perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / drivers / usb / chipidea / otg_fsm.c
blob6ed4b00dba961d7e63c70da520a9922344be206a
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * otg_fsm.c - ChipIdea USB IP core OTG FSM driver
5 * Copyright (C) 2014 Freescale Semiconductor, Inc.
7 * Author: Jun Li
8 */
11 * This file mainly handles OTG fsm, it includes OTG fsm operations
12 * for HNP and SRP.
14 * TODO List
15 * - ADP
16 * - OTG test device
19 #include <linux/usb/otg.h>
20 #include <linux/usb/gadget.h>
21 #include <linux/usb/hcd.h>
22 #include <linux/usb/chipidea.h>
23 #include <linux/regulator/consumer.h>
25 #include "ci.h"
26 #include "bits.h"
27 #include "otg.h"
28 #include "otg_fsm.h"
30 /* Add for otg: interact with user space app */
31 static ssize_t
32 a_bus_req_show(struct device *dev, struct device_attribute *attr, char *buf)
34 char *next;
35 unsigned size, t;
36 struct ci_hdrc *ci = dev_get_drvdata(dev);
38 next = buf;
39 size = PAGE_SIZE;
40 t = scnprintf(next, size, "%d\n", ci->fsm.a_bus_req);
41 size -= t;
42 next += t;
44 return PAGE_SIZE - size;
47 static ssize_t
48 a_bus_req_store(struct device *dev, struct device_attribute *attr,
49 const char *buf, size_t count)
51 struct ci_hdrc *ci = dev_get_drvdata(dev);
53 if (count > 2)
54 return -1;
56 mutex_lock(&ci->fsm.lock);
57 if (buf[0] == '0') {
58 ci->fsm.a_bus_req = 0;
59 } else if (buf[0] == '1') {
60 /* If a_bus_drop is TRUE, a_bus_req can't be set */
61 if (ci->fsm.a_bus_drop) {
62 mutex_unlock(&ci->fsm.lock);
63 return count;
65 ci->fsm.a_bus_req = 1;
66 if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) {
67 ci->gadget.host_request_flag = 1;
68 mutex_unlock(&ci->fsm.lock);
69 return count;
73 ci_otg_queue_work(ci);
74 mutex_unlock(&ci->fsm.lock);
76 return count;
78 static DEVICE_ATTR_RW(a_bus_req);
80 static ssize_t
81 a_bus_drop_show(struct device *dev, struct device_attribute *attr, char *buf)
83 char *next;
84 unsigned size, t;
85 struct ci_hdrc *ci = dev_get_drvdata(dev);
87 next = buf;
88 size = PAGE_SIZE;
89 t = scnprintf(next, size, "%d\n", ci->fsm.a_bus_drop);
90 size -= t;
91 next += t;
93 return PAGE_SIZE - size;
96 static ssize_t
97 a_bus_drop_store(struct device *dev, struct device_attribute *attr,
98 const char *buf, size_t count)
100 struct ci_hdrc *ci = dev_get_drvdata(dev);
102 if (count > 2)
103 return -1;
105 mutex_lock(&ci->fsm.lock);
106 if (buf[0] == '0') {
107 ci->fsm.a_bus_drop = 0;
108 } else if (buf[0] == '1') {
109 ci->fsm.a_bus_drop = 1;
110 ci->fsm.a_bus_req = 0;
113 ci_otg_queue_work(ci);
114 mutex_unlock(&ci->fsm.lock);
116 return count;
118 static DEVICE_ATTR_RW(a_bus_drop);
120 static ssize_t
121 b_bus_req_show(struct device *dev, struct device_attribute *attr, char *buf)
123 char *next;
124 unsigned size, t;
125 struct ci_hdrc *ci = dev_get_drvdata(dev);
127 next = buf;
128 size = PAGE_SIZE;
129 t = scnprintf(next, size, "%d\n", ci->fsm.b_bus_req);
130 size -= t;
131 next += t;
133 return PAGE_SIZE - size;
136 static ssize_t
137 b_bus_req_store(struct device *dev, struct device_attribute *attr,
138 const char *buf, size_t count)
140 struct ci_hdrc *ci = dev_get_drvdata(dev);
142 if (count > 2)
143 return -1;
145 mutex_lock(&ci->fsm.lock);
146 if (buf[0] == '0')
147 ci->fsm.b_bus_req = 0;
148 else if (buf[0] == '1') {
149 ci->fsm.b_bus_req = 1;
150 if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) {
151 ci->gadget.host_request_flag = 1;
152 mutex_unlock(&ci->fsm.lock);
153 return count;
157 ci_otg_queue_work(ci);
158 mutex_unlock(&ci->fsm.lock);
160 return count;
162 static DEVICE_ATTR_RW(b_bus_req);
164 static ssize_t
165 a_clr_err_store(struct device *dev, struct device_attribute *attr,
166 const char *buf, size_t count)
168 struct ci_hdrc *ci = dev_get_drvdata(dev);
170 if (count > 2)
171 return -1;
173 mutex_lock(&ci->fsm.lock);
174 if (buf[0] == '1')
175 ci->fsm.a_clr_err = 1;
177 ci_otg_queue_work(ci);
178 mutex_unlock(&ci->fsm.lock);
180 return count;
182 static DEVICE_ATTR_WO(a_clr_err);
184 static struct attribute *inputs_attrs[] = {
185 &dev_attr_a_bus_req.attr,
186 &dev_attr_a_bus_drop.attr,
187 &dev_attr_b_bus_req.attr,
188 &dev_attr_a_clr_err.attr,
189 NULL,
192 static const struct attribute_group inputs_attr_group = {
193 .name = "inputs",
194 .attrs = inputs_attrs,
198 * Keep this list in the same order as timers indexed
199 * by enum otg_fsm_timer in include/linux/usb/otg-fsm.h
201 static unsigned otg_timer_ms[] = {
202 TA_WAIT_VRISE,
203 TA_WAIT_VFALL,
204 TA_WAIT_BCON,
205 TA_AIDL_BDIS,
206 TB_ASE0_BRST,
207 TA_BIDL_ADIS,
208 TB_AIDL_BDIS,
209 TB_SE0_SRP,
210 TB_SRP_FAIL,
212 TB_DATA_PLS,
213 TB_SSEND_SRP,
217 * Add timer to active timer list
219 static void ci_otg_add_timer(struct ci_hdrc *ci, enum otg_fsm_timer t)
221 unsigned long flags, timer_sec, timer_nsec;
223 if (t >= NUM_OTG_FSM_TIMERS)
224 return;
226 spin_lock_irqsave(&ci->lock, flags);
227 timer_sec = otg_timer_ms[t] / MSEC_PER_SEC;
228 timer_nsec = (otg_timer_ms[t] % MSEC_PER_SEC) * NSEC_PER_MSEC;
229 ci->hr_timeouts[t] = ktime_add(ktime_get(),
230 ktime_set(timer_sec, timer_nsec));
231 ci->enabled_otg_timer_bits |= (1 << t);
232 if ((ci->next_otg_timer == NUM_OTG_FSM_TIMERS) ||
233 ktime_after(ci->hr_timeouts[ci->next_otg_timer],
234 ci->hr_timeouts[t])) {
235 ci->next_otg_timer = t;
236 hrtimer_start_range_ns(&ci->otg_fsm_hrtimer,
237 ci->hr_timeouts[t], NSEC_PER_MSEC,
238 HRTIMER_MODE_ABS);
240 spin_unlock_irqrestore(&ci->lock, flags);
244 * Remove timer from active timer list
246 static void ci_otg_del_timer(struct ci_hdrc *ci, enum otg_fsm_timer t)
248 unsigned long flags, enabled_timer_bits;
249 enum otg_fsm_timer cur_timer, next_timer = NUM_OTG_FSM_TIMERS;
251 if ((t >= NUM_OTG_FSM_TIMERS) ||
252 !(ci->enabled_otg_timer_bits & (1 << t)))
253 return;
255 spin_lock_irqsave(&ci->lock, flags);
256 ci->enabled_otg_timer_bits &= ~(1 << t);
257 if (ci->next_otg_timer == t) {
258 if (ci->enabled_otg_timer_bits == 0) {
259 /* No enabled timers after delete it */
260 hrtimer_cancel(&ci->otg_fsm_hrtimer);
261 ci->next_otg_timer = NUM_OTG_FSM_TIMERS;
262 } else {
263 /* Find the next timer */
264 enabled_timer_bits = ci->enabled_otg_timer_bits;
265 for_each_set_bit(cur_timer, &enabled_timer_bits,
266 NUM_OTG_FSM_TIMERS) {
267 if ((next_timer == NUM_OTG_FSM_TIMERS) ||
268 ktime_before(ci->hr_timeouts[next_timer],
269 ci->hr_timeouts[cur_timer]))
270 next_timer = cur_timer;
274 if (next_timer != NUM_OTG_FSM_TIMERS) {
275 ci->next_otg_timer = next_timer;
276 hrtimer_start_range_ns(&ci->otg_fsm_hrtimer,
277 ci->hr_timeouts[next_timer], NSEC_PER_MSEC,
278 HRTIMER_MODE_ABS);
280 spin_unlock_irqrestore(&ci->lock, flags);
283 /* OTG FSM timer handlers */
284 static int a_wait_vrise_tmout(struct ci_hdrc *ci)
286 ci->fsm.a_wait_vrise_tmout = 1;
287 return 0;
290 static int a_wait_vfall_tmout(struct ci_hdrc *ci)
292 ci->fsm.a_wait_vfall_tmout = 1;
293 return 0;
296 static int a_wait_bcon_tmout(struct ci_hdrc *ci)
298 ci->fsm.a_wait_bcon_tmout = 1;
299 return 0;
302 static int a_aidl_bdis_tmout(struct ci_hdrc *ci)
304 ci->fsm.a_aidl_bdis_tmout = 1;
305 return 0;
308 static int b_ase0_brst_tmout(struct ci_hdrc *ci)
310 ci->fsm.b_ase0_brst_tmout = 1;
311 return 0;
314 static int a_bidl_adis_tmout(struct ci_hdrc *ci)
316 ci->fsm.a_bidl_adis_tmout = 1;
317 return 0;
320 static int b_aidl_bdis_tmout(struct ci_hdrc *ci)
322 ci->fsm.a_bus_suspend = 1;
323 return 0;
326 static int b_se0_srp_tmout(struct ci_hdrc *ci)
328 ci->fsm.b_se0_srp = 1;
329 return 0;
332 static int b_srp_fail_tmout(struct ci_hdrc *ci)
334 ci->fsm.b_srp_done = 1;
335 return 1;
338 static int b_data_pls_tmout(struct ci_hdrc *ci)
340 ci->fsm.b_srp_done = 1;
341 ci->fsm.b_bus_req = 0;
342 if (ci->fsm.power_up)
343 ci->fsm.power_up = 0;
344 hw_write_otgsc(ci, OTGSC_HABA, 0);
345 pm_runtime_put(ci->dev);
346 return 0;
349 static int b_ssend_srp_tmout(struct ci_hdrc *ci)
351 ci->fsm.b_ssend_srp = 1;
352 /* only vbus fall below B_sess_vld in b_idle state */
353 if (ci->fsm.otg->state == OTG_STATE_B_IDLE)
354 return 0;
355 else
356 return 1;
360 * Keep this list in the same order as timers indexed
361 * by enum otg_fsm_timer in include/linux/usb/otg-fsm.h
363 static int (*otg_timer_handlers[])(struct ci_hdrc *) = {
364 a_wait_vrise_tmout, /* A_WAIT_VRISE */
365 a_wait_vfall_tmout, /* A_WAIT_VFALL */
366 a_wait_bcon_tmout, /* A_WAIT_BCON */
367 a_aidl_bdis_tmout, /* A_AIDL_BDIS */
368 b_ase0_brst_tmout, /* B_ASE0_BRST */
369 a_bidl_adis_tmout, /* A_BIDL_ADIS */
370 b_aidl_bdis_tmout, /* B_AIDL_BDIS */
371 b_se0_srp_tmout, /* B_SE0_SRP */
372 b_srp_fail_tmout, /* B_SRP_FAIL */
373 NULL, /* A_WAIT_ENUM */
374 b_data_pls_tmout, /* B_DATA_PLS */
375 b_ssend_srp_tmout, /* B_SSEND_SRP */
379 * Enable the next nearest enabled timer if have
381 static enum hrtimer_restart ci_otg_hrtimer_func(struct hrtimer *t)
383 struct ci_hdrc *ci = container_of(t, struct ci_hdrc, otg_fsm_hrtimer);
384 ktime_t now, *timeout;
385 unsigned long enabled_timer_bits;
386 unsigned long flags;
387 enum otg_fsm_timer cur_timer, next_timer = NUM_OTG_FSM_TIMERS;
388 int ret = -EINVAL;
390 spin_lock_irqsave(&ci->lock, flags);
391 enabled_timer_bits = ci->enabled_otg_timer_bits;
392 ci->next_otg_timer = NUM_OTG_FSM_TIMERS;
394 now = ktime_get();
395 for_each_set_bit(cur_timer, &enabled_timer_bits, NUM_OTG_FSM_TIMERS) {
396 if (ktime_compare(now, ci->hr_timeouts[cur_timer]) >= 0) {
397 ci->enabled_otg_timer_bits &= ~(1 << cur_timer);
398 if (otg_timer_handlers[cur_timer])
399 ret = otg_timer_handlers[cur_timer](ci);
400 } else {
401 if ((next_timer == NUM_OTG_FSM_TIMERS) ||
402 ktime_before(ci->hr_timeouts[cur_timer],
403 ci->hr_timeouts[next_timer]))
404 next_timer = cur_timer;
407 /* Enable the next nearest timer */
408 if (next_timer < NUM_OTG_FSM_TIMERS) {
409 timeout = &ci->hr_timeouts[next_timer];
410 hrtimer_start_range_ns(&ci->otg_fsm_hrtimer, *timeout,
411 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
412 ci->next_otg_timer = next_timer;
414 spin_unlock_irqrestore(&ci->lock, flags);
416 if (!ret)
417 ci_otg_queue_work(ci);
419 return HRTIMER_NORESTART;
422 /* Initialize timers */
423 static int ci_otg_init_timers(struct ci_hdrc *ci)
425 hrtimer_init(&ci->otg_fsm_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
426 ci->otg_fsm_hrtimer.function = ci_otg_hrtimer_func;
428 return 0;
431 /* -------------------------------------------------------------*/
432 /* Operations that will be called from OTG Finite State Machine */
433 /* -------------------------------------------------------------*/
434 static void ci_otg_fsm_add_timer(struct otg_fsm *fsm, enum otg_fsm_timer t)
436 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
438 if (t < NUM_OTG_FSM_TIMERS)
439 ci_otg_add_timer(ci, t);
440 return;
443 static void ci_otg_fsm_del_timer(struct otg_fsm *fsm, enum otg_fsm_timer t)
445 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
447 if (t < NUM_OTG_FSM_TIMERS)
448 ci_otg_del_timer(ci, t);
449 return;
453 * A-device drive vbus: turn on vbus regulator and enable port power
454 * Data pulse irq should be disabled while vbus is on.
456 static void ci_otg_drv_vbus(struct otg_fsm *fsm, int on)
458 int ret;
459 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
461 if (on) {
462 /* Enable power power */
463 hw_write(ci, OP_PORTSC, PORTSC_W1C_BITS | PORTSC_PP,
464 PORTSC_PP);
465 if (ci->platdata->reg_vbus) {
466 ret = regulator_enable(ci->platdata->reg_vbus);
467 if (ret) {
468 dev_err(ci->dev,
469 "Failed to enable vbus regulator, ret=%d\n",
470 ret);
471 return;
474 /* Disable data pulse irq */
475 hw_write_otgsc(ci, OTGSC_DPIE, 0);
477 fsm->a_srp_det = 0;
478 fsm->power_up = 0;
479 } else {
480 if (ci->platdata->reg_vbus)
481 regulator_disable(ci->platdata->reg_vbus);
483 fsm->a_bus_drop = 1;
484 fsm->a_bus_req = 0;
489 * Control data line by Run Stop bit.
491 static void ci_otg_loc_conn(struct otg_fsm *fsm, int on)
493 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
495 if (on)
496 hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS);
497 else
498 hw_write(ci, OP_USBCMD, USBCMD_RS, 0);
502 * Generate SOF by host.
503 * In host mode, controller will automatically send SOF.
504 * Suspend will block the data on the port.
506 * This is controlled through usbcore by usb autosuspend,
507 * so the usb device class driver need support autosuspend,
508 * otherwise the bus suspend will not happen.
510 static void ci_otg_loc_sof(struct otg_fsm *fsm, int on)
512 struct usb_device *udev;
514 if (!fsm->otg->host)
515 return;
517 udev = usb_hub_find_child(fsm->otg->host->root_hub, 1);
518 if (!udev)
519 return;
521 if (on) {
522 usb_disable_autosuspend(udev);
523 } else {
524 pm_runtime_set_autosuspend_delay(&udev->dev, 0);
525 usb_enable_autosuspend(udev);
530 * Start SRP pulsing by data-line pulsing,
531 * no v-bus pulsing followed
533 static void ci_otg_start_pulse(struct otg_fsm *fsm)
535 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
537 /* Hardware Assistant Data pulse */
538 hw_write_otgsc(ci, OTGSC_HADP, OTGSC_HADP);
540 pm_runtime_get(ci->dev);
541 ci_otg_add_timer(ci, B_DATA_PLS);
544 static int ci_otg_start_host(struct otg_fsm *fsm, int on)
546 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
548 if (on) {
549 ci_role_stop(ci);
550 ci_role_start(ci, CI_ROLE_HOST);
551 } else {
552 ci_role_stop(ci);
553 ci_role_start(ci, CI_ROLE_GADGET);
555 return 0;
558 static int ci_otg_start_gadget(struct otg_fsm *fsm, int on)
560 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm);
562 if (on)
563 usb_gadget_vbus_connect(&ci->gadget);
564 else
565 usb_gadget_vbus_disconnect(&ci->gadget);
567 return 0;
570 static struct otg_fsm_ops ci_otg_ops = {
571 .drv_vbus = ci_otg_drv_vbus,
572 .loc_conn = ci_otg_loc_conn,
573 .loc_sof = ci_otg_loc_sof,
574 .start_pulse = ci_otg_start_pulse,
575 .add_timer = ci_otg_fsm_add_timer,
576 .del_timer = ci_otg_fsm_del_timer,
577 .start_host = ci_otg_start_host,
578 .start_gadget = ci_otg_start_gadget,
581 int ci_otg_fsm_work(struct ci_hdrc *ci)
584 * Don't do fsm transition for B device
585 * when there is no gadget class driver
587 if (ci->fsm.id && !(ci->driver) &&
588 ci->fsm.otg->state < OTG_STATE_A_IDLE)
589 return 0;
591 pm_runtime_get_sync(ci->dev);
592 if (otg_statemachine(&ci->fsm)) {
593 if (ci->fsm.otg->state == OTG_STATE_A_IDLE) {
595 * Further state change for cases:
596 * a_idle to b_idle; or
597 * a_idle to a_wait_vrise due to ID change(1->0), so
598 * B-dev becomes A-dev can try to start new session
599 * consequently; or
600 * a_idle to a_wait_vrise when power up
602 if ((ci->fsm.id) || (ci->id_event) ||
603 (ci->fsm.power_up)) {
604 ci_otg_queue_work(ci);
605 } else {
606 /* Enable data pulse irq */
607 hw_write(ci, OP_PORTSC, PORTSC_W1C_BITS |
608 PORTSC_PP, 0);
609 hw_write_otgsc(ci, OTGSC_DPIS, OTGSC_DPIS);
610 hw_write_otgsc(ci, OTGSC_DPIE, OTGSC_DPIE);
612 if (ci->id_event)
613 ci->id_event = false;
614 } else if (ci->fsm.otg->state == OTG_STATE_B_IDLE) {
615 if (ci->fsm.b_sess_vld) {
616 ci->fsm.power_up = 0;
618 * Further transite to b_periphearl state
619 * when register gadget driver with vbus on
621 ci_otg_queue_work(ci);
623 } else if (ci->fsm.otg->state == OTG_STATE_A_HOST) {
624 pm_runtime_mark_last_busy(ci->dev);
625 pm_runtime_put_autosuspend(ci->dev);
626 return 0;
629 pm_runtime_put_sync(ci->dev);
630 return 0;
634 * Update fsm variables in each state if catching expected interrupts,
635 * called by otg fsm isr.
637 static void ci_otg_fsm_event(struct ci_hdrc *ci)
639 u32 intr_sts, otg_bsess_vld, port_conn;
640 struct otg_fsm *fsm = &ci->fsm;
642 intr_sts = hw_read_intr_status(ci);
643 otg_bsess_vld = hw_read_otgsc(ci, OTGSC_BSV);
644 port_conn = hw_read(ci, OP_PORTSC, PORTSC_CCS);
646 switch (ci->fsm.otg->state) {
647 case OTG_STATE_A_WAIT_BCON:
648 if (port_conn) {
649 fsm->b_conn = 1;
650 fsm->a_bus_req = 1;
651 ci_otg_queue_work(ci);
653 break;
654 case OTG_STATE_B_IDLE:
655 if (otg_bsess_vld && (intr_sts & USBi_PCI) && port_conn) {
656 fsm->b_sess_vld = 1;
657 ci_otg_queue_work(ci);
659 break;
660 case OTG_STATE_B_PERIPHERAL:
661 if ((intr_sts & USBi_SLI) && port_conn && otg_bsess_vld) {
662 ci_otg_add_timer(ci, B_AIDL_BDIS);
663 } else if (intr_sts & USBi_PCI) {
664 ci_otg_del_timer(ci, B_AIDL_BDIS);
665 if (fsm->a_bus_suspend == 1)
666 fsm->a_bus_suspend = 0;
668 break;
669 case OTG_STATE_B_HOST:
670 if ((intr_sts & USBi_PCI) && !port_conn) {
671 fsm->a_conn = 0;
672 fsm->b_bus_req = 0;
673 ci_otg_queue_work(ci);
675 break;
676 case OTG_STATE_A_PERIPHERAL:
677 if (intr_sts & USBi_SLI) {
678 fsm->b_bus_suspend = 1;
680 * Init a timer to know how long this suspend
681 * will continue, if time out, indicates B no longer
682 * wants to be host role
684 ci_otg_add_timer(ci, A_BIDL_ADIS);
687 if (intr_sts & USBi_URI)
688 ci_otg_del_timer(ci, A_BIDL_ADIS);
690 if (intr_sts & USBi_PCI) {
691 if (fsm->b_bus_suspend == 1) {
692 ci_otg_del_timer(ci, A_BIDL_ADIS);
693 fsm->b_bus_suspend = 0;
696 break;
697 case OTG_STATE_A_SUSPEND:
698 if ((intr_sts & USBi_PCI) && !port_conn) {
699 fsm->b_conn = 0;
701 /* if gadget driver is binded */
702 if (ci->driver) {
703 /* A device to be peripheral mode */
704 ci->gadget.is_a_peripheral = 1;
706 ci_otg_queue_work(ci);
708 break;
709 case OTG_STATE_A_HOST:
710 if ((intr_sts & USBi_PCI) && !port_conn) {
711 fsm->b_conn = 0;
712 ci_otg_queue_work(ci);
714 break;
715 case OTG_STATE_B_WAIT_ACON:
716 if ((intr_sts & USBi_PCI) && port_conn) {
717 fsm->a_conn = 1;
718 ci_otg_queue_work(ci);
720 break;
721 default:
722 break;
727 * ci_otg_irq - otg fsm related irq handling
728 * and also update otg fsm variable by monitoring usb host and udc
729 * state change interrupts.
730 * @ci: ci_hdrc
732 irqreturn_t ci_otg_fsm_irq(struct ci_hdrc *ci)
734 irqreturn_t retval = IRQ_NONE;
735 u32 otgsc, otg_int_src = 0;
736 struct otg_fsm *fsm = &ci->fsm;
738 otgsc = hw_read_otgsc(ci, ~0);
739 otg_int_src = otgsc & OTGSC_INT_STATUS_BITS & (otgsc >> 8);
740 fsm->id = (otgsc & OTGSC_ID) ? 1 : 0;
742 if (otg_int_src) {
743 if (otg_int_src & OTGSC_DPIS) {
744 hw_write_otgsc(ci, OTGSC_DPIS, OTGSC_DPIS);
745 fsm->a_srp_det = 1;
746 fsm->a_bus_drop = 0;
747 } else if (otg_int_src & OTGSC_IDIS) {
748 hw_write_otgsc(ci, OTGSC_IDIS, OTGSC_IDIS);
749 if (fsm->id == 0) {
750 fsm->a_bus_drop = 0;
751 fsm->a_bus_req = 1;
752 ci->id_event = true;
754 } else if (otg_int_src & OTGSC_BSVIS) {
755 hw_write_otgsc(ci, OTGSC_BSVIS, OTGSC_BSVIS);
756 if (otgsc & OTGSC_BSV) {
757 fsm->b_sess_vld = 1;
758 ci_otg_del_timer(ci, B_SSEND_SRP);
759 ci_otg_del_timer(ci, B_SRP_FAIL);
760 fsm->b_ssend_srp = 0;
761 } else {
762 fsm->b_sess_vld = 0;
763 if (fsm->id)
764 ci_otg_add_timer(ci, B_SSEND_SRP);
766 } else if (otg_int_src & OTGSC_AVVIS) {
767 hw_write_otgsc(ci, OTGSC_AVVIS, OTGSC_AVVIS);
768 if (otgsc & OTGSC_AVV) {
769 fsm->a_vbus_vld = 1;
770 } else {
771 fsm->a_vbus_vld = 0;
772 fsm->b_conn = 0;
775 ci_otg_queue_work(ci);
776 return IRQ_HANDLED;
779 ci_otg_fsm_event(ci);
781 return retval;
784 void ci_hdrc_otg_fsm_start(struct ci_hdrc *ci)
786 ci_otg_queue_work(ci);
789 int ci_hdrc_otg_fsm_init(struct ci_hdrc *ci)
791 int retval = 0;
793 if (ci->phy)
794 ci->otg.phy = ci->phy;
795 else
796 ci->otg.usb_phy = ci->usb_phy;
798 ci->otg.gadget = &ci->gadget;
799 ci->fsm.otg = &ci->otg;
800 ci->fsm.power_up = 1;
801 ci->fsm.id = hw_read_otgsc(ci, OTGSC_ID) ? 1 : 0;
802 ci->fsm.otg->state = OTG_STATE_UNDEFINED;
803 ci->fsm.ops = &ci_otg_ops;
804 ci->gadget.hnp_polling_support = 1;
805 ci->fsm.host_req_flag = devm_kzalloc(ci->dev, 1, GFP_KERNEL);
806 if (!ci->fsm.host_req_flag)
807 return -ENOMEM;
809 mutex_init(&ci->fsm.lock);
811 retval = ci_otg_init_timers(ci);
812 if (retval) {
813 dev_err(ci->dev, "Couldn't init OTG timers\n");
814 return retval;
816 ci->enabled_otg_timer_bits = 0;
817 ci->next_otg_timer = NUM_OTG_FSM_TIMERS;
819 retval = sysfs_create_group(&ci->dev->kobj, &inputs_attr_group);
820 if (retval < 0) {
821 dev_dbg(ci->dev,
822 "Can't register sysfs attr group: %d\n", retval);
823 return retval;
826 /* Enable A vbus valid irq */
827 hw_write_otgsc(ci, OTGSC_AVVIE, OTGSC_AVVIE);
829 if (ci->fsm.id) {
830 ci->fsm.b_ssend_srp =
831 hw_read_otgsc(ci, OTGSC_BSV) ? 0 : 1;
832 ci->fsm.b_sess_vld =
833 hw_read_otgsc(ci, OTGSC_BSV) ? 1 : 0;
834 /* Enable BSV irq */
835 hw_write_otgsc(ci, OTGSC_BSVIE, OTGSC_BSVIE);
838 return 0;
841 void ci_hdrc_otg_fsm_remove(struct ci_hdrc *ci)
843 sysfs_remove_group(&ci->dev->kobj, &inputs_attr_group);