1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
56 static struct workqueue_struct
*target_completion_wq
;
57 static struct kmem_cache
*se_sess_cache
;
58 struct kmem_cache
*se_ua_cache
;
59 struct kmem_cache
*t10_pr_reg_cache
;
60 struct kmem_cache
*t10_alua_lu_gp_cache
;
61 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
62 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
63 struct kmem_cache
*t10_alua_lba_map_cache
;
64 struct kmem_cache
*t10_alua_lba_map_mem_cache
;
66 static void transport_complete_task_attr(struct se_cmd
*cmd
);
67 static void translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
);
68 static void transport_handle_queue_full(struct se_cmd
*cmd
,
69 struct se_device
*dev
, int err
, bool write_pending
);
70 static void target_complete_ok_work(struct work_struct
*work
);
72 int init_se_kmem_caches(void)
74 se_sess_cache
= kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session
), __alignof__(struct se_session
),
78 pr_err("kmem_cache_create() for struct se_session"
82 se_ua_cache
= kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua
), __alignof__(struct se_ua
),
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache
;
89 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration
),
91 __alignof__(struct t10_pr_registration
), 0, NULL
);
92 if (!t10_pr_reg_cache
) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 goto out_free_ua_cache
;
97 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
100 if (!t10_alua_lu_gp_cache
) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 goto out_free_pr_reg_cache
;
105 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member
),
107 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
108 if (!t10_alua_lu_gp_mem_cache
) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 goto out_free_lu_gp_cache
;
113 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp
),
115 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
116 if (!t10_alua_tg_pt_gp_cache
) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 goto out_free_lu_gp_mem_cache
;
121 t10_alua_lba_map_cache
= kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map
),
124 __alignof__(struct t10_alua_lba_map
), 0, NULL
);
125 if (!t10_alua_lba_map_cache
) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
128 goto out_free_tg_pt_gp_cache
;
130 t10_alua_lba_map_mem_cache
= kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member
),
133 __alignof__(struct t10_alua_lba_map_member
), 0, NULL
);
134 if (!t10_alua_lba_map_mem_cache
) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
137 goto out_free_lba_map_cache
;
140 target_completion_wq
= alloc_workqueue("target_completion",
142 if (!target_completion_wq
)
143 goto out_free_lba_map_mem_cache
;
147 out_free_lba_map_mem_cache
:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
149 out_free_lba_map_cache
:
150 kmem_cache_destroy(t10_alua_lba_map_cache
);
151 out_free_tg_pt_gp_cache
:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
153 out_free_lu_gp_mem_cache
:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
155 out_free_lu_gp_cache
:
156 kmem_cache_destroy(t10_alua_lu_gp_cache
);
157 out_free_pr_reg_cache
:
158 kmem_cache_destroy(t10_pr_reg_cache
);
160 kmem_cache_destroy(se_ua_cache
);
162 kmem_cache_destroy(se_sess_cache
);
167 void release_se_kmem_caches(void)
169 destroy_workqueue(target_completion_wq
);
170 kmem_cache_destroy(se_sess_cache
);
171 kmem_cache_destroy(se_ua_cache
);
172 kmem_cache_destroy(t10_pr_reg_cache
);
173 kmem_cache_destroy(t10_alua_lu_gp_cache
);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
176 kmem_cache_destroy(t10_alua_lba_map_cache
);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
182 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
185 * Allocate a new row index for the entry type specified
187 u32
scsi_get_new_index(scsi_index_t type
)
191 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
193 spin_lock(&scsi_mib_index_lock
);
194 new_index
= ++scsi_mib_index
[type
];
195 spin_unlock(&scsi_mib_index_lock
);
200 void transport_subsystem_check_init(void)
203 static int sub_api_initialized
;
205 if (sub_api_initialized
)
208 ret
= request_module("target_core_iblock");
210 pr_err("Unable to load target_core_iblock\n");
212 ret
= request_module("target_core_file");
214 pr_err("Unable to load target_core_file\n");
216 ret
= request_module("target_core_pscsi");
218 pr_err("Unable to load target_core_pscsi\n");
220 ret
= request_module("target_core_user");
222 pr_err("Unable to load target_core_user\n");
224 sub_api_initialized
= 1;
228 * transport_init_session - initialize a session object
229 * @se_sess: Session object pointer.
231 * The caller must have zero-initialized @se_sess before calling this function.
233 void transport_init_session(struct se_session
*se_sess
)
235 INIT_LIST_HEAD(&se_sess
->sess_list
);
236 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
237 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
238 spin_lock_init(&se_sess
->sess_cmd_lock
);
239 init_waitqueue_head(&se_sess
->cmd_list_wq
);
241 EXPORT_SYMBOL(transport_init_session
);
244 * transport_alloc_session - allocate a session object and initialize it
245 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
247 struct se_session
*transport_alloc_session(enum target_prot_op sup_prot_ops
)
249 struct se_session
*se_sess
;
251 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
253 pr_err("Unable to allocate struct se_session from"
255 return ERR_PTR(-ENOMEM
);
257 transport_init_session(se_sess
);
258 se_sess
->sup_prot_ops
= sup_prot_ops
;
262 EXPORT_SYMBOL(transport_alloc_session
);
265 * transport_alloc_session_tags - allocate target driver private data
266 * @se_sess: Session pointer.
267 * @tag_num: Maximum number of in-flight commands between initiator and target.
268 * @tag_size: Size in bytes of the private data a target driver associates with
271 int transport_alloc_session_tags(struct se_session
*se_sess
,
272 unsigned int tag_num
, unsigned int tag_size
)
276 se_sess
->sess_cmd_map
= kcalloc(tag_size
, tag_num
,
277 GFP_KERNEL
| __GFP_NOWARN
| __GFP_RETRY_MAYFAIL
);
278 if (!se_sess
->sess_cmd_map
) {
279 se_sess
->sess_cmd_map
= vzalloc(array_size(tag_size
, tag_num
));
280 if (!se_sess
->sess_cmd_map
) {
281 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
286 rc
= sbitmap_queue_init_node(&se_sess
->sess_tag_pool
, tag_num
, -1,
287 false, GFP_KERNEL
, NUMA_NO_NODE
);
289 pr_err("Unable to init se_sess->sess_tag_pool,"
290 " tag_num: %u\n", tag_num
);
291 kvfree(se_sess
->sess_cmd_map
);
292 se_sess
->sess_cmd_map
= NULL
;
298 EXPORT_SYMBOL(transport_alloc_session_tags
);
301 * transport_init_session_tags - allocate a session and target driver private data
302 * @tag_num: Maximum number of in-flight commands between initiator and target.
303 * @tag_size: Size in bytes of the private data a target driver associates with
305 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
307 static struct se_session
*
308 transport_init_session_tags(unsigned int tag_num
, unsigned int tag_size
,
309 enum target_prot_op sup_prot_ops
)
311 struct se_session
*se_sess
;
314 if (tag_num
!= 0 && !tag_size
) {
315 pr_err("init_session_tags called with percpu-ida tag_num:"
316 " %u, but zero tag_size\n", tag_num
);
317 return ERR_PTR(-EINVAL
);
319 if (!tag_num
&& tag_size
) {
320 pr_err("init_session_tags called with percpu-ida tag_size:"
321 " %u, but zero tag_num\n", tag_size
);
322 return ERR_PTR(-EINVAL
);
325 se_sess
= transport_alloc_session(sup_prot_ops
);
329 rc
= transport_alloc_session_tags(se_sess
, tag_num
, tag_size
);
331 transport_free_session(se_sess
);
332 return ERR_PTR(-ENOMEM
);
339 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
341 void __transport_register_session(
342 struct se_portal_group
*se_tpg
,
343 struct se_node_acl
*se_nacl
,
344 struct se_session
*se_sess
,
345 void *fabric_sess_ptr
)
347 const struct target_core_fabric_ops
*tfo
= se_tpg
->se_tpg_tfo
;
348 unsigned char buf
[PR_REG_ISID_LEN
];
351 se_sess
->se_tpg
= se_tpg
;
352 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
354 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
356 * Only set for struct se_session's that will actually be moving I/O.
357 * eg: *NOT* discovery sessions.
362 * Determine if fabric allows for T10-PI feature bits exposed to
363 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
365 * If so, then always save prot_type on a per se_node_acl node
366 * basis and re-instate the previous sess_prot_type to avoid
367 * disabling PI from below any previously initiator side
370 if (se_nacl
->saved_prot_type
)
371 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
;
372 else if (tfo
->tpg_check_prot_fabric_only
)
373 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
=
374 tfo
->tpg_check_prot_fabric_only(se_tpg
);
376 * If the fabric module supports an ISID based TransportID,
377 * save this value in binary from the fabric I_T Nexus now.
379 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
380 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
381 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
382 &buf
[0], PR_REG_ISID_LEN
);
383 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
386 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
388 * The se_nacl->nacl_sess pointer will be set to the
389 * last active I_T Nexus for each struct se_node_acl.
391 se_nacl
->nacl_sess
= se_sess
;
393 list_add_tail(&se_sess
->sess_acl_list
,
394 &se_nacl
->acl_sess_list
);
395 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
397 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
399 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
400 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
402 EXPORT_SYMBOL(__transport_register_session
);
404 void transport_register_session(
405 struct se_portal_group
*se_tpg
,
406 struct se_node_acl
*se_nacl
,
407 struct se_session
*se_sess
,
408 void *fabric_sess_ptr
)
412 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
413 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
414 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
416 EXPORT_SYMBOL(transport_register_session
);
419 target_setup_session(struct se_portal_group
*tpg
,
420 unsigned int tag_num
, unsigned int tag_size
,
421 enum target_prot_op prot_op
,
422 const char *initiatorname
, void *private,
423 int (*callback
)(struct se_portal_group
*,
424 struct se_session
*, void *))
426 struct se_session
*sess
;
429 * If the fabric driver is using percpu-ida based pre allocation
430 * of I/O descriptor tags, go ahead and perform that setup now..
433 sess
= transport_init_session_tags(tag_num
, tag_size
, prot_op
);
435 sess
= transport_alloc_session(prot_op
);
440 sess
->se_node_acl
= core_tpg_check_initiator_node_acl(tpg
,
441 (unsigned char *)initiatorname
);
442 if (!sess
->se_node_acl
) {
443 transport_free_session(sess
);
444 return ERR_PTR(-EACCES
);
447 * Go ahead and perform any remaining fabric setup that is
448 * required before transport_register_session().
450 if (callback
!= NULL
) {
451 int rc
= callback(tpg
, sess
, private);
453 transport_free_session(sess
);
458 transport_register_session(tpg
, sess
->se_node_acl
, sess
, private);
461 EXPORT_SYMBOL(target_setup_session
);
463 ssize_t
target_show_dynamic_sessions(struct se_portal_group
*se_tpg
, char *page
)
465 struct se_session
*se_sess
;
468 spin_lock_bh(&se_tpg
->session_lock
);
469 list_for_each_entry(se_sess
, &se_tpg
->tpg_sess_list
, sess_list
) {
470 if (!se_sess
->se_node_acl
)
472 if (!se_sess
->se_node_acl
->dynamic_node_acl
)
474 if (strlen(se_sess
->se_node_acl
->initiatorname
) + 1 + len
> PAGE_SIZE
)
477 len
+= snprintf(page
+ len
, PAGE_SIZE
- len
, "%s\n",
478 se_sess
->se_node_acl
->initiatorname
);
479 len
+= 1; /* Include NULL terminator */
481 spin_unlock_bh(&se_tpg
->session_lock
);
485 EXPORT_SYMBOL(target_show_dynamic_sessions
);
487 static void target_complete_nacl(struct kref
*kref
)
489 struct se_node_acl
*nacl
= container_of(kref
,
490 struct se_node_acl
, acl_kref
);
491 struct se_portal_group
*se_tpg
= nacl
->se_tpg
;
493 if (!nacl
->dynamic_stop
) {
494 complete(&nacl
->acl_free_comp
);
498 mutex_lock(&se_tpg
->acl_node_mutex
);
499 list_del_init(&nacl
->acl_list
);
500 mutex_unlock(&se_tpg
->acl_node_mutex
);
502 core_tpg_wait_for_nacl_pr_ref(nacl
);
503 core_free_device_list_for_node(nacl
, se_tpg
);
507 void target_put_nacl(struct se_node_acl
*nacl
)
509 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
511 EXPORT_SYMBOL(target_put_nacl
);
513 void transport_deregister_session_configfs(struct se_session
*se_sess
)
515 struct se_node_acl
*se_nacl
;
518 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
520 se_nacl
= se_sess
->se_node_acl
;
522 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
523 if (!list_empty(&se_sess
->sess_acl_list
))
524 list_del_init(&se_sess
->sess_acl_list
);
526 * If the session list is empty, then clear the pointer.
527 * Otherwise, set the struct se_session pointer from the tail
528 * element of the per struct se_node_acl active session list.
530 if (list_empty(&se_nacl
->acl_sess_list
))
531 se_nacl
->nacl_sess
= NULL
;
533 se_nacl
->nacl_sess
= container_of(
534 se_nacl
->acl_sess_list
.prev
,
535 struct se_session
, sess_acl_list
);
537 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
540 EXPORT_SYMBOL(transport_deregister_session_configfs
);
542 void transport_free_session(struct se_session
*se_sess
)
544 struct se_node_acl
*se_nacl
= se_sess
->se_node_acl
;
547 * Drop the se_node_acl->nacl_kref obtained from within
548 * core_tpg_get_initiator_node_acl().
551 struct se_portal_group
*se_tpg
= se_nacl
->se_tpg
;
552 const struct target_core_fabric_ops
*se_tfo
= se_tpg
->se_tpg_tfo
;
555 se_sess
->se_node_acl
= NULL
;
558 * Also determine if we need to drop the extra ->cmd_kref if
559 * it had been previously dynamically generated, and
560 * the endpoint is not caching dynamic ACLs.
562 mutex_lock(&se_tpg
->acl_node_mutex
);
563 if (se_nacl
->dynamic_node_acl
&&
564 !se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
565 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
566 if (list_empty(&se_nacl
->acl_sess_list
))
567 se_nacl
->dynamic_stop
= true;
568 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
570 if (se_nacl
->dynamic_stop
)
571 list_del_init(&se_nacl
->acl_list
);
573 mutex_unlock(&se_tpg
->acl_node_mutex
);
575 if (se_nacl
->dynamic_stop
)
576 target_put_nacl(se_nacl
);
578 target_put_nacl(se_nacl
);
580 if (se_sess
->sess_cmd_map
) {
581 sbitmap_queue_free(&se_sess
->sess_tag_pool
);
582 kvfree(se_sess
->sess_cmd_map
);
584 kmem_cache_free(se_sess_cache
, se_sess
);
586 EXPORT_SYMBOL(transport_free_session
);
588 void transport_deregister_session(struct se_session
*se_sess
)
590 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
594 transport_free_session(se_sess
);
598 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
599 list_del(&se_sess
->sess_list
);
600 se_sess
->se_tpg
= NULL
;
601 se_sess
->fabric_sess_ptr
= NULL
;
602 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
604 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
605 se_tpg
->se_tpg_tfo
->get_fabric_name());
607 * If last kref is dropping now for an explicit NodeACL, awake sleeping
608 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
609 * removal context from within transport_free_session() code.
611 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
612 * to release all remaining generate_node_acl=1 created ACL resources.
615 transport_free_session(se_sess
);
617 EXPORT_SYMBOL(transport_deregister_session
);
619 void target_remove_session(struct se_session
*se_sess
)
621 transport_deregister_session_configfs(se_sess
);
622 transport_deregister_session(se_sess
);
624 EXPORT_SYMBOL(target_remove_session
);
626 static void target_remove_from_state_list(struct se_cmd
*cmd
)
628 struct se_device
*dev
= cmd
->se_dev
;
634 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
635 if (cmd
->state_active
) {
636 list_del(&cmd
->state_list
);
637 cmd
->state_active
= false;
639 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
643 * This function is called by the target core after the target core has
644 * finished processing a SCSI command or SCSI TMF. Both the regular command
645 * processing code and the code for aborting commands can call this
646 * function. CMD_T_STOP is set if and only if another thread is waiting
647 * inside transport_wait_for_tasks() for t_transport_stop_comp.
649 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
653 target_remove_from_state_list(cmd
);
656 * Clear struct se_cmd->se_lun before the handoff to FE.
660 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
662 * Determine if frontend context caller is requesting the stopping of
663 * this command for frontend exceptions.
665 if (cmd
->transport_state
& CMD_T_STOP
) {
666 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
667 __func__
, __LINE__
, cmd
->tag
);
669 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
671 complete_all(&cmd
->t_transport_stop_comp
);
674 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
675 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
678 * Some fabric modules like tcm_loop can release their internally
679 * allocated I/O reference and struct se_cmd now.
681 * Fabric modules are expected to return '1' here if the se_cmd being
682 * passed is released at this point, or zero if not being released.
684 return cmd
->se_tfo
->check_stop_free(cmd
);
687 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
689 struct se_lun
*lun
= cmd
->se_lun
;
694 if (cmpxchg(&cmd
->lun_ref_active
, true, false))
695 percpu_ref_put(&lun
->lun_ref
);
698 int transport_cmd_finish_abort(struct se_cmd
*cmd
)
700 bool send_tas
= cmd
->transport_state
& CMD_T_TAS
;
701 bool ack_kref
= (cmd
->se_cmd_flags
& SCF_ACK_KREF
);
705 transport_send_task_abort(cmd
);
707 if (cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)
708 transport_lun_remove_cmd(cmd
);
710 * Allow the fabric driver to unmap any resources before
711 * releasing the descriptor via TFO->release_cmd()
714 cmd
->se_tfo
->aborted_task(cmd
);
716 if (transport_cmd_check_stop_to_fabric(cmd
))
718 if (!send_tas
&& ack_kref
)
719 ret
= target_put_sess_cmd(cmd
);
724 static void target_complete_failure_work(struct work_struct
*work
)
726 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
728 transport_generic_request_failure(cmd
,
729 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
733 * Used when asking transport to copy Sense Data from the underlying
734 * Linux/SCSI struct scsi_cmnd
736 static unsigned char *transport_get_sense_buffer(struct se_cmd
*cmd
)
738 struct se_device
*dev
= cmd
->se_dev
;
740 WARN_ON(!cmd
->se_lun
);
745 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
)
748 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
750 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
751 dev
->se_hba
->hba_id
, dev
->transport
->name
, cmd
->scsi_status
);
752 return cmd
->sense_buffer
;
755 void transport_copy_sense_to_cmd(struct se_cmd
*cmd
, unsigned char *sense
)
757 unsigned char *cmd_sense_buf
;
760 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
761 cmd_sense_buf
= transport_get_sense_buffer(cmd
);
762 if (!cmd_sense_buf
) {
763 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
767 cmd
->se_cmd_flags
|= SCF_TRANSPORT_TASK_SENSE
;
768 memcpy(cmd_sense_buf
, sense
, cmd
->scsi_sense_length
);
769 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
771 EXPORT_SYMBOL(transport_copy_sense_to_cmd
);
773 void target_complete_cmd(struct se_cmd
*cmd
, u8 scsi_status
)
775 struct se_device
*dev
= cmd
->se_dev
;
779 cmd
->scsi_status
= scsi_status
;
781 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
782 switch (cmd
->scsi_status
) {
783 case SAM_STAT_CHECK_CONDITION
:
784 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
795 * Check for case where an explicit ABORT_TASK has been received
796 * and transport_wait_for_tasks() will be waiting for completion..
798 if (cmd
->transport_state
& CMD_T_ABORTED
||
799 cmd
->transport_state
& CMD_T_STOP
) {
800 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
802 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
803 * release se_device->caw_sem obtained by sbc_compare_and_write()
804 * since target_complete_ok_work() or target_complete_failure_work()
805 * won't be called to invoke the normal CAW completion callbacks.
807 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
810 complete_all(&cmd
->t_transport_stop_comp
);
812 } else if (!success
) {
813 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
815 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
818 cmd
->t_state
= TRANSPORT_COMPLETE
;
819 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
820 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
822 if (cmd
->se_cmd_flags
& SCF_USE_CPUID
)
823 queue_work_on(cmd
->cpuid
, target_completion_wq
, &cmd
->work
);
825 queue_work(target_completion_wq
, &cmd
->work
);
827 EXPORT_SYMBOL(target_complete_cmd
);
829 void target_complete_cmd_with_length(struct se_cmd
*cmd
, u8 scsi_status
, int length
)
831 if ((scsi_status
== SAM_STAT_GOOD
||
832 cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
) &&
833 length
< cmd
->data_length
) {
834 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
835 cmd
->residual_count
+= cmd
->data_length
- length
;
837 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
838 cmd
->residual_count
= cmd
->data_length
- length
;
841 cmd
->data_length
= length
;
844 target_complete_cmd(cmd
, scsi_status
);
846 EXPORT_SYMBOL(target_complete_cmd_with_length
);
848 static void target_add_to_state_list(struct se_cmd
*cmd
)
850 struct se_device
*dev
= cmd
->se_dev
;
853 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
854 if (!cmd
->state_active
) {
855 list_add_tail(&cmd
->state_list
, &dev
->state_list
);
856 cmd
->state_active
= true;
858 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
862 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
864 static void transport_write_pending_qf(struct se_cmd
*cmd
);
865 static void transport_complete_qf(struct se_cmd
*cmd
);
867 void target_qf_do_work(struct work_struct
*work
)
869 struct se_device
*dev
= container_of(work
, struct se_device
,
871 LIST_HEAD(qf_cmd_list
);
872 struct se_cmd
*cmd
, *cmd_tmp
;
874 spin_lock_irq(&dev
->qf_cmd_lock
);
875 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
876 spin_unlock_irq(&dev
->qf_cmd_lock
);
878 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
879 list_del(&cmd
->se_qf_node
);
880 atomic_dec_mb(&dev
->dev_qf_count
);
882 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
883 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
884 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
885 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
888 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
)
889 transport_write_pending_qf(cmd
);
890 else if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
||
891 cmd
->t_state
== TRANSPORT_COMPLETE_QF_ERR
)
892 transport_complete_qf(cmd
);
896 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
898 switch (cmd
->data_direction
) {
901 case DMA_FROM_DEVICE
:
905 case DMA_BIDIRECTIONAL
:
914 void transport_dump_dev_state(
915 struct se_device
*dev
,
919 *bl
+= sprintf(b
+ *bl
, "Status: ");
920 if (dev
->export_count
)
921 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
923 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
925 *bl
+= sprintf(b
+ *bl
, " Max Queue Depth: %d", dev
->queue_depth
);
926 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u HwMaxSectors: %u\n",
927 dev
->dev_attrib
.block_size
,
928 dev
->dev_attrib
.hw_max_sectors
);
929 *bl
+= sprintf(b
+ *bl
, " ");
932 void transport_dump_vpd_proto_id(
934 unsigned char *p_buf
,
937 unsigned char buf
[VPD_TMP_BUF_SIZE
];
940 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
941 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
943 switch (vpd
->protocol_identifier
) {
945 sprintf(buf
+len
, "Fibre Channel\n");
948 sprintf(buf
+len
, "Parallel SCSI\n");
951 sprintf(buf
+len
, "SSA\n");
954 sprintf(buf
+len
, "IEEE 1394\n");
957 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
961 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
964 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
967 sprintf(buf
+len
, "Automation/Drive Interface Transport"
971 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
974 sprintf(buf
+len
, "Unknown 0x%02x\n",
975 vpd
->protocol_identifier
);
980 strncpy(p_buf
, buf
, p_buf_len
);
986 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
989 * Check if the Protocol Identifier Valid (PIV) bit is set..
991 * from spc3r23.pdf section 7.5.1
993 if (page_83
[1] & 0x80) {
994 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
995 vpd
->protocol_identifier_set
= 1;
996 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
999 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
1001 int transport_dump_vpd_assoc(
1002 struct t10_vpd
*vpd
,
1003 unsigned char *p_buf
,
1006 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1010 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1011 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
1013 switch (vpd
->association
) {
1015 sprintf(buf
+len
, "addressed logical unit\n");
1018 sprintf(buf
+len
, "target port\n");
1021 sprintf(buf
+len
, "SCSI target device\n");
1024 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
1030 strncpy(p_buf
, buf
, p_buf_len
);
1032 pr_debug("%s", buf
);
1037 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
1040 * The VPD identification association..
1042 * from spc3r23.pdf Section 7.6.3.1 Table 297
1044 vpd
->association
= (page_83
[1] & 0x30);
1045 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
1047 EXPORT_SYMBOL(transport_set_vpd_assoc
);
1049 int transport_dump_vpd_ident_type(
1050 struct t10_vpd
*vpd
,
1051 unsigned char *p_buf
,
1054 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1058 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1059 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1061 switch (vpd
->device_identifier_type
) {
1063 sprintf(buf
+len
, "Vendor specific\n");
1066 sprintf(buf
+len
, "T10 Vendor ID based\n");
1069 sprintf(buf
+len
, "EUI-64 based\n");
1072 sprintf(buf
+len
, "NAA\n");
1075 sprintf(buf
+len
, "Relative target port identifier\n");
1078 sprintf(buf
+len
, "SCSI name string\n");
1081 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1082 vpd
->device_identifier_type
);
1088 if (p_buf_len
< strlen(buf
)+1)
1090 strncpy(p_buf
, buf
, p_buf_len
);
1092 pr_debug("%s", buf
);
1098 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1101 * The VPD identifier type..
1103 * from spc3r23.pdf Section 7.6.3.1 Table 298
1105 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1106 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1108 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1110 int transport_dump_vpd_ident(
1111 struct t10_vpd
*vpd
,
1112 unsigned char *p_buf
,
1115 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1118 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1120 switch (vpd
->device_identifier_code_set
) {
1121 case 0x01: /* Binary */
1122 snprintf(buf
, sizeof(buf
),
1123 "T10 VPD Binary Device Identifier: %s\n",
1124 &vpd
->device_identifier
[0]);
1126 case 0x02: /* ASCII */
1127 snprintf(buf
, sizeof(buf
),
1128 "T10 VPD ASCII Device Identifier: %s\n",
1129 &vpd
->device_identifier
[0]);
1131 case 0x03: /* UTF-8 */
1132 snprintf(buf
, sizeof(buf
),
1133 "T10 VPD UTF-8 Device Identifier: %s\n",
1134 &vpd
->device_identifier
[0]);
1137 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1138 " 0x%02x", vpd
->device_identifier_code_set
);
1144 strncpy(p_buf
, buf
, p_buf_len
);
1146 pr_debug("%s", buf
);
1152 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1154 static const char hex_str
[] = "0123456789abcdef";
1155 int j
= 0, i
= 4; /* offset to start of the identifier */
1158 * The VPD Code Set (encoding)
1160 * from spc3r23.pdf Section 7.6.3.1 Table 296
1162 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1163 switch (vpd
->device_identifier_code_set
) {
1164 case 0x01: /* Binary */
1165 vpd
->device_identifier
[j
++] =
1166 hex_str
[vpd
->device_identifier_type
];
1167 while (i
< (4 + page_83
[3])) {
1168 vpd
->device_identifier
[j
++] =
1169 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1170 vpd
->device_identifier
[j
++] =
1171 hex_str
[page_83
[i
] & 0x0f];
1175 case 0x02: /* ASCII */
1176 case 0x03: /* UTF-8 */
1177 while (i
< (4 + page_83
[3]))
1178 vpd
->device_identifier
[j
++] = page_83
[i
++];
1184 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1186 EXPORT_SYMBOL(transport_set_vpd_ident
);
1188 static sense_reason_t
1189 target_check_max_data_sg_nents(struct se_cmd
*cmd
, struct se_device
*dev
,
1194 if (!cmd
->se_tfo
->max_data_sg_nents
)
1195 return TCM_NO_SENSE
;
1197 * Check if fabric enforced maximum SGL entries per I/O descriptor
1198 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1199 * residual_count and reduce original cmd->data_length to maximum
1200 * length based on single PAGE_SIZE entry scatter-lists.
1202 mtl
= (cmd
->se_tfo
->max_data_sg_nents
* PAGE_SIZE
);
1203 if (cmd
->data_length
> mtl
) {
1205 * If an existing CDB overflow is present, calculate new residual
1206 * based on CDB size minus fabric maximum transfer length.
1208 * If an existing CDB underflow is present, calculate new residual
1209 * based on original cmd->data_length minus fabric maximum transfer
1212 * Otherwise, set the underflow residual based on cmd->data_length
1213 * minus fabric maximum transfer length.
1215 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1216 cmd
->residual_count
= (size
- mtl
);
1217 } else if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
1218 u32 orig_dl
= size
+ cmd
->residual_count
;
1219 cmd
->residual_count
= (orig_dl
- mtl
);
1221 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1222 cmd
->residual_count
= (cmd
->data_length
- mtl
);
1224 cmd
->data_length
= mtl
;
1226 * Reset sbc_check_prot() calculated protection payload
1227 * length based upon the new smaller MTL.
1229 if (cmd
->prot_length
) {
1230 u32 sectors
= (mtl
/ dev
->dev_attrib
.block_size
);
1231 cmd
->prot_length
= dev
->prot_length
* sectors
;
1234 return TCM_NO_SENSE
;
1238 target_cmd_size_check(struct se_cmd
*cmd
, unsigned int size
)
1240 struct se_device
*dev
= cmd
->se_dev
;
1242 if (cmd
->unknown_data_length
) {
1243 cmd
->data_length
= size
;
1244 } else if (size
!= cmd
->data_length
) {
1245 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1246 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1247 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
1248 cmd
->data_length
, size
, cmd
->t_task_cdb
[0]);
1250 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
1251 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) {
1252 pr_err_ratelimited("Rejecting underflow/overflow"
1253 " for WRITE data CDB\n");
1254 return TCM_INVALID_CDB_FIELD
;
1257 * Some fabric drivers like iscsi-target still expect to
1258 * always reject overflow writes. Reject this case until
1259 * full fabric driver level support for overflow writes
1260 * is introduced tree-wide.
1262 if (size
> cmd
->data_length
) {
1263 pr_err_ratelimited("Rejecting overflow for"
1264 " WRITE control CDB\n");
1265 return TCM_INVALID_CDB_FIELD
;
1269 * Reject READ_* or WRITE_* with overflow/underflow for
1270 * type SCF_SCSI_DATA_CDB.
1272 if (dev
->dev_attrib
.block_size
!= 512) {
1273 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1274 " CDB on non 512-byte sector setup subsystem"
1275 " plugin: %s\n", dev
->transport
->name
);
1276 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1277 return TCM_INVALID_CDB_FIELD
;
1280 * For the overflow case keep the existing fabric provided
1281 * ->data_length. Otherwise for the underflow case, reset
1282 * ->data_length to the smaller SCSI expected data transfer
1285 if (size
> cmd
->data_length
) {
1286 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
1287 cmd
->residual_count
= (size
- cmd
->data_length
);
1289 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1290 cmd
->residual_count
= (cmd
->data_length
- size
);
1291 cmd
->data_length
= size
;
1295 return target_check_max_data_sg_nents(cmd
, dev
, size
);
1300 * Used by fabric modules containing a local struct se_cmd within their
1301 * fabric dependent per I/O descriptor.
1303 * Preserves the value of @cmd->tag.
1305 void transport_init_se_cmd(
1307 const struct target_core_fabric_ops
*tfo
,
1308 struct se_session
*se_sess
,
1312 unsigned char *sense_buffer
)
1314 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1315 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1316 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1317 INIT_LIST_HEAD(&cmd
->state_list
);
1318 init_completion(&cmd
->t_transport_stop_comp
);
1320 spin_lock_init(&cmd
->t_state_lock
);
1321 INIT_WORK(&cmd
->work
, NULL
);
1322 kref_init(&cmd
->cmd_kref
);
1325 cmd
->se_sess
= se_sess
;
1326 cmd
->data_length
= data_length
;
1327 cmd
->data_direction
= data_direction
;
1328 cmd
->sam_task_attr
= task_attr
;
1329 cmd
->sense_buffer
= sense_buffer
;
1331 cmd
->state_active
= false;
1333 EXPORT_SYMBOL(transport_init_se_cmd
);
1335 static sense_reason_t
1336 transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1338 struct se_device
*dev
= cmd
->se_dev
;
1341 * Check if SAM Task Attribute emulation is enabled for this
1342 * struct se_device storage object
1344 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1347 if (cmd
->sam_task_attr
== TCM_ACA_TAG
) {
1348 pr_debug("SAM Task Attribute ACA"
1349 " emulation is not supported\n");
1350 return TCM_INVALID_CDB_FIELD
;
1357 target_setup_cmd_from_cdb(struct se_cmd
*cmd
, unsigned char *cdb
)
1359 struct se_device
*dev
= cmd
->se_dev
;
1363 * Ensure that the received CDB is less than the max (252 + 8) bytes
1364 * for VARIABLE_LENGTH_CMD
1366 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1367 pr_err("Received SCSI CDB with command_size: %d that"
1368 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1369 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1370 return TCM_INVALID_CDB_FIELD
;
1373 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1374 * allocate the additional extended CDB buffer now.. Otherwise
1375 * setup the pointer from __t_task_cdb to t_task_cdb.
1377 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1378 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1380 if (!cmd
->t_task_cdb
) {
1381 pr_err("Unable to allocate cmd->t_task_cdb"
1382 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1383 scsi_command_size(cdb
),
1384 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1385 return TCM_OUT_OF_RESOURCES
;
1388 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1390 * Copy the original CDB into cmd->
1392 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1394 trace_target_sequencer_start(cmd
);
1396 ret
= dev
->transport
->parse_cdb(cmd
);
1397 if (ret
== TCM_UNSUPPORTED_SCSI_OPCODE
)
1398 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1399 cmd
->se_tfo
->get_fabric_name(),
1400 cmd
->se_sess
->se_node_acl
->initiatorname
,
1401 cmd
->t_task_cdb
[0]);
1405 ret
= transport_check_alloc_task_attr(cmd
);
1409 cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1410 atomic_long_inc(&cmd
->se_lun
->lun_stats
.cmd_pdus
);
1413 EXPORT_SYMBOL(target_setup_cmd_from_cdb
);
1416 * Used by fabric module frontends to queue tasks directly.
1417 * May only be used from process context.
1419 int transport_handle_cdb_direct(
1426 pr_err("cmd->se_lun is NULL\n");
1429 if (in_interrupt()) {
1431 pr_err("transport_generic_handle_cdb cannot be called"
1432 " from interrupt context\n");
1436 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1437 * outstanding descriptors are handled correctly during shutdown via
1438 * transport_wait_for_tasks()
1440 * Also, we don't take cmd->t_state_lock here as we only expect
1441 * this to be called for initial descriptor submission.
1443 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1444 cmd
->transport_state
|= CMD_T_ACTIVE
;
1447 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1448 * so follow TRANSPORT_NEW_CMD processing thread context usage
1449 * and call transport_generic_request_failure() if necessary..
1451 ret
= transport_generic_new_cmd(cmd
);
1453 transport_generic_request_failure(cmd
, ret
);
1456 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1459 transport_generic_map_mem_to_cmd(struct se_cmd
*cmd
, struct scatterlist
*sgl
,
1460 u32 sgl_count
, struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1462 if (!sgl
|| !sgl_count
)
1466 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1467 * scatterlists already have been set to follow what the fabric
1468 * passes for the original expected data transfer length.
1470 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1471 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1472 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1473 return TCM_INVALID_CDB_FIELD
;
1476 cmd
->t_data_sg
= sgl
;
1477 cmd
->t_data_nents
= sgl_count
;
1478 cmd
->t_bidi_data_sg
= sgl_bidi
;
1479 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
1481 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
1486 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1487 * se_cmd + use pre-allocated SGL memory.
1489 * @se_cmd: command descriptor to submit
1490 * @se_sess: associated se_sess for endpoint
1491 * @cdb: pointer to SCSI CDB
1492 * @sense: pointer to SCSI sense buffer
1493 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1494 * @data_length: fabric expected data transfer length
1495 * @task_attr: SAM task attribute
1496 * @data_dir: DMA data direction
1497 * @flags: flags for command submission from target_sc_flags_tables
1498 * @sgl: struct scatterlist memory for unidirectional mapping
1499 * @sgl_count: scatterlist count for unidirectional mapping
1500 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1501 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1502 * @sgl_prot: struct scatterlist memory protection information
1503 * @sgl_prot_count: scatterlist count for protection information
1505 * Task tags are supported if the caller has set @se_cmd->tag.
1507 * Returns non zero to signal active I/O shutdown failure. All other
1508 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1509 * but still return zero here.
1511 * This may only be called from process context, and also currently
1512 * assumes internal allocation of fabric payload buffer by target-core.
1514 int target_submit_cmd_map_sgls(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1515 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1516 u32 data_length
, int task_attr
, int data_dir
, int flags
,
1517 struct scatterlist
*sgl
, u32 sgl_count
,
1518 struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
,
1519 struct scatterlist
*sgl_prot
, u32 sgl_prot_count
)
1521 struct se_portal_group
*se_tpg
;
1525 se_tpg
= se_sess
->se_tpg
;
1527 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1528 BUG_ON(in_interrupt());
1530 * Initialize se_cmd for target operation. From this point
1531 * exceptions are handled by sending exception status via
1532 * target_core_fabric_ops->queue_status() callback
1534 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1535 data_length
, data_dir
, task_attr
, sense
);
1537 if (flags
& TARGET_SCF_USE_CPUID
)
1538 se_cmd
->se_cmd_flags
|= SCF_USE_CPUID
;
1540 se_cmd
->cpuid
= WORK_CPU_UNBOUND
;
1542 if (flags
& TARGET_SCF_UNKNOWN_SIZE
)
1543 se_cmd
->unknown_data_length
= 1;
1545 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1546 * se_sess->sess_cmd_list. A second kref_get here is necessary
1547 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1548 * kref_put() to happen during fabric packet acknowledgement.
1550 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1554 * Signal bidirectional data payloads to target-core
1556 if (flags
& TARGET_SCF_BIDI_OP
)
1557 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1559 * Locate se_lun pointer and attach it to struct se_cmd
1561 rc
= transport_lookup_cmd_lun(se_cmd
, unpacked_lun
);
1563 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1564 target_put_sess_cmd(se_cmd
);
1568 rc
= target_setup_cmd_from_cdb(se_cmd
, cdb
);
1570 transport_generic_request_failure(se_cmd
, rc
);
1575 * Save pointers for SGLs containing protection information,
1578 if (sgl_prot_count
) {
1579 se_cmd
->t_prot_sg
= sgl_prot
;
1580 se_cmd
->t_prot_nents
= sgl_prot_count
;
1581 se_cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
;
1585 * When a non zero sgl_count has been passed perform SGL passthrough
1586 * mapping for pre-allocated fabric memory instead of having target
1587 * core perform an internal SGL allocation..
1589 if (sgl_count
!= 0) {
1593 * A work-around for tcm_loop as some userspace code via
1594 * scsi-generic do not memset their associated read buffers,
1595 * so go ahead and do that here for type non-data CDBs. Also
1596 * note that this is currently guaranteed to be a single SGL
1597 * for this case by target core in target_setup_cmd_from_cdb()
1598 * -> transport_generic_cmd_sequencer().
1600 if (!(se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) &&
1601 se_cmd
->data_direction
== DMA_FROM_DEVICE
) {
1602 unsigned char *buf
= NULL
;
1605 buf
= kmap(sg_page(sgl
)) + sgl
->offset
;
1608 memset(buf
, 0, sgl
->length
);
1609 kunmap(sg_page(sgl
));
1613 rc
= transport_generic_map_mem_to_cmd(se_cmd
, sgl
, sgl_count
,
1614 sgl_bidi
, sgl_bidi_count
);
1616 transport_generic_request_failure(se_cmd
, rc
);
1622 * Check if we need to delay processing because of ALUA
1623 * Active/NonOptimized primary access state..
1625 core_alua_check_nonop_delay(se_cmd
);
1627 transport_handle_cdb_direct(se_cmd
);
1630 EXPORT_SYMBOL(target_submit_cmd_map_sgls
);
1633 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1635 * @se_cmd: command descriptor to submit
1636 * @se_sess: associated se_sess for endpoint
1637 * @cdb: pointer to SCSI CDB
1638 * @sense: pointer to SCSI sense buffer
1639 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1640 * @data_length: fabric expected data transfer length
1641 * @task_attr: SAM task attribute
1642 * @data_dir: DMA data direction
1643 * @flags: flags for command submission from target_sc_flags_tables
1645 * Task tags are supported if the caller has set @se_cmd->tag.
1647 * Returns non zero to signal active I/O shutdown failure. All other
1648 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1649 * but still return zero here.
1651 * This may only be called from process context, and also currently
1652 * assumes internal allocation of fabric payload buffer by target-core.
1654 * It also assumes interal target core SGL memory allocation.
1656 int target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1657 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1658 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1660 return target_submit_cmd_map_sgls(se_cmd
, se_sess
, cdb
, sense
,
1661 unpacked_lun
, data_length
, task_attr
, data_dir
,
1662 flags
, NULL
, 0, NULL
, 0, NULL
, 0);
1664 EXPORT_SYMBOL(target_submit_cmd
);
1666 static void target_complete_tmr_failure(struct work_struct
*work
)
1668 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1670 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1671 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1673 transport_lun_remove_cmd(se_cmd
);
1674 transport_cmd_check_stop_to_fabric(se_cmd
);
1677 static bool target_lookup_lun_from_tag(struct se_session
*se_sess
, u64 tag
,
1680 struct se_cmd
*se_cmd
;
1681 unsigned long flags
;
1684 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
1685 list_for_each_entry(se_cmd
, &se_sess
->sess_cmd_list
, se_cmd_list
) {
1686 if (se_cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
1689 if (se_cmd
->tag
== tag
) {
1690 *unpacked_lun
= se_cmd
->orig_fe_lun
;
1695 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
1701 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1704 * @se_cmd: command descriptor to submit
1705 * @se_sess: associated se_sess for endpoint
1706 * @sense: pointer to SCSI sense buffer
1707 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1708 * @fabric_tmr_ptr: fabric context for TMR req
1709 * @tm_type: Type of TM request
1710 * @gfp: gfp type for caller
1711 * @tag: referenced task tag for TMR_ABORT_TASK
1712 * @flags: submit cmd flags
1714 * Callable from all contexts.
1717 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1718 unsigned char *sense
, u64 unpacked_lun
,
1719 void *fabric_tmr_ptr
, unsigned char tm_type
,
1720 gfp_t gfp
, u64 tag
, int flags
)
1722 struct se_portal_group
*se_tpg
;
1725 se_tpg
= se_sess
->se_tpg
;
1728 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1729 0, DMA_NONE
, TCM_SIMPLE_TAG
, sense
);
1731 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1732 * allocation failure.
1734 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
1738 if (tm_type
== TMR_ABORT_TASK
)
1739 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
1741 /* See target_submit_cmd for commentary */
1742 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1744 core_tmr_release_req(se_cmd
->se_tmr_req
);
1748 * If this is ABORT_TASK with no explicit fabric provided LUN,
1749 * go ahead and search active session tags for a match to figure
1750 * out unpacked_lun for the original se_cmd.
1752 if (tm_type
== TMR_ABORT_TASK
&& (flags
& TARGET_SCF_LOOKUP_LUN_FROM_TAG
)) {
1753 if (!target_lookup_lun_from_tag(se_sess
, tag
, &unpacked_lun
))
1757 ret
= transport_lookup_tmr_lun(se_cmd
, unpacked_lun
);
1761 transport_generic_handle_tmr(se_cmd
);
1765 * For callback during failure handling, push this work off
1766 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1769 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
1770 schedule_work(&se_cmd
->work
);
1773 EXPORT_SYMBOL(target_submit_tmr
);
1776 * Handle SAM-esque emulation for generic transport request failures.
1778 void transport_generic_request_failure(struct se_cmd
*cmd
,
1779 sense_reason_t sense_reason
)
1783 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1785 target_show_cmd("-----[ ", cmd
);
1788 * For SAM Task Attribute emulation for failed struct se_cmd
1790 transport_complete_task_attr(cmd
);
1792 if (cmd
->transport_complete_callback
)
1793 cmd
->transport_complete_callback(cmd
, false, NULL
);
1795 if (transport_check_aborted_status(cmd
, 1))
1798 switch (sense_reason
) {
1799 case TCM_NON_EXISTENT_LUN
:
1800 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1801 case TCM_INVALID_CDB_FIELD
:
1802 case TCM_INVALID_PARAMETER_LIST
:
1803 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
1804 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1805 case TCM_UNKNOWN_MODE_PAGE
:
1806 case TCM_WRITE_PROTECTED
:
1807 case TCM_ADDRESS_OUT_OF_RANGE
:
1808 case TCM_CHECK_CONDITION_ABORT_CMD
:
1809 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1810 case TCM_CHECK_CONDITION_NOT_READY
:
1811 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
1812 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
1813 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
1814 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
:
1815 case TCM_TOO_MANY_TARGET_DESCS
:
1816 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE
:
1817 case TCM_TOO_MANY_SEGMENT_DESCS
:
1818 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE
:
1820 case TCM_OUT_OF_RESOURCES
:
1821 cmd
->scsi_status
= SAM_STAT_TASK_SET_FULL
;
1824 cmd
->scsi_status
= SAM_STAT_BUSY
;
1826 case TCM_RESERVATION_CONFLICT
:
1828 * No SENSE Data payload for this case, set SCSI Status
1829 * and queue the response to $FABRIC_MOD.
1831 * Uses linux/include/scsi/scsi.h SAM status codes defs
1833 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1835 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1836 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1839 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1842 cmd
->se_dev
->dev_attrib
.emulate_ua_intlck_ctrl
== 2) {
1843 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
1844 cmd
->orig_fe_lun
, 0x2C,
1845 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1850 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1851 cmd
->t_task_cdb
[0], sense_reason
);
1852 sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1856 ret
= transport_send_check_condition_and_sense(cmd
, sense_reason
, 0);
1861 transport_lun_remove_cmd(cmd
);
1862 transport_cmd_check_stop_to_fabric(cmd
);
1866 trace_target_cmd_complete(cmd
);
1867 ret
= cmd
->se_tfo
->queue_status(cmd
);
1871 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
1873 EXPORT_SYMBOL(transport_generic_request_failure
);
1875 void __target_execute_cmd(struct se_cmd
*cmd
, bool do_checks
)
1879 if (!cmd
->execute_cmd
) {
1880 ret
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1885 * Check for an existing UNIT ATTENTION condition after
1886 * target_handle_task_attr() has done SAM task attr
1887 * checking, and possibly have already defered execution
1888 * out to target_restart_delayed_cmds() context.
1890 ret
= target_scsi3_ua_check(cmd
);
1894 ret
= target_alua_state_check(cmd
);
1898 ret
= target_check_reservation(cmd
);
1900 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1905 ret
= cmd
->execute_cmd(cmd
);
1909 spin_lock_irq(&cmd
->t_state_lock
);
1910 cmd
->transport_state
&= ~CMD_T_SENT
;
1911 spin_unlock_irq(&cmd
->t_state_lock
);
1913 transport_generic_request_failure(cmd
, ret
);
1916 static int target_write_prot_action(struct se_cmd
*cmd
)
1920 * Perform WRITE_INSERT of PI using software emulation when backend
1921 * device has PI enabled, if the transport has not already generated
1922 * PI using hardware WRITE_INSERT offload.
1924 switch (cmd
->prot_op
) {
1925 case TARGET_PROT_DOUT_INSERT
:
1926 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_INSERT
))
1927 sbc_dif_generate(cmd
);
1929 case TARGET_PROT_DOUT_STRIP
:
1930 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_STRIP
)
1933 sectors
= cmd
->data_length
>> ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
1934 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
1935 sectors
, 0, cmd
->t_prot_sg
, 0);
1936 if (unlikely(cmd
->pi_err
)) {
1937 spin_lock_irq(&cmd
->t_state_lock
);
1938 cmd
->transport_state
&= ~CMD_T_SENT
;
1939 spin_unlock_irq(&cmd
->t_state_lock
);
1940 transport_generic_request_failure(cmd
, cmd
->pi_err
);
1951 static bool target_handle_task_attr(struct se_cmd
*cmd
)
1953 struct se_device
*dev
= cmd
->se_dev
;
1955 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1958 cmd
->se_cmd_flags
|= SCF_TASK_ATTR_SET
;
1961 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1962 * to allow the passed struct se_cmd list of tasks to the front of the list.
1964 switch (cmd
->sam_task_attr
) {
1966 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1967 cmd
->t_task_cdb
[0]);
1969 case TCM_ORDERED_TAG
:
1970 atomic_inc_mb(&dev
->dev_ordered_sync
);
1972 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1973 cmd
->t_task_cdb
[0]);
1976 * Execute an ORDERED command if no other older commands
1977 * exist that need to be completed first.
1979 if (!atomic_read(&dev
->simple_cmds
))
1984 * For SIMPLE and UNTAGGED Task Attribute commands
1986 atomic_inc_mb(&dev
->simple_cmds
);
1990 if (atomic_read(&dev
->dev_ordered_sync
) == 0)
1993 spin_lock(&dev
->delayed_cmd_lock
);
1994 list_add_tail(&cmd
->se_delayed_node
, &dev
->delayed_cmd_list
);
1995 spin_unlock(&dev
->delayed_cmd_lock
);
1997 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1998 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
);
2002 static int __transport_check_aborted_status(struct se_cmd
*, int);
2004 void target_execute_cmd(struct se_cmd
*cmd
)
2007 * Determine if frontend context caller is requesting the stopping of
2008 * this command for frontend exceptions.
2010 * If the received CDB has already been aborted stop processing it here.
2012 spin_lock_irq(&cmd
->t_state_lock
);
2013 if (__transport_check_aborted_status(cmd
, 1)) {
2014 spin_unlock_irq(&cmd
->t_state_lock
);
2017 if (cmd
->transport_state
& CMD_T_STOP
) {
2018 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2019 __func__
, __LINE__
, cmd
->tag
);
2021 spin_unlock_irq(&cmd
->t_state_lock
);
2022 complete_all(&cmd
->t_transport_stop_comp
);
2026 cmd
->t_state
= TRANSPORT_PROCESSING
;
2027 cmd
->transport_state
&= ~CMD_T_PRE_EXECUTE
;
2028 cmd
->transport_state
|= CMD_T_ACTIVE
| CMD_T_SENT
;
2029 spin_unlock_irq(&cmd
->t_state_lock
);
2031 if (target_write_prot_action(cmd
))
2034 if (target_handle_task_attr(cmd
)) {
2035 spin_lock_irq(&cmd
->t_state_lock
);
2036 cmd
->transport_state
&= ~CMD_T_SENT
;
2037 spin_unlock_irq(&cmd
->t_state_lock
);
2041 __target_execute_cmd(cmd
, true);
2043 EXPORT_SYMBOL(target_execute_cmd
);
2046 * Process all commands up to the last received ORDERED task attribute which
2047 * requires another blocking boundary
2049 static void target_restart_delayed_cmds(struct se_device
*dev
)
2054 spin_lock(&dev
->delayed_cmd_lock
);
2055 if (list_empty(&dev
->delayed_cmd_list
)) {
2056 spin_unlock(&dev
->delayed_cmd_lock
);
2060 cmd
= list_entry(dev
->delayed_cmd_list
.next
,
2061 struct se_cmd
, se_delayed_node
);
2062 list_del(&cmd
->se_delayed_node
);
2063 spin_unlock(&dev
->delayed_cmd_lock
);
2065 cmd
->transport_state
|= CMD_T_SENT
;
2067 __target_execute_cmd(cmd
, true);
2069 if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
)
2075 * Called from I/O completion to determine which dormant/delayed
2076 * and ordered cmds need to have their tasks added to the execution queue.
2078 static void transport_complete_task_attr(struct se_cmd
*cmd
)
2080 struct se_device
*dev
= cmd
->se_dev
;
2082 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
2085 if (!(cmd
->se_cmd_flags
& SCF_TASK_ATTR_SET
))
2088 if (cmd
->sam_task_attr
== TCM_SIMPLE_TAG
) {
2089 atomic_dec_mb(&dev
->simple_cmds
);
2090 dev
->dev_cur_ordered_id
++;
2091 } else if (cmd
->sam_task_attr
== TCM_HEAD_TAG
) {
2092 dev
->dev_cur_ordered_id
++;
2093 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2094 dev
->dev_cur_ordered_id
);
2095 } else if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
) {
2096 atomic_dec_mb(&dev
->dev_ordered_sync
);
2098 dev
->dev_cur_ordered_id
++;
2099 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2100 dev
->dev_cur_ordered_id
);
2102 cmd
->se_cmd_flags
&= ~SCF_TASK_ATTR_SET
;
2105 target_restart_delayed_cmds(dev
);
2108 static void transport_complete_qf(struct se_cmd
*cmd
)
2112 transport_complete_task_attr(cmd
);
2114 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2115 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2116 * the same callbacks should not be retried. Return CHECK_CONDITION
2117 * if a scsi_status is not already set.
2119 * If a fabric driver ->queue_status() has returned non zero, always
2120 * keep retrying no matter what..
2122 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_ERR
) {
2123 if (cmd
->scsi_status
)
2126 translate_sense_reason(cmd
, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
2131 * Check if we need to send a sense buffer from
2132 * the struct se_cmd in question. We do NOT want
2133 * to take this path of the IO has been marked as
2134 * needing to be treated like a "normal read". This
2135 * is the case if it's a tape read, and either the
2136 * FM, EOM, or ILI bits are set, but there is no
2139 if (!(cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
) &&
2140 cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
2143 switch (cmd
->data_direction
) {
2144 case DMA_FROM_DEVICE
:
2145 /* queue status if not treating this as a normal read */
2146 if (cmd
->scsi_status
&&
2147 !(cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
))
2150 trace_target_cmd_complete(cmd
);
2151 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2154 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2155 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2161 trace_target_cmd_complete(cmd
);
2162 ret
= cmd
->se_tfo
->queue_status(cmd
);
2169 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
2172 transport_lun_remove_cmd(cmd
);
2173 transport_cmd_check_stop_to_fabric(cmd
);
2176 static void transport_handle_queue_full(struct se_cmd
*cmd
, struct se_device
*dev
,
2177 int err
, bool write_pending
)
2180 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2181 * ->queue_data_in() callbacks from new process context.
2183 * Otherwise for other errors, transport_complete_qf() will send
2184 * CHECK_CONDITION via ->queue_status() instead of attempting to
2185 * retry associated fabric driver data-transfer callbacks.
2187 if (err
== -EAGAIN
|| err
== -ENOMEM
) {
2188 cmd
->t_state
= (write_pending
) ? TRANSPORT_COMPLETE_QF_WP
:
2189 TRANSPORT_COMPLETE_QF_OK
;
2191 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err
);
2192 cmd
->t_state
= TRANSPORT_COMPLETE_QF_ERR
;
2195 spin_lock_irq(&dev
->qf_cmd_lock
);
2196 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
2197 atomic_inc_mb(&dev
->dev_qf_count
);
2198 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
2200 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2203 static bool target_read_prot_action(struct se_cmd
*cmd
)
2205 switch (cmd
->prot_op
) {
2206 case TARGET_PROT_DIN_STRIP
:
2207 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_STRIP
)) {
2208 u32 sectors
= cmd
->data_length
>>
2209 ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
2211 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
2212 sectors
, 0, cmd
->t_prot_sg
,
2218 case TARGET_PROT_DIN_INSERT
:
2219 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_INSERT
)
2222 sbc_dif_generate(cmd
);
2231 static void target_complete_ok_work(struct work_struct
*work
)
2233 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2237 * Check if we need to move delayed/dormant tasks from cmds on the
2238 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2241 transport_complete_task_attr(cmd
);
2244 * Check to schedule QUEUE_FULL work, or execute an existing
2245 * cmd->transport_qf_callback()
2247 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
2248 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2251 * Check if we need to send a sense buffer from
2252 * the struct se_cmd in question. We do NOT want
2253 * to take this path of the IO has been marked as
2254 * needing to be treated like a "normal read". This
2255 * is the case if it's a tape read, and either the
2256 * FM, EOM, or ILI bits are set, but there is no
2259 if (!(cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
) &&
2260 cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
2261 WARN_ON(!cmd
->scsi_status
);
2262 ret
= transport_send_check_condition_and_sense(
2267 transport_lun_remove_cmd(cmd
);
2268 transport_cmd_check_stop_to_fabric(cmd
);
2272 * Check for a callback, used by amongst other things
2273 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2275 if (cmd
->transport_complete_callback
) {
2277 bool caw
= (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
);
2278 bool zero_dl
= !(cmd
->data_length
);
2281 rc
= cmd
->transport_complete_callback(cmd
, true, &post_ret
);
2282 if (!rc
&& !post_ret
) {
2288 ret
= transport_send_check_condition_and_sense(cmd
,
2293 transport_lun_remove_cmd(cmd
);
2294 transport_cmd_check_stop_to_fabric(cmd
);
2300 switch (cmd
->data_direction
) {
2301 case DMA_FROM_DEVICE
:
2303 * if this is a READ-type IO, but SCSI status
2304 * is set, then skip returning data and just
2305 * return the status -- unless this IO is marked
2306 * as needing to be treated as a normal read,
2307 * in which case we want to go ahead and return
2308 * the data. This happens, for example, for tape
2309 * reads with the FM, EOM, or ILI bits set, with
2312 if (cmd
->scsi_status
&&
2313 !(cmd
->se_cmd_flags
& SCF_TREAT_READ_AS_NORMAL
))
2316 atomic_long_add(cmd
->data_length
,
2317 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2319 * Perform READ_STRIP of PI using software emulation when
2320 * backend had PI enabled, if the transport will not be
2321 * performing hardware READ_STRIP offload.
2323 if (target_read_prot_action(cmd
)) {
2324 ret
= transport_send_check_condition_and_sense(cmd
,
2329 transport_lun_remove_cmd(cmd
);
2330 transport_cmd_check_stop_to_fabric(cmd
);
2334 trace_target_cmd_complete(cmd
);
2335 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2340 atomic_long_add(cmd
->data_length
,
2341 &cmd
->se_lun
->lun_stats
.rx_data_octets
);
2343 * Check if we need to send READ payload for BIDI-COMMAND
2345 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2346 atomic_long_add(cmd
->data_length
,
2347 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2348 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2356 trace_target_cmd_complete(cmd
);
2357 ret
= cmd
->se_tfo
->queue_status(cmd
);
2365 transport_lun_remove_cmd(cmd
);
2366 transport_cmd_check_stop_to_fabric(cmd
);
2370 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2371 " data_direction: %d\n", cmd
, cmd
->data_direction
);
2373 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
2376 void target_free_sgl(struct scatterlist
*sgl
, int nents
)
2378 sgl_free_n_order(sgl
, nents
, 0);
2380 EXPORT_SYMBOL(target_free_sgl
);
2382 static inline void transport_reset_sgl_orig(struct se_cmd
*cmd
)
2385 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2386 * emulation, and free + reset pointers if necessary..
2388 if (!cmd
->t_data_sg_orig
)
2391 kfree(cmd
->t_data_sg
);
2392 cmd
->t_data_sg
= cmd
->t_data_sg_orig
;
2393 cmd
->t_data_sg_orig
= NULL
;
2394 cmd
->t_data_nents
= cmd
->t_data_nents_orig
;
2395 cmd
->t_data_nents_orig
= 0;
2398 static inline void transport_free_pages(struct se_cmd
*cmd
)
2400 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2401 target_free_sgl(cmd
->t_prot_sg
, cmd
->t_prot_nents
);
2402 cmd
->t_prot_sg
= NULL
;
2403 cmd
->t_prot_nents
= 0;
2406 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) {
2408 * Release special case READ buffer payload required for
2409 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2411 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
2412 target_free_sgl(cmd
->t_bidi_data_sg
,
2413 cmd
->t_bidi_data_nents
);
2414 cmd
->t_bidi_data_sg
= NULL
;
2415 cmd
->t_bidi_data_nents
= 0;
2417 transport_reset_sgl_orig(cmd
);
2420 transport_reset_sgl_orig(cmd
);
2422 target_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
2423 cmd
->t_data_sg
= NULL
;
2424 cmd
->t_data_nents
= 0;
2426 target_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
2427 cmd
->t_bidi_data_sg
= NULL
;
2428 cmd
->t_bidi_data_nents
= 0;
2431 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
2433 struct scatterlist
*sg
= cmd
->t_data_sg
;
2434 struct page
**pages
;
2438 * We need to take into account a possible offset here for fabrics like
2439 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2440 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2442 if (!cmd
->t_data_nents
)
2446 if (cmd
->t_data_nents
== 1)
2447 return kmap(sg_page(sg
)) + sg
->offset
;
2449 /* >1 page. use vmap */
2450 pages
= kmalloc_array(cmd
->t_data_nents
, sizeof(*pages
), GFP_KERNEL
);
2454 /* convert sg[] to pages[] */
2455 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
2456 pages
[i
] = sg_page(sg
);
2459 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
2461 if (!cmd
->t_data_vmap
)
2464 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
2466 EXPORT_SYMBOL(transport_kmap_data_sg
);
2468 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
2470 if (!cmd
->t_data_nents
) {
2472 } else if (cmd
->t_data_nents
== 1) {
2473 kunmap(sg_page(cmd
->t_data_sg
));
2477 vunmap(cmd
->t_data_vmap
);
2478 cmd
->t_data_vmap
= NULL
;
2480 EXPORT_SYMBOL(transport_kunmap_data_sg
);
2483 target_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
, u32 length
,
2484 bool zero_page
, bool chainable
)
2486 gfp_t gfp
= GFP_KERNEL
| (zero_page
? __GFP_ZERO
: 0);
2488 *sgl
= sgl_alloc_order(length
, 0, chainable
, gfp
, nents
);
2489 return *sgl
? 0 : -ENOMEM
;
2491 EXPORT_SYMBOL(target_alloc_sgl
);
2494 * Allocate any required resources to execute the command. For writes we
2495 * might not have the payload yet, so notify the fabric via a call to
2496 * ->write_pending instead. Otherwise place it on the execution queue.
2499 transport_generic_new_cmd(struct se_cmd
*cmd
)
2501 unsigned long flags
;
2503 bool zero_flag
= !(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
);
2505 if (cmd
->prot_op
!= TARGET_PROT_NORMAL
&&
2506 !(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2507 ret
= target_alloc_sgl(&cmd
->t_prot_sg
, &cmd
->t_prot_nents
,
2508 cmd
->prot_length
, true, false);
2510 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2514 * Determine if the TCM fabric module has already allocated physical
2515 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2518 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
2521 if ((cmd
->se_cmd_flags
& SCF_BIDI
) ||
2522 (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)) {
2525 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)
2526 bidi_length
= cmd
->t_task_nolb
*
2527 cmd
->se_dev
->dev_attrib
.block_size
;
2529 bidi_length
= cmd
->data_length
;
2531 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2532 &cmd
->t_bidi_data_nents
,
2533 bidi_length
, zero_flag
, false);
2535 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2538 ret
= target_alloc_sgl(&cmd
->t_data_sg
, &cmd
->t_data_nents
,
2539 cmd
->data_length
, zero_flag
, false);
2541 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2542 } else if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
2545 * Special case for COMPARE_AND_WRITE with fabrics
2546 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2548 u32 caw_length
= cmd
->t_task_nolb
*
2549 cmd
->se_dev
->dev_attrib
.block_size
;
2551 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2552 &cmd
->t_bidi_data_nents
,
2553 caw_length
, zero_flag
, false);
2555 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2558 * If this command is not a write we can execute it right here,
2559 * for write buffers we need to notify the fabric driver first
2560 * and let it call back once the write buffers are ready.
2562 target_add_to_state_list(cmd
);
2563 if (cmd
->data_direction
!= DMA_TO_DEVICE
|| cmd
->data_length
== 0) {
2564 target_execute_cmd(cmd
);
2568 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2569 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
2571 * Determine if frontend context caller is requesting the stopping of
2572 * this command for frontend exceptions.
2574 if (cmd
->transport_state
& CMD_T_STOP
) {
2575 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2576 __func__
, __LINE__
, cmd
->tag
);
2578 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2580 complete_all(&cmd
->t_transport_stop_comp
);
2583 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
2584 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2586 ret
= cmd
->se_tfo
->write_pending(cmd
);
2593 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
2594 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, true);
2597 EXPORT_SYMBOL(transport_generic_new_cmd
);
2599 static void transport_write_pending_qf(struct se_cmd
*cmd
)
2601 unsigned long flags
;
2605 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2606 stop
= (cmd
->transport_state
& (CMD_T_STOP
| CMD_T_ABORTED
));
2607 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2610 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2611 __func__
, __LINE__
, cmd
->tag
);
2612 complete_all(&cmd
->t_transport_stop_comp
);
2616 ret
= cmd
->se_tfo
->write_pending(cmd
);
2618 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2620 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, true);
2625 __transport_wait_for_tasks(struct se_cmd
*, bool, bool *, bool *,
2626 unsigned long *flags
);
2628 static void target_wait_free_cmd(struct se_cmd
*cmd
, bool *aborted
, bool *tas
)
2630 unsigned long flags
;
2632 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2633 __transport_wait_for_tasks(cmd
, true, aborted
, tas
, &flags
);
2634 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2638 * This function is called by frontend drivers after processing of a command
2641 * The protocol for ensuring that either the regular flow or the TMF
2642 * code drops one reference is as follows:
2643 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2644 * the frontend driver to drop one reference, synchronously or asynchronously.
2645 * - During regular command processing the target core sets CMD_T_COMPLETE
2646 * before invoking one of the .queue_*() functions.
2647 * - The code that aborts commands skips commands and TMFs for which
2648 * CMD_T_COMPLETE has been set.
2649 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2650 * commands that will be aborted.
2651 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2652 * transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2653 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2654 * be called and will drop a reference.
2655 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2656 * will be called. transport_cmd_finish_abort() will drop the final reference.
2658 int transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
2660 DECLARE_COMPLETION_ONSTACK(compl);
2662 bool aborted
= false, tas
= false;
2665 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2667 if (cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) {
2669 * Handle WRITE failure case where transport_generic_new_cmd()
2670 * has already added se_cmd to state_list, but fabric has
2671 * failed command before I/O submission.
2673 if (cmd
->state_active
)
2674 target_remove_from_state_list(cmd
);
2677 transport_lun_remove_cmd(cmd
);
2680 cmd
->compl = &compl;
2681 if (!aborted
|| tas
)
2682 ret
= target_put_sess_cmd(cmd
);
2684 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd
->tag
);
2685 wait_for_completion(&compl);
2690 EXPORT_SYMBOL(transport_generic_free_cmd
);
2693 * target_get_sess_cmd - Add command to active ->sess_cmd_list
2694 * @se_cmd: command descriptor to add
2695 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2697 int target_get_sess_cmd(struct se_cmd
*se_cmd
, bool ack_kref
)
2699 struct se_session
*se_sess
= se_cmd
->se_sess
;
2700 unsigned long flags
;
2704 * Add a second kref if the fabric caller is expecting to handle
2705 * fabric acknowledgement that requires two target_put_sess_cmd()
2706 * invocations before se_cmd descriptor release.
2709 if (!kref_get_unless_zero(&se_cmd
->cmd_kref
))
2712 se_cmd
->se_cmd_flags
|= SCF_ACK_KREF
;
2715 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2716 if (se_sess
->sess_tearing_down
) {
2720 se_cmd
->transport_state
|= CMD_T_PRE_EXECUTE
;
2721 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
2723 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2725 if (ret
&& ack_kref
)
2726 target_put_sess_cmd(se_cmd
);
2730 EXPORT_SYMBOL(target_get_sess_cmd
);
2732 static void target_free_cmd_mem(struct se_cmd
*cmd
)
2734 transport_free_pages(cmd
);
2736 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
2737 core_tmr_release_req(cmd
->se_tmr_req
);
2738 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
2739 kfree(cmd
->t_task_cdb
);
2742 static void target_release_cmd_kref(struct kref
*kref
)
2744 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
2745 struct se_session
*se_sess
= se_cmd
->se_sess
;
2746 struct completion
*compl = se_cmd
->compl;
2747 unsigned long flags
;
2750 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2751 list_del_init(&se_cmd
->se_cmd_list
);
2752 if (se_sess
->sess_tearing_down
&& list_empty(&se_sess
->sess_cmd_list
))
2753 wake_up(&se_sess
->cmd_list_wq
);
2754 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2757 target_free_cmd_mem(se_cmd
);
2758 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2764 * target_put_sess_cmd - decrease the command reference count
2765 * @se_cmd: command to drop a reference from
2767 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2768 * refcount to drop to zero. Returns zero otherwise.
2770 int target_put_sess_cmd(struct se_cmd
*se_cmd
)
2772 return kref_put(&se_cmd
->cmd_kref
, target_release_cmd_kref
);
2774 EXPORT_SYMBOL(target_put_sess_cmd
);
2776 static const char *data_dir_name(enum dma_data_direction d
)
2779 case DMA_BIDIRECTIONAL
: return "BIDI";
2780 case DMA_TO_DEVICE
: return "WRITE";
2781 case DMA_FROM_DEVICE
: return "READ";
2782 case DMA_NONE
: return "NONE";
2788 static const char *cmd_state_name(enum transport_state_table t
)
2791 case TRANSPORT_NO_STATE
: return "NO_STATE";
2792 case TRANSPORT_NEW_CMD
: return "NEW_CMD";
2793 case TRANSPORT_WRITE_PENDING
: return "WRITE_PENDING";
2794 case TRANSPORT_PROCESSING
: return "PROCESSING";
2795 case TRANSPORT_COMPLETE
: return "COMPLETE";
2796 case TRANSPORT_ISTATE_PROCESSING
:
2797 return "ISTATE_PROCESSING";
2798 case TRANSPORT_COMPLETE_QF_WP
: return "COMPLETE_QF_WP";
2799 case TRANSPORT_COMPLETE_QF_OK
: return "COMPLETE_QF_OK";
2800 case TRANSPORT_COMPLETE_QF_ERR
: return "COMPLETE_QF_ERR";
2806 static void target_append_str(char **str
, const char *txt
)
2810 *str
= *str
? kasprintf(GFP_ATOMIC
, "%s,%s", *str
, txt
) :
2811 kstrdup(txt
, GFP_ATOMIC
);
2816 * Convert a transport state bitmask into a string. The caller is
2817 * responsible for freeing the returned pointer.
2819 static char *target_ts_to_str(u32 ts
)
2823 if (ts
& CMD_T_ABORTED
)
2824 target_append_str(&str
, "aborted");
2825 if (ts
& CMD_T_ACTIVE
)
2826 target_append_str(&str
, "active");
2827 if (ts
& CMD_T_COMPLETE
)
2828 target_append_str(&str
, "complete");
2829 if (ts
& CMD_T_SENT
)
2830 target_append_str(&str
, "sent");
2831 if (ts
& CMD_T_STOP
)
2832 target_append_str(&str
, "stop");
2833 if (ts
& CMD_T_FABRIC_STOP
)
2834 target_append_str(&str
, "fabric_stop");
2839 static const char *target_tmf_name(enum tcm_tmreq_table tmf
)
2842 case TMR_ABORT_TASK
: return "ABORT_TASK";
2843 case TMR_ABORT_TASK_SET
: return "ABORT_TASK_SET";
2844 case TMR_CLEAR_ACA
: return "CLEAR_ACA";
2845 case TMR_CLEAR_TASK_SET
: return "CLEAR_TASK_SET";
2846 case TMR_LUN_RESET
: return "LUN_RESET";
2847 case TMR_TARGET_WARM_RESET
: return "TARGET_WARM_RESET";
2848 case TMR_TARGET_COLD_RESET
: return "TARGET_COLD_RESET";
2849 case TMR_UNKNOWN
: break;
2854 void target_show_cmd(const char *pfx
, struct se_cmd
*cmd
)
2856 char *ts_str
= target_ts_to_str(cmd
->transport_state
);
2857 const u8
*cdb
= cmd
->t_task_cdb
;
2858 struct se_tmr_req
*tmf
= cmd
->se_tmr_req
;
2860 if (!(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
2861 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2862 pfx
, cdb
[0], cdb
[1], cmd
->tag
,
2863 data_dir_name(cmd
->data_direction
),
2864 cmd
->se_tfo
->get_cmd_state(cmd
),
2865 cmd_state_name(cmd
->t_state
), cmd
->data_length
,
2866 kref_read(&cmd
->cmd_kref
), ts_str
);
2868 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2869 pfx
, target_tmf_name(tmf
->function
), cmd
->tag
,
2870 tmf
->ref_task_tag
, cmd
->se_tfo
->get_cmd_state(cmd
),
2871 cmd_state_name(cmd
->t_state
),
2872 kref_read(&cmd
->cmd_kref
), ts_str
);
2876 EXPORT_SYMBOL(target_show_cmd
);
2879 * target_sess_cmd_list_set_waiting - Set sess_tearing_down so no new commands are queued.
2880 * @se_sess: session to flag
2882 void target_sess_cmd_list_set_waiting(struct se_session
*se_sess
)
2884 unsigned long flags
;
2886 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2887 se_sess
->sess_tearing_down
= 1;
2888 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2890 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting
);
2893 * target_wait_for_sess_cmds - Wait for outstanding commands
2894 * @se_sess: session to wait for active I/O
2896 void target_wait_for_sess_cmds(struct se_session
*se_sess
)
2901 WARN_ON_ONCE(!se_sess
->sess_tearing_down
);
2903 spin_lock_irq(&se_sess
->sess_cmd_lock
);
2905 ret
= wait_event_lock_irq_timeout(
2906 se_sess
->cmd_list_wq
,
2907 list_empty(&se_sess
->sess_cmd_list
),
2908 se_sess
->sess_cmd_lock
, 180 * HZ
);
2909 list_for_each_entry(cmd
, &se_sess
->sess_cmd_list
, se_cmd_list
)
2910 target_show_cmd("session shutdown: still waiting for ",
2913 spin_unlock_irq(&se_sess
->sess_cmd_lock
);
2915 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
2917 static void target_lun_confirm(struct percpu_ref
*ref
)
2919 struct se_lun
*lun
= container_of(ref
, struct se_lun
, lun_ref
);
2921 complete(&lun
->lun_ref_comp
);
2924 void transport_clear_lun_ref(struct se_lun
*lun
)
2927 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2928 * the initial reference and schedule confirm kill to be
2929 * executed after one full RCU grace period has completed.
2931 percpu_ref_kill_and_confirm(&lun
->lun_ref
, target_lun_confirm
);
2933 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2934 * to call target_lun_confirm after lun->lun_ref has been marked
2935 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2936 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2937 * fails for all new incoming I/O.
2939 wait_for_completion(&lun
->lun_ref_comp
);
2941 * The second completion waits for percpu_ref_put_many() to
2942 * invoke ->release() after lun->lun_ref has switched to
2943 * atomic_t mode, and lun->lun_ref.count has reached zero.
2945 * At this point all target-core lun->lun_ref references have
2946 * been dropped via transport_lun_remove_cmd(), and it's safe
2947 * to proceed with the remaining LUN shutdown.
2949 wait_for_completion(&lun
->lun_shutdown_comp
);
2953 __transport_wait_for_tasks(struct se_cmd
*cmd
, bool fabric_stop
,
2954 bool *aborted
, bool *tas
, unsigned long *flags
)
2955 __releases(&cmd
->t_state_lock
)
2956 __acquires(&cmd
->t_state_lock
)
2959 assert_spin_locked(&cmd
->t_state_lock
);
2960 WARN_ON_ONCE(!irqs_disabled());
2963 cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2965 if (cmd
->transport_state
& CMD_T_ABORTED
)
2968 if (cmd
->transport_state
& CMD_T_TAS
)
2971 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
2972 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2975 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
2976 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2979 if (!(cmd
->transport_state
& CMD_T_ACTIVE
))
2982 if (fabric_stop
&& *aborted
)
2985 cmd
->transport_state
|= CMD_T_STOP
;
2987 target_show_cmd("wait_for_tasks: Stopping ", cmd
);
2989 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
2991 while (!wait_for_completion_timeout(&cmd
->t_transport_stop_comp
,
2993 target_show_cmd("wait for tasks: ", cmd
);
2995 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
2996 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
2998 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2999 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd
->tag
);
3005 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3006 * @cmd: command to wait on
3008 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
3010 unsigned long flags
;
3011 bool ret
, aborted
= false, tas
= false;
3013 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3014 ret
= __transport_wait_for_tasks(cmd
, false, &aborted
, &tas
, &flags
);
3015 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3019 EXPORT_SYMBOL(transport_wait_for_tasks
);
3025 bool add_sector_info
;
3028 static const struct sense_info sense_info_table
[] = {
3032 [TCM_NON_EXISTENT_LUN
] = {
3033 .key
= ILLEGAL_REQUEST
,
3034 .asc
= 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3036 [TCM_UNSUPPORTED_SCSI_OPCODE
] = {
3037 .key
= ILLEGAL_REQUEST
,
3038 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
3040 [TCM_SECTOR_COUNT_TOO_MANY
] = {
3041 .key
= ILLEGAL_REQUEST
,
3042 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
3044 [TCM_UNKNOWN_MODE_PAGE
] = {
3045 .key
= ILLEGAL_REQUEST
,
3046 .asc
= 0x24, /* INVALID FIELD IN CDB */
3048 [TCM_CHECK_CONDITION_ABORT_CMD
] = {
3049 .key
= ABORTED_COMMAND
,
3050 .asc
= 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3053 [TCM_INCORRECT_AMOUNT_OF_DATA
] = {
3054 .key
= ABORTED_COMMAND
,
3055 .asc
= 0x0c, /* WRITE ERROR */
3056 .ascq
= 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3058 [TCM_INVALID_CDB_FIELD
] = {
3059 .key
= ILLEGAL_REQUEST
,
3060 .asc
= 0x24, /* INVALID FIELD IN CDB */
3062 [TCM_INVALID_PARAMETER_LIST
] = {
3063 .key
= ILLEGAL_REQUEST
,
3064 .asc
= 0x26, /* INVALID FIELD IN PARAMETER LIST */
3066 [TCM_TOO_MANY_TARGET_DESCS
] = {
3067 .key
= ILLEGAL_REQUEST
,
3069 .ascq
= 0x06, /* TOO MANY TARGET DESCRIPTORS */
3071 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE
] = {
3072 .key
= ILLEGAL_REQUEST
,
3074 .ascq
= 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3076 [TCM_TOO_MANY_SEGMENT_DESCS
] = {
3077 .key
= ILLEGAL_REQUEST
,
3079 .ascq
= 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3081 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE
] = {
3082 .key
= ILLEGAL_REQUEST
,
3084 .ascq
= 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3086 [TCM_PARAMETER_LIST_LENGTH_ERROR
] = {
3087 .key
= ILLEGAL_REQUEST
,
3088 .asc
= 0x1a, /* PARAMETER LIST LENGTH ERROR */
3090 [TCM_UNEXPECTED_UNSOLICITED_DATA
] = {
3091 .key
= ILLEGAL_REQUEST
,
3092 .asc
= 0x0c, /* WRITE ERROR */
3093 .ascq
= 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3095 [TCM_SERVICE_CRC_ERROR
] = {
3096 .key
= ABORTED_COMMAND
,
3097 .asc
= 0x47, /* PROTOCOL SERVICE CRC ERROR */
3098 .ascq
= 0x05, /* N/A */
3100 [TCM_SNACK_REJECTED
] = {
3101 .key
= ABORTED_COMMAND
,
3102 .asc
= 0x11, /* READ ERROR */
3103 .ascq
= 0x13, /* FAILED RETRANSMISSION REQUEST */
3105 [TCM_WRITE_PROTECTED
] = {
3106 .key
= DATA_PROTECT
,
3107 .asc
= 0x27, /* WRITE PROTECTED */
3109 [TCM_ADDRESS_OUT_OF_RANGE
] = {
3110 .key
= ILLEGAL_REQUEST
,
3111 .asc
= 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3113 [TCM_CHECK_CONDITION_UNIT_ATTENTION
] = {
3114 .key
= UNIT_ATTENTION
,
3116 [TCM_CHECK_CONDITION_NOT_READY
] = {
3119 [TCM_MISCOMPARE_VERIFY
] = {
3121 .asc
= 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3124 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
] = {
3125 .key
= ABORTED_COMMAND
,
3127 .ascq
= 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3128 .add_sector_info
= true,
3130 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
] = {
3131 .key
= ABORTED_COMMAND
,
3133 .ascq
= 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3134 .add_sector_info
= true,
3136 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
] = {
3137 .key
= ABORTED_COMMAND
,
3139 .ascq
= 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3140 .add_sector_info
= true,
3142 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
] = {
3143 .key
= COPY_ABORTED
,
3145 .ascq
= 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3148 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
] = {
3150 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3151 * Solaris initiators. Returning NOT READY instead means the
3152 * operations will be retried a finite number of times and we
3153 * can survive intermittent errors.
3156 .asc
= 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3158 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES
] = {
3160 * From spc4r22 section5.7.7,5.7.8
3161 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3162 * or a REGISTER AND IGNORE EXISTING KEY service action or
3163 * REGISTER AND MOVE service actionis attempted,
3164 * but there are insufficient device server resources to complete the
3165 * operation, then the command shall be terminated with CHECK CONDITION
3166 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3167 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3169 .key
= ILLEGAL_REQUEST
,
3171 .ascq
= 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3176 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3177 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3179 * @reason: LIO sense reason code. If this argument has the value
3180 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3181 * dequeuing a unit attention fails due to multiple commands being processed
3182 * concurrently, set the command status to BUSY.
3184 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3186 static void translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
)
3188 const struct sense_info
*si
;
3189 u8
*buffer
= cmd
->sense_buffer
;
3190 int r
= (__force
int)reason
;
3192 bool desc_format
= target_sense_desc_format(cmd
->se_dev
);
3194 if (r
< ARRAY_SIZE(sense_info_table
) && sense_info_table
[r
].key
)
3195 si
= &sense_info_table
[r
];
3197 si
= &sense_info_table
[(__force
int)
3198 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
];
3201 if (reason
== TCM_CHECK_CONDITION_UNIT_ATTENTION
) {
3202 if (!core_scsi3_ua_for_check_condition(cmd
, &key
, &asc
,
3204 cmd
->scsi_status
= SAM_STAT_BUSY
;
3207 } else if (si
->asc
== 0) {
3208 WARN_ON_ONCE(cmd
->scsi_asc
== 0);
3209 asc
= cmd
->scsi_asc
;
3210 ascq
= cmd
->scsi_ascq
;
3216 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
3217 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
3218 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
3219 scsi_build_sense_buffer(desc_format
, buffer
, key
, asc
, ascq
);
3220 if (si
->add_sector_info
)
3221 WARN_ON_ONCE(scsi_set_sense_information(buffer
,
3222 cmd
->scsi_sense_length
,
3223 cmd
->bad_sector
) < 0);
3227 transport_send_check_condition_and_sense(struct se_cmd
*cmd
,
3228 sense_reason_t reason
, int from_transport
)
3230 unsigned long flags
;
3232 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3233 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
3234 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3237 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
3238 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3240 if (!from_transport
)
3241 translate_sense_reason(cmd
, reason
);
3243 trace_target_cmd_complete(cmd
);
3244 return cmd
->se_tfo
->queue_status(cmd
);
3246 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
3248 static int __transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
3249 __releases(&cmd
->t_state_lock
)
3250 __acquires(&cmd
->t_state_lock
)
3254 assert_spin_locked(&cmd
->t_state_lock
);
3255 WARN_ON_ONCE(!irqs_disabled());
3257 if (!(cmd
->transport_state
& CMD_T_ABORTED
))
3260 * If cmd has been aborted but either no status is to be sent or it has
3261 * already been sent, just return
3263 if (!send_status
|| !(cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
)) {
3265 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
3269 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3270 " 0x%02x ITT: 0x%08llx\n", cmd
->t_task_cdb
[0], cmd
->tag
);
3272 cmd
->se_cmd_flags
&= ~SCF_SEND_DELAYED_TAS
;
3273 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
3274 trace_target_cmd_complete(cmd
);
3276 spin_unlock_irq(&cmd
->t_state_lock
);
3277 ret
= cmd
->se_tfo
->queue_status(cmd
);
3279 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
3280 spin_lock_irq(&cmd
->t_state_lock
);
3285 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
3289 spin_lock_irq(&cmd
->t_state_lock
);
3290 ret
= __transport_check_aborted_status(cmd
, send_status
);
3291 spin_unlock_irq(&cmd
->t_state_lock
);
3295 EXPORT_SYMBOL(transport_check_aborted_status
);
3297 void transport_send_task_abort(struct se_cmd
*cmd
)
3299 unsigned long flags
;
3302 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3303 if (cmd
->se_cmd_flags
& (SCF_SENT_CHECK_CONDITION
)) {
3304 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3307 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3310 * If there are still expected incoming fabric WRITEs, we wait
3311 * until until they have completed before sending a TASK_ABORTED
3312 * response. This response with TASK_ABORTED status will be
3313 * queued back to fabric module by transport_check_aborted_status().
3315 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3316 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
3317 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3318 if (cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
) {
3319 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3322 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
3323 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3328 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
3330 transport_lun_remove_cmd(cmd
);
3332 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3333 cmd
->t_task_cdb
[0], cmd
->tag
);
3335 trace_target_cmd_complete(cmd
);
3336 ret
= cmd
->se_tfo
->queue_status(cmd
);
3338 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
3341 static void target_tmr_work(struct work_struct
*work
)
3343 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
3344 struct se_device
*dev
= cmd
->se_dev
;
3345 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
3346 unsigned long flags
;
3349 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3350 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3351 tmr
->response
= TMR_FUNCTION_REJECTED
;
3352 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3355 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3357 switch (tmr
->function
) {
3358 case TMR_ABORT_TASK
:
3359 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
3361 case TMR_ABORT_TASK_SET
:
3363 case TMR_CLEAR_TASK_SET
:
3364 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
3367 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
3368 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
3369 TMR_FUNCTION_REJECTED
;
3370 if (tmr
->response
== TMR_FUNCTION_COMPLETE
) {
3371 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
3372 cmd
->orig_fe_lun
, 0x29,
3373 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED
);
3376 case TMR_TARGET_WARM_RESET
:
3377 tmr
->response
= TMR_FUNCTION_REJECTED
;
3379 case TMR_TARGET_COLD_RESET
:
3380 tmr
->response
= TMR_FUNCTION_REJECTED
;
3383 pr_err("Unknown TMR function: 0x%02x.\n",
3385 tmr
->response
= TMR_FUNCTION_REJECTED
;
3389 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3390 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3391 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3394 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3396 cmd
->se_tfo
->queue_tm_rsp(cmd
);
3399 transport_lun_remove_cmd(cmd
);
3400 transport_cmd_check_stop_to_fabric(cmd
);
3403 int transport_generic_handle_tmr(
3406 unsigned long flags
;
3407 bool aborted
= false;
3409 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3410 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3413 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
3414 cmd
->transport_state
|= CMD_T_ACTIVE
;
3416 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3419 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3420 "ref_tag: %llu tag: %llu\n", cmd
->se_tmr_req
->function
,
3421 cmd
->se_tmr_req
->ref_task_tag
, cmd
->tag
);
3422 transport_lun_remove_cmd(cmd
);
3423 transport_cmd_check_stop_to_fabric(cmd
);
3427 INIT_WORK(&cmd
->work
, target_tmr_work
);
3428 queue_work(cmd
->se_dev
->tmr_wq
, &cmd
->work
);
3431 EXPORT_SYMBOL(transport_generic_handle_tmr
);
3434 target_check_wce(struct se_device
*dev
)
3438 if (dev
->transport
->get_write_cache
)
3439 wce
= dev
->transport
->get_write_cache(dev
);
3440 else if (dev
->dev_attrib
.emulate_write_cache
> 0)
3447 target_check_fua(struct se_device
*dev
)
3449 return target_check_wce(dev
) && dev
->dev_attrib
.emulate_fua_write
> 0;