform_data = &wdt_pdata;
117 rc = platform_device_add(wdt_pdev);
120 if (rc)
121 dev_err(&rtc_pdev->dev,
122 "failed to register stmp3xxx_rtc_wdt\n");
124 #else
125 static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
128 #endif /* CONFIG_STMP3XXX_RTC_WATCHDOG */
130 static int stmp3xxx_wait_time(struct stmp3xxx_rtc_data *rtc_data)
132 int timeout = 5000; /* 3ms according to i.MX28 Ref Manual */
134 * The i.MX28 Applications Processor Reference Manual, Rev. 1, 2010
135 * states:
136 * | The order in which registers are updated is
137 * | Persistent 0, 1, 2, 3, 4, 5, Alarm, Seconds.
138 * | (This list is in bitfield order, from LSB to MSB, as they would
139 * | appear in the STALE_REGS and NEW_REGS bitfields of the HW_RTC_STAT
140 * | register. For example, the Seconds register corresponds to
141 * | STALE_REGS or NEW_REGS containing 0x80.)
143 do {
144 if (!(readl(rtc_data->io + STMP3XXX_RTC_STAT) &
145 (0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)))
146 return 0;
147 udelay(1);
148 } while (--timeout > 0);
149 return (readl(rtc_data->io + STMP3XXX_RTC_STAT) &
150 (0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)) ? -ETIME : 0;
153 /* Time read/write */
154 static int stmp3xxx_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
156 int ret;
157 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
159 ret = stmp3xxx_wait_time(rtc_data);
160 if (ret)
161 return ret;
163 rtc_time_to_tm(readl(rtc_data->io + STMP3XXX_RTC_SECONDS), rtc_tm);
164 return 0;
167 static int stmp3xxx_rtc_set_mmss(struct device *dev, unsigned long t)
169 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
171 writel(t, rtc_data->io + STMP3XXX_RTC_SECONDS);
172 return stmp3xxx_wait_time(rtc_data);
175 /* interrupt(s) handler */
176 static irqreturn_t stmp3xxx_rtc_interrupt(int irq, void *dev_id)
178 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev_id);
179 u32 status = readl(rtc_data->io + STMP3XXX_RTC_CTRL);
181 if (status & STMP3XXX_RTC_CTRL_ALARM_IRQ) {
182 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ,
183 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
184 rtc_update_irq(rtc_data->rtc, 1, RTC_AF | RTC_IRQF);
185 return IRQ_HANDLED;
188 return IRQ_NONE;
191 static int stmp3xxx_alarm_irq_enable(struct device *dev, unsigned int enabled)
193 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
195 if (enabled) {
196 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
197 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
198 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
199 STMP_OFFSET_REG_SET);
200 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
201 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
202 } else {
203 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
204 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
205 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
206 STMP_OFFSET_REG_CLR);
207 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
208 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
210 return 0;
213 static int stmp3xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
215 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
217 rtc_time_to_tm(readl(rtc_data->io + STMP3XXX_RTC_ALARM), &alm->time);
218 return 0;
221 static int stmp3xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
223 unsigned long t;
224 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
226 rtc_tm_to_time(&alm->time, &t);
227 writel(t, rtc_data->io + STMP3XXX_RTC_ALARM);
229 stmp3xxx_alarm_irq_enable(dev, alm->enabled);
231 return 0;
234 static const struct rtc_class_ops stmp3xxx_rtc_ops = {
235 .alarm_irq_enable =
236 stmp3xxx_alarm_irq_enable,
237 .read_time = stmp3xxx_rtc_gettime,
238 .set_mmss = stmp3xxx_rtc_set_mmss,
239 .read_alarm = stmp3xxx_rtc_read_alarm,
240 .set_alarm = stmp3xxx_rtc_set_alarm,
243 static int stmp3xxx_rtc_remove(struct platform_device *pdev)
245 struct stmp3xxx_rtc_data *rtc_data = platform_get_drvdata(pdev);
247 if (!rtc_data)
248 return 0;
250 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
251 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
253 return 0;
256 static int stmp3xxx_rtc_probe(struct platform_device *pdev)
258 struct stmp3xxx_rtc_data *rtc_data;
259 struct resource *r;
260 u32 rtc_stat;
261 u32 pers0_set, pers0_clr;
262 u32 crystalfreq = 0;
263 int err;
265 rtc_data = devm_kzalloc(&pdev->dev, sizeof(*rtc_data), GFP_KERNEL);
266 if (!rtc_data)
267 return -ENOMEM;
269 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
270 if (!r) {
271 dev_err(&pdev->dev, "failed to get resource\n");
272 return -ENXIO;
275 rtc_data->io = devm_ioremap(&pdev->dev, r->start, resource_size(r));
276 if (!rtc_data->io) {
277 dev_err(&pdev->dev, "ioremap failed\n");
278 return -EIO;
281 rtc_data->irq_alarm = platform_get_irq(pdev, 0);
283 rtc_stat = readl(rtc_data->io + STMP3XXX_RTC_STAT);
284 if (!(rtc_stat & STMP3XXX_RTC_STAT_RTC_PRESENT)) {
285 dev_err(&pdev->dev, "no device onboard\n");
286 return -ENODEV;
289 platform_set_drvdata(pdev, rtc_data);
292 * Resetting the rtc stops the watchdog timer that is potentially
293 * running. So (assuming it is running on purpose) don't reset if the
294 * watchdog is enabled.
296 if (readl(rtc_data->io + STMP3XXX_RTC_CTRL) &
297 STMP3XXX_RTC_CTRL_WATCHDOGEN) {
298 dev_info(&pdev->dev,
299 "Watchdog is running, skip resetting rtc\n");
300 } else {
301 err = stmp_reset_block(rtc_data->io);
302 if (err) {
303 dev_err(&pdev->dev, "stmp_reset_block failed: %d\n",
304 err);
305 return err;
310 * Obviously the rtc needs a clock input to be able to run.
311 * This clock can be provided by an external 32k crystal. If that one is
312 * missing XTAL must not be disabled in suspend which consumes a
313 * lot of power. Normally the presence and exact frequency (supported
314 * are 32000 Hz and 32768 Hz) is detectable from fuses, but as reality
315 * proves these fuses are not blown correctly on all machines, so the
316 * frequency can be overridden in the device tree.
318 if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32000_PRESENT)
319 crystalfreq = 32000;
320 else if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32768_PRESENT)
321 crystalfreq = 32768;
323 of_property_read_u32(pdev->dev.of_node, "stmp,crystal-freq",
324 &crystalfreq);
326 switch (crystalfreq) {
327 case 32000:
328 /* keep 32kHz crystal running in low-power mode */
329 pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ |
330 STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
331 STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
332 pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
333 break;
334 case 32768:
335 /* keep 32.768kHz crystal running in low-power mode */
336 pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
337 STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
338 pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP |
339 STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ;
340 break;
341 default:
342 dev_warn(&pdev->dev,
343 "invalid crystal-freq specified in device-tree. Assuming no crystal\n");
344 /* fall-through */
345 case 0:
346 /* keep XTAL on in low-power mode */
347 pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
348 pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
349 STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
352 writel(pers0_set, rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
353 STMP_OFFSET_REG_SET);
355 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
356 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
357 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE | pers0_clr,
358 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
360 writel(STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN |
361 STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
362 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
364 rtc_data->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
365 &stmp3xxx_rtc_ops, THIS_MODULE);
366 if (IS_ERR(rtc_data->rtc))
367 return PTR_ERR(rtc_data->rtc);
369 err = devm_request_irq(&pdev->dev, rtc_data->irq_alarm,
370 stmp3xxx_rtc_interrupt, 0, "RTC alarm", &pdev->dev);
371 if (err) {
372 dev_err(&pdev->dev, "Cannot claim IRQ%d\n",
373 rtc_data->irq_alarm);
374 return err;
377 stmp3xxx_wdt_register(pdev);
378 return 0;
381 #ifdef CONFIG_PM_SLEEP
382 static int stmp3xxx_rtc_suspend(struct device *dev)
384 return 0;
387 static int stmp3xxx_rtc_resume(struct device *dev)
389 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
391 stmp_reset_block(rtc_data->io);
392 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
393 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
394 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE,
395 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
396 return 0;
398 #endif
400 static SIMPLE_DEV_PM_OPS(stmp3xxx_rtc_pm_ops, stmp3xxx_rtc_suspend,
401 stmp3xxx_rtc_resume);
403 static const struct of_device_id rtc_dt_ids[] = {
404 { .compatible = "fsl,stmp3xxx-rtc", },
405 { /* sentinel */ }
407 MODULE_DEVICE_TABLE(of, rtc_dt_ids);
409 static struct platform_driver stmp3xxx_rtcdrv = {
410 .probe = stmp3xxx_rtc_probe,
411 .remove = stmp3xxx_rtc_remove,
412 .driver = {
413 .name = "stmp3xxx-rtc",
414 .pm = &stmp3xxx_rtc_pm_ops,
415 .of_match_table = rtc_dt_ids,
419 module_platform_driver(stmp3xxx_rtcdrv);
421 MODULE_DESCRIPTION("STMP3xxx RTC Driver");
422 MODULE_AUTHOR("dmitry pervushin <dpervushin@embeddedalley.com> and "
423 "Wolfram Sang <w.sang@pengutronix.de>");
424 MODULE_LICENSE("GPL");