perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / drivers / scsi / libsas / sas_expander.c
blob0d1f72752ca26e77869215809a542cf8db1906ce
1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
29 #include "sas_internal.h"
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39 u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
42 /* ---------- SMP task management ---------- */
44 static void smp_task_timedout(struct timer_list *t)
46 struct sas_task_slow *slow = from_timer(slow, t, timer);
47 struct sas_task *task = slow->task;
48 unsigned long flags;
50 spin_lock_irqsave(&task->task_state_lock, flags);
51 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
52 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
53 complete(&task->slow_task->completion);
55 spin_unlock_irqrestore(&task->task_state_lock, flags);
58 static void smp_task_done(struct sas_task *task)
60 del_timer(&task->slow_task->timer);
61 complete(&task->slow_task->completion);
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
67 static int smp_execute_task_sg(struct domain_device *dev,
68 struct scatterlist *req, struct scatterlist *resp)
70 int res, retry;
71 struct sas_task *task = NULL;
72 struct sas_internal *i =
73 to_sas_internal(dev->port->ha->core.shost->transportt);
75 mutex_lock(&dev->ex_dev.cmd_mutex);
76 for (retry = 0; retry < 3; retry++) {
77 if (test_bit(SAS_DEV_GONE, &dev->state)) {
78 res = -ECOMM;
79 break;
82 task = sas_alloc_slow_task(GFP_KERNEL);
83 if (!task) {
84 res = -ENOMEM;
85 break;
87 task->dev = dev;
88 task->task_proto = dev->tproto;
89 task->smp_task.smp_req = *req;
90 task->smp_task.smp_resp = *resp;
92 task->task_done = smp_task_done;
94 task->slow_task->timer.function = smp_task_timedout;
95 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
96 add_timer(&task->slow_task->timer);
98 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
100 if (res) {
101 del_timer(&task->slow_task->timer);
102 SAS_DPRINTK("executing SMP task failed:%d\n", res);
103 break;
106 wait_for_completion(&task->slow_task->completion);
107 res = -ECOMM;
108 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
109 SAS_DPRINTK("smp task timed out or aborted\n");
110 i->dft->lldd_abort_task(task);
111 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
112 SAS_DPRINTK("SMP task aborted and not done\n");
113 break;
116 if (task->task_status.resp == SAS_TASK_COMPLETE &&
117 task->task_status.stat == SAM_STAT_GOOD) {
118 res = 0;
119 break;
121 if (task->task_status.resp == SAS_TASK_COMPLETE &&
122 task->task_status.stat == SAS_DATA_UNDERRUN) {
123 /* no error, but return the number of bytes of
124 * underrun */
125 res = task->task_status.residual;
126 break;
128 if (task->task_status.resp == SAS_TASK_COMPLETE &&
129 task->task_status.stat == SAS_DATA_OVERRUN) {
130 res = -EMSGSIZE;
131 break;
133 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
134 task->task_status.stat == SAS_DEVICE_UNKNOWN)
135 break;
136 else {
137 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
138 "status 0x%x\n", __func__,
139 SAS_ADDR(dev->sas_addr),
140 task->task_status.resp,
141 task->task_status.stat);
142 sas_free_task(task);
143 task = NULL;
146 mutex_unlock(&dev->ex_dev.cmd_mutex);
148 BUG_ON(retry == 3 && task != NULL);
149 sas_free_task(task);
150 return res;
153 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
154 void *resp, int resp_size)
156 struct scatterlist req_sg;
157 struct scatterlist resp_sg;
159 sg_init_one(&req_sg, req, req_size);
160 sg_init_one(&resp_sg, resp, resp_size);
161 return smp_execute_task_sg(dev, &req_sg, &resp_sg);
164 /* ---------- Allocations ---------- */
166 static inline void *alloc_smp_req(int size)
168 u8 *p = kzalloc(size, GFP_KERNEL);
169 if (p)
170 p[0] = SMP_REQUEST;
171 return p;
174 static inline void *alloc_smp_resp(int size)
176 return kzalloc(size, GFP_KERNEL);
179 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
181 switch (phy->routing_attr) {
182 case TABLE_ROUTING:
183 if (dev->ex_dev.t2t_supp)
184 return 'U';
185 else
186 return 'T';
187 case DIRECT_ROUTING:
188 return 'D';
189 case SUBTRACTIVE_ROUTING:
190 return 'S';
191 default:
192 return '?';
196 static enum sas_device_type to_dev_type(struct discover_resp *dr)
198 /* This is detecting a failure to transmit initial dev to host
199 * FIS as described in section J.5 of sas-2 r16
201 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
202 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
203 return SAS_SATA_PENDING;
204 else
205 return dr->attached_dev_type;
208 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
210 enum sas_device_type dev_type;
211 enum sas_linkrate linkrate;
212 u8 sas_addr[SAS_ADDR_SIZE];
213 struct smp_resp *resp = rsp;
214 struct discover_resp *dr = &resp->disc;
215 struct sas_ha_struct *ha = dev->port->ha;
216 struct expander_device *ex = &dev->ex_dev;
217 struct ex_phy *phy = &ex->ex_phy[phy_id];
218 struct sas_rphy *rphy = dev->rphy;
219 bool new_phy = !phy->phy;
220 char *type;
222 if (new_phy) {
223 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
224 return;
225 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
227 /* FIXME: error_handling */
228 BUG_ON(!phy->phy);
231 switch (resp->result) {
232 case SMP_RESP_PHY_VACANT:
233 phy->phy_state = PHY_VACANT;
234 break;
235 default:
236 phy->phy_state = PHY_NOT_PRESENT;
237 break;
238 case SMP_RESP_FUNC_ACC:
239 phy->phy_state = PHY_EMPTY; /* do not know yet */
240 break;
243 /* check if anything important changed to squelch debug */
244 dev_type = phy->attached_dev_type;
245 linkrate = phy->linkrate;
246 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
248 /* Handle vacant phy - rest of dr data is not valid so skip it */
249 if (phy->phy_state == PHY_VACANT) {
250 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
251 phy->attached_dev_type = SAS_PHY_UNUSED;
252 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
253 phy->phy_id = phy_id;
254 goto skip;
255 } else
256 goto out;
259 phy->attached_dev_type = to_dev_type(dr);
260 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
261 goto out;
262 phy->phy_id = phy_id;
263 phy->linkrate = dr->linkrate;
264 phy->attached_sata_host = dr->attached_sata_host;
265 phy->attached_sata_dev = dr->attached_sata_dev;
266 phy->attached_sata_ps = dr->attached_sata_ps;
267 phy->attached_iproto = dr->iproto << 1;
268 phy->attached_tproto = dr->tproto << 1;
269 /* help some expanders that fail to zero sas_address in the 'no
270 * device' case
272 if (phy->attached_dev_type == SAS_PHY_UNUSED ||
273 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
274 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
275 else
276 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
277 phy->attached_phy_id = dr->attached_phy_id;
278 phy->phy_change_count = dr->change_count;
279 phy->routing_attr = dr->routing_attr;
280 phy->virtual = dr->virtual;
281 phy->last_da_index = -1;
283 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
284 phy->phy->identify.device_type = dr->attached_dev_type;
285 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
286 phy->phy->identify.target_port_protocols = phy->attached_tproto;
287 if (!phy->attached_tproto && dr->attached_sata_dev)
288 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
289 phy->phy->identify.phy_identifier = phy_id;
290 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
291 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
292 phy->phy->minimum_linkrate = dr->pmin_linkrate;
293 phy->phy->maximum_linkrate = dr->pmax_linkrate;
294 phy->phy->negotiated_linkrate = phy->linkrate;
295 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
297 skip:
298 if (new_phy)
299 if (sas_phy_add(phy->phy)) {
300 sas_phy_free(phy->phy);
301 return;
304 out:
305 switch (phy->attached_dev_type) {
306 case SAS_SATA_PENDING:
307 type = "stp pending";
308 break;
309 case SAS_PHY_UNUSED:
310 type = "no device";
311 break;
312 case SAS_END_DEVICE:
313 if (phy->attached_iproto) {
314 if (phy->attached_tproto)
315 type = "host+target";
316 else
317 type = "host";
318 } else {
319 if (dr->attached_sata_dev)
320 type = "stp";
321 else
322 type = "ssp";
324 break;
325 case SAS_EDGE_EXPANDER_DEVICE:
326 case SAS_FANOUT_EXPANDER_DEVICE:
327 type = "smp";
328 break;
329 default:
330 type = "unknown";
333 /* this routine is polled by libata error recovery so filter
334 * unimportant messages
336 if (new_phy || phy->attached_dev_type != dev_type ||
337 phy->linkrate != linkrate ||
338 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
339 /* pass */;
340 else
341 return;
343 /* if the attached device type changed and ata_eh is active,
344 * make sure we run revalidation when eh completes (see:
345 * sas_enable_revalidation)
347 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
348 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
350 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
351 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
352 SAS_ADDR(dev->sas_addr), phy->phy_id,
353 sas_route_char(dev, phy), phy->linkrate,
354 SAS_ADDR(phy->attached_sas_addr), type);
357 /* check if we have an existing attached ata device on this expander phy */
358 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
360 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
361 struct domain_device *dev;
362 struct sas_rphy *rphy;
364 if (!ex_phy->port)
365 return NULL;
367 rphy = ex_phy->port->rphy;
368 if (!rphy)
369 return NULL;
371 dev = sas_find_dev_by_rphy(rphy);
373 if (dev && dev_is_sata(dev))
374 return dev;
376 return NULL;
379 #define DISCOVER_REQ_SIZE 16
380 #define DISCOVER_RESP_SIZE 56
382 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
383 u8 *disc_resp, int single)
385 struct discover_resp *dr;
386 int res;
388 disc_req[9] = single;
390 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
391 disc_resp, DISCOVER_RESP_SIZE);
392 if (res)
393 return res;
394 dr = &((struct smp_resp *)disc_resp)->disc;
395 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
396 sas_printk("Found loopback topology, just ignore it!\n");
397 return 0;
399 sas_set_ex_phy(dev, single, disc_resp);
400 return 0;
403 int sas_ex_phy_discover(struct domain_device *dev, int single)
405 struct expander_device *ex = &dev->ex_dev;
406 int res = 0;
407 u8 *disc_req;
408 u8 *disc_resp;
410 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
411 if (!disc_req)
412 return -ENOMEM;
414 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
415 if (!disc_resp) {
416 kfree(disc_req);
417 return -ENOMEM;
420 disc_req[1] = SMP_DISCOVER;
422 if (0 <= single && single < ex->num_phys) {
423 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
424 } else {
425 int i;
427 for (i = 0; i < ex->num_phys; i++) {
428 res = sas_ex_phy_discover_helper(dev, disc_req,
429 disc_resp, i);
430 if (res)
431 goto out_err;
434 out_err:
435 kfree(disc_resp);
436 kfree(disc_req);
437 return res;
440 static int sas_expander_discover(struct domain_device *dev)
442 struct expander_device *ex = &dev->ex_dev;
443 int res = -ENOMEM;
445 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
446 if (!ex->ex_phy)
447 return -ENOMEM;
449 res = sas_ex_phy_discover(dev, -1);
450 if (res)
451 goto out_err;
453 return 0;
454 out_err:
455 kfree(ex->ex_phy);
456 ex->ex_phy = NULL;
457 return res;
460 #define MAX_EXPANDER_PHYS 128
462 static void ex_assign_report_general(struct domain_device *dev,
463 struct smp_resp *resp)
465 struct report_general_resp *rg = &resp->rg;
467 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
468 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
469 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
470 dev->ex_dev.t2t_supp = rg->t2t_supp;
471 dev->ex_dev.conf_route_table = rg->conf_route_table;
472 dev->ex_dev.configuring = rg->configuring;
473 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
476 #define RG_REQ_SIZE 8
477 #define RG_RESP_SIZE 32
479 static int sas_ex_general(struct domain_device *dev)
481 u8 *rg_req;
482 struct smp_resp *rg_resp;
483 int res;
484 int i;
486 rg_req = alloc_smp_req(RG_REQ_SIZE);
487 if (!rg_req)
488 return -ENOMEM;
490 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
491 if (!rg_resp) {
492 kfree(rg_req);
493 return -ENOMEM;
496 rg_req[1] = SMP_REPORT_GENERAL;
498 for (i = 0; i < 5; i++) {
499 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
500 RG_RESP_SIZE);
502 if (res) {
503 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
504 SAS_ADDR(dev->sas_addr), res);
505 goto out;
506 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
507 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
508 SAS_ADDR(dev->sas_addr), rg_resp->result);
509 res = rg_resp->result;
510 goto out;
513 ex_assign_report_general(dev, rg_resp);
515 if (dev->ex_dev.configuring) {
516 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
517 SAS_ADDR(dev->sas_addr));
518 schedule_timeout_interruptible(5*HZ);
519 } else
520 break;
522 out:
523 kfree(rg_req);
524 kfree(rg_resp);
525 return res;
528 static void ex_assign_manuf_info(struct domain_device *dev, void
529 *_mi_resp)
531 u8 *mi_resp = _mi_resp;
532 struct sas_rphy *rphy = dev->rphy;
533 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
535 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
536 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
537 memcpy(edev->product_rev, mi_resp + 36,
538 SAS_EXPANDER_PRODUCT_REV_LEN);
540 if (mi_resp[8] & 1) {
541 memcpy(edev->component_vendor_id, mi_resp + 40,
542 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
543 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
544 edev->component_revision_id = mi_resp[50];
548 #define MI_REQ_SIZE 8
549 #define MI_RESP_SIZE 64
551 static int sas_ex_manuf_info(struct domain_device *dev)
553 u8 *mi_req;
554 u8 *mi_resp;
555 int res;
557 mi_req = alloc_smp_req(MI_REQ_SIZE);
558 if (!mi_req)
559 return -ENOMEM;
561 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
562 if (!mi_resp) {
563 kfree(mi_req);
564 return -ENOMEM;
567 mi_req[1] = SMP_REPORT_MANUF_INFO;
569 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
570 if (res) {
571 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
572 SAS_ADDR(dev->sas_addr), res);
573 goto out;
574 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
575 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
576 SAS_ADDR(dev->sas_addr), mi_resp[2]);
577 goto out;
580 ex_assign_manuf_info(dev, mi_resp);
581 out:
582 kfree(mi_req);
583 kfree(mi_resp);
584 return res;
587 #define PC_REQ_SIZE 44
588 #define PC_RESP_SIZE 8
590 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
591 enum phy_func phy_func,
592 struct sas_phy_linkrates *rates)
594 u8 *pc_req;
595 u8 *pc_resp;
596 int res;
598 pc_req = alloc_smp_req(PC_REQ_SIZE);
599 if (!pc_req)
600 return -ENOMEM;
602 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
603 if (!pc_resp) {
604 kfree(pc_req);
605 return -ENOMEM;
608 pc_req[1] = SMP_PHY_CONTROL;
609 pc_req[9] = phy_id;
610 pc_req[10]= phy_func;
611 if (rates) {
612 pc_req[32] = rates->minimum_linkrate << 4;
613 pc_req[33] = rates->maximum_linkrate << 4;
616 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
618 kfree(pc_resp);
619 kfree(pc_req);
620 return res;
623 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
625 struct expander_device *ex = &dev->ex_dev;
626 struct ex_phy *phy = &ex->ex_phy[phy_id];
628 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
629 phy->linkrate = SAS_PHY_DISABLED;
632 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
634 struct expander_device *ex = &dev->ex_dev;
635 int i;
637 for (i = 0; i < ex->num_phys; i++) {
638 struct ex_phy *phy = &ex->ex_phy[i];
640 if (phy->phy_state == PHY_VACANT ||
641 phy->phy_state == PHY_NOT_PRESENT)
642 continue;
644 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
645 sas_ex_disable_phy(dev, i);
649 static int sas_dev_present_in_domain(struct asd_sas_port *port,
650 u8 *sas_addr)
652 struct domain_device *dev;
654 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
655 return 1;
656 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
657 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
658 return 1;
660 return 0;
663 #define RPEL_REQ_SIZE 16
664 #define RPEL_RESP_SIZE 32
665 int sas_smp_get_phy_events(struct sas_phy *phy)
667 int res;
668 u8 *req;
669 u8 *resp;
670 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
671 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
673 req = alloc_smp_req(RPEL_REQ_SIZE);
674 if (!req)
675 return -ENOMEM;
677 resp = alloc_smp_resp(RPEL_RESP_SIZE);
678 if (!resp) {
679 kfree(req);
680 return -ENOMEM;
683 req[1] = SMP_REPORT_PHY_ERR_LOG;
684 req[9] = phy->number;
686 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
687 resp, RPEL_RESP_SIZE);
689 if (res)
690 goto out;
692 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
693 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
694 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
695 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
697 out:
698 kfree(req);
699 kfree(resp);
700 return res;
704 #ifdef CONFIG_SCSI_SAS_ATA
706 #define RPS_REQ_SIZE 16
707 #define RPS_RESP_SIZE 60
709 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
710 struct smp_resp *rps_resp)
712 int res;
713 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
714 u8 *resp = (u8 *)rps_resp;
716 if (!rps_req)
717 return -ENOMEM;
719 rps_req[1] = SMP_REPORT_PHY_SATA;
720 rps_req[9] = phy_id;
722 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
723 rps_resp, RPS_RESP_SIZE);
725 /* 0x34 is the FIS type for the D2H fis. There's a potential
726 * standards cockup here. sas-2 explicitly specifies the FIS
727 * should be encoded so that FIS type is in resp[24].
728 * However, some expanders endian reverse this. Undo the
729 * reversal here */
730 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
731 int i;
733 for (i = 0; i < 5; i++) {
734 int j = 24 + (i*4);
735 u8 a, b;
736 a = resp[j + 0];
737 b = resp[j + 1];
738 resp[j + 0] = resp[j + 3];
739 resp[j + 1] = resp[j + 2];
740 resp[j + 2] = b;
741 resp[j + 3] = a;
745 kfree(rps_req);
746 return res;
748 #endif
750 static void sas_ex_get_linkrate(struct domain_device *parent,
751 struct domain_device *child,
752 struct ex_phy *parent_phy)
754 struct expander_device *parent_ex = &parent->ex_dev;
755 struct sas_port *port;
756 int i;
758 child->pathways = 0;
760 port = parent_phy->port;
762 for (i = 0; i < parent_ex->num_phys; i++) {
763 struct ex_phy *phy = &parent_ex->ex_phy[i];
765 if (phy->phy_state == PHY_VACANT ||
766 phy->phy_state == PHY_NOT_PRESENT)
767 continue;
769 if (SAS_ADDR(phy->attached_sas_addr) ==
770 SAS_ADDR(child->sas_addr)) {
772 child->min_linkrate = min(parent->min_linkrate,
773 phy->linkrate);
774 child->max_linkrate = max(parent->max_linkrate,
775 phy->linkrate);
776 child->pathways++;
777 sas_port_add_phy(port, phy->phy);
780 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
781 child->pathways = min(child->pathways, parent->pathways);
784 static struct domain_device *sas_ex_discover_end_dev(
785 struct domain_device *parent, int phy_id)
787 struct expander_device *parent_ex = &parent->ex_dev;
788 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
789 struct domain_device *child = NULL;
790 struct sas_rphy *rphy;
791 int res;
793 if (phy->attached_sata_host || phy->attached_sata_ps)
794 return NULL;
796 child = sas_alloc_device();
797 if (!child)
798 return NULL;
800 kref_get(&parent->kref);
801 child->parent = parent;
802 child->port = parent->port;
803 child->iproto = phy->attached_iproto;
804 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
805 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
806 if (!phy->port) {
807 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
808 if (unlikely(!phy->port))
809 goto out_err;
810 if (unlikely(sas_port_add(phy->port) != 0)) {
811 sas_port_free(phy->port);
812 goto out_err;
815 sas_ex_get_linkrate(parent, child, phy);
816 sas_device_set_phy(child, phy->port);
818 #ifdef CONFIG_SCSI_SAS_ATA
819 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
820 res = sas_get_ata_info(child, phy);
821 if (res)
822 goto out_free;
824 sas_init_dev(child);
825 res = sas_ata_init(child);
826 if (res)
827 goto out_free;
828 rphy = sas_end_device_alloc(phy->port);
829 if (!rphy)
830 goto out_free;
832 child->rphy = rphy;
833 get_device(&rphy->dev);
835 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
837 res = sas_discover_sata(child);
838 if (res) {
839 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
840 "%016llx:0x%x returned 0x%x\n",
841 SAS_ADDR(child->sas_addr),
842 SAS_ADDR(parent->sas_addr), phy_id, res);
843 goto out_list_del;
845 } else
846 #endif
847 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
848 child->dev_type = SAS_END_DEVICE;
849 rphy = sas_end_device_alloc(phy->port);
850 /* FIXME: error handling */
851 if (unlikely(!rphy))
852 goto out_free;
853 child->tproto = phy->attached_tproto;
854 sas_init_dev(child);
856 child->rphy = rphy;
857 get_device(&rphy->dev);
858 sas_fill_in_rphy(child, rphy);
860 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
862 res = sas_discover_end_dev(child);
863 if (res) {
864 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
865 "at %016llx:0x%x returned 0x%x\n",
866 SAS_ADDR(child->sas_addr),
867 SAS_ADDR(parent->sas_addr), phy_id, res);
868 goto out_list_del;
870 } else {
871 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
872 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
873 phy_id);
874 goto out_free;
877 list_add_tail(&child->siblings, &parent_ex->children);
878 return child;
880 out_list_del:
881 sas_rphy_free(child->rphy);
882 list_del(&child->disco_list_node);
883 spin_lock_irq(&parent->port->dev_list_lock);
884 list_del(&child->dev_list_node);
885 spin_unlock_irq(&parent->port->dev_list_lock);
886 out_free:
887 sas_port_delete(phy->port);
888 out_err:
889 phy->port = NULL;
890 sas_put_device(child);
891 return NULL;
894 /* See if this phy is part of a wide port */
895 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
897 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
898 int i;
900 for (i = 0; i < parent->ex_dev.num_phys; i++) {
901 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
903 if (ephy == phy)
904 continue;
906 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
907 SAS_ADDR_SIZE) && ephy->port) {
908 sas_port_add_phy(ephy->port, phy->phy);
909 phy->port = ephy->port;
910 phy->phy_state = PHY_DEVICE_DISCOVERED;
911 return true;
915 return false;
918 static struct domain_device *sas_ex_discover_expander(
919 struct domain_device *parent, int phy_id)
921 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
922 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
923 struct domain_device *child = NULL;
924 struct sas_rphy *rphy;
925 struct sas_expander_device *edev;
926 struct asd_sas_port *port;
927 int res;
929 if (phy->routing_attr == DIRECT_ROUTING) {
930 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
931 "allowed\n",
932 SAS_ADDR(parent->sas_addr), phy_id,
933 SAS_ADDR(phy->attached_sas_addr),
934 phy->attached_phy_id);
935 return NULL;
937 child = sas_alloc_device();
938 if (!child)
939 return NULL;
941 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
942 /* FIXME: better error handling */
943 BUG_ON(sas_port_add(phy->port) != 0);
946 switch (phy->attached_dev_type) {
947 case SAS_EDGE_EXPANDER_DEVICE:
948 rphy = sas_expander_alloc(phy->port,
949 SAS_EDGE_EXPANDER_DEVICE);
950 break;
951 case SAS_FANOUT_EXPANDER_DEVICE:
952 rphy = sas_expander_alloc(phy->port,
953 SAS_FANOUT_EXPANDER_DEVICE);
954 break;
955 default:
956 rphy = NULL; /* shut gcc up */
957 BUG();
959 port = parent->port;
960 child->rphy = rphy;
961 get_device(&rphy->dev);
962 edev = rphy_to_expander_device(rphy);
963 child->dev_type = phy->attached_dev_type;
964 kref_get(&parent->kref);
965 child->parent = parent;
966 child->port = port;
967 child->iproto = phy->attached_iproto;
968 child->tproto = phy->attached_tproto;
969 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
970 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
971 sas_ex_get_linkrate(parent, child, phy);
972 edev->level = parent_ex->level + 1;
973 parent->port->disc.max_level = max(parent->port->disc.max_level,
974 edev->level);
975 sas_init_dev(child);
976 sas_fill_in_rphy(child, rphy);
977 sas_rphy_add(rphy);
979 spin_lock_irq(&parent->port->dev_list_lock);
980 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
981 spin_unlock_irq(&parent->port->dev_list_lock);
983 res = sas_discover_expander(child);
984 if (res) {
985 sas_rphy_delete(rphy);
986 spin_lock_irq(&parent->port->dev_list_lock);
987 list_del(&child->dev_list_node);
988 spin_unlock_irq(&parent->port->dev_list_lock);
989 sas_put_device(child);
990 return NULL;
992 list_add_tail(&child->siblings, &parent->ex_dev.children);
993 return child;
996 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
998 struct expander_device *ex = &dev->ex_dev;
999 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1000 struct domain_device *child = NULL;
1001 int res = 0;
1003 /* Phy state */
1004 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1005 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1006 res = sas_ex_phy_discover(dev, phy_id);
1007 if (res)
1008 return res;
1011 /* Parent and domain coherency */
1012 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1013 SAS_ADDR(dev->port->sas_addr))) {
1014 sas_add_parent_port(dev, phy_id);
1015 return 0;
1017 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1018 SAS_ADDR(dev->parent->sas_addr))) {
1019 sas_add_parent_port(dev, phy_id);
1020 if (ex_phy->routing_attr == TABLE_ROUTING)
1021 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1022 return 0;
1025 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1026 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1028 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1029 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1030 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1031 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1033 return 0;
1034 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1035 return 0;
1037 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1038 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1039 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1040 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1041 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1042 "phy 0x%x\n", ex_phy->attached_dev_type,
1043 SAS_ADDR(dev->sas_addr),
1044 phy_id);
1045 return 0;
1048 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1049 if (res) {
1050 SAS_DPRINTK("configure routing for dev %016llx "
1051 "reported 0x%x. Forgotten\n",
1052 SAS_ADDR(ex_phy->attached_sas_addr), res);
1053 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1054 return res;
1057 if (sas_ex_join_wide_port(dev, phy_id)) {
1058 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1059 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1060 return res;
1063 switch (ex_phy->attached_dev_type) {
1064 case SAS_END_DEVICE:
1065 case SAS_SATA_PENDING:
1066 child = sas_ex_discover_end_dev(dev, phy_id);
1067 break;
1068 case SAS_FANOUT_EXPANDER_DEVICE:
1069 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1070 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1071 "attached to ex %016llx phy 0x%x\n",
1072 SAS_ADDR(ex_phy->attached_sas_addr),
1073 ex_phy->attached_phy_id,
1074 SAS_ADDR(dev->sas_addr),
1075 phy_id);
1076 sas_ex_disable_phy(dev, phy_id);
1077 break;
1078 } else
1079 memcpy(dev->port->disc.fanout_sas_addr,
1080 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1081 /* fallthrough */
1082 case SAS_EDGE_EXPANDER_DEVICE:
1083 child = sas_ex_discover_expander(dev, phy_id);
1084 break;
1085 default:
1086 break;
1089 if (child) {
1090 int i;
1092 for (i = 0; i < ex->num_phys; i++) {
1093 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1094 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1095 continue;
1097 * Due to races, the phy might not get added to the
1098 * wide port, so we add the phy to the wide port here.
1100 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1101 SAS_ADDR(child->sas_addr)) {
1102 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1103 if (sas_ex_join_wide_port(dev, i))
1104 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1105 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1111 return res;
1114 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1116 struct expander_device *ex = &dev->ex_dev;
1117 int i;
1119 for (i = 0; i < ex->num_phys; i++) {
1120 struct ex_phy *phy = &ex->ex_phy[i];
1122 if (phy->phy_state == PHY_VACANT ||
1123 phy->phy_state == PHY_NOT_PRESENT)
1124 continue;
1126 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1127 phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1128 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1130 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1132 return 1;
1135 return 0;
1138 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1140 struct expander_device *ex = &dev->ex_dev;
1141 struct domain_device *child;
1142 u8 sub_addr[8] = {0, };
1144 list_for_each_entry(child, &ex->children, siblings) {
1145 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1146 child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1147 continue;
1148 if (sub_addr[0] == 0) {
1149 sas_find_sub_addr(child, sub_addr);
1150 continue;
1151 } else {
1152 u8 s2[8];
1154 if (sas_find_sub_addr(child, s2) &&
1155 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1157 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1158 "diverges from subtractive "
1159 "boundary %016llx\n",
1160 SAS_ADDR(dev->sas_addr),
1161 SAS_ADDR(child->sas_addr),
1162 SAS_ADDR(s2),
1163 SAS_ADDR(sub_addr));
1165 sas_ex_disable_port(child, s2);
1169 return 0;
1172 * sas_ex_discover_devices - discover devices attached to this expander
1173 * @dev: pointer to the expander domain device
1174 * @single: if you want to do a single phy, else set to -1;
1176 * Configure this expander for use with its devices and register the
1177 * devices of this expander.
1179 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1181 struct expander_device *ex = &dev->ex_dev;
1182 int i = 0, end = ex->num_phys;
1183 int res = 0;
1185 if (0 <= single && single < end) {
1186 i = single;
1187 end = i+1;
1190 for ( ; i < end; i++) {
1191 struct ex_phy *ex_phy = &ex->ex_phy[i];
1193 if (ex_phy->phy_state == PHY_VACANT ||
1194 ex_phy->phy_state == PHY_NOT_PRESENT ||
1195 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1196 continue;
1198 switch (ex_phy->linkrate) {
1199 case SAS_PHY_DISABLED:
1200 case SAS_PHY_RESET_PROBLEM:
1201 case SAS_SATA_PORT_SELECTOR:
1202 continue;
1203 default:
1204 res = sas_ex_discover_dev(dev, i);
1205 if (res)
1206 break;
1207 continue;
1211 if (!res)
1212 sas_check_level_subtractive_boundary(dev);
1214 return res;
1217 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1219 struct expander_device *ex = &dev->ex_dev;
1220 int i;
1221 u8 *sub_sas_addr = NULL;
1223 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1224 return 0;
1226 for (i = 0; i < ex->num_phys; i++) {
1227 struct ex_phy *phy = &ex->ex_phy[i];
1229 if (phy->phy_state == PHY_VACANT ||
1230 phy->phy_state == PHY_NOT_PRESENT)
1231 continue;
1233 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1234 phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1235 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1237 if (!sub_sas_addr)
1238 sub_sas_addr = &phy->attached_sas_addr[0];
1239 else if (SAS_ADDR(sub_sas_addr) !=
1240 SAS_ADDR(phy->attached_sas_addr)) {
1242 SAS_DPRINTK("ex %016llx phy 0x%x "
1243 "diverges(%016llx) on subtractive "
1244 "boundary(%016llx). Disabled\n",
1245 SAS_ADDR(dev->sas_addr), i,
1246 SAS_ADDR(phy->attached_sas_addr),
1247 SAS_ADDR(sub_sas_addr));
1248 sas_ex_disable_phy(dev, i);
1252 return 0;
1255 static void sas_print_parent_topology_bug(struct domain_device *child,
1256 struct ex_phy *parent_phy,
1257 struct ex_phy *child_phy)
1259 static const char *ex_type[] = {
1260 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1261 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1263 struct domain_device *parent = child->parent;
1265 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1266 "phy 0x%x has %c:%c routing link!\n",
1268 ex_type[parent->dev_type],
1269 SAS_ADDR(parent->sas_addr),
1270 parent_phy->phy_id,
1272 ex_type[child->dev_type],
1273 SAS_ADDR(child->sas_addr),
1274 child_phy->phy_id,
1276 sas_route_char(parent, parent_phy),
1277 sas_route_char(child, child_phy));
1280 static int sas_check_eeds(struct domain_device *child,
1281 struct ex_phy *parent_phy,
1282 struct ex_phy *child_phy)
1284 int res = 0;
1285 struct domain_device *parent = child->parent;
1287 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1288 res = -ENODEV;
1289 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1290 "phy S:0x%x, while there is a fanout ex %016llx\n",
1291 SAS_ADDR(parent->sas_addr),
1292 parent_phy->phy_id,
1293 SAS_ADDR(child->sas_addr),
1294 child_phy->phy_id,
1295 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1296 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1297 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1298 SAS_ADDR_SIZE);
1299 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1300 SAS_ADDR_SIZE);
1301 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1302 SAS_ADDR(parent->sas_addr)) ||
1303 (SAS_ADDR(parent->port->disc.eeds_a) ==
1304 SAS_ADDR(child->sas_addr)))
1306 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1307 SAS_ADDR(parent->sas_addr)) ||
1308 (SAS_ADDR(parent->port->disc.eeds_b) ==
1309 SAS_ADDR(child->sas_addr))))
1311 else {
1312 res = -ENODEV;
1313 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1314 "phy 0x%x link forms a third EEDS!\n",
1315 SAS_ADDR(parent->sas_addr),
1316 parent_phy->phy_id,
1317 SAS_ADDR(child->sas_addr),
1318 child_phy->phy_id);
1321 return res;
1324 /* Here we spill over 80 columns. It is intentional.
1326 static int sas_check_parent_topology(struct domain_device *child)
1328 struct expander_device *child_ex = &child->ex_dev;
1329 struct expander_device *parent_ex;
1330 int i;
1331 int res = 0;
1333 if (!child->parent)
1334 return 0;
1336 if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1337 child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1338 return 0;
1340 parent_ex = &child->parent->ex_dev;
1342 for (i = 0; i < parent_ex->num_phys; i++) {
1343 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1344 struct ex_phy *child_phy;
1346 if (parent_phy->phy_state == PHY_VACANT ||
1347 parent_phy->phy_state == PHY_NOT_PRESENT)
1348 continue;
1350 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1351 continue;
1353 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1355 switch (child->parent->dev_type) {
1356 case SAS_EDGE_EXPANDER_DEVICE:
1357 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1358 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1359 child_phy->routing_attr != TABLE_ROUTING) {
1360 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1361 res = -ENODEV;
1363 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1364 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1365 res = sas_check_eeds(child, parent_phy, child_phy);
1366 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1367 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1368 res = -ENODEV;
1370 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1371 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1372 (child_phy->routing_attr == TABLE_ROUTING &&
1373 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1374 /* All good */;
1375 } else {
1376 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1377 res = -ENODEV;
1380 break;
1381 case SAS_FANOUT_EXPANDER_DEVICE:
1382 if (parent_phy->routing_attr != TABLE_ROUTING ||
1383 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1384 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1385 res = -ENODEV;
1387 break;
1388 default:
1389 break;
1393 return res;
1396 #define RRI_REQ_SIZE 16
1397 #define RRI_RESP_SIZE 44
1399 static int sas_configure_present(struct domain_device *dev, int phy_id,
1400 u8 *sas_addr, int *index, int *present)
1402 int i, res = 0;
1403 struct expander_device *ex = &dev->ex_dev;
1404 struct ex_phy *phy = &ex->ex_phy[phy_id];
1405 u8 *rri_req;
1406 u8 *rri_resp;
1408 *present = 0;
1409 *index = 0;
1411 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1412 if (!rri_req)
1413 return -ENOMEM;
1415 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1416 if (!rri_resp) {
1417 kfree(rri_req);
1418 return -ENOMEM;
1421 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1422 rri_req[9] = phy_id;
1424 for (i = 0; i < ex->max_route_indexes ; i++) {
1425 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1426 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1427 RRI_RESP_SIZE);
1428 if (res)
1429 goto out;
1430 res = rri_resp[2];
1431 if (res == SMP_RESP_NO_INDEX) {
1432 SAS_DPRINTK("overflow of indexes: dev %016llx "
1433 "phy 0x%x index 0x%x\n",
1434 SAS_ADDR(dev->sas_addr), phy_id, i);
1435 goto out;
1436 } else if (res != SMP_RESP_FUNC_ACC) {
1437 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1438 "result 0x%x\n", __func__,
1439 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1440 goto out;
1442 if (SAS_ADDR(sas_addr) != 0) {
1443 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1444 *index = i;
1445 if ((rri_resp[12] & 0x80) == 0x80)
1446 *present = 0;
1447 else
1448 *present = 1;
1449 goto out;
1450 } else if (SAS_ADDR(rri_resp+16) == 0) {
1451 *index = i;
1452 *present = 0;
1453 goto out;
1455 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1456 phy->last_da_index < i) {
1457 phy->last_da_index = i;
1458 *index = i;
1459 *present = 0;
1460 goto out;
1463 res = -1;
1464 out:
1465 kfree(rri_req);
1466 kfree(rri_resp);
1467 return res;
1470 #define CRI_REQ_SIZE 44
1471 #define CRI_RESP_SIZE 8
1473 static int sas_configure_set(struct domain_device *dev, int phy_id,
1474 u8 *sas_addr, int index, int include)
1476 int res;
1477 u8 *cri_req;
1478 u8 *cri_resp;
1480 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1481 if (!cri_req)
1482 return -ENOMEM;
1484 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1485 if (!cri_resp) {
1486 kfree(cri_req);
1487 return -ENOMEM;
1490 cri_req[1] = SMP_CONF_ROUTE_INFO;
1491 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1492 cri_req[9] = phy_id;
1493 if (SAS_ADDR(sas_addr) == 0 || !include)
1494 cri_req[12] |= 0x80;
1495 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1497 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1498 CRI_RESP_SIZE);
1499 if (res)
1500 goto out;
1501 res = cri_resp[2];
1502 if (res == SMP_RESP_NO_INDEX) {
1503 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1504 "index 0x%x\n",
1505 SAS_ADDR(dev->sas_addr), phy_id, index);
1507 out:
1508 kfree(cri_req);
1509 kfree(cri_resp);
1510 return res;
1513 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1514 u8 *sas_addr, int include)
1516 int index;
1517 int present;
1518 int res;
1520 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1521 if (res)
1522 return res;
1523 if (include ^ present)
1524 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1526 return res;
1530 * sas_configure_parent - configure routing table of parent
1531 * @parent: parent expander
1532 * @child: child expander
1533 * @sas_addr: SAS port identifier of device directly attached to child
1534 * @include: whether or not to include @child in the expander routing table
1536 static int sas_configure_parent(struct domain_device *parent,
1537 struct domain_device *child,
1538 u8 *sas_addr, int include)
1540 struct expander_device *ex_parent = &parent->ex_dev;
1541 int res = 0;
1542 int i;
1544 if (parent->parent) {
1545 res = sas_configure_parent(parent->parent, parent, sas_addr,
1546 include);
1547 if (res)
1548 return res;
1551 if (ex_parent->conf_route_table == 0) {
1552 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1553 SAS_ADDR(parent->sas_addr));
1554 return 0;
1557 for (i = 0; i < ex_parent->num_phys; i++) {
1558 struct ex_phy *phy = &ex_parent->ex_phy[i];
1560 if ((phy->routing_attr == TABLE_ROUTING) &&
1561 (SAS_ADDR(phy->attached_sas_addr) ==
1562 SAS_ADDR(child->sas_addr))) {
1563 res = sas_configure_phy(parent, i, sas_addr, include);
1564 if (res)
1565 return res;
1569 return res;
1573 * sas_configure_routing - configure routing
1574 * @dev: expander device
1575 * @sas_addr: port identifier of device directly attached to the expander device
1577 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1579 if (dev->parent)
1580 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1581 return 0;
1584 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1586 if (dev->parent)
1587 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1588 return 0;
1592 * sas_discover_expander - expander discovery
1593 * @dev: pointer to expander domain device
1595 * See comment in sas_discover_sata().
1597 static int sas_discover_expander(struct domain_device *dev)
1599 int res;
1601 res = sas_notify_lldd_dev_found(dev);
1602 if (res)
1603 return res;
1605 res = sas_ex_general(dev);
1606 if (res)
1607 goto out_err;
1608 res = sas_ex_manuf_info(dev);
1609 if (res)
1610 goto out_err;
1612 res = sas_expander_discover(dev);
1613 if (res) {
1614 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1615 SAS_ADDR(dev->sas_addr), res);
1616 goto out_err;
1619 sas_check_ex_subtractive_boundary(dev);
1620 res = sas_check_parent_topology(dev);
1621 if (res)
1622 goto out_err;
1623 return 0;
1624 out_err:
1625 sas_notify_lldd_dev_gone(dev);
1626 return res;
1629 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1631 int res = 0;
1632 struct domain_device *dev;
1634 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1635 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1636 dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1637 struct sas_expander_device *ex =
1638 rphy_to_expander_device(dev->rphy);
1640 if (level == ex->level)
1641 res = sas_ex_discover_devices(dev, -1);
1642 else if (level > 0)
1643 res = sas_ex_discover_devices(port->port_dev, -1);
1648 return res;
1651 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1653 int res;
1654 int level;
1656 do {
1657 level = port->disc.max_level;
1658 res = sas_ex_level_discovery(port, level);
1659 mb();
1660 } while (level < port->disc.max_level);
1662 return res;
1665 int sas_discover_root_expander(struct domain_device *dev)
1667 int res;
1668 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1670 res = sas_rphy_add(dev->rphy);
1671 if (res)
1672 goto out_err;
1674 ex->level = dev->port->disc.max_level; /* 0 */
1675 res = sas_discover_expander(dev);
1676 if (res)
1677 goto out_err2;
1679 sas_ex_bfs_disc(dev->port);
1681 return res;
1683 out_err2:
1684 sas_rphy_remove(dev->rphy);
1685 out_err:
1686 return res;
1689 /* ---------- Domain revalidation ---------- */
1691 static int sas_get_phy_discover(struct domain_device *dev,
1692 int phy_id, struct smp_resp *disc_resp)
1694 int res;
1695 u8 *disc_req;
1697 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1698 if (!disc_req)
1699 return -ENOMEM;
1701 disc_req[1] = SMP_DISCOVER;
1702 disc_req[9] = phy_id;
1704 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1705 disc_resp, DISCOVER_RESP_SIZE);
1706 if (res)
1707 goto out;
1708 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1709 res = disc_resp->result;
1710 goto out;
1712 out:
1713 kfree(disc_req);
1714 return res;
1717 static int sas_get_phy_change_count(struct domain_device *dev,
1718 int phy_id, int *pcc)
1720 int res;
1721 struct smp_resp *disc_resp;
1723 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1724 if (!disc_resp)
1725 return -ENOMEM;
1727 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1728 if (!res)
1729 *pcc = disc_resp->disc.change_count;
1731 kfree(disc_resp);
1732 return res;
1735 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1736 u8 *sas_addr, enum sas_device_type *type)
1738 int res;
1739 struct smp_resp *disc_resp;
1740 struct discover_resp *dr;
1742 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1743 if (!disc_resp)
1744 return -ENOMEM;
1745 dr = &disc_resp->disc;
1747 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1748 if (res == 0) {
1749 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1750 *type = to_dev_type(dr);
1751 if (*type == 0)
1752 memset(sas_addr, 0, 8);
1754 kfree(disc_resp);
1755 return res;
1758 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1759 int from_phy, bool update)
1761 struct expander_device *ex = &dev->ex_dev;
1762 int res = 0;
1763 int i;
1765 for (i = from_phy; i < ex->num_phys; i++) {
1766 int phy_change_count = 0;
1768 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1769 switch (res) {
1770 case SMP_RESP_PHY_VACANT:
1771 case SMP_RESP_NO_PHY:
1772 continue;
1773 case SMP_RESP_FUNC_ACC:
1774 break;
1775 default:
1776 return res;
1779 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1780 if (update)
1781 ex->ex_phy[i].phy_change_count =
1782 phy_change_count;
1783 *phy_id = i;
1784 return 0;
1787 return 0;
1790 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1792 int res;
1793 u8 *rg_req;
1794 struct smp_resp *rg_resp;
1796 rg_req = alloc_smp_req(RG_REQ_SIZE);
1797 if (!rg_req)
1798 return -ENOMEM;
1800 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1801 if (!rg_resp) {
1802 kfree(rg_req);
1803 return -ENOMEM;
1806 rg_req[1] = SMP_REPORT_GENERAL;
1808 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1809 RG_RESP_SIZE);
1810 if (res)
1811 goto out;
1812 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1813 res = rg_resp->result;
1814 goto out;
1817 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1818 out:
1819 kfree(rg_resp);
1820 kfree(rg_req);
1821 return res;
1824 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1825 * @dev:domain device to be detect.
1826 * @src_dev: the device which originated BROADCAST(CHANGE).
1828 * Add self-configuration expander support. Suppose two expander cascading,
1829 * when the first level expander is self-configuring, hotplug the disks in
1830 * second level expander, BROADCAST(CHANGE) will not only be originated
1831 * in the second level expander, but also be originated in the first level
1832 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1833 * expander changed count in two level expanders will all increment at least
1834 * once, but the phy which chang count has changed is the source device which
1835 * we concerned.
1838 static int sas_find_bcast_dev(struct domain_device *dev,
1839 struct domain_device **src_dev)
1841 struct expander_device *ex = &dev->ex_dev;
1842 int ex_change_count = -1;
1843 int phy_id = -1;
1844 int res;
1845 struct domain_device *ch;
1847 res = sas_get_ex_change_count(dev, &ex_change_count);
1848 if (res)
1849 goto out;
1850 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1851 /* Just detect if this expander phys phy change count changed,
1852 * in order to determine if this expander originate BROADCAST,
1853 * and do not update phy change count field in our structure.
1855 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1856 if (phy_id != -1) {
1857 *src_dev = dev;
1858 ex->ex_change_count = ex_change_count;
1859 SAS_DPRINTK("Expander phy change count has changed\n");
1860 return res;
1861 } else
1862 SAS_DPRINTK("Expander phys DID NOT change\n");
1864 list_for_each_entry(ch, &ex->children, siblings) {
1865 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1866 res = sas_find_bcast_dev(ch, src_dev);
1867 if (*src_dev)
1868 return res;
1871 out:
1872 return res;
1875 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1877 struct expander_device *ex = &dev->ex_dev;
1878 struct domain_device *child, *n;
1880 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1881 set_bit(SAS_DEV_GONE, &child->state);
1882 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1883 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1884 sas_unregister_ex_tree(port, child);
1885 else
1886 sas_unregister_dev(port, child);
1888 sas_unregister_dev(port, dev);
1891 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1892 int phy_id, bool last)
1894 struct expander_device *ex_dev = &parent->ex_dev;
1895 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1896 struct domain_device *child, *n, *found = NULL;
1897 if (last) {
1898 list_for_each_entry_safe(child, n,
1899 &ex_dev->children, siblings) {
1900 if (SAS_ADDR(child->sas_addr) ==
1901 SAS_ADDR(phy->attached_sas_addr)) {
1902 set_bit(SAS_DEV_GONE, &child->state);
1903 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1904 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1905 sas_unregister_ex_tree(parent->port, child);
1906 else
1907 sas_unregister_dev(parent->port, child);
1908 found = child;
1909 break;
1912 sas_disable_routing(parent, phy->attached_sas_addr);
1914 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1915 if (phy->port) {
1916 sas_port_delete_phy(phy->port, phy->phy);
1917 sas_device_set_phy(found, phy->port);
1918 if (phy->port->num_phys == 0)
1919 list_add_tail(&phy->port->del_list,
1920 &parent->port->sas_port_del_list);
1921 phy->port = NULL;
1925 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1926 const int level)
1928 struct expander_device *ex_root = &root->ex_dev;
1929 struct domain_device *child;
1930 int res = 0;
1932 list_for_each_entry(child, &ex_root->children, siblings) {
1933 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1934 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1935 struct sas_expander_device *ex =
1936 rphy_to_expander_device(child->rphy);
1938 if (level > ex->level)
1939 res = sas_discover_bfs_by_root_level(child,
1940 level);
1941 else if (level == ex->level)
1942 res = sas_ex_discover_devices(child, -1);
1945 return res;
1948 static int sas_discover_bfs_by_root(struct domain_device *dev)
1950 int res;
1951 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1952 int level = ex->level+1;
1954 res = sas_ex_discover_devices(dev, -1);
1955 if (res)
1956 goto out;
1957 do {
1958 res = sas_discover_bfs_by_root_level(dev, level);
1959 mb();
1960 level += 1;
1961 } while (level <= dev->port->disc.max_level);
1962 out:
1963 return res;
1966 static int sas_discover_new(struct domain_device *dev, int phy_id)
1968 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1969 struct domain_device *child;
1970 int res;
1972 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1973 SAS_ADDR(dev->sas_addr), phy_id);
1974 res = sas_ex_phy_discover(dev, phy_id);
1975 if (res)
1976 return res;
1978 if (sas_ex_join_wide_port(dev, phy_id))
1979 return 0;
1981 res = sas_ex_discover_devices(dev, phy_id);
1982 if (res)
1983 return res;
1984 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1985 if (SAS_ADDR(child->sas_addr) ==
1986 SAS_ADDR(ex_phy->attached_sas_addr)) {
1987 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1988 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1989 res = sas_discover_bfs_by_root(child);
1990 break;
1993 return res;
1996 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1998 if (old == new)
1999 return true;
2001 /* treat device directed resets as flutter, if we went
2002 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2004 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2005 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2006 return true;
2008 return false;
2011 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2013 struct expander_device *ex = &dev->ex_dev;
2014 struct ex_phy *phy = &ex->ex_phy[phy_id];
2015 enum sas_device_type type = SAS_PHY_UNUSED;
2016 u8 sas_addr[8];
2017 int res;
2019 memset(sas_addr, 0, 8);
2020 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2021 switch (res) {
2022 case SMP_RESP_NO_PHY:
2023 phy->phy_state = PHY_NOT_PRESENT;
2024 sas_unregister_devs_sas_addr(dev, phy_id, last);
2025 return res;
2026 case SMP_RESP_PHY_VACANT:
2027 phy->phy_state = PHY_VACANT;
2028 sas_unregister_devs_sas_addr(dev, phy_id, last);
2029 return res;
2030 case SMP_RESP_FUNC_ACC:
2031 break;
2032 case -ECOMM:
2033 break;
2034 default:
2035 return res;
2038 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2039 phy->phy_state = PHY_EMPTY;
2040 sas_unregister_devs_sas_addr(dev, phy_id, last);
2041 return res;
2042 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2043 dev_type_flutter(type, phy->attached_dev_type)) {
2044 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2045 char *action = "";
2047 sas_ex_phy_discover(dev, phy_id);
2049 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2050 action = ", needs recovery";
2051 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2052 SAS_ADDR(dev->sas_addr), phy_id, action);
2053 return res;
2056 /* we always have to delete the old device when we went here */
2057 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2058 SAS_ADDR(dev->sas_addr), phy_id,
2059 SAS_ADDR(phy->attached_sas_addr));
2060 sas_unregister_devs_sas_addr(dev, phy_id, last);
2062 return sas_discover_new(dev, phy_id);
2066 * sas_rediscover - revalidate the domain.
2067 * @dev:domain device to be detect.
2068 * @phy_id: the phy id will be detected.
2070 * NOTE: this process _must_ quit (return) as soon as any connection
2071 * errors are encountered. Connection recovery is done elsewhere.
2072 * Discover process only interrogates devices in order to discover the
2073 * domain.For plugging out, we un-register the device only when it is
2074 * the last phy in the port, for other phys in this port, we just delete it
2075 * from the port.For inserting, we do discovery when it is the
2076 * first phy,for other phys in this port, we add it to the port to
2077 * forming the wide-port.
2079 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2081 struct expander_device *ex = &dev->ex_dev;
2082 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2083 int res = 0;
2084 int i;
2085 bool last = true; /* is this the last phy of the port */
2087 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2088 SAS_ADDR(dev->sas_addr), phy_id);
2090 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2091 for (i = 0; i < ex->num_phys; i++) {
2092 struct ex_phy *phy = &ex->ex_phy[i];
2094 if (i == phy_id)
2095 continue;
2096 if (SAS_ADDR(phy->attached_sas_addr) ==
2097 SAS_ADDR(changed_phy->attached_sas_addr)) {
2098 SAS_DPRINTK("phy%d part of wide port with "
2099 "phy%d\n", phy_id, i);
2100 last = false;
2101 break;
2104 res = sas_rediscover_dev(dev, phy_id, last);
2105 } else
2106 res = sas_discover_new(dev, phy_id);
2107 return res;
2111 * sas_ex_revalidate_domain - revalidate the domain
2112 * @port_dev: port domain device.
2114 * NOTE: this process _must_ quit (return) as soon as any connection
2115 * errors are encountered. Connection recovery is done elsewhere.
2116 * Discover process only interrogates devices in order to discover the
2117 * domain.
2119 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2121 int res;
2122 struct domain_device *dev = NULL;
2124 res = sas_find_bcast_dev(port_dev, &dev);
2125 if (res == 0 && dev) {
2126 struct expander_device *ex = &dev->ex_dev;
2127 int i = 0, phy_id;
2129 do {
2130 phy_id = -1;
2131 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2132 if (phy_id == -1)
2133 break;
2134 res = sas_rediscover(dev, phy_id);
2135 i = phy_id + 1;
2136 } while (i < ex->num_phys);
2138 return res;
2141 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2142 struct sas_rphy *rphy)
2144 struct domain_device *dev;
2145 unsigned int rcvlen = 0;
2146 int ret = -EINVAL;
2148 /* no rphy means no smp target support (ie aic94xx host) */
2149 if (!rphy)
2150 return sas_smp_host_handler(job, shost);
2152 switch (rphy->identify.device_type) {
2153 case SAS_EDGE_EXPANDER_DEVICE:
2154 case SAS_FANOUT_EXPANDER_DEVICE:
2155 break;
2156 default:
2157 printk("%s: can we send a smp request to a device?\n",
2158 __func__);
2159 goto out;
2162 dev = sas_find_dev_by_rphy(rphy);
2163 if (!dev) {
2164 printk("%s: fail to find a domain_device?\n", __func__);
2165 goto out;
2168 /* do we need to support multiple segments? */
2169 if (job->request_payload.sg_cnt > 1 ||
2170 job->reply_payload.sg_cnt > 1) {
2171 printk("%s: multiple segments req %u, rsp %u\n",
2172 __func__, job->request_payload.payload_len,
2173 job->reply_payload.payload_len);
2174 goto out;
2177 ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2178 job->reply_payload.sg_list);
2179 if (ret >= 0) {
2180 /* bsg_job_done() requires the length received */
2181 rcvlen = job->reply_payload.payload_len - ret;
2182 ret = 0;
2185 out:
2186 bsg_job_done(job, ret, rcvlen);