2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
29 #include "sas_internal.h"
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
36 static int sas_discover_expander(struct domain_device
*dev
);
37 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
);
38 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
39 u8
*sas_addr
, int include
);
40 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
);
42 /* ---------- SMP task management ---------- */
44 static void smp_task_timedout(struct timer_list
*t
)
46 struct sas_task_slow
*slow
= from_timer(slow
, t
, timer
);
47 struct sas_task
*task
= slow
->task
;
50 spin_lock_irqsave(&task
->task_state_lock
, flags
);
51 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
)) {
52 task
->task_state_flags
|= SAS_TASK_STATE_ABORTED
;
53 complete(&task
->slow_task
->completion
);
55 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
58 static void smp_task_done(struct sas_task
*task
)
60 del_timer(&task
->slow_task
->timer
);
61 complete(&task
->slow_task
->completion
);
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
67 static int smp_execute_task_sg(struct domain_device
*dev
,
68 struct scatterlist
*req
, struct scatterlist
*resp
)
71 struct sas_task
*task
= NULL
;
72 struct sas_internal
*i
=
73 to_sas_internal(dev
->port
->ha
->core
.shost
->transportt
);
75 mutex_lock(&dev
->ex_dev
.cmd_mutex
);
76 for (retry
= 0; retry
< 3; retry
++) {
77 if (test_bit(SAS_DEV_GONE
, &dev
->state
)) {
82 task
= sas_alloc_slow_task(GFP_KERNEL
);
88 task
->task_proto
= dev
->tproto
;
89 task
->smp_task
.smp_req
= *req
;
90 task
->smp_task
.smp_resp
= *resp
;
92 task
->task_done
= smp_task_done
;
94 task
->slow_task
->timer
.function
= smp_task_timedout
;
95 task
->slow_task
->timer
.expires
= jiffies
+ SMP_TIMEOUT
*HZ
;
96 add_timer(&task
->slow_task
->timer
);
98 res
= i
->dft
->lldd_execute_task(task
, GFP_KERNEL
);
101 del_timer(&task
->slow_task
->timer
);
102 SAS_DPRINTK("executing SMP task failed:%d\n", res
);
106 wait_for_completion(&task
->slow_task
->completion
);
108 if ((task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
109 SAS_DPRINTK("smp task timed out or aborted\n");
110 i
->dft
->lldd_abort_task(task
);
111 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
)) {
112 SAS_DPRINTK("SMP task aborted and not done\n");
116 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
117 task
->task_status
.stat
== SAM_STAT_GOOD
) {
121 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
122 task
->task_status
.stat
== SAS_DATA_UNDERRUN
) {
123 /* no error, but return the number of bytes of
125 res
= task
->task_status
.residual
;
128 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
129 task
->task_status
.stat
== SAS_DATA_OVERRUN
) {
133 if (task
->task_status
.resp
== SAS_TASK_UNDELIVERED
&&
134 task
->task_status
.stat
== SAS_DEVICE_UNKNOWN
)
137 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
138 "status 0x%x\n", __func__
,
139 SAS_ADDR(dev
->sas_addr
),
140 task
->task_status
.resp
,
141 task
->task_status
.stat
);
146 mutex_unlock(&dev
->ex_dev
.cmd_mutex
);
148 BUG_ON(retry
== 3 && task
!= NULL
);
153 static int smp_execute_task(struct domain_device
*dev
, void *req
, int req_size
,
154 void *resp
, int resp_size
)
156 struct scatterlist req_sg
;
157 struct scatterlist resp_sg
;
159 sg_init_one(&req_sg
, req
, req_size
);
160 sg_init_one(&resp_sg
, resp
, resp_size
);
161 return smp_execute_task_sg(dev
, &req_sg
, &resp_sg
);
164 /* ---------- Allocations ---------- */
166 static inline void *alloc_smp_req(int size
)
168 u8
*p
= kzalloc(size
, GFP_KERNEL
);
174 static inline void *alloc_smp_resp(int size
)
176 return kzalloc(size
, GFP_KERNEL
);
179 static char sas_route_char(struct domain_device
*dev
, struct ex_phy
*phy
)
181 switch (phy
->routing_attr
) {
183 if (dev
->ex_dev
.t2t_supp
)
189 case SUBTRACTIVE_ROUTING
:
196 static enum sas_device_type
to_dev_type(struct discover_resp
*dr
)
198 /* This is detecting a failure to transmit initial dev to host
199 * FIS as described in section J.5 of sas-2 r16
201 if (dr
->attached_dev_type
== SAS_PHY_UNUSED
&& dr
->attached_sata_dev
&&
202 dr
->linkrate
>= SAS_LINK_RATE_1_5_GBPS
)
203 return SAS_SATA_PENDING
;
205 return dr
->attached_dev_type
;
208 static void sas_set_ex_phy(struct domain_device
*dev
, int phy_id
, void *rsp
)
210 enum sas_device_type dev_type
;
211 enum sas_linkrate linkrate
;
212 u8 sas_addr
[SAS_ADDR_SIZE
];
213 struct smp_resp
*resp
= rsp
;
214 struct discover_resp
*dr
= &resp
->disc
;
215 struct sas_ha_struct
*ha
= dev
->port
->ha
;
216 struct expander_device
*ex
= &dev
->ex_dev
;
217 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
218 struct sas_rphy
*rphy
= dev
->rphy
;
219 bool new_phy
= !phy
->phy
;
223 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
)))
225 phy
->phy
= sas_phy_alloc(&rphy
->dev
, phy_id
);
227 /* FIXME: error_handling */
231 switch (resp
->result
) {
232 case SMP_RESP_PHY_VACANT
:
233 phy
->phy_state
= PHY_VACANT
;
236 phy
->phy_state
= PHY_NOT_PRESENT
;
238 case SMP_RESP_FUNC_ACC
:
239 phy
->phy_state
= PHY_EMPTY
; /* do not know yet */
243 /* check if anything important changed to squelch debug */
244 dev_type
= phy
->attached_dev_type
;
245 linkrate
= phy
->linkrate
;
246 memcpy(sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
248 /* Handle vacant phy - rest of dr data is not valid so skip it */
249 if (phy
->phy_state
== PHY_VACANT
) {
250 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
251 phy
->attached_dev_type
= SAS_PHY_UNUSED
;
252 if (!test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
)) {
253 phy
->phy_id
= phy_id
;
259 phy
->attached_dev_type
= to_dev_type(dr
);
260 if (test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
))
262 phy
->phy_id
= phy_id
;
263 phy
->linkrate
= dr
->linkrate
;
264 phy
->attached_sata_host
= dr
->attached_sata_host
;
265 phy
->attached_sata_dev
= dr
->attached_sata_dev
;
266 phy
->attached_sata_ps
= dr
->attached_sata_ps
;
267 phy
->attached_iproto
= dr
->iproto
<< 1;
268 phy
->attached_tproto
= dr
->tproto
<< 1;
269 /* help some expanders that fail to zero sas_address in the 'no
272 if (phy
->attached_dev_type
== SAS_PHY_UNUSED
||
273 phy
->linkrate
< SAS_LINK_RATE_1_5_GBPS
)
274 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
276 memcpy(phy
->attached_sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
);
277 phy
->attached_phy_id
= dr
->attached_phy_id
;
278 phy
->phy_change_count
= dr
->change_count
;
279 phy
->routing_attr
= dr
->routing_attr
;
280 phy
->virtual = dr
->virtual;
281 phy
->last_da_index
= -1;
283 phy
->phy
->identify
.sas_address
= SAS_ADDR(phy
->attached_sas_addr
);
284 phy
->phy
->identify
.device_type
= dr
->attached_dev_type
;
285 phy
->phy
->identify
.initiator_port_protocols
= phy
->attached_iproto
;
286 phy
->phy
->identify
.target_port_protocols
= phy
->attached_tproto
;
287 if (!phy
->attached_tproto
&& dr
->attached_sata_dev
)
288 phy
->phy
->identify
.target_port_protocols
= SAS_PROTOCOL_SATA
;
289 phy
->phy
->identify
.phy_identifier
= phy_id
;
290 phy
->phy
->minimum_linkrate_hw
= dr
->hmin_linkrate
;
291 phy
->phy
->maximum_linkrate_hw
= dr
->hmax_linkrate
;
292 phy
->phy
->minimum_linkrate
= dr
->pmin_linkrate
;
293 phy
->phy
->maximum_linkrate
= dr
->pmax_linkrate
;
294 phy
->phy
->negotiated_linkrate
= phy
->linkrate
;
295 phy
->phy
->enabled
= (phy
->linkrate
!= SAS_PHY_DISABLED
);
299 if (sas_phy_add(phy
->phy
)) {
300 sas_phy_free(phy
->phy
);
305 switch (phy
->attached_dev_type
) {
306 case SAS_SATA_PENDING
:
307 type
= "stp pending";
313 if (phy
->attached_iproto
) {
314 if (phy
->attached_tproto
)
315 type
= "host+target";
319 if (dr
->attached_sata_dev
)
325 case SAS_EDGE_EXPANDER_DEVICE
:
326 case SAS_FANOUT_EXPANDER_DEVICE
:
333 /* this routine is polled by libata error recovery so filter
334 * unimportant messages
336 if (new_phy
|| phy
->attached_dev_type
!= dev_type
||
337 phy
->linkrate
!= linkrate
||
338 SAS_ADDR(phy
->attached_sas_addr
) != SAS_ADDR(sas_addr
))
343 /* if the attached device type changed and ata_eh is active,
344 * make sure we run revalidation when eh completes (see:
345 * sas_enable_revalidation)
347 if (test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
))
348 set_bit(DISCE_REVALIDATE_DOMAIN
, &dev
->port
->disc
.pending
);
350 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
351 test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
) ? "ata: " : "",
352 SAS_ADDR(dev
->sas_addr
), phy
->phy_id
,
353 sas_route_char(dev
, phy
), phy
->linkrate
,
354 SAS_ADDR(phy
->attached_sas_addr
), type
);
357 /* check if we have an existing attached ata device on this expander phy */
358 struct domain_device
*sas_ex_to_ata(struct domain_device
*ex_dev
, int phy_id
)
360 struct ex_phy
*ex_phy
= &ex_dev
->ex_dev
.ex_phy
[phy_id
];
361 struct domain_device
*dev
;
362 struct sas_rphy
*rphy
;
367 rphy
= ex_phy
->port
->rphy
;
371 dev
= sas_find_dev_by_rphy(rphy
);
373 if (dev
&& dev_is_sata(dev
))
379 #define DISCOVER_REQ_SIZE 16
380 #define DISCOVER_RESP_SIZE 56
382 static int sas_ex_phy_discover_helper(struct domain_device
*dev
, u8
*disc_req
,
383 u8
*disc_resp
, int single
)
385 struct discover_resp
*dr
;
388 disc_req
[9] = single
;
390 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
391 disc_resp
, DISCOVER_RESP_SIZE
);
394 dr
= &((struct smp_resp
*)disc_resp
)->disc
;
395 if (memcmp(dev
->sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
) == 0) {
396 sas_printk("Found loopback topology, just ignore it!\n");
399 sas_set_ex_phy(dev
, single
, disc_resp
);
403 int sas_ex_phy_discover(struct domain_device
*dev
, int single
)
405 struct expander_device
*ex
= &dev
->ex_dev
;
410 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
414 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
420 disc_req
[1] = SMP_DISCOVER
;
422 if (0 <= single
&& single
< ex
->num_phys
) {
423 res
= sas_ex_phy_discover_helper(dev
, disc_req
, disc_resp
, single
);
427 for (i
= 0; i
< ex
->num_phys
; i
++) {
428 res
= sas_ex_phy_discover_helper(dev
, disc_req
,
440 static int sas_expander_discover(struct domain_device
*dev
)
442 struct expander_device
*ex
= &dev
->ex_dev
;
445 ex
->ex_phy
= kcalloc(ex
->num_phys
, sizeof(*ex
->ex_phy
), GFP_KERNEL
);
449 res
= sas_ex_phy_discover(dev
, -1);
460 #define MAX_EXPANDER_PHYS 128
462 static void ex_assign_report_general(struct domain_device
*dev
,
463 struct smp_resp
*resp
)
465 struct report_general_resp
*rg
= &resp
->rg
;
467 dev
->ex_dev
.ex_change_count
= be16_to_cpu(rg
->change_count
);
468 dev
->ex_dev
.max_route_indexes
= be16_to_cpu(rg
->route_indexes
);
469 dev
->ex_dev
.num_phys
= min(rg
->num_phys
, (u8
)MAX_EXPANDER_PHYS
);
470 dev
->ex_dev
.t2t_supp
= rg
->t2t_supp
;
471 dev
->ex_dev
.conf_route_table
= rg
->conf_route_table
;
472 dev
->ex_dev
.configuring
= rg
->configuring
;
473 memcpy(dev
->ex_dev
.enclosure_logical_id
, rg
->enclosure_logical_id
, 8);
476 #define RG_REQ_SIZE 8
477 #define RG_RESP_SIZE 32
479 static int sas_ex_general(struct domain_device
*dev
)
482 struct smp_resp
*rg_resp
;
486 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
490 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
496 rg_req
[1] = SMP_REPORT_GENERAL
;
498 for (i
= 0; i
< 5; i
++) {
499 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
503 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
504 SAS_ADDR(dev
->sas_addr
), res
);
506 } else if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
507 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
508 SAS_ADDR(dev
->sas_addr
), rg_resp
->result
);
509 res
= rg_resp
->result
;
513 ex_assign_report_general(dev
, rg_resp
);
515 if (dev
->ex_dev
.configuring
) {
516 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
517 SAS_ADDR(dev
->sas_addr
));
518 schedule_timeout_interruptible(5*HZ
);
528 static void ex_assign_manuf_info(struct domain_device
*dev
, void
531 u8
*mi_resp
= _mi_resp
;
532 struct sas_rphy
*rphy
= dev
->rphy
;
533 struct sas_expander_device
*edev
= rphy_to_expander_device(rphy
);
535 memcpy(edev
->vendor_id
, mi_resp
+ 12, SAS_EXPANDER_VENDOR_ID_LEN
);
536 memcpy(edev
->product_id
, mi_resp
+ 20, SAS_EXPANDER_PRODUCT_ID_LEN
);
537 memcpy(edev
->product_rev
, mi_resp
+ 36,
538 SAS_EXPANDER_PRODUCT_REV_LEN
);
540 if (mi_resp
[8] & 1) {
541 memcpy(edev
->component_vendor_id
, mi_resp
+ 40,
542 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN
);
543 edev
->component_id
= mi_resp
[48] << 8 | mi_resp
[49];
544 edev
->component_revision_id
= mi_resp
[50];
548 #define MI_REQ_SIZE 8
549 #define MI_RESP_SIZE 64
551 static int sas_ex_manuf_info(struct domain_device
*dev
)
557 mi_req
= alloc_smp_req(MI_REQ_SIZE
);
561 mi_resp
= alloc_smp_resp(MI_RESP_SIZE
);
567 mi_req
[1] = SMP_REPORT_MANUF_INFO
;
569 res
= smp_execute_task(dev
, mi_req
, MI_REQ_SIZE
, mi_resp
,MI_RESP_SIZE
);
571 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
572 SAS_ADDR(dev
->sas_addr
), res
);
574 } else if (mi_resp
[2] != SMP_RESP_FUNC_ACC
) {
575 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
576 SAS_ADDR(dev
->sas_addr
), mi_resp
[2]);
580 ex_assign_manuf_info(dev
, mi_resp
);
587 #define PC_REQ_SIZE 44
588 #define PC_RESP_SIZE 8
590 int sas_smp_phy_control(struct domain_device
*dev
, int phy_id
,
591 enum phy_func phy_func
,
592 struct sas_phy_linkrates
*rates
)
598 pc_req
= alloc_smp_req(PC_REQ_SIZE
);
602 pc_resp
= alloc_smp_resp(PC_RESP_SIZE
);
608 pc_req
[1] = SMP_PHY_CONTROL
;
610 pc_req
[10]= phy_func
;
612 pc_req
[32] = rates
->minimum_linkrate
<< 4;
613 pc_req
[33] = rates
->maximum_linkrate
<< 4;
616 res
= smp_execute_task(dev
, pc_req
, PC_REQ_SIZE
, pc_resp
,PC_RESP_SIZE
);
623 static void sas_ex_disable_phy(struct domain_device
*dev
, int phy_id
)
625 struct expander_device
*ex
= &dev
->ex_dev
;
626 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
628 sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_DISABLE
, NULL
);
629 phy
->linkrate
= SAS_PHY_DISABLED
;
632 static void sas_ex_disable_port(struct domain_device
*dev
, u8
*sas_addr
)
634 struct expander_device
*ex
= &dev
->ex_dev
;
637 for (i
= 0; i
< ex
->num_phys
; i
++) {
638 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
640 if (phy
->phy_state
== PHY_VACANT
||
641 phy
->phy_state
== PHY_NOT_PRESENT
)
644 if (SAS_ADDR(phy
->attached_sas_addr
) == SAS_ADDR(sas_addr
))
645 sas_ex_disable_phy(dev
, i
);
649 static int sas_dev_present_in_domain(struct asd_sas_port
*port
,
652 struct domain_device
*dev
;
654 if (SAS_ADDR(port
->sas_addr
) == SAS_ADDR(sas_addr
))
656 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
657 if (SAS_ADDR(dev
->sas_addr
) == SAS_ADDR(sas_addr
))
663 #define RPEL_REQ_SIZE 16
664 #define RPEL_RESP_SIZE 32
665 int sas_smp_get_phy_events(struct sas_phy
*phy
)
670 struct sas_rphy
*rphy
= dev_to_rphy(phy
->dev
.parent
);
671 struct domain_device
*dev
= sas_find_dev_by_rphy(rphy
);
673 req
= alloc_smp_req(RPEL_REQ_SIZE
);
677 resp
= alloc_smp_resp(RPEL_RESP_SIZE
);
683 req
[1] = SMP_REPORT_PHY_ERR_LOG
;
684 req
[9] = phy
->number
;
686 res
= smp_execute_task(dev
, req
, RPEL_REQ_SIZE
,
687 resp
, RPEL_RESP_SIZE
);
692 phy
->invalid_dword_count
= scsi_to_u32(&resp
[12]);
693 phy
->running_disparity_error_count
= scsi_to_u32(&resp
[16]);
694 phy
->loss_of_dword_sync_count
= scsi_to_u32(&resp
[20]);
695 phy
->phy_reset_problem_count
= scsi_to_u32(&resp
[24]);
704 #ifdef CONFIG_SCSI_SAS_ATA
706 #define RPS_REQ_SIZE 16
707 #define RPS_RESP_SIZE 60
709 int sas_get_report_phy_sata(struct domain_device
*dev
, int phy_id
,
710 struct smp_resp
*rps_resp
)
713 u8
*rps_req
= alloc_smp_req(RPS_REQ_SIZE
);
714 u8
*resp
= (u8
*)rps_resp
;
719 rps_req
[1] = SMP_REPORT_PHY_SATA
;
722 res
= smp_execute_task(dev
, rps_req
, RPS_REQ_SIZE
,
723 rps_resp
, RPS_RESP_SIZE
);
725 /* 0x34 is the FIS type for the D2H fis. There's a potential
726 * standards cockup here. sas-2 explicitly specifies the FIS
727 * should be encoded so that FIS type is in resp[24].
728 * However, some expanders endian reverse this. Undo the
730 if (!res
&& resp
[27] == 0x34 && resp
[24] != 0x34) {
733 for (i
= 0; i
< 5; i
++) {
738 resp
[j
+ 0] = resp
[j
+ 3];
739 resp
[j
+ 1] = resp
[j
+ 2];
750 static void sas_ex_get_linkrate(struct domain_device
*parent
,
751 struct domain_device
*child
,
752 struct ex_phy
*parent_phy
)
754 struct expander_device
*parent_ex
= &parent
->ex_dev
;
755 struct sas_port
*port
;
760 port
= parent_phy
->port
;
762 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
763 struct ex_phy
*phy
= &parent_ex
->ex_phy
[i
];
765 if (phy
->phy_state
== PHY_VACANT
||
766 phy
->phy_state
== PHY_NOT_PRESENT
)
769 if (SAS_ADDR(phy
->attached_sas_addr
) ==
770 SAS_ADDR(child
->sas_addr
)) {
772 child
->min_linkrate
= min(parent
->min_linkrate
,
774 child
->max_linkrate
= max(parent
->max_linkrate
,
777 sas_port_add_phy(port
, phy
->phy
);
780 child
->linkrate
= min(parent_phy
->linkrate
, child
->max_linkrate
);
781 child
->pathways
= min(child
->pathways
, parent
->pathways
);
784 static struct domain_device
*sas_ex_discover_end_dev(
785 struct domain_device
*parent
, int phy_id
)
787 struct expander_device
*parent_ex
= &parent
->ex_dev
;
788 struct ex_phy
*phy
= &parent_ex
->ex_phy
[phy_id
];
789 struct domain_device
*child
= NULL
;
790 struct sas_rphy
*rphy
;
793 if (phy
->attached_sata_host
|| phy
->attached_sata_ps
)
796 child
= sas_alloc_device();
800 kref_get(&parent
->kref
);
801 child
->parent
= parent
;
802 child
->port
= parent
->port
;
803 child
->iproto
= phy
->attached_iproto
;
804 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
805 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
807 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
808 if (unlikely(!phy
->port
))
810 if (unlikely(sas_port_add(phy
->port
) != 0)) {
811 sas_port_free(phy
->port
);
815 sas_ex_get_linkrate(parent
, child
, phy
);
816 sas_device_set_phy(child
, phy
->port
);
818 #ifdef CONFIG_SCSI_SAS_ATA
819 if ((phy
->attached_tproto
& SAS_PROTOCOL_STP
) || phy
->attached_sata_dev
) {
820 res
= sas_get_ata_info(child
, phy
);
825 res
= sas_ata_init(child
);
828 rphy
= sas_end_device_alloc(phy
->port
);
833 get_device(&rphy
->dev
);
835 list_add_tail(&child
->disco_list_node
, &parent
->port
->disco_list
);
837 res
= sas_discover_sata(child
);
839 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
840 "%016llx:0x%x returned 0x%x\n",
841 SAS_ADDR(child
->sas_addr
),
842 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
847 if (phy
->attached_tproto
& SAS_PROTOCOL_SSP
) {
848 child
->dev_type
= SAS_END_DEVICE
;
849 rphy
= sas_end_device_alloc(phy
->port
);
850 /* FIXME: error handling */
853 child
->tproto
= phy
->attached_tproto
;
857 get_device(&rphy
->dev
);
858 sas_fill_in_rphy(child
, rphy
);
860 list_add_tail(&child
->disco_list_node
, &parent
->port
->disco_list
);
862 res
= sas_discover_end_dev(child
);
864 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
865 "at %016llx:0x%x returned 0x%x\n",
866 SAS_ADDR(child
->sas_addr
),
867 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
871 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
872 phy
->attached_tproto
, SAS_ADDR(parent
->sas_addr
),
877 list_add_tail(&child
->siblings
, &parent_ex
->children
);
881 sas_rphy_free(child
->rphy
);
882 list_del(&child
->disco_list_node
);
883 spin_lock_irq(&parent
->port
->dev_list_lock
);
884 list_del(&child
->dev_list_node
);
885 spin_unlock_irq(&parent
->port
->dev_list_lock
);
887 sas_port_delete(phy
->port
);
890 sas_put_device(child
);
894 /* See if this phy is part of a wide port */
895 static bool sas_ex_join_wide_port(struct domain_device
*parent
, int phy_id
)
897 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
900 for (i
= 0; i
< parent
->ex_dev
.num_phys
; i
++) {
901 struct ex_phy
*ephy
= &parent
->ex_dev
.ex_phy
[i
];
906 if (!memcmp(phy
->attached_sas_addr
, ephy
->attached_sas_addr
,
907 SAS_ADDR_SIZE
) && ephy
->port
) {
908 sas_port_add_phy(ephy
->port
, phy
->phy
);
909 phy
->port
= ephy
->port
;
910 phy
->phy_state
= PHY_DEVICE_DISCOVERED
;
918 static struct domain_device
*sas_ex_discover_expander(
919 struct domain_device
*parent
, int phy_id
)
921 struct sas_expander_device
*parent_ex
= rphy_to_expander_device(parent
->rphy
);
922 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
923 struct domain_device
*child
= NULL
;
924 struct sas_rphy
*rphy
;
925 struct sas_expander_device
*edev
;
926 struct asd_sas_port
*port
;
929 if (phy
->routing_attr
== DIRECT_ROUTING
) {
930 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
932 SAS_ADDR(parent
->sas_addr
), phy_id
,
933 SAS_ADDR(phy
->attached_sas_addr
),
934 phy
->attached_phy_id
);
937 child
= sas_alloc_device();
941 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
942 /* FIXME: better error handling */
943 BUG_ON(sas_port_add(phy
->port
) != 0);
946 switch (phy
->attached_dev_type
) {
947 case SAS_EDGE_EXPANDER_DEVICE
:
948 rphy
= sas_expander_alloc(phy
->port
,
949 SAS_EDGE_EXPANDER_DEVICE
);
951 case SAS_FANOUT_EXPANDER_DEVICE
:
952 rphy
= sas_expander_alloc(phy
->port
,
953 SAS_FANOUT_EXPANDER_DEVICE
);
956 rphy
= NULL
; /* shut gcc up */
961 get_device(&rphy
->dev
);
962 edev
= rphy_to_expander_device(rphy
);
963 child
->dev_type
= phy
->attached_dev_type
;
964 kref_get(&parent
->kref
);
965 child
->parent
= parent
;
967 child
->iproto
= phy
->attached_iproto
;
968 child
->tproto
= phy
->attached_tproto
;
969 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
970 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
971 sas_ex_get_linkrate(parent
, child
, phy
);
972 edev
->level
= parent_ex
->level
+ 1;
973 parent
->port
->disc
.max_level
= max(parent
->port
->disc
.max_level
,
976 sas_fill_in_rphy(child
, rphy
);
979 spin_lock_irq(&parent
->port
->dev_list_lock
);
980 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
981 spin_unlock_irq(&parent
->port
->dev_list_lock
);
983 res
= sas_discover_expander(child
);
985 sas_rphy_delete(rphy
);
986 spin_lock_irq(&parent
->port
->dev_list_lock
);
987 list_del(&child
->dev_list_node
);
988 spin_unlock_irq(&parent
->port
->dev_list_lock
);
989 sas_put_device(child
);
992 list_add_tail(&child
->siblings
, &parent
->ex_dev
.children
);
996 static int sas_ex_discover_dev(struct domain_device
*dev
, int phy_id
)
998 struct expander_device
*ex
= &dev
->ex_dev
;
999 struct ex_phy
*ex_phy
= &ex
->ex_phy
[phy_id
];
1000 struct domain_device
*child
= NULL
;
1004 if (ex_phy
->linkrate
== SAS_SATA_SPINUP_HOLD
) {
1005 if (!sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_LINK_RESET
, NULL
))
1006 res
= sas_ex_phy_discover(dev
, phy_id
);
1011 /* Parent and domain coherency */
1012 if (!dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
1013 SAS_ADDR(dev
->port
->sas_addr
))) {
1014 sas_add_parent_port(dev
, phy_id
);
1017 if (dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
1018 SAS_ADDR(dev
->parent
->sas_addr
))) {
1019 sas_add_parent_port(dev
, phy_id
);
1020 if (ex_phy
->routing_attr
== TABLE_ROUTING
)
1021 sas_configure_phy(dev
, phy_id
, dev
->port
->sas_addr
, 1);
1025 if (sas_dev_present_in_domain(dev
->port
, ex_phy
->attached_sas_addr
))
1026 sas_ex_disable_port(dev
, ex_phy
->attached_sas_addr
);
1028 if (ex_phy
->attached_dev_type
== SAS_PHY_UNUSED
) {
1029 if (ex_phy
->routing_attr
== DIRECT_ROUTING
) {
1030 memset(ex_phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1031 sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
1034 } else if (ex_phy
->linkrate
== SAS_LINK_RATE_UNKNOWN
)
1037 if (ex_phy
->attached_dev_type
!= SAS_END_DEVICE
&&
1038 ex_phy
->attached_dev_type
!= SAS_FANOUT_EXPANDER_DEVICE
&&
1039 ex_phy
->attached_dev_type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1040 ex_phy
->attached_dev_type
!= SAS_SATA_PENDING
) {
1041 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1042 "phy 0x%x\n", ex_phy
->attached_dev_type
,
1043 SAS_ADDR(dev
->sas_addr
),
1048 res
= sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
1050 SAS_DPRINTK("configure routing for dev %016llx "
1051 "reported 0x%x. Forgotten\n",
1052 SAS_ADDR(ex_phy
->attached_sas_addr
), res
);
1053 sas_disable_routing(dev
, ex_phy
->attached_sas_addr
);
1057 if (sas_ex_join_wide_port(dev
, phy_id
)) {
1058 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1059 phy_id
, SAS_ADDR(ex_phy
->attached_sas_addr
));
1063 switch (ex_phy
->attached_dev_type
) {
1064 case SAS_END_DEVICE
:
1065 case SAS_SATA_PENDING
:
1066 child
= sas_ex_discover_end_dev(dev
, phy_id
);
1068 case SAS_FANOUT_EXPANDER_DEVICE
:
1069 if (SAS_ADDR(dev
->port
->disc
.fanout_sas_addr
)) {
1070 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1071 "attached to ex %016llx phy 0x%x\n",
1072 SAS_ADDR(ex_phy
->attached_sas_addr
),
1073 ex_phy
->attached_phy_id
,
1074 SAS_ADDR(dev
->sas_addr
),
1076 sas_ex_disable_phy(dev
, phy_id
);
1079 memcpy(dev
->port
->disc
.fanout_sas_addr
,
1080 ex_phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
1082 case SAS_EDGE_EXPANDER_DEVICE
:
1083 child
= sas_ex_discover_expander(dev
, phy_id
);
1092 for (i
= 0; i
< ex
->num_phys
; i
++) {
1093 if (ex
->ex_phy
[i
].phy_state
== PHY_VACANT
||
1094 ex
->ex_phy
[i
].phy_state
== PHY_NOT_PRESENT
)
1097 * Due to races, the phy might not get added to the
1098 * wide port, so we add the phy to the wide port here.
1100 if (SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
) ==
1101 SAS_ADDR(child
->sas_addr
)) {
1102 ex
->ex_phy
[i
].phy_state
= PHY_DEVICE_DISCOVERED
;
1103 if (sas_ex_join_wide_port(dev
, i
))
1104 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1105 i
, SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
));
1114 static int sas_find_sub_addr(struct domain_device
*dev
, u8
*sub_addr
)
1116 struct expander_device
*ex
= &dev
->ex_dev
;
1119 for (i
= 0; i
< ex
->num_phys
; i
++) {
1120 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1122 if (phy
->phy_state
== PHY_VACANT
||
1123 phy
->phy_state
== PHY_NOT_PRESENT
)
1126 if ((phy
->attached_dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1127 phy
->attached_dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) &&
1128 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1130 memcpy(sub_addr
, phy
->attached_sas_addr
,SAS_ADDR_SIZE
);
1138 static int sas_check_level_subtractive_boundary(struct domain_device
*dev
)
1140 struct expander_device
*ex
= &dev
->ex_dev
;
1141 struct domain_device
*child
;
1142 u8 sub_addr
[8] = {0, };
1144 list_for_each_entry(child
, &ex
->children
, siblings
) {
1145 if (child
->dev_type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1146 child
->dev_type
!= SAS_FANOUT_EXPANDER_DEVICE
)
1148 if (sub_addr
[0] == 0) {
1149 sas_find_sub_addr(child
, sub_addr
);
1154 if (sas_find_sub_addr(child
, s2
) &&
1155 (SAS_ADDR(sub_addr
) != SAS_ADDR(s2
))) {
1157 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1158 "diverges from subtractive "
1159 "boundary %016llx\n",
1160 SAS_ADDR(dev
->sas_addr
),
1161 SAS_ADDR(child
->sas_addr
),
1163 SAS_ADDR(sub_addr
));
1165 sas_ex_disable_port(child
, s2
);
1172 * sas_ex_discover_devices - discover devices attached to this expander
1173 * @dev: pointer to the expander domain device
1174 * @single: if you want to do a single phy, else set to -1;
1176 * Configure this expander for use with its devices and register the
1177 * devices of this expander.
1179 static int sas_ex_discover_devices(struct domain_device
*dev
, int single
)
1181 struct expander_device
*ex
= &dev
->ex_dev
;
1182 int i
= 0, end
= ex
->num_phys
;
1185 if (0 <= single
&& single
< end
) {
1190 for ( ; i
< end
; i
++) {
1191 struct ex_phy
*ex_phy
= &ex
->ex_phy
[i
];
1193 if (ex_phy
->phy_state
== PHY_VACANT
||
1194 ex_phy
->phy_state
== PHY_NOT_PRESENT
||
1195 ex_phy
->phy_state
== PHY_DEVICE_DISCOVERED
)
1198 switch (ex_phy
->linkrate
) {
1199 case SAS_PHY_DISABLED
:
1200 case SAS_PHY_RESET_PROBLEM
:
1201 case SAS_SATA_PORT_SELECTOR
:
1204 res
= sas_ex_discover_dev(dev
, i
);
1212 sas_check_level_subtractive_boundary(dev
);
1217 static int sas_check_ex_subtractive_boundary(struct domain_device
*dev
)
1219 struct expander_device
*ex
= &dev
->ex_dev
;
1221 u8
*sub_sas_addr
= NULL
;
1223 if (dev
->dev_type
!= SAS_EDGE_EXPANDER_DEVICE
)
1226 for (i
= 0; i
< ex
->num_phys
; i
++) {
1227 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1229 if (phy
->phy_state
== PHY_VACANT
||
1230 phy
->phy_state
== PHY_NOT_PRESENT
)
1233 if ((phy
->attached_dev_type
== SAS_FANOUT_EXPANDER_DEVICE
||
1234 phy
->attached_dev_type
== SAS_EDGE_EXPANDER_DEVICE
) &&
1235 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1238 sub_sas_addr
= &phy
->attached_sas_addr
[0];
1239 else if (SAS_ADDR(sub_sas_addr
) !=
1240 SAS_ADDR(phy
->attached_sas_addr
)) {
1242 SAS_DPRINTK("ex %016llx phy 0x%x "
1243 "diverges(%016llx) on subtractive "
1244 "boundary(%016llx). Disabled\n",
1245 SAS_ADDR(dev
->sas_addr
), i
,
1246 SAS_ADDR(phy
->attached_sas_addr
),
1247 SAS_ADDR(sub_sas_addr
));
1248 sas_ex_disable_phy(dev
, i
);
1255 static void sas_print_parent_topology_bug(struct domain_device
*child
,
1256 struct ex_phy
*parent_phy
,
1257 struct ex_phy
*child_phy
)
1259 static const char *ex_type
[] = {
1260 [SAS_EDGE_EXPANDER_DEVICE
] = "edge",
1261 [SAS_FANOUT_EXPANDER_DEVICE
] = "fanout",
1263 struct domain_device
*parent
= child
->parent
;
1265 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1266 "phy 0x%x has %c:%c routing link!\n",
1268 ex_type
[parent
->dev_type
],
1269 SAS_ADDR(parent
->sas_addr
),
1272 ex_type
[child
->dev_type
],
1273 SAS_ADDR(child
->sas_addr
),
1276 sas_route_char(parent
, parent_phy
),
1277 sas_route_char(child
, child_phy
));
1280 static int sas_check_eeds(struct domain_device
*child
,
1281 struct ex_phy
*parent_phy
,
1282 struct ex_phy
*child_phy
)
1285 struct domain_device
*parent
= child
->parent
;
1287 if (SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
) != 0) {
1289 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1290 "phy S:0x%x, while there is a fanout ex %016llx\n",
1291 SAS_ADDR(parent
->sas_addr
),
1293 SAS_ADDR(child
->sas_addr
),
1295 SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
));
1296 } else if (SAS_ADDR(parent
->port
->disc
.eeds_a
) == 0) {
1297 memcpy(parent
->port
->disc
.eeds_a
, parent
->sas_addr
,
1299 memcpy(parent
->port
->disc
.eeds_b
, child
->sas_addr
,
1301 } else if (((SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1302 SAS_ADDR(parent
->sas_addr
)) ||
1303 (SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1304 SAS_ADDR(child
->sas_addr
)))
1306 ((SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1307 SAS_ADDR(parent
->sas_addr
)) ||
1308 (SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1309 SAS_ADDR(child
->sas_addr
))))
1313 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1314 "phy 0x%x link forms a third EEDS!\n",
1315 SAS_ADDR(parent
->sas_addr
),
1317 SAS_ADDR(child
->sas_addr
),
1324 /* Here we spill over 80 columns. It is intentional.
1326 static int sas_check_parent_topology(struct domain_device
*child
)
1328 struct expander_device
*child_ex
= &child
->ex_dev
;
1329 struct expander_device
*parent_ex
;
1336 if (child
->parent
->dev_type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1337 child
->parent
->dev_type
!= SAS_FANOUT_EXPANDER_DEVICE
)
1340 parent_ex
= &child
->parent
->ex_dev
;
1342 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
1343 struct ex_phy
*parent_phy
= &parent_ex
->ex_phy
[i
];
1344 struct ex_phy
*child_phy
;
1346 if (parent_phy
->phy_state
== PHY_VACANT
||
1347 parent_phy
->phy_state
== PHY_NOT_PRESENT
)
1350 if (SAS_ADDR(parent_phy
->attached_sas_addr
) != SAS_ADDR(child
->sas_addr
))
1353 child_phy
= &child_ex
->ex_phy
[parent_phy
->attached_phy_id
];
1355 switch (child
->parent
->dev_type
) {
1356 case SAS_EDGE_EXPANDER_DEVICE
:
1357 if (child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1358 if (parent_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
||
1359 child_phy
->routing_attr
!= TABLE_ROUTING
) {
1360 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1363 } else if (parent_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1364 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1365 res
= sas_check_eeds(child
, parent_phy
, child_phy
);
1366 } else if (child_phy
->routing_attr
!= TABLE_ROUTING
) {
1367 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1370 } else if (parent_phy
->routing_attr
== TABLE_ROUTING
) {
1371 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
||
1372 (child_phy
->routing_attr
== TABLE_ROUTING
&&
1373 child_ex
->t2t_supp
&& parent_ex
->t2t_supp
)) {
1376 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1381 case SAS_FANOUT_EXPANDER_DEVICE
:
1382 if (parent_phy
->routing_attr
!= TABLE_ROUTING
||
1383 child_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
) {
1384 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1396 #define RRI_REQ_SIZE 16
1397 #define RRI_RESP_SIZE 44
1399 static int sas_configure_present(struct domain_device
*dev
, int phy_id
,
1400 u8
*sas_addr
, int *index
, int *present
)
1403 struct expander_device
*ex
= &dev
->ex_dev
;
1404 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1411 rri_req
= alloc_smp_req(RRI_REQ_SIZE
);
1415 rri_resp
= alloc_smp_resp(RRI_RESP_SIZE
);
1421 rri_req
[1] = SMP_REPORT_ROUTE_INFO
;
1422 rri_req
[9] = phy_id
;
1424 for (i
= 0; i
< ex
->max_route_indexes
; i
++) {
1425 *(__be16
*)(rri_req
+6) = cpu_to_be16(i
);
1426 res
= smp_execute_task(dev
, rri_req
, RRI_REQ_SIZE
, rri_resp
,
1431 if (res
== SMP_RESP_NO_INDEX
) {
1432 SAS_DPRINTK("overflow of indexes: dev %016llx "
1433 "phy 0x%x index 0x%x\n",
1434 SAS_ADDR(dev
->sas_addr
), phy_id
, i
);
1436 } else if (res
!= SMP_RESP_FUNC_ACC
) {
1437 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1438 "result 0x%x\n", __func__
,
1439 SAS_ADDR(dev
->sas_addr
), phy_id
, i
, res
);
1442 if (SAS_ADDR(sas_addr
) != 0) {
1443 if (SAS_ADDR(rri_resp
+16) == SAS_ADDR(sas_addr
)) {
1445 if ((rri_resp
[12] & 0x80) == 0x80)
1450 } else if (SAS_ADDR(rri_resp
+16) == 0) {
1455 } else if (SAS_ADDR(rri_resp
+16) == 0 &&
1456 phy
->last_da_index
< i
) {
1457 phy
->last_da_index
= i
;
1470 #define CRI_REQ_SIZE 44
1471 #define CRI_RESP_SIZE 8
1473 static int sas_configure_set(struct domain_device
*dev
, int phy_id
,
1474 u8
*sas_addr
, int index
, int include
)
1480 cri_req
= alloc_smp_req(CRI_REQ_SIZE
);
1484 cri_resp
= alloc_smp_resp(CRI_RESP_SIZE
);
1490 cri_req
[1] = SMP_CONF_ROUTE_INFO
;
1491 *(__be16
*)(cri_req
+6) = cpu_to_be16(index
);
1492 cri_req
[9] = phy_id
;
1493 if (SAS_ADDR(sas_addr
) == 0 || !include
)
1494 cri_req
[12] |= 0x80;
1495 memcpy(cri_req
+16, sas_addr
, SAS_ADDR_SIZE
);
1497 res
= smp_execute_task(dev
, cri_req
, CRI_REQ_SIZE
, cri_resp
,
1502 if (res
== SMP_RESP_NO_INDEX
) {
1503 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1505 SAS_ADDR(dev
->sas_addr
), phy_id
, index
);
1513 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
1514 u8
*sas_addr
, int include
)
1520 res
= sas_configure_present(dev
, phy_id
, sas_addr
, &index
, &present
);
1523 if (include
^ present
)
1524 return sas_configure_set(dev
, phy_id
, sas_addr
, index
,include
);
1530 * sas_configure_parent - configure routing table of parent
1531 * @parent: parent expander
1532 * @child: child expander
1533 * @sas_addr: SAS port identifier of device directly attached to child
1534 * @include: whether or not to include @child in the expander routing table
1536 static int sas_configure_parent(struct domain_device
*parent
,
1537 struct domain_device
*child
,
1538 u8
*sas_addr
, int include
)
1540 struct expander_device
*ex_parent
= &parent
->ex_dev
;
1544 if (parent
->parent
) {
1545 res
= sas_configure_parent(parent
->parent
, parent
, sas_addr
,
1551 if (ex_parent
->conf_route_table
== 0) {
1552 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1553 SAS_ADDR(parent
->sas_addr
));
1557 for (i
= 0; i
< ex_parent
->num_phys
; i
++) {
1558 struct ex_phy
*phy
= &ex_parent
->ex_phy
[i
];
1560 if ((phy
->routing_attr
== TABLE_ROUTING
) &&
1561 (SAS_ADDR(phy
->attached_sas_addr
) ==
1562 SAS_ADDR(child
->sas_addr
))) {
1563 res
= sas_configure_phy(parent
, i
, sas_addr
, include
);
1573 * sas_configure_routing - configure routing
1574 * @dev: expander device
1575 * @sas_addr: port identifier of device directly attached to the expander device
1577 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
)
1580 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 1);
1584 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
)
1587 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 0);
1592 * sas_discover_expander - expander discovery
1593 * @dev: pointer to expander domain device
1595 * See comment in sas_discover_sata().
1597 static int sas_discover_expander(struct domain_device
*dev
)
1601 res
= sas_notify_lldd_dev_found(dev
);
1605 res
= sas_ex_general(dev
);
1608 res
= sas_ex_manuf_info(dev
);
1612 res
= sas_expander_discover(dev
);
1614 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1615 SAS_ADDR(dev
->sas_addr
), res
);
1619 sas_check_ex_subtractive_boundary(dev
);
1620 res
= sas_check_parent_topology(dev
);
1625 sas_notify_lldd_dev_gone(dev
);
1629 static int sas_ex_level_discovery(struct asd_sas_port
*port
, const int level
)
1632 struct domain_device
*dev
;
1634 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
1635 if (dev
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1636 dev
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1637 struct sas_expander_device
*ex
=
1638 rphy_to_expander_device(dev
->rphy
);
1640 if (level
== ex
->level
)
1641 res
= sas_ex_discover_devices(dev
, -1);
1643 res
= sas_ex_discover_devices(port
->port_dev
, -1);
1651 static int sas_ex_bfs_disc(struct asd_sas_port
*port
)
1657 level
= port
->disc
.max_level
;
1658 res
= sas_ex_level_discovery(port
, level
);
1660 } while (level
< port
->disc
.max_level
);
1665 int sas_discover_root_expander(struct domain_device
*dev
)
1668 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1670 res
= sas_rphy_add(dev
->rphy
);
1674 ex
->level
= dev
->port
->disc
.max_level
; /* 0 */
1675 res
= sas_discover_expander(dev
);
1679 sas_ex_bfs_disc(dev
->port
);
1684 sas_rphy_remove(dev
->rphy
);
1689 /* ---------- Domain revalidation ---------- */
1691 static int sas_get_phy_discover(struct domain_device
*dev
,
1692 int phy_id
, struct smp_resp
*disc_resp
)
1697 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
1701 disc_req
[1] = SMP_DISCOVER
;
1702 disc_req
[9] = phy_id
;
1704 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
1705 disc_resp
, DISCOVER_RESP_SIZE
);
1708 else if (disc_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1709 res
= disc_resp
->result
;
1717 static int sas_get_phy_change_count(struct domain_device
*dev
,
1718 int phy_id
, int *pcc
)
1721 struct smp_resp
*disc_resp
;
1723 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1727 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1729 *pcc
= disc_resp
->disc
.change_count
;
1735 static int sas_get_phy_attached_dev(struct domain_device
*dev
, int phy_id
,
1736 u8
*sas_addr
, enum sas_device_type
*type
)
1739 struct smp_resp
*disc_resp
;
1740 struct discover_resp
*dr
;
1742 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1745 dr
= &disc_resp
->disc
;
1747 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1749 memcpy(sas_addr
, disc_resp
->disc
.attached_sas_addr
, 8);
1750 *type
= to_dev_type(dr
);
1752 memset(sas_addr
, 0, 8);
1758 static int sas_find_bcast_phy(struct domain_device
*dev
, int *phy_id
,
1759 int from_phy
, bool update
)
1761 struct expander_device
*ex
= &dev
->ex_dev
;
1765 for (i
= from_phy
; i
< ex
->num_phys
; i
++) {
1766 int phy_change_count
= 0;
1768 res
= sas_get_phy_change_count(dev
, i
, &phy_change_count
);
1770 case SMP_RESP_PHY_VACANT
:
1771 case SMP_RESP_NO_PHY
:
1773 case SMP_RESP_FUNC_ACC
:
1779 if (phy_change_count
!= ex
->ex_phy
[i
].phy_change_count
) {
1781 ex
->ex_phy
[i
].phy_change_count
=
1790 static int sas_get_ex_change_count(struct domain_device
*dev
, int *ecc
)
1794 struct smp_resp
*rg_resp
;
1796 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
1800 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
1806 rg_req
[1] = SMP_REPORT_GENERAL
;
1808 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
1812 if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1813 res
= rg_resp
->result
;
1817 *ecc
= be16_to_cpu(rg_resp
->rg
.change_count
);
1824 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1825 * @dev:domain device to be detect.
1826 * @src_dev: the device which originated BROADCAST(CHANGE).
1828 * Add self-configuration expander support. Suppose two expander cascading,
1829 * when the first level expander is self-configuring, hotplug the disks in
1830 * second level expander, BROADCAST(CHANGE) will not only be originated
1831 * in the second level expander, but also be originated in the first level
1832 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1833 * expander changed count in two level expanders will all increment at least
1834 * once, but the phy which chang count has changed is the source device which
1838 static int sas_find_bcast_dev(struct domain_device
*dev
,
1839 struct domain_device
**src_dev
)
1841 struct expander_device
*ex
= &dev
->ex_dev
;
1842 int ex_change_count
= -1;
1845 struct domain_device
*ch
;
1847 res
= sas_get_ex_change_count(dev
, &ex_change_count
);
1850 if (ex_change_count
!= -1 && ex_change_count
!= ex
->ex_change_count
) {
1851 /* Just detect if this expander phys phy change count changed,
1852 * in order to determine if this expander originate BROADCAST,
1853 * and do not update phy change count field in our structure.
1855 res
= sas_find_bcast_phy(dev
, &phy_id
, 0, false);
1858 ex
->ex_change_count
= ex_change_count
;
1859 SAS_DPRINTK("Expander phy change count has changed\n");
1862 SAS_DPRINTK("Expander phys DID NOT change\n");
1864 list_for_each_entry(ch
, &ex
->children
, siblings
) {
1865 if (ch
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
|| ch
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1866 res
= sas_find_bcast_dev(ch
, src_dev
);
1875 static void sas_unregister_ex_tree(struct asd_sas_port
*port
, struct domain_device
*dev
)
1877 struct expander_device
*ex
= &dev
->ex_dev
;
1878 struct domain_device
*child
, *n
;
1880 list_for_each_entry_safe(child
, n
, &ex
->children
, siblings
) {
1881 set_bit(SAS_DEV_GONE
, &child
->state
);
1882 if (child
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1883 child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
)
1884 sas_unregister_ex_tree(port
, child
);
1886 sas_unregister_dev(port
, child
);
1888 sas_unregister_dev(port
, dev
);
1891 static void sas_unregister_devs_sas_addr(struct domain_device
*parent
,
1892 int phy_id
, bool last
)
1894 struct expander_device
*ex_dev
= &parent
->ex_dev
;
1895 struct ex_phy
*phy
= &ex_dev
->ex_phy
[phy_id
];
1896 struct domain_device
*child
, *n
, *found
= NULL
;
1898 list_for_each_entry_safe(child
, n
,
1899 &ex_dev
->children
, siblings
) {
1900 if (SAS_ADDR(child
->sas_addr
) ==
1901 SAS_ADDR(phy
->attached_sas_addr
)) {
1902 set_bit(SAS_DEV_GONE
, &child
->state
);
1903 if (child
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1904 child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
)
1905 sas_unregister_ex_tree(parent
->port
, child
);
1907 sas_unregister_dev(parent
->port
, child
);
1912 sas_disable_routing(parent
, phy
->attached_sas_addr
);
1914 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1916 sas_port_delete_phy(phy
->port
, phy
->phy
);
1917 sas_device_set_phy(found
, phy
->port
);
1918 if (phy
->port
->num_phys
== 0)
1919 list_add_tail(&phy
->port
->del_list
,
1920 &parent
->port
->sas_port_del_list
);
1925 static int sas_discover_bfs_by_root_level(struct domain_device
*root
,
1928 struct expander_device
*ex_root
= &root
->ex_dev
;
1929 struct domain_device
*child
;
1932 list_for_each_entry(child
, &ex_root
->children
, siblings
) {
1933 if (child
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1934 child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1935 struct sas_expander_device
*ex
=
1936 rphy_to_expander_device(child
->rphy
);
1938 if (level
> ex
->level
)
1939 res
= sas_discover_bfs_by_root_level(child
,
1941 else if (level
== ex
->level
)
1942 res
= sas_ex_discover_devices(child
, -1);
1948 static int sas_discover_bfs_by_root(struct domain_device
*dev
)
1951 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1952 int level
= ex
->level
+1;
1954 res
= sas_ex_discover_devices(dev
, -1);
1958 res
= sas_discover_bfs_by_root_level(dev
, level
);
1961 } while (level
<= dev
->port
->disc
.max_level
);
1966 static int sas_discover_new(struct domain_device
*dev
, int phy_id
)
1968 struct ex_phy
*ex_phy
= &dev
->ex_dev
.ex_phy
[phy_id
];
1969 struct domain_device
*child
;
1972 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1973 SAS_ADDR(dev
->sas_addr
), phy_id
);
1974 res
= sas_ex_phy_discover(dev
, phy_id
);
1978 if (sas_ex_join_wide_port(dev
, phy_id
))
1981 res
= sas_ex_discover_devices(dev
, phy_id
);
1984 list_for_each_entry(child
, &dev
->ex_dev
.children
, siblings
) {
1985 if (SAS_ADDR(child
->sas_addr
) ==
1986 SAS_ADDR(ex_phy
->attached_sas_addr
)) {
1987 if (child
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1988 child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
)
1989 res
= sas_discover_bfs_by_root(child
);
1996 static bool dev_type_flutter(enum sas_device_type
new, enum sas_device_type old
)
2001 /* treat device directed resets as flutter, if we went
2002 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2004 if ((old
== SAS_SATA_PENDING
&& new == SAS_END_DEVICE
) ||
2005 (old
== SAS_END_DEVICE
&& new == SAS_SATA_PENDING
))
2011 static int sas_rediscover_dev(struct domain_device
*dev
, int phy_id
, bool last
)
2013 struct expander_device
*ex
= &dev
->ex_dev
;
2014 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
2015 enum sas_device_type type
= SAS_PHY_UNUSED
;
2019 memset(sas_addr
, 0, 8);
2020 res
= sas_get_phy_attached_dev(dev
, phy_id
, sas_addr
, &type
);
2022 case SMP_RESP_NO_PHY
:
2023 phy
->phy_state
= PHY_NOT_PRESENT
;
2024 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2026 case SMP_RESP_PHY_VACANT
:
2027 phy
->phy_state
= PHY_VACANT
;
2028 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2030 case SMP_RESP_FUNC_ACC
:
2038 if ((SAS_ADDR(sas_addr
) == 0) || (res
== -ECOMM
)) {
2039 phy
->phy_state
= PHY_EMPTY
;
2040 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2042 } else if (SAS_ADDR(sas_addr
) == SAS_ADDR(phy
->attached_sas_addr
) &&
2043 dev_type_flutter(type
, phy
->attached_dev_type
)) {
2044 struct domain_device
*ata_dev
= sas_ex_to_ata(dev
, phy_id
);
2047 sas_ex_phy_discover(dev
, phy_id
);
2049 if (ata_dev
&& phy
->attached_dev_type
== SAS_SATA_PENDING
)
2050 action
= ", needs recovery";
2051 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2052 SAS_ADDR(dev
->sas_addr
), phy_id
, action
);
2056 /* we always have to delete the old device when we went here */
2057 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2058 SAS_ADDR(dev
->sas_addr
), phy_id
,
2059 SAS_ADDR(phy
->attached_sas_addr
));
2060 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2062 return sas_discover_new(dev
, phy_id
);
2066 * sas_rediscover - revalidate the domain.
2067 * @dev:domain device to be detect.
2068 * @phy_id: the phy id will be detected.
2070 * NOTE: this process _must_ quit (return) as soon as any connection
2071 * errors are encountered. Connection recovery is done elsewhere.
2072 * Discover process only interrogates devices in order to discover the
2073 * domain.For plugging out, we un-register the device only when it is
2074 * the last phy in the port, for other phys in this port, we just delete it
2075 * from the port.For inserting, we do discovery when it is the
2076 * first phy,for other phys in this port, we add it to the port to
2077 * forming the wide-port.
2079 static int sas_rediscover(struct domain_device
*dev
, const int phy_id
)
2081 struct expander_device
*ex
= &dev
->ex_dev
;
2082 struct ex_phy
*changed_phy
= &ex
->ex_phy
[phy_id
];
2085 bool last
= true; /* is this the last phy of the port */
2087 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2088 SAS_ADDR(dev
->sas_addr
), phy_id
);
2090 if (SAS_ADDR(changed_phy
->attached_sas_addr
) != 0) {
2091 for (i
= 0; i
< ex
->num_phys
; i
++) {
2092 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
2096 if (SAS_ADDR(phy
->attached_sas_addr
) ==
2097 SAS_ADDR(changed_phy
->attached_sas_addr
)) {
2098 SAS_DPRINTK("phy%d part of wide port with "
2099 "phy%d\n", phy_id
, i
);
2104 res
= sas_rediscover_dev(dev
, phy_id
, last
);
2106 res
= sas_discover_new(dev
, phy_id
);
2111 * sas_ex_revalidate_domain - revalidate the domain
2112 * @port_dev: port domain device.
2114 * NOTE: this process _must_ quit (return) as soon as any connection
2115 * errors are encountered. Connection recovery is done elsewhere.
2116 * Discover process only interrogates devices in order to discover the
2119 int sas_ex_revalidate_domain(struct domain_device
*port_dev
)
2122 struct domain_device
*dev
= NULL
;
2124 res
= sas_find_bcast_dev(port_dev
, &dev
);
2125 if (res
== 0 && dev
) {
2126 struct expander_device
*ex
= &dev
->ex_dev
;
2131 res
= sas_find_bcast_phy(dev
, &phy_id
, i
, true);
2134 res
= sas_rediscover(dev
, phy_id
);
2136 } while (i
< ex
->num_phys
);
2141 void sas_smp_handler(struct bsg_job
*job
, struct Scsi_Host
*shost
,
2142 struct sas_rphy
*rphy
)
2144 struct domain_device
*dev
;
2145 unsigned int rcvlen
= 0;
2148 /* no rphy means no smp target support (ie aic94xx host) */
2150 return sas_smp_host_handler(job
, shost
);
2152 switch (rphy
->identify
.device_type
) {
2153 case SAS_EDGE_EXPANDER_DEVICE
:
2154 case SAS_FANOUT_EXPANDER_DEVICE
:
2157 printk("%s: can we send a smp request to a device?\n",
2162 dev
= sas_find_dev_by_rphy(rphy
);
2164 printk("%s: fail to find a domain_device?\n", __func__
);
2168 /* do we need to support multiple segments? */
2169 if (job
->request_payload
.sg_cnt
> 1 ||
2170 job
->reply_payload
.sg_cnt
> 1) {
2171 printk("%s: multiple segments req %u, rsp %u\n",
2172 __func__
, job
->request_payload
.payload_len
,
2173 job
->reply_payload
.payload_len
);
2177 ret
= smp_execute_task_sg(dev
, job
->request_payload
.sg_list
,
2178 job
->reply_payload
.sg_list
);
2180 /* bsg_job_done() requires the length received */
2181 rcvlen
= job
->reply_payload
.payload_len
- ret
;
2186 bsg_job_done(job
, ret
, rcvlen
);