4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/security.h>
28 #include <linux/seqlock.h>
29 #include <linux/bootmem.h>
30 #include <linux/bit_spinlock.h>
31 #include <linux/rculist_bl.h>
32 #include <linux/list_lru.h>
38 * dcache->d_inode->i_lock protects:
39 * - i_dentry, d_u.d_alias, d_inode of aliases
40 * dcache_hash_bucket lock protects:
41 * - the dcache hash table
42 * s_roots bl list spinlock protects:
43 * - the s_roots list (see __d_drop)
44 * dentry->d_sb->s_dentry_lru_lock protects:
45 * - the dcache lru lists and counters
52 * - d_parent and d_subdirs
53 * - childrens' d_child and d_parent
54 * - d_u.d_alias, d_inode
57 * dentry->d_inode->i_lock
59 * dentry->d_sb->s_dentry_lru_lock
60 * dcache_hash_bucket lock
63 * If there is an ancestor relationship:
64 * dentry->d_parent->...->d_parent->d_lock
66 * dentry->d_parent->d_lock
69 * If no ancestor relationship:
70 * arbitrary, since it's serialized on rename_lock
72 int sysctl_vfs_cache_pressure __read_mostly
= 100;
73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
75 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
77 EXPORT_SYMBOL(rename_lock
);
79 static struct kmem_cache
*dentry_cache __read_mostly
;
81 const struct qstr empty_name
= QSTR_INIT("", 0);
82 EXPORT_SYMBOL(empty_name
);
83 const struct qstr slash_name
= QSTR_INIT("/", 1);
84 EXPORT_SYMBOL(slash_name
);
87 * This is the single most critical data structure when it comes
88 * to the dcache: the hashtable for lookups. Somebody should try
89 * to make this good - I've just made it work.
91 * This hash-function tries to avoid losing too many bits of hash
92 * information, yet avoid using a prime hash-size or similar.
95 static unsigned int d_hash_shift __read_mostly
;
97 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
99 static inline struct hlist_bl_head
*d_hash(unsigned int hash
)
101 return dentry_hashtable
+ (hash
>> d_hash_shift
);
104 #define IN_LOOKUP_SHIFT 10
105 static struct hlist_bl_head in_lookup_hashtable
[1 << IN_LOOKUP_SHIFT
];
107 static inline struct hlist_bl_head
*in_lookup_hash(const struct dentry
*parent
,
110 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
111 return in_lookup_hashtable
+ hash_32(hash
, IN_LOOKUP_SHIFT
);
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat
= {
120 static DEFINE_PER_CPU(long, nr_dentry
);
121 static DEFINE_PER_CPU(long, nr_dentry_unused
);
123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
126 * Here we resort to our own counters instead of using generic per-cpu counters
127 * for consistency with what the vfs inode code does. We are expected to harvest
128 * better code and performance by having our own specialized counters.
130 * Please note that the loop is done over all possible CPUs, not over all online
131 * CPUs. The reason for this is that we don't want to play games with CPUs going
132 * on and off. If one of them goes off, we will just keep their counters.
134 * glommer: See cffbc8a for details, and if you ever intend to change this,
135 * please update all vfs counters to match.
137 static long get_nr_dentry(void)
141 for_each_possible_cpu(i
)
142 sum
+= per_cpu(nr_dentry
, i
);
143 return sum
< 0 ? 0 : sum
;
146 static long get_nr_dentry_unused(void)
150 for_each_possible_cpu(i
)
151 sum
+= per_cpu(nr_dentry_unused
, i
);
152 return sum
< 0 ? 0 : sum
;
155 int proc_nr_dentry(struct ctl_table
*table
, int write
, void __user
*buffer
,
156 size_t *lenp
, loff_t
*ppos
)
158 dentry_stat
.nr_dentry
= get_nr_dentry();
159 dentry_stat
.nr_unused
= get_nr_dentry_unused();
160 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
165 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166 * The strings are both count bytes long, and count is non-zero.
168 #ifdef CONFIG_DCACHE_WORD_ACCESS
170 #include <asm/word-at-a-time.h>
172 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173 * aligned allocation for this particular component. We don't
174 * strictly need the load_unaligned_zeropad() safety, but it
175 * doesn't hurt either.
177 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178 * need the careful unaligned handling.
180 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
182 unsigned long a
,b
,mask
;
185 a
= read_word_at_a_time(cs
);
186 b
= load_unaligned_zeropad(ct
);
187 if (tcount
< sizeof(unsigned long))
189 if (unlikely(a
!= b
))
191 cs
+= sizeof(unsigned long);
192 ct
+= sizeof(unsigned long);
193 tcount
-= sizeof(unsigned long);
197 mask
= bytemask_from_count(tcount
);
198 return unlikely(!!((a
^ b
) & mask
));
203 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
217 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
220 * Be careful about RCU walk racing with rename:
221 * use 'READ_ONCE' to fetch the name pointer.
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
235 const unsigned char *cs
= READ_ONCE(dentry
->d_name
.name
);
237 return dentry_string_cmp(cs
, ct
, tcount
);
240 struct external_name
{
243 struct rcu_head head
;
245 unsigned char name
[];
248 static inline struct external_name
*external_name(struct dentry
*dentry
)
250 return container_of(dentry
->d_name
.name
, struct external_name
, name
[0]);
253 static void __d_free(struct rcu_head
*head
)
255 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
257 kmem_cache_free(dentry_cache
, dentry
);
260 static void __d_free_external(struct rcu_head
*head
)
262 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
263 kfree(external_name(dentry
));
264 kmem_cache_free(dentry_cache
, dentry
);
267 static inline int dname_external(const struct dentry
*dentry
)
269 return dentry
->d_name
.name
!= dentry
->d_iname
;
272 void take_dentry_name_snapshot(struct name_snapshot
*name
, struct dentry
*dentry
)
274 spin_lock(&dentry
->d_lock
);
275 if (unlikely(dname_external(dentry
))) {
276 struct external_name
*p
= external_name(dentry
);
277 atomic_inc(&p
->u
.count
);
278 spin_unlock(&dentry
->d_lock
);
279 name
->name
= p
->name
;
281 memcpy(name
->inline_name
, dentry
->d_iname
,
282 dentry
->d_name
.len
+ 1);
283 spin_unlock(&dentry
->d_lock
);
284 name
->name
= name
->inline_name
;
287 EXPORT_SYMBOL(take_dentry_name_snapshot
);
289 void release_dentry_name_snapshot(struct name_snapshot
*name
)
291 if (unlikely(name
->name
!= name
->inline_name
)) {
292 struct external_name
*p
;
293 p
= container_of(name
->name
, struct external_name
, name
[0]);
294 if (unlikely(atomic_dec_and_test(&p
->u
.count
)))
295 kfree_rcu(p
, u
.head
);
298 EXPORT_SYMBOL(release_dentry_name_snapshot
);
300 static inline void __d_set_inode_and_type(struct dentry
*dentry
,
306 dentry
->d_inode
= inode
;
307 flags
= READ_ONCE(dentry
->d_flags
);
308 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
310 WRITE_ONCE(dentry
->d_flags
, flags
);
313 static inline void __d_clear_type_and_inode(struct dentry
*dentry
)
315 unsigned flags
= READ_ONCE(dentry
->d_flags
);
317 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
318 WRITE_ONCE(dentry
->d_flags
, flags
);
319 dentry
->d_inode
= NULL
;
322 static void dentry_free(struct dentry
*dentry
)
324 WARN_ON(!hlist_unhashed(&dentry
->d_u
.d_alias
));
325 if (unlikely(dname_external(dentry
))) {
326 struct external_name
*p
= external_name(dentry
);
327 if (likely(atomic_dec_and_test(&p
->u
.count
))) {
328 call_rcu(&dentry
->d_u
.d_rcu
, __d_free_external
);
332 /* if dentry was never visible to RCU, immediate free is OK */
333 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
334 __d_free(&dentry
->d_u
.d_rcu
);
336 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
340 * Release the dentry's inode, using the filesystem
341 * d_iput() operation if defined.
343 static void dentry_unlink_inode(struct dentry
* dentry
)
344 __releases(dentry
->d_lock
)
345 __releases(dentry
->d_inode
->i_lock
)
347 struct inode
*inode
= dentry
->d_inode
;
349 raw_write_seqcount_begin(&dentry
->d_seq
);
350 __d_clear_type_and_inode(dentry
);
351 hlist_del_init(&dentry
->d_u
.d_alias
);
352 raw_write_seqcount_end(&dentry
->d_seq
);
353 spin_unlock(&dentry
->d_lock
);
354 spin_unlock(&inode
->i_lock
);
356 fsnotify_inoderemove(inode
);
357 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
358 dentry
->d_op
->d_iput(dentry
, inode
);
364 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
365 * is in use - which includes both the "real" per-superblock
366 * LRU list _and_ the DCACHE_SHRINK_LIST use.
368 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
369 * on the shrink list (ie not on the superblock LRU list).
371 * The per-cpu "nr_dentry_unused" counters are updated with
372 * the DCACHE_LRU_LIST bit.
374 * These helper functions make sure we always follow the
375 * rules. d_lock must be held by the caller.
377 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
378 static void d_lru_add(struct dentry
*dentry
)
380 D_FLAG_VERIFY(dentry
, 0);
381 dentry
->d_flags
|= DCACHE_LRU_LIST
;
382 this_cpu_inc(nr_dentry_unused
);
383 WARN_ON_ONCE(!list_lru_add(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
386 static void d_lru_del(struct dentry
*dentry
)
388 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
389 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
390 this_cpu_dec(nr_dentry_unused
);
391 WARN_ON_ONCE(!list_lru_del(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
394 static void d_shrink_del(struct dentry
*dentry
)
396 D_FLAG_VERIFY(dentry
, DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
397 list_del_init(&dentry
->d_lru
);
398 dentry
->d_flags
&= ~(DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
399 this_cpu_dec(nr_dentry_unused
);
402 static void d_shrink_add(struct dentry
*dentry
, struct list_head
*list
)
404 D_FLAG_VERIFY(dentry
, 0);
405 list_add(&dentry
->d_lru
, list
);
406 dentry
->d_flags
|= DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
;
407 this_cpu_inc(nr_dentry_unused
);
411 * These can only be called under the global LRU lock, ie during the
412 * callback for freeing the LRU list. "isolate" removes it from the
413 * LRU lists entirely, while shrink_move moves it to the indicated
416 static void d_lru_isolate(struct list_lru_one
*lru
, struct dentry
*dentry
)
418 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
419 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
420 this_cpu_dec(nr_dentry_unused
);
421 list_lru_isolate(lru
, &dentry
->d_lru
);
424 static void d_lru_shrink_move(struct list_lru_one
*lru
, struct dentry
*dentry
,
425 struct list_head
*list
)
427 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
428 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
429 list_lru_isolate_move(lru
, &dentry
->d_lru
, list
);
433 * d_drop - drop a dentry
434 * @dentry: dentry to drop
436 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
437 * be found through a VFS lookup any more. Note that this is different from
438 * deleting the dentry - d_delete will try to mark the dentry negative if
439 * possible, giving a successful _negative_ lookup, while d_drop will
440 * just make the cache lookup fail.
442 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
443 * reason (NFS timeouts or autofs deletes).
445 * __d_drop requires dentry->d_lock
446 * ___d_drop doesn't mark dentry as "unhashed"
447 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
449 static void ___d_drop(struct dentry
*dentry
)
451 struct hlist_bl_head
*b
;
453 * Hashed dentries are normally on the dentry hashtable,
454 * with the exception of those newly allocated by
455 * d_obtain_root, which are always IS_ROOT:
457 if (unlikely(IS_ROOT(dentry
)))
458 b
= &dentry
->d_sb
->s_roots
;
460 b
= d_hash(dentry
->d_name
.hash
);
463 __hlist_bl_del(&dentry
->d_hash
);
467 void __d_drop(struct dentry
*dentry
)
469 if (!d_unhashed(dentry
)) {
471 dentry
->d_hash
.pprev
= NULL
;
472 write_seqcount_invalidate(&dentry
->d_seq
);
475 EXPORT_SYMBOL(__d_drop
);
477 void d_drop(struct dentry
*dentry
)
479 spin_lock(&dentry
->d_lock
);
481 spin_unlock(&dentry
->d_lock
);
483 EXPORT_SYMBOL(d_drop
);
485 static inline void dentry_unlist(struct dentry
*dentry
, struct dentry
*parent
)
489 * Inform d_walk() and shrink_dentry_list() that we are no longer
490 * attached to the dentry tree
492 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
493 if (unlikely(list_empty(&dentry
->d_child
)))
495 __list_del_entry(&dentry
->d_child
);
497 * Cursors can move around the list of children. While we'd been
498 * a normal list member, it didn't matter - ->d_child.next would've
499 * been updated. However, from now on it won't be and for the
500 * things like d_walk() it might end up with a nasty surprise.
501 * Normally d_walk() doesn't care about cursors moving around -
502 * ->d_lock on parent prevents that and since a cursor has no children
503 * of its own, we get through it without ever unlocking the parent.
504 * There is one exception, though - if we ascend from a child that
505 * gets killed as soon as we unlock it, the next sibling is found
506 * using the value left in its ->d_child.next. And if _that_
507 * pointed to a cursor, and cursor got moved (e.g. by lseek())
508 * before d_walk() regains parent->d_lock, we'll end up skipping
509 * everything the cursor had been moved past.
511 * Solution: make sure that the pointer left behind in ->d_child.next
512 * points to something that won't be moving around. I.e. skip the
515 while (dentry
->d_child
.next
!= &parent
->d_subdirs
) {
516 next
= list_entry(dentry
->d_child
.next
, struct dentry
, d_child
);
517 if (likely(!(next
->d_flags
& DCACHE_DENTRY_CURSOR
)))
519 dentry
->d_child
.next
= next
->d_child
.next
;
523 static void __dentry_kill(struct dentry
*dentry
)
525 struct dentry
*parent
= NULL
;
526 bool can_free
= true;
527 if (!IS_ROOT(dentry
))
528 parent
= dentry
->d_parent
;
531 * The dentry is now unrecoverably dead to the world.
533 lockref_mark_dead(&dentry
->d_lockref
);
536 * inform the fs via d_prune that this dentry is about to be
537 * unhashed and destroyed.
539 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
540 dentry
->d_op
->d_prune(dentry
);
542 if (dentry
->d_flags
& DCACHE_LRU_LIST
) {
543 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
))
546 /* if it was on the hash then remove it */
548 dentry_unlist(dentry
, parent
);
550 spin_unlock(&parent
->d_lock
);
552 dentry_unlink_inode(dentry
);
554 spin_unlock(&dentry
->d_lock
);
555 this_cpu_dec(nr_dentry
);
556 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
557 dentry
->d_op
->d_release(dentry
);
559 spin_lock(&dentry
->d_lock
);
560 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
561 dentry
->d_flags
|= DCACHE_MAY_FREE
;
564 spin_unlock(&dentry
->d_lock
);
565 if (likely(can_free
))
570 static struct dentry
*__lock_parent(struct dentry
*dentry
)
572 struct dentry
*parent
;
574 spin_unlock(&dentry
->d_lock
);
576 parent
= READ_ONCE(dentry
->d_parent
);
577 spin_lock(&parent
->d_lock
);
579 * We can't blindly lock dentry until we are sure
580 * that we won't violate the locking order.
581 * Any changes of dentry->d_parent must have
582 * been done with parent->d_lock held, so
583 * spin_lock() above is enough of a barrier
584 * for checking if it's still our child.
586 if (unlikely(parent
!= dentry
->d_parent
)) {
587 spin_unlock(&parent
->d_lock
);
591 if (parent
!= dentry
)
592 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
598 static inline struct dentry
*lock_parent(struct dentry
*dentry
)
600 struct dentry
*parent
= dentry
->d_parent
;
603 if (likely(spin_trylock(&parent
->d_lock
)))
605 return __lock_parent(dentry
);
608 static inline bool retain_dentry(struct dentry
*dentry
)
610 WARN_ON(d_in_lookup(dentry
));
612 /* Unreachable? Get rid of it */
613 if (unlikely(d_unhashed(dentry
)))
616 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
619 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
)) {
620 if (dentry
->d_op
->d_delete(dentry
))
623 /* retain; LRU fodder */
624 dentry
->d_lockref
.count
--;
625 if (unlikely(!(dentry
->d_flags
& DCACHE_LRU_LIST
)))
627 else if (unlikely(!(dentry
->d_flags
& DCACHE_REFERENCED
)))
628 dentry
->d_flags
|= DCACHE_REFERENCED
;
633 * Finish off a dentry we've decided to kill.
634 * dentry->d_lock must be held, returns with it unlocked.
635 * Returns dentry requiring refcount drop, or NULL if we're done.
637 static struct dentry
*dentry_kill(struct dentry
*dentry
)
638 __releases(dentry
->d_lock
)
640 struct inode
*inode
= dentry
->d_inode
;
641 struct dentry
*parent
= NULL
;
643 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
)))
646 if (!IS_ROOT(dentry
)) {
647 parent
= dentry
->d_parent
;
648 if (unlikely(!spin_trylock(&parent
->d_lock
))) {
649 parent
= __lock_parent(dentry
);
650 if (likely(inode
|| !dentry
->d_inode
))
652 /* negative that became positive */
654 spin_unlock(&parent
->d_lock
);
655 inode
= dentry
->d_inode
;
659 __dentry_kill(dentry
);
663 spin_unlock(&dentry
->d_lock
);
664 spin_lock(&inode
->i_lock
);
665 spin_lock(&dentry
->d_lock
);
666 parent
= lock_parent(dentry
);
668 if (unlikely(dentry
->d_lockref
.count
!= 1)) {
669 dentry
->d_lockref
.count
--;
670 } else if (likely(!retain_dentry(dentry
))) {
671 __dentry_kill(dentry
);
674 /* we are keeping it, after all */
676 spin_unlock(&inode
->i_lock
);
678 spin_unlock(&parent
->d_lock
);
679 spin_unlock(&dentry
->d_lock
);
684 * Try to do a lockless dput(), and return whether that was successful.
686 * If unsuccessful, we return false, having already taken the dentry lock.
688 * The caller needs to hold the RCU read lock, so that the dentry is
689 * guaranteed to stay around even if the refcount goes down to zero!
691 static inline bool fast_dput(struct dentry
*dentry
)
694 unsigned int d_flags
;
697 * If we have a d_op->d_delete() operation, we sould not
698 * let the dentry count go to zero, so use "put_or_lock".
700 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
))
701 return lockref_put_or_lock(&dentry
->d_lockref
);
704 * .. otherwise, we can try to just decrement the
705 * lockref optimistically.
707 ret
= lockref_put_return(&dentry
->d_lockref
);
710 * If the lockref_put_return() failed due to the lock being held
711 * by somebody else, the fast path has failed. We will need to
712 * get the lock, and then check the count again.
714 if (unlikely(ret
< 0)) {
715 spin_lock(&dentry
->d_lock
);
716 if (dentry
->d_lockref
.count
> 1) {
717 dentry
->d_lockref
.count
--;
718 spin_unlock(&dentry
->d_lock
);
725 * If we weren't the last ref, we're done.
731 * Careful, careful. The reference count went down
732 * to zero, but we don't hold the dentry lock, so
733 * somebody else could get it again, and do another
734 * dput(), and we need to not race with that.
736 * However, there is a very special and common case
737 * where we don't care, because there is nothing to
738 * do: the dentry is still hashed, it does not have
739 * a 'delete' op, and it's referenced and already on
742 * NOTE! Since we aren't locked, these values are
743 * not "stable". However, it is sufficient that at
744 * some point after we dropped the reference the
745 * dentry was hashed and the flags had the proper
746 * value. Other dentry users may have re-gotten
747 * a reference to the dentry and change that, but
748 * our work is done - we can leave the dentry
749 * around with a zero refcount.
752 d_flags
= READ_ONCE(dentry
->d_flags
);
753 d_flags
&= DCACHE_REFERENCED
| DCACHE_LRU_LIST
| DCACHE_DISCONNECTED
;
755 /* Nothing to do? Dropping the reference was all we needed? */
756 if (d_flags
== (DCACHE_REFERENCED
| DCACHE_LRU_LIST
) && !d_unhashed(dentry
))
760 * Not the fast normal case? Get the lock. We've already decremented
761 * the refcount, but we'll need to re-check the situation after
764 spin_lock(&dentry
->d_lock
);
767 * Did somebody else grab a reference to it in the meantime, and
768 * we're no longer the last user after all? Alternatively, somebody
769 * else could have killed it and marked it dead. Either way, we
770 * don't need to do anything else.
772 if (dentry
->d_lockref
.count
) {
773 spin_unlock(&dentry
->d_lock
);
778 * Re-get the reference we optimistically dropped. We hold the
779 * lock, and we just tested that it was zero, so we can just
782 dentry
->d_lockref
.count
= 1;
790 * This is complicated by the fact that we do not want to put
791 * dentries that are no longer on any hash chain on the unused
792 * list: we'd much rather just get rid of them immediately.
794 * However, that implies that we have to traverse the dentry
795 * tree upwards to the parents which might _also_ now be
796 * scheduled for deletion (it may have been only waiting for
797 * its last child to go away).
799 * This tail recursion is done by hand as we don't want to depend
800 * on the compiler to always get this right (gcc generally doesn't).
801 * Real recursion would eat up our stack space.
805 * dput - release a dentry
806 * @dentry: dentry to release
808 * Release a dentry. This will drop the usage count and if appropriate
809 * call the dentry unlink method as well as removing it from the queues and
810 * releasing its resources. If the parent dentries were scheduled for release
811 * they too may now get deleted.
813 void dput(struct dentry
*dentry
)
819 if (likely(fast_dput(dentry
))) {
824 /* Slow case: now with the dentry lock held */
827 if (likely(retain_dentry(dentry
))) {
828 spin_unlock(&dentry
->d_lock
);
832 dentry
= dentry_kill(dentry
);
838 /* This must be called with d_lock held */
839 static inline void __dget_dlock(struct dentry
*dentry
)
841 dentry
->d_lockref
.count
++;
844 static inline void __dget(struct dentry
*dentry
)
846 lockref_get(&dentry
->d_lockref
);
849 struct dentry
*dget_parent(struct dentry
*dentry
)
855 * Do optimistic parent lookup without any
859 ret
= READ_ONCE(dentry
->d_parent
);
860 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
862 if (likely(gotref
)) {
863 if (likely(ret
== READ_ONCE(dentry
->d_parent
)))
870 * Don't need rcu_dereference because we re-check it was correct under
874 ret
= dentry
->d_parent
;
875 spin_lock(&ret
->d_lock
);
876 if (unlikely(ret
!= dentry
->d_parent
)) {
877 spin_unlock(&ret
->d_lock
);
882 BUG_ON(!ret
->d_lockref
.count
);
883 ret
->d_lockref
.count
++;
884 spin_unlock(&ret
->d_lock
);
887 EXPORT_SYMBOL(dget_parent
);
889 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
891 struct dentry
*alias
;
893 if (hlist_empty(&inode
->i_dentry
))
895 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_u
.d_alias
);
901 * d_find_any_alias - find any alias for a given inode
902 * @inode: inode to find an alias for
904 * If any aliases exist for the given inode, take and return a
905 * reference for one of them. If no aliases exist, return %NULL.
907 struct dentry
*d_find_any_alias(struct inode
*inode
)
911 spin_lock(&inode
->i_lock
);
912 de
= __d_find_any_alias(inode
);
913 spin_unlock(&inode
->i_lock
);
916 EXPORT_SYMBOL(d_find_any_alias
);
919 * d_find_alias - grab a hashed alias of inode
920 * @inode: inode in question
922 * If inode has a hashed alias, or is a directory and has any alias,
923 * acquire the reference to alias and return it. Otherwise return NULL.
924 * Notice that if inode is a directory there can be only one alias and
925 * it can be unhashed only if it has no children, or if it is the root
926 * of a filesystem, or if the directory was renamed and d_revalidate
927 * was the first vfs operation to notice.
929 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
930 * any other hashed alias over that one.
932 static struct dentry
*__d_find_alias(struct inode
*inode
)
934 struct dentry
*alias
;
936 if (S_ISDIR(inode
->i_mode
))
937 return __d_find_any_alias(inode
);
939 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
940 spin_lock(&alias
->d_lock
);
941 if (!d_unhashed(alias
)) {
943 spin_unlock(&alias
->d_lock
);
946 spin_unlock(&alias
->d_lock
);
951 struct dentry
*d_find_alias(struct inode
*inode
)
953 struct dentry
*de
= NULL
;
955 if (!hlist_empty(&inode
->i_dentry
)) {
956 spin_lock(&inode
->i_lock
);
957 de
= __d_find_alias(inode
);
958 spin_unlock(&inode
->i_lock
);
962 EXPORT_SYMBOL(d_find_alias
);
965 * Try to kill dentries associated with this inode.
966 * WARNING: you must own a reference to inode.
968 void d_prune_aliases(struct inode
*inode
)
970 struct dentry
*dentry
;
972 spin_lock(&inode
->i_lock
);
973 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_u
.d_alias
) {
974 spin_lock(&dentry
->d_lock
);
975 if (!dentry
->d_lockref
.count
) {
976 struct dentry
*parent
= lock_parent(dentry
);
977 if (likely(!dentry
->d_lockref
.count
)) {
978 __dentry_kill(dentry
);
983 spin_unlock(&parent
->d_lock
);
985 spin_unlock(&dentry
->d_lock
);
987 spin_unlock(&inode
->i_lock
);
989 EXPORT_SYMBOL(d_prune_aliases
);
992 * Lock a dentry from shrink list.
993 * Called under rcu_read_lock() and dentry->d_lock; the former
994 * guarantees that nothing we access will be freed under us.
995 * Note that dentry is *not* protected from concurrent dentry_kill(),
998 * Return false if dentry has been disrupted or grabbed, leaving
999 * the caller to kick it off-list. Otherwise, return true and have
1000 * that dentry's inode and parent both locked.
1002 static bool shrink_lock_dentry(struct dentry
*dentry
)
1004 struct inode
*inode
;
1005 struct dentry
*parent
;
1007 if (dentry
->d_lockref
.count
)
1010 inode
= dentry
->d_inode
;
1011 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
))) {
1012 spin_unlock(&dentry
->d_lock
);
1013 spin_lock(&inode
->i_lock
);
1014 spin_lock(&dentry
->d_lock
);
1015 if (unlikely(dentry
->d_lockref
.count
))
1017 /* changed inode means that somebody had grabbed it */
1018 if (unlikely(inode
!= dentry
->d_inode
))
1022 parent
= dentry
->d_parent
;
1023 if (IS_ROOT(dentry
) || likely(spin_trylock(&parent
->d_lock
)))
1026 spin_unlock(&dentry
->d_lock
);
1027 spin_lock(&parent
->d_lock
);
1028 if (unlikely(parent
!= dentry
->d_parent
)) {
1029 spin_unlock(&parent
->d_lock
);
1030 spin_lock(&dentry
->d_lock
);
1033 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1034 if (likely(!dentry
->d_lockref
.count
))
1036 spin_unlock(&parent
->d_lock
);
1039 spin_unlock(&inode
->i_lock
);
1043 static void shrink_dentry_list(struct list_head
*list
)
1045 while (!list_empty(list
)) {
1046 struct dentry
*dentry
, *parent
;
1048 dentry
= list_entry(list
->prev
, struct dentry
, d_lru
);
1049 spin_lock(&dentry
->d_lock
);
1051 if (!shrink_lock_dentry(dentry
)) {
1052 bool can_free
= false;
1054 d_shrink_del(dentry
);
1055 if (dentry
->d_lockref
.count
< 0)
1056 can_free
= dentry
->d_flags
& DCACHE_MAY_FREE
;
1057 spin_unlock(&dentry
->d_lock
);
1059 dentry_free(dentry
);
1063 d_shrink_del(dentry
);
1064 parent
= dentry
->d_parent
;
1065 __dentry_kill(dentry
);
1066 if (parent
== dentry
)
1069 * We need to prune ancestors too. This is necessary to prevent
1070 * quadratic behavior of shrink_dcache_parent(), but is also
1071 * expected to be beneficial in reducing dentry cache
1075 while (dentry
&& !lockref_put_or_lock(&dentry
->d_lockref
))
1076 dentry
= dentry_kill(dentry
);
1080 static enum lru_status
dentry_lru_isolate(struct list_head
*item
,
1081 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1083 struct list_head
*freeable
= arg
;
1084 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1088 * we are inverting the lru lock/dentry->d_lock here,
1089 * so use a trylock. If we fail to get the lock, just skip
1092 if (!spin_trylock(&dentry
->d_lock
))
1096 * Referenced dentries are still in use. If they have active
1097 * counts, just remove them from the LRU. Otherwise give them
1098 * another pass through the LRU.
1100 if (dentry
->d_lockref
.count
) {
1101 d_lru_isolate(lru
, dentry
);
1102 spin_unlock(&dentry
->d_lock
);
1106 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
1107 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
1108 spin_unlock(&dentry
->d_lock
);
1111 * The list move itself will be made by the common LRU code. At
1112 * this point, we've dropped the dentry->d_lock but keep the
1113 * lru lock. This is safe to do, since every list movement is
1114 * protected by the lru lock even if both locks are held.
1116 * This is guaranteed by the fact that all LRU management
1117 * functions are intermediated by the LRU API calls like
1118 * list_lru_add and list_lru_del. List movement in this file
1119 * only ever occur through this functions or through callbacks
1120 * like this one, that are called from the LRU API.
1122 * The only exceptions to this are functions like
1123 * shrink_dentry_list, and code that first checks for the
1124 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1125 * operating only with stack provided lists after they are
1126 * properly isolated from the main list. It is thus, always a
1132 d_lru_shrink_move(lru
, dentry
, freeable
);
1133 spin_unlock(&dentry
->d_lock
);
1139 * prune_dcache_sb - shrink the dcache
1141 * @sc: shrink control, passed to list_lru_shrink_walk()
1143 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1144 * is done when we need more memory and called from the superblock shrinker
1147 * This function may fail to free any resources if all the dentries are in
1150 long prune_dcache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
1155 freed
= list_lru_shrink_walk(&sb
->s_dentry_lru
, sc
,
1156 dentry_lru_isolate
, &dispose
);
1157 shrink_dentry_list(&dispose
);
1161 static enum lru_status
dentry_lru_isolate_shrink(struct list_head
*item
,
1162 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1164 struct list_head
*freeable
= arg
;
1165 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1168 * we are inverting the lru lock/dentry->d_lock here,
1169 * so use a trylock. If we fail to get the lock, just skip
1172 if (!spin_trylock(&dentry
->d_lock
))
1175 d_lru_shrink_move(lru
, dentry
, freeable
);
1176 spin_unlock(&dentry
->d_lock
);
1183 * shrink_dcache_sb - shrink dcache for a superblock
1186 * Shrink the dcache for the specified super block. This is used to free
1187 * the dcache before unmounting a file system.
1189 void shrink_dcache_sb(struct super_block
*sb
)
1196 freed
= list_lru_walk(&sb
->s_dentry_lru
,
1197 dentry_lru_isolate_shrink
, &dispose
, 1024);
1199 this_cpu_sub(nr_dentry_unused
, freed
);
1200 shrink_dentry_list(&dispose
);
1201 } while (list_lru_count(&sb
->s_dentry_lru
) > 0);
1203 EXPORT_SYMBOL(shrink_dcache_sb
);
1206 * enum d_walk_ret - action to talke during tree walk
1207 * @D_WALK_CONTINUE: contrinue walk
1208 * @D_WALK_QUIT: quit walk
1209 * @D_WALK_NORETRY: quit when retry is needed
1210 * @D_WALK_SKIP: skip this dentry and its children
1220 * d_walk - walk the dentry tree
1221 * @parent: start of walk
1222 * @data: data passed to @enter() and @finish()
1223 * @enter: callback when first entering the dentry
1225 * The @enter() callbacks are called with d_lock held.
1227 static void d_walk(struct dentry
*parent
, void *data
,
1228 enum d_walk_ret (*enter
)(void *, struct dentry
*))
1230 struct dentry
*this_parent
;
1231 struct list_head
*next
;
1233 enum d_walk_ret ret
;
1237 read_seqbegin_or_lock(&rename_lock
, &seq
);
1238 this_parent
= parent
;
1239 spin_lock(&this_parent
->d_lock
);
1241 ret
= enter(data
, this_parent
);
1243 case D_WALK_CONTINUE
:
1248 case D_WALK_NORETRY
:
1253 next
= this_parent
->d_subdirs
.next
;
1255 while (next
!= &this_parent
->d_subdirs
) {
1256 struct list_head
*tmp
= next
;
1257 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
1260 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_CURSOR
))
1263 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1265 ret
= enter(data
, dentry
);
1267 case D_WALK_CONTINUE
:
1270 spin_unlock(&dentry
->d_lock
);
1272 case D_WALK_NORETRY
:
1276 spin_unlock(&dentry
->d_lock
);
1280 if (!list_empty(&dentry
->d_subdirs
)) {
1281 spin_unlock(&this_parent
->d_lock
);
1282 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1283 this_parent
= dentry
;
1284 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1287 spin_unlock(&dentry
->d_lock
);
1290 * All done at this level ... ascend and resume the search.
1294 if (this_parent
!= parent
) {
1295 struct dentry
*child
= this_parent
;
1296 this_parent
= child
->d_parent
;
1298 spin_unlock(&child
->d_lock
);
1299 spin_lock(&this_parent
->d_lock
);
1301 /* might go back up the wrong parent if we have had a rename. */
1302 if (need_seqretry(&rename_lock
, seq
))
1304 /* go into the first sibling still alive */
1306 next
= child
->d_child
.next
;
1307 if (next
== &this_parent
->d_subdirs
)
1309 child
= list_entry(next
, struct dentry
, d_child
);
1310 } while (unlikely(child
->d_flags
& DCACHE_DENTRY_KILLED
));
1314 if (need_seqretry(&rename_lock
, seq
))
1319 spin_unlock(&this_parent
->d_lock
);
1320 done_seqretry(&rename_lock
, seq
);
1324 spin_unlock(&this_parent
->d_lock
);
1333 struct check_mount
{
1334 struct vfsmount
*mnt
;
1335 unsigned int mounted
;
1338 static enum d_walk_ret
path_check_mount(void *data
, struct dentry
*dentry
)
1340 struct check_mount
*info
= data
;
1341 struct path path
= { .mnt
= info
->mnt
, .dentry
= dentry
};
1343 if (likely(!d_mountpoint(dentry
)))
1344 return D_WALK_CONTINUE
;
1345 if (__path_is_mountpoint(&path
)) {
1349 return D_WALK_CONTINUE
;
1353 * path_has_submounts - check for mounts over a dentry in the
1354 * current namespace.
1355 * @parent: path to check.
1357 * Return true if the parent or its subdirectories contain
1358 * a mount point in the current namespace.
1360 int path_has_submounts(const struct path
*parent
)
1362 struct check_mount data
= { .mnt
= parent
->mnt
, .mounted
= 0 };
1364 read_seqlock_excl(&mount_lock
);
1365 d_walk(parent
->dentry
, &data
, path_check_mount
);
1366 read_sequnlock_excl(&mount_lock
);
1368 return data
.mounted
;
1370 EXPORT_SYMBOL(path_has_submounts
);
1373 * Called by mount code to set a mountpoint and check if the mountpoint is
1374 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1375 * subtree can become unreachable).
1377 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1378 * this reason take rename_lock and d_lock on dentry and ancestors.
1380 int d_set_mounted(struct dentry
*dentry
)
1384 write_seqlock(&rename_lock
);
1385 for (p
= dentry
->d_parent
; !IS_ROOT(p
); p
= p
->d_parent
) {
1386 /* Need exclusion wrt. d_invalidate() */
1387 spin_lock(&p
->d_lock
);
1388 if (unlikely(d_unhashed(p
))) {
1389 spin_unlock(&p
->d_lock
);
1392 spin_unlock(&p
->d_lock
);
1394 spin_lock(&dentry
->d_lock
);
1395 if (!d_unlinked(dentry
)) {
1397 if (!d_mountpoint(dentry
)) {
1398 dentry
->d_flags
|= DCACHE_MOUNTED
;
1402 spin_unlock(&dentry
->d_lock
);
1404 write_sequnlock(&rename_lock
);
1409 * Search the dentry child list of the specified parent,
1410 * and move any unused dentries to the end of the unused
1411 * list for prune_dcache(). We descend to the next level
1412 * whenever the d_subdirs list is non-empty and continue
1415 * It returns zero iff there are no unused children,
1416 * otherwise it returns the number of children moved to
1417 * the end of the unused list. This may not be the total
1418 * number of unused children, because select_parent can
1419 * drop the lock and return early due to latency
1423 struct select_data
{
1424 struct dentry
*start
;
1425 struct list_head dispose
;
1429 static enum d_walk_ret
select_collect(void *_data
, struct dentry
*dentry
)
1431 struct select_data
*data
= _data
;
1432 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1434 if (data
->start
== dentry
)
1437 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1440 if (dentry
->d_flags
& DCACHE_LRU_LIST
)
1442 if (!dentry
->d_lockref
.count
) {
1443 d_shrink_add(dentry
, &data
->dispose
);
1448 * We can return to the caller if we have found some (this
1449 * ensures forward progress). We'll be coming back to find
1452 if (!list_empty(&data
->dispose
))
1453 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1459 * shrink_dcache_parent - prune dcache
1460 * @parent: parent of entries to prune
1462 * Prune the dcache to remove unused children of the parent dentry.
1464 void shrink_dcache_parent(struct dentry
*parent
)
1467 struct select_data data
;
1469 INIT_LIST_HEAD(&data
.dispose
);
1470 data
.start
= parent
;
1473 d_walk(parent
, &data
, select_collect
);
1475 if (!list_empty(&data
.dispose
)) {
1476 shrink_dentry_list(&data
.dispose
);
1485 EXPORT_SYMBOL(shrink_dcache_parent
);
1487 static enum d_walk_ret
umount_check(void *_data
, struct dentry
*dentry
)
1489 /* it has busy descendents; complain about those instead */
1490 if (!list_empty(&dentry
->d_subdirs
))
1491 return D_WALK_CONTINUE
;
1493 /* root with refcount 1 is fine */
1494 if (dentry
== _data
&& dentry
->d_lockref
.count
== 1)
1495 return D_WALK_CONTINUE
;
1497 printk(KERN_ERR
"BUG: Dentry %p{i=%lx,n=%pd} "
1498 " still in use (%d) [unmount of %s %s]\n",
1501 dentry
->d_inode
->i_ino
: 0UL,
1503 dentry
->d_lockref
.count
,
1504 dentry
->d_sb
->s_type
->name
,
1505 dentry
->d_sb
->s_id
);
1507 return D_WALK_CONTINUE
;
1510 static void do_one_tree(struct dentry
*dentry
)
1512 shrink_dcache_parent(dentry
);
1513 d_walk(dentry
, dentry
, umount_check
);
1519 * destroy the dentries attached to a superblock on unmounting
1521 void shrink_dcache_for_umount(struct super_block
*sb
)
1523 struct dentry
*dentry
;
1525 WARN(down_read_trylock(&sb
->s_umount
), "s_umount should've been locked");
1527 dentry
= sb
->s_root
;
1529 do_one_tree(dentry
);
1531 while (!hlist_bl_empty(&sb
->s_roots
)) {
1532 dentry
= dget(hlist_bl_entry(hlist_bl_first(&sb
->s_roots
), struct dentry
, d_hash
));
1533 do_one_tree(dentry
);
1537 static enum d_walk_ret
find_submount(void *_data
, struct dentry
*dentry
)
1539 struct dentry
**victim
= _data
;
1540 if (d_mountpoint(dentry
)) {
1541 __dget_dlock(dentry
);
1545 return D_WALK_CONTINUE
;
1549 * d_invalidate - detach submounts, prune dcache, and drop
1550 * @dentry: dentry to invalidate (aka detach, prune and drop)
1552 void d_invalidate(struct dentry
*dentry
)
1554 bool had_submounts
= false;
1555 spin_lock(&dentry
->d_lock
);
1556 if (d_unhashed(dentry
)) {
1557 spin_unlock(&dentry
->d_lock
);
1561 spin_unlock(&dentry
->d_lock
);
1563 /* Negative dentries can be dropped without further checks */
1564 if (!dentry
->d_inode
)
1567 shrink_dcache_parent(dentry
);
1569 struct dentry
*victim
= NULL
;
1570 d_walk(dentry
, &victim
, find_submount
);
1573 shrink_dcache_parent(dentry
);
1576 had_submounts
= true;
1577 detach_mounts(victim
);
1581 EXPORT_SYMBOL(d_invalidate
);
1584 * __d_alloc - allocate a dcache entry
1585 * @sb: filesystem it will belong to
1586 * @name: qstr of the name
1588 * Allocates a dentry. It returns %NULL if there is insufficient memory
1589 * available. On a success the dentry is returned. The name passed in is
1590 * copied and the copy passed in may be reused after this call.
1593 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1595 struct dentry
*dentry
;
1599 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1604 * We guarantee that the inline name is always NUL-terminated.
1605 * This way the memcpy() done by the name switching in rename
1606 * will still always have a NUL at the end, even if we might
1607 * be overwriting an internal NUL character
1609 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1610 if (unlikely(!name
)) {
1612 dname
= dentry
->d_iname
;
1613 } else if (name
->len
> DNAME_INLINE_LEN
-1) {
1614 size_t size
= offsetof(struct external_name
, name
[1]);
1615 struct external_name
*p
= kmalloc(size
+ name
->len
,
1616 GFP_KERNEL_ACCOUNT
|
1619 kmem_cache_free(dentry_cache
, dentry
);
1622 atomic_set(&p
->u
.count
, 1);
1625 dname
= dentry
->d_iname
;
1628 dentry
->d_name
.len
= name
->len
;
1629 dentry
->d_name
.hash
= name
->hash
;
1630 memcpy(dname
, name
->name
, name
->len
);
1631 dname
[name
->len
] = 0;
1633 /* Make sure we always see the terminating NUL character */
1634 smp_store_release(&dentry
->d_name
.name
, dname
); /* ^^^ */
1636 dentry
->d_lockref
.count
= 1;
1637 dentry
->d_flags
= 0;
1638 spin_lock_init(&dentry
->d_lock
);
1639 seqcount_init(&dentry
->d_seq
);
1640 dentry
->d_inode
= NULL
;
1641 dentry
->d_parent
= dentry
;
1643 dentry
->d_op
= NULL
;
1644 dentry
->d_fsdata
= NULL
;
1645 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1646 INIT_LIST_HEAD(&dentry
->d_lru
);
1647 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1648 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
1649 INIT_LIST_HEAD(&dentry
->d_child
);
1650 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1652 if (dentry
->d_op
&& dentry
->d_op
->d_init
) {
1653 err
= dentry
->d_op
->d_init(dentry
);
1655 if (dname_external(dentry
))
1656 kfree(external_name(dentry
));
1657 kmem_cache_free(dentry_cache
, dentry
);
1662 this_cpu_inc(nr_dentry
);
1668 * d_alloc - allocate a dcache entry
1669 * @parent: parent of entry to allocate
1670 * @name: qstr of the name
1672 * Allocates a dentry. It returns %NULL if there is insufficient memory
1673 * available. On a success the dentry is returned. The name passed in is
1674 * copied and the copy passed in may be reused after this call.
1676 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1678 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1681 dentry
->d_flags
|= DCACHE_RCUACCESS
;
1682 spin_lock(&parent
->d_lock
);
1684 * don't need child lock because it is not subject
1685 * to concurrency here
1687 __dget_dlock(parent
);
1688 dentry
->d_parent
= parent
;
1689 list_add(&dentry
->d_child
, &parent
->d_subdirs
);
1690 spin_unlock(&parent
->d_lock
);
1694 EXPORT_SYMBOL(d_alloc
);
1696 struct dentry
*d_alloc_anon(struct super_block
*sb
)
1698 return __d_alloc(sb
, NULL
);
1700 EXPORT_SYMBOL(d_alloc_anon
);
1702 struct dentry
*d_alloc_cursor(struct dentry
* parent
)
1704 struct dentry
*dentry
= d_alloc_anon(parent
->d_sb
);
1706 dentry
->d_flags
|= DCACHE_RCUACCESS
| DCACHE_DENTRY_CURSOR
;
1707 dentry
->d_parent
= dget(parent
);
1713 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1714 * @sb: the superblock
1715 * @name: qstr of the name
1717 * For a filesystem that just pins its dentries in memory and never
1718 * performs lookups at all, return an unhashed IS_ROOT dentry.
1720 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1722 return __d_alloc(sb
, name
);
1724 EXPORT_SYMBOL(d_alloc_pseudo
);
1726 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1731 q
.hash_len
= hashlen_string(parent
, name
);
1732 return d_alloc(parent
, &q
);
1734 EXPORT_SYMBOL(d_alloc_name
);
1736 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1738 WARN_ON_ONCE(dentry
->d_op
);
1739 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1741 DCACHE_OP_REVALIDATE
|
1742 DCACHE_OP_WEAK_REVALIDATE
|
1749 dentry
->d_flags
|= DCACHE_OP_HASH
;
1751 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1752 if (op
->d_revalidate
)
1753 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1754 if (op
->d_weak_revalidate
)
1755 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1757 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1759 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1761 dentry
->d_flags
|= DCACHE_OP_REAL
;
1764 EXPORT_SYMBOL(d_set_d_op
);
1768 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1769 * @dentry - The dentry to mark
1771 * Mark a dentry as falling through to the lower layer (as set with
1772 * d_pin_lower()). This flag may be recorded on the medium.
1774 void d_set_fallthru(struct dentry
*dentry
)
1776 spin_lock(&dentry
->d_lock
);
1777 dentry
->d_flags
|= DCACHE_FALLTHRU
;
1778 spin_unlock(&dentry
->d_lock
);
1780 EXPORT_SYMBOL(d_set_fallthru
);
1782 static unsigned d_flags_for_inode(struct inode
*inode
)
1784 unsigned add_flags
= DCACHE_REGULAR_TYPE
;
1787 return DCACHE_MISS_TYPE
;
1789 if (S_ISDIR(inode
->i_mode
)) {
1790 add_flags
= DCACHE_DIRECTORY_TYPE
;
1791 if (unlikely(!(inode
->i_opflags
& IOP_LOOKUP
))) {
1792 if (unlikely(!inode
->i_op
->lookup
))
1793 add_flags
= DCACHE_AUTODIR_TYPE
;
1795 inode
->i_opflags
|= IOP_LOOKUP
;
1797 goto type_determined
;
1800 if (unlikely(!(inode
->i_opflags
& IOP_NOFOLLOW
))) {
1801 if (unlikely(inode
->i_op
->get_link
)) {
1802 add_flags
= DCACHE_SYMLINK_TYPE
;
1803 goto type_determined
;
1805 inode
->i_opflags
|= IOP_NOFOLLOW
;
1808 if (unlikely(!S_ISREG(inode
->i_mode
)))
1809 add_flags
= DCACHE_SPECIAL_TYPE
;
1812 if (unlikely(IS_AUTOMOUNT(inode
)))
1813 add_flags
|= DCACHE_NEED_AUTOMOUNT
;
1817 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1819 unsigned add_flags
= d_flags_for_inode(inode
);
1820 WARN_ON(d_in_lookup(dentry
));
1822 spin_lock(&dentry
->d_lock
);
1823 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1824 raw_write_seqcount_begin(&dentry
->d_seq
);
1825 __d_set_inode_and_type(dentry
, inode
, add_flags
);
1826 raw_write_seqcount_end(&dentry
->d_seq
);
1827 fsnotify_update_flags(dentry
);
1828 spin_unlock(&dentry
->d_lock
);
1832 * d_instantiate - fill in inode information for a dentry
1833 * @entry: dentry to complete
1834 * @inode: inode to attach to this dentry
1836 * Fill in inode information in the entry.
1838 * This turns negative dentries into productive full members
1841 * NOTE! This assumes that the inode count has been incremented
1842 * (or otherwise set) by the caller to indicate that it is now
1843 * in use by the dcache.
1846 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1848 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1850 security_d_instantiate(entry
, inode
);
1851 spin_lock(&inode
->i_lock
);
1852 __d_instantiate(entry
, inode
);
1853 spin_unlock(&inode
->i_lock
);
1856 EXPORT_SYMBOL(d_instantiate
);
1859 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1860 * with lockdep-related part of unlock_new_inode() done before
1861 * anything else. Use that instead of open-coding d_instantiate()/
1862 * unlock_new_inode() combinations.
1864 void d_instantiate_new(struct dentry
*entry
, struct inode
*inode
)
1866 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1868 lockdep_annotate_inode_mutex_key(inode
);
1869 security_d_instantiate(entry
, inode
);
1870 spin_lock(&inode
->i_lock
);
1871 __d_instantiate(entry
, inode
);
1872 WARN_ON(!(inode
->i_state
& I_NEW
));
1873 inode
->i_state
&= ~I_NEW
& ~I_CREATING
;
1875 wake_up_bit(&inode
->i_state
, __I_NEW
);
1876 spin_unlock(&inode
->i_lock
);
1878 EXPORT_SYMBOL(d_instantiate_new
);
1880 struct dentry
*d_make_root(struct inode
*root_inode
)
1882 struct dentry
*res
= NULL
;
1885 res
= d_alloc_anon(root_inode
->i_sb
);
1887 res
->d_flags
|= DCACHE_RCUACCESS
;
1888 d_instantiate(res
, root_inode
);
1895 EXPORT_SYMBOL(d_make_root
);
1897 static struct dentry
*__d_instantiate_anon(struct dentry
*dentry
,
1898 struct inode
*inode
,
1904 security_d_instantiate(dentry
, inode
);
1905 spin_lock(&inode
->i_lock
);
1906 res
= __d_find_any_alias(inode
);
1908 spin_unlock(&inode
->i_lock
);
1913 /* attach a disconnected dentry */
1914 add_flags
= d_flags_for_inode(inode
);
1917 add_flags
|= DCACHE_DISCONNECTED
;
1919 spin_lock(&dentry
->d_lock
);
1920 __d_set_inode_and_type(dentry
, inode
, add_flags
);
1921 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1922 if (!disconnected
) {
1923 hlist_bl_lock(&dentry
->d_sb
->s_roots
);
1924 hlist_bl_add_head(&dentry
->d_hash
, &dentry
->d_sb
->s_roots
);
1925 hlist_bl_unlock(&dentry
->d_sb
->s_roots
);
1927 spin_unlock(&dentry
->d_lock
);
1928 spin_unlock(&inode
->i_lock
);
1937 struct dentry
*d_instantiate_anon(struct dentry
*dentry
, struct inode
*inode
)
1939 return __d_instantiate_anon(dentry
, inode
, true);
1941 EXPORT_SYMBOL(d_instantiate_anon
);
1943 static struct dentry
*__d_obtain_alias(struct inode
*inode
, bool disconnected
)
1949 return ERR_PTR(-ESTALE
);
1951 return ERR_CAST(inode
);
1953 res
= d_find_any_alias(inode
);
1957 tmp
= d_alloc_anon(inode
->i_sb
);
1959 res
= ERR_PTR(-ENOMEM
);
1963 return __d_instantiate_anon(tmp
, inode
, disconnected
);
1971 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1972 * @inode: inode to allocate the dentry for
1974 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1975 * similar open by handle operations. The returned dentry may be anonymous,
1976 * or may have a full name (if the inode was already in the cache).
1978 * When called on a directory inode, we must ensure that the inode only ever
1979 * has one dentry. If a dentry is found, that is returned instead of
1980 * allocating a new one.
1982 * On successful return, the reference to the inode has been transferred
1983 * to the dentry. In case of an error the reference on the inode is released.
1984 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1985 * be passed in and the error will be propagated to the return value,
1986 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1988 struct dentry
*d_obtain_alias(struct inode
*inode
)
1990 return __d_obtain_alias(inode
, true);
1992 EXPORT_SYMBOL(d_obtain_alias
);
1995 * d_obtain_root - find or allocate a dentry for a given inode
1996 * @inode: inode to allocate the dentry for
1998 * Obtain an IS_ROOT dentry for the root of a filesystem.
2000 * We must ensure that directory inodes only ever have one dentry. If a
2001 * dentry is found, that is returned instead of allocating a new one.
2003 * On successful return, the reference to the inode has been transferred
2004 * to the dentry. In case of an error the reference on the inode is
2005 * released. A %NULL or IS_ERR inode may be passed in and will be the
2006 * error will be propagate to the return value, with a %NULL @inode
2007 * replaced by ERR_PTR(-ESTALE).
2009 struct dentry
*d_obtain_root(struct inode
*inode
)
2011 return __d_obtain_alias(inode
, false);
2013 EXPORT_SYMBOL(d_obtain_root
);
2016 * d_add_ci - lookup or allocate new dentry with case-exact name
2017 * @inode: the inode case-insensitive lookup has found
2018 * @dentry: the negative dentry that was passed to the parent's lookup func
2019 * @name: the case-exact name to be associated with the returned dentry
2021 * This is to avoid filling the dcache with case-insensitive names to the
2022 * same inode, only the actual correct case is stored in the dcache for
2023 * case-insensitive filesystems.
2025 * For a case-insensitive lookup match and if the the case-exact dentry
2026 * already exists in in the dcache, use it and return it.
2028 * If no entry exists with the exact case name, allocate new dentry with
2029 * the exact case, and return the spliced entry.
2031 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
2034 struct dentry
*found
, *res
;
2037 * First check if a dentry matching the name already exists,
2038 * if not go ahead and create it now.
2040 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
2045 if (d_in_lookup(dentry
)) {
2046 found
= d_alloc_parallel(dentry
->d_parent
, name
,
2048 if (IS_ERR(found
) || !d_in_lookup(found
)) {
2053 found
= d_alloc(dentry
->d_parent
, name
);
2056 return ERR_PTR(-ENOMEM
);
2059 res
= d_splice_alias(inode
, found
);
2066 EXPORT_SYMBOL(d_add_ci
);
2069 static inline bool d_same_name(const struct dentry
*dentry
,
2070 const struct dentry
*parent
,
2071 const struct qstr
*name
)
2073 if (likely(!(parent
->d_flags
& DCACHE_OP_COMPARE
))) {
2074 if (dentry
->d_name
.len
!= name
->len
)
2076 return dentry_cmp(dentry
, name
->name
, name
->len
) == 0;
2078 return parent
->d_op
->d_compare(dentry
,
2079 dentry
->d_name
.len
, dentry
->d_name
.name
,
2084 * __d_lookup_rcu - search for a dentry (racy, store-free)
2085 * @parent: parent dentry
2086 * @name: qstr of name we wish to find
2087 * @seqp: returns d_seq value at the point where the dentry was found
2088 * Returns: dentry, or NULL
2090 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2091 * resolution (store-free path walking) design described in
2092 * Documentation/filesystems/path-lookup.txt.
2094 * This is not to be used outside core vfs.
2096 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2097 * held, and rcu_read_lock held. The returned dentry must not be stored into
2098 * without taking d_lock and checking d_seq sequence count against @seq
2101 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2104 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2105 * the returned dentry, so long as its parent's seqlock is checked after the
2106 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2107 * is formed, giving integrity down the path walk.
2109 * NOTE! The caller *has* to check the resulting dentry against the sequence
2110 * number we've returned before using any of the resulting dentry state!
2112 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
2113 const struct qstr
*name
,
2116 u64 hashlen
= name
->hash_len
;
2117 const unsigned char *str
= name
->name
;
2118 struct hlist_bl_head
*b
= d_hash(hashlen_hash(hashlen
));
2119 struct hlist_bl_node
*node
;
2120 struct dentry
*dentry
;
2123 * Note: There is significant duplication with __d_lookup_rcu which is
2124 * required to prevent single threaded performance regressions
2125 * especially on architectures where smp_rmb (in seqcounts) are costly.
2126 * Keep the two functions in sync.
2130 * The hash list is protected using RCU.
2132 * Carefully use d_seq when comparing a candidate dentry, to avoid
2133 * races with d_move().
2135 * It is possible that concurrent renames can mess up our list
2136 * walk here and result in missing our dentry, resulting in the
2137 * false-negative result. d_lookup() protects against concurrent
2138 * renames using rename_lock seqlock.
2140 * See Documentation/filesystems/path-lookup.txt for more details.
2142 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2147 * The dentry sequence count protects us from concurrent
2148 * renames, and thus protects parent and name fields.
2150 * The caller must perform a seqcount check in order
2151 * to do anything useful with the returned dentry.
2153 * NOTE! We do a "raw" seqcount_begin here. That means that
2154 * we don't wait for the sequence count to stabilize if it
2155 * is in the middle of a sequence change. If we do the slow
2156 * dentry compare, we will do seqretries until it is stable,
2157 * and if we end up with a successful lookup, we actually
2158 * want to exit RCU lookup anyway.
2160 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2161 * we are still guaranteed NUL-termination of ->d_name.name.
2163 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2164 if (dentry
->d_parent
!= parent
)
2166 if (d_unhashed(dentry
))
2169 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
2172 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
2174 tlen
= dentry
->d_name
.len
;
2175 tname
= dentry
->d_name
.name
;
2176 /* we want a consistent (name,len) pair */
2177 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
2181 if (parent
->d_op
->d_compare(dentry
,
2182 tlen
, tname
, name
) != 0)
2185 if (dentry
->d_name
.hash_len
!= hashlen
)
2187 if (dentry_cmp(dentry
, str
, hashlen_len(hashlen
)) != 0)
2197 * d_lookup - search for a dentry
2198 * @parent: parent dentry
2199 * @name: qstr of name we wish to find
2200 * Returns: dentry, or NULL
2202 * d_lookup searches the children of the parent dentry for the name in
2203 * question. If the dentry is found its reference count is incremented and the
2204 * dentry is returned. The caller must use dput to free the entry when it has
2205 * finished using it. %NULL is returned if the dentry does not exist.
2207 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2209 struct dentry
*dentry
;
2213 seq
= read_seqbegin(&rename_lock
);
2214 dentry
= __d_lookup(parent
, name
);
2217 } while (read_seqretry(&rename_lock
, seq
));
2220 EXPORT_SYMBOL(d_lookup
);
2223 * __d_lookup - search for a dentry (racy)
2224 * @parent: parent dentry
2225 * @name: qstr of name we wish to find
2226 * Returns: dentry, or NULL
2228 * __d_lookup is like d_lookup, however it may (rarely) return a
2229 * false-negative result due to unrelated rename activity.
2231 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2232 * however it must be used carefully, eg. with a following d_lookup in
2233 * the case of failure.
2235 * __d_lookup callers must be commented.
2237 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2239 unsigned int hash
= name
->hash
;
2240 struct hlist_bl_head
*b
= d_hash(hash
);
2241 struct hlist_bl_node
*node
;
2242 struct dentry
*found
= NULL
;
2243 struct dentry
*dentry
;
2246 * Note: There is significant duplication with __d_lookup_rcu which is
2247 * required to prevent single threaded performance regressions
2248 * especially on architectures where smp_rmb (in seqcounts) are costly.
2249 * Keep the two functions in sync.
2253 * The hash list is protected using RCU.
2255 * Take d_lock when comparing a candidate dentry, to avoid races
2258 * It is possible that concurrent renames can mess up our list
2259 * walk here and result in missing our dentry, resulting in the
2260 * false-negative result. d_lookup() protects against concurrent
2261 * renames using rename_lock seqlock.
2263 * See Documentation/filesystems/path-lookup.txt for more details.
2267 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2269 if (dentry
->d_name
.hash
!= hash
)
2272 spin_lock(&dentry
->d_lock
);
2273 if (dentry
->d_parent
!= parent
)
2275 if (d_unhashed(dentry
))
2278 if (!d_same_name(dentry
, parent
, name
))
2281 dentry
->d_lockref
.count
++;
2283 spin_unlock(&dentry
->d_lock
);
2286 spin_unlock(&dentry
->d_lock
);
2294 * d_hash_and_lookup - hash the qstr then search for a dentry
2295 * @dir: Directory to search in
2296 * @name: qstr of name we wish to find
2298 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2300 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2303 * Check for a fs-specific hash function. Note that we must
2304 * calculate the standard hash first, as the d_op->d_hash()
2305 * routine may choose to leave the hash value unchanged.
2307 name
->hash
= full_name_hash(dir
, name
->name
, name
->len
);
2308 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2309 int err
= dir
->d_op
->d_hash(dir
, name
);
2310 if (unlikely(err
< 0))
2311 return ERR_PTR(err
);
2313 return d_lookup(dir
, name
);
2315 EXPORT_SYMBOL(d_hash_and_lookup
);
2318 * When a file is deleted, we have two options:
2319 * - turn this dentry into a negative dentry
2320 * - unhash this dentry and free it.
2322 * Usually, we want to just turn this into
2323 * a negative dentry, but if anybody else is
2324 * currently using the dentry or the inode
2325 * we can't do that and we fall back on removing
2326 * it from the hash queues and waiting for
2327 * it to be deleted later when it has no users
2331 * d_delete - delete a dentry
2332 * @dentry: The dentry to delete
2334 * Turn the dentry into a negative dentry if possible, otherwise
2335 * remove it from the hash queues so it can be deleted later
2338 void d_delete(struct dentry
* dentry
)
2340 struct inode
*inode
= dentry
->d_inode
;
2341 int isdir
= d_is_dir(dentry
);
2343 spin_lock(&inode
->i_lock
);
2344 spin_lock(&dentry
->d_lock
);
2346 * Are we the only user?
2348 if (dentry
->d_lockref
.count
== 1) {
2349 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2350 dentry_unlink_inode(dentry
);
2353 spin_unlock(&dentry
->d_lock
);
2354 spin_unlock(&inode
->i_lock
);
2356 fsnotify_nameremove(dentry
, isdir
);
2358 EXPORT_SYMBOL(d_delete
);
2360 static void __d_rehash(struct dentry
*entry
)
2362 struct hlist_bl_head
*b
= d_hash(entry
->d_name
.hash
);
2365 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2370 * d_rehash - add an entry back to the hash
2371 * @entry: dentry to add to the hash
2373 * Adds a dentry to the hash according to its name.
2376 void d_rehash(struct dentry
* entry
)
2378 spin_lock(&entry
->d_lock
);
2380 spin_unlock(&entry
->d_lock
);
2382 EXPORT_SYMBOL(d_rehash
);
2384 static inline unsigned start_dir_add(struct inode
*dir
)
2388 unsigned n
= dir
->i_dir_seq
;
2389 if (!(n
& 1) && cmpxchg(&dir
->i_dir_seq
, n
, n
+ 1) == n
)
2395 static inline void end_dir_add(struct inode
*dir
, unsigned n
)
2397 smp_store_release(&dir
->i_dir_seq
, n
+ 2);
2400 static void d_wait_lookup(struct dentry
*dentry
)
2402 if (d_in_lookup(dentry
)) {
2403 DECLARE_WAITQUEUE(wait
, current
);
2404 add_wait_queue(dentry
->d_wait
, &wait
);
2406 set_current_state(TASK_UNINTERRUPTIBLE
);
2407 spin_unlock(&dentry
->d_lock
);
2409 spin_lock(&dentry
->d_lock
);
2410 } while (d_in_lookup(dentry
));
2414 struct dentry
*d_alloc_parallel(struct dentry
*parent
,
2415 const struct qstr
*name
,
2416 wait_queue_head_t
*wq
)
2418 unsigned int hash
= name
->hash
;
2419 struct hlist_bl_head
*b
= in_lookup_hash(parent
, hash
);
2420 struct hlist_bl_node
*node
;
2421 struct dentry
*new = d_alloc(parent
, name
);
2422 struct dentry
*dentry
;
2423 unsigned seq
, r_seq
, d_seq
;
2426 return ERR_PTR(-ENOMEM
);
2430 seq
= smp_load_acquire(&parent
->d_inode
->i_dir_seq
);
2431 r_seq
= read_seqbegin(&rename_lock
);
2432 dentry
= __d_lookup_rcu(parent
, name
, &d_seq
);
2433 if (unlikely(dentry
)) {
2434 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2438 if (read_seqcount_retry(&dentry
->d_seq
, d_seq
)) {
2447 if (unlikely(read_seqretry(&rename_lock
, r_seq
))) {
2452 if (unlikely(seq
& 1)) {
2458 if (unlikely(READ_ONCE(parent
->d_inode
->i_dir_seq
) != seq
)) {
2464 * No changes for the parent since the beginning of d_lookup().
2465 * Since all removals from the chain happen with hlist_bl_lock(),
2466 * any potential in-lookup matches are going to stay here until
2467 * we unlock the chain. All fields are stable in everything
2470 hlist_bl_for_each_entry(dentry
, node
, b
, d_u
.d_in_lookup_hash
) {
2471 if (dentry
->d_name
.hash
!= hash
)
2473 if (dentry
->d_parent
!= parent
)
2475 if (!d_same_name(dentry
, parent
, name
))
2478 /* now we can try to grab a reference */
2479 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2486 * somebody is likely to be still doing lookup for it;
2487 * wait for them to finish
2489 spin_lock(&dentry
->d_lock
);
2490 d_wait_lookup(dentry
);
2492 * it's not in-lookup anymore; in principle we should repeat
2493 * everything from dcache lookup, but it's likely to be what
2494 * d_lookup() would've found anyway. If it is, just return it;
2495 * otherwise we really have to repeat the whole thing.
2497 if (unlikely(dentry
->d_name
.hash
!= hash
))
2499 if (unlikely(dentry
->d_parent
!= parent
))
2501 if (unlikely(d_unhashed(dentry
)))
2503 if (unlikely(!d_same_name(dentry
, parent
, name
)))
2505 /* OK, it *is* a hashed match; return it */
2506 spin_unlock(&dentry
->d_lock
);
2511 /* we can't take ->d_lock here; it's OK, though. */
2512 new->d_flags
|= DCACHE_PAR_LOOKUP
;
2514 hlist_bl_add_head_rcu(&new->d_u
.d_in_lookup_hash
, b
);
2518 spin_unlock(&dentry
->d_lock
);
2522 EXPORT_SYMBOL(d_alloc_parallel
);
2524 void __d_lookup_done(struct dentry
*dentry
)
2526 struct hlist_bl_head
*b
= in_lookup_hash(dentry
->d_parent
,
2527 dentry
->d_name
.hash
);
2529 dentry
->d_flags
&= ~DCACHE_PAR_LOOKUP
;
2530 __hlist_bl_del(&dentry
->d_u
.d_in_lookup_hash
);
2531 wake_up_all(dentry
->d_wait
);
2532 dentry
->d_wait
= NULL
;
2534 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
2535 INIT_LIST_HEAD(&dentry
->d_lru
);
2537 EXPORT_SYMBOL(__d_lookup_done
);
2539 /* inode->i_lock held if inode is non-NULL */
2541 static inline void __d_add(struct dentry
*dentry
, struct inode
*inode
)
2543 struct inode
*dir
= NULL
;
2545 spin_lock(&dentry
->d_lock
);
2546 if (unlikely(d_in_lookup(dentry
))) {
2547 dir
= dentry
->d_parent
->d_inode
;
2548 n
= start_dir_add(dir
);
2549 __d_lookup_done(dentry
);
2552 unsigned add_flags
= d_flags_for_inode(inode
);
2553 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
2554 raw_write_seqcount_begin(&dentry
->d_seq
);
2555 __d_set_inode_and_type(dentry
, inode
, add_flags
);
2556 raw_write_seqcount_end(&dentry
->d_seq
);
2557 fsnotify_update_flags(dentry
);
2561 end_dir_add(dir
, n
);
2562 spin_unlock(&dentry
->d_lock
);
2564 spin_unlock(&inode
->i_lock
);
2568 * d_add - add dentry to hash queues
2569 * @entry: dentry to add
2570 * @inode: The inode to attach to this dentry
2572 * This adds the entry to the hash queues and initializes @inode.
2573 * The entry was actually filled in earlier during d_alloc().
2576 void d_add(struct dentry
*entry
, struct inode
*inode
)
2579 security_d_instantiate(entry
, inode
);
2580 spin_lock(&inode
->i_lock
);
2582 __d_add(entry
, inode
);
2584 EXPORT_SYMBOL(d_add
);
2587 * d_exact_alias - find and hash an exact unhashed alias
2588 * @entry: dentry to add
2589 * @inode: The inode to go with this dentry
2591 * If an unhashed dentry with the same name/parent and desired
2592 * inode already exists, hash and return it. Otherwise, return
2595 * Parent directory should be locked.
2597 struct dentry
*d_exact_alias(struct dentry
*entry
, struct inode
*inode
)
2599 struct dentry
*alias
;
2600 unsigned int hash
= entry
->d_name
.hash
;
2602 spin_lock(&inode
->i_lock
);
2603 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
2605 * Don't need alias->d_lock here, because aliases with
2606 * d_parent == entry->d_parent are not subject to name or
2607 * parent changes, because the parent inode i_mutex is held.
2609 if (alias
->d_name
.hash
!= hash
)
2611 if (alias
->d_parent
!= entry
->d_parent
)
2613 if (!d_same_name(alias
, entry
->d_parent
, &entry
->d_name
))
2615 spin_lock(&alias
->d_lock
);
2616 if (!d_unhashed(alias
)) {
2617 spin_unlock(&alias
->d_lock
);
2620 __dget_dlock(alias
);
2622 spin_unlock(&alias
->d_lock
);
2624 spin_unlock(&inode
->i_lock
);
2627 spin_unlock(&inode
->i_lock
);
2630 EXPORT_SYMBOL(d_exact_alias
);
2632 static void swap_names(struct dentry
*dentry
, struct dentry
*target
)
2634 if (unlikely(dname_external(target
))) {
2635 if (unlikely(dname_external(dentry
))) {
2637 * Both external: swap the pointers
2639 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2642 * dentry:internal, target:external. Steal target's
2643 * storage and make target internal.
2645 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2646 dentry
->d_name
.len
+ 1);
2647 dentry
->d_name
.name
= target
->d_name
.name
;
2648 target
->d_name
.name
= target
->d_iname
;
2651 if (unlikely(dname_external(dentry
))) {
2653 * dentry:external, target:internal. Give dentry's
2654 * storage to target and make dentry internal
2656 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2657 target
->d_name
.len
+ 1);
2658 target
->d_name
.name
= dentry
->d_name
.name
;
2659 dentry
->d_name
.name
= dentry
->d_iname
;
2662 * Both are internal.
2665 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN
, sizeof(long)));
2666 for (i
= 0; i
< DNAME_INLINE_LEN
/ sizeof(long); i
++) {
2667 swap(((long *) &dentry
->d_iname
)[i
],
2668 ((long *) &target
->d_iname
)[i
]);
2672 swap(dentry
->d_name
.hash_len
, target
->d_name
.hash_len
);
2675 static void copy_name(struct dentry
*dentry
, struct dentry
*target
)
2677 struct external_name
*old_name
= NULL
;
2678 if (unlikely(dname_external(dentry
)))
2679 old_name
= external_name(dentry
);
2680 if (unlikely(dname_external(target
))) {
2681 atomic_inc(&external_name(target
)->u
.count
);
2682 dentry
->d_name
= target
->d_name
;
2684 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2685 target
->d_name
.len
+ 1);
2686 dentry
->d_name
.name
= dentry
->d_iname
;
2687 dentry
->d_name
.hash_len
= target
->d_name
.hash_len
;
2689 if (old_name
&& likely(atomic_dec_and_test(&old_name
->u
.count
)))
2690 kfree_rcu(old_name
, u
.head
);
2694 * __d_move - move a dentry
2695 * @dentry: entry to move
2696 * @target: new dentry
2697 * @exchange: exchange the two dentries
2699 * Update the dcache to reflect the move of a file name. Negative
2700 * dcache entries should not be moved in this way. Caller must hold
2701 * rename_lock, the i_mutex of the source and target directories,
2702 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2704 static void __d_move(struct dentry
*dentry
, struct dentry
*target
,
2707 struct dentry
*old_parent
, *p
;
2708 struct inode
*dir
= NULL
;
2711 WARN_ON(!dentry
->d_inode
);
2712 if (WARN_ON(dentry
== target
))
2715 BUG_ON(d_ancestor(target
, dentry
));
2716 old_parent
= dentry
->d_parent
;
2717 p
= d_ancestor(old_parent
, target
);
2718 if (IS_ROOT(dentry
)) {
2720 spin_lock(&target
->d_parent
->d_lock
);
2722 /* target is not a descendent of dentry->d_parent */
2723 spin_lock(&target
->d_parent
->d_lock
);
2724 spin_lock_nested(&old_parent
->d_lock
, DENTRY_D_LOCK_NESTED
);
2726 BUG_ON(p
== dentry
);
2727 spin_lock(&old_parent
->d_lock
);
2729 spin_lock_nested(&target
->d_parent
->d_lock
,
2730 DENTRY_D_LOCK_NESTED
);
2732 spin_lock_nested(&dentry
->d_lock
, 2);
2733 spin_lock_nested(&target
->d_lock
, 3);
2735 if (unlikely(d_in_lookup(target
))) {
2736 dir
= target
->d_parent
->d_inode
;
2737 n
= start_dir_add(dir
);
2738 __d_lookup_done(target
);
2741 write_seqcount_begin(&dentry
->d_seq
);
2742 write_seqcount_begin_nested(&target
->d_seq
, DENTRY_D_LOCK_NESTED
);
2745 if (!d_unhashed(dentry
))
2747 if (!d_unhashed(target
))
2750 /* ... and switch them in the tree */
2751 dentry
->d_parent
= target
->d_parent
;
2753 copy_name(dentry
, target
);
2754 target
->d_hash
.pprev
= NULL
;
2755 dentry
->d_parent
->d_lockref
.count
++;
2756 if (dentry
== old_parent
)
2757 dentry
->d_flags
|= DCACHE_RCUACCESS
;
2759 WARN_ON(!--old_parent
->d_lockref
.count
);
2761 target
->d_parent
= old_parent
;
2762 swap_names(dentry
, target
);
2763 list_move(&target
->d_child
, &target
->d_parent
->d_subdirs
);
2765 fsnotify_update_flags(target
);
2767 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2769 fsnotify_update_flags(dentry
);
2771 write_seqcount_end(&target
->d_seq
);
2772 write_seqcount_end(&dentry
->d_seq
);
2775 end_dir_add(dir
, n
);
2777 if (dentry
->d_parent
!= old_parent
)
2778 spin_unlock(&dentry
->d_parent
->d_lock
);
2779 if (dentry
!= old_parent
)
2780 spin_unlock(&old_parent
->d_lock
);
2781 spin_unlock(&target
->d_lock
);
2782 spin_unlock(&dentry
->d_lock
);
2786 * d_move - move a dentry
2787 * @dentry: entry to move
2788 * @target: new dentry
2790 * Update the dcache to reflect the move of a file name. Negative
2791 * dcache entries should not be moved in this way. See the locking
2792 * requirements for __d_move.
2794 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2796 write_seqlock(&rename_lock
);
2797 __d_move(dentry
, target
, false);
2798 write_sequnlock(&rename_lock
);
2800 EXPORT_SYMBOL(d_move
);
2803 * d_exchange - exchange two dentries
2804 * @dentry1: first dentry
2805 * @dentry2: second dentry
2807 void d_exchange(struct dentry
*dentry1
, struct dentry
*dentry2
)
2809 write_seqlock(&rename_lock
);
2811 WARN_ON(!dentry1
->d_inode
);
2812 WARN_ON(!dentry2
->d_inode
);
2813 WARN_ON(IS_ROOT(dentry1
));
2814 WARN_ON(IS_ROOT(dentry2
));
2816 __d_move(dentry1
, dentry2
, true);
2818 write_sequnlock(&rename_lock
);
2822 * d_ancestor - search for an ancestor
2823 * @p1: ancestor dentry
2826 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2827 * an ancestor of p2, else NULL.
2829 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2833 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2834 if (p
->d_parent
== p1
)
2841 * This helper attempts to cope with remotely renamed directories
2843 * It assumes that the caller is already holding
2844 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2846 * Note: If ever the locking in lock_rename() changes, then please
2847 * remember to update this too...
2849 static int __d_unalias(struct inode
*inode
,
2850 struct dentry
*dentry
, struct dentry
*alias
)
2852 struct mutex
*m1
= NULL
;
2853 struct rw_semaphore
*m2
= NULL
;
2856 /* If alias and dentry share a parent, then no extra locks required */
2857 if (alias
->d_parent
== dentry
->d_parent
)
2860 /* See lock_rename() */
2861 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2863 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2864 if (!inode_trylock_shared(alias
->d_parent
->d_inode
))
2866 m2
= &alias
->d_parent
->d_inode
->i_rwsem
;
2868 __d_move(alias
, dentry
, false);
2879 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2880 * @inode: the inode which may have a disconnected dentry
2881 * @dentry: a negative dentry which we want to point to the inode.
2883 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2884 * place of the given dentry and return it, else simply d_add the inode
2885 * to the dentry and return NULL.
2887 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2888 * we should error out: directories can't have multiple aliases.
2890 * This is needed in the lookup routine of any filesystem that is exportable
2891 * (via knfsd) so that we can build dcache paths to directories effectively.
2893 * If a dentry was found and moved, then it is returned. Otherwise NULL
2894 * is returned. This matches the expected return value of ->lookup.
2896 * Cluster filesystems may call this function with a negative, hashed dentry.
2897 * In that case, we know that the inode will be a regular file, and also this
2898 * will only occur during atomic_open. So we need to check for the dentry
2899 * being already hashed only in the final case.
2901 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
2904 return ERR_CAST(inode
);
2906 BUG_ON(!d_unhashed(dentry
));
2911 security_d_instantiate(dentry
, inode
);
2912 spin_lock(&inode
->i_lock
);
2913 if (S_ISDIR(inode
->i_mode
)) {
2914 struct dentry
*new = __d_find_any_alias(inode
);
2915 if (unlikely(new)) {
2916 /* The reference to new ensures it remains an alias */
2917 spin_unlock(&inode
->i_lock
);
2918 write_seqlock(&rename_lock
);
2919 if (unlikely(d_ancestor(new, dentry
))) {
2920 write_sequnlock(&rename_lock
);
2922 new = ERR_PTR(-ELOOP
);
2923 pr_warn_ratelimited(
2924 "VFS: Lookup of '%s' in %s %s"
2925 " would have caused loop\n",
2926 dentry
->d_name
.name
,
2927 inode
->i_sb
->s_type
->name
,
2929 } else if (!IS_ROOT(new)) {
2930 struct dentry
*old_parent
= dget(new->d_parent
);
2931 int err
= __d_unalias(inode
, dentry
, new);
2932 write_sequnlock(&rename_lock
);
2939 __d_move(new, dentry
, false);
2940 write_sequnlock(&rename_lock
);
2947 __d_add(dentry
, inode
);
2950 EXPORT_SYMBOL(d_splice_alias
);
2953 * Test whether new_dentry is a subdirectory of old_dentry.
2955 * Trivially implemented using the dcache structure
2959 * is_subdir - is new dentry a subdirectory of old_dentry
2960 * @new_dentry: new dentry
2961 * @old_dentry: old dentry
2963 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
2964 * Returns false otherwise.
2965 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2968 bool is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2973 if (new_dentry
== old_dentry
)
2977 /* for restarting inner loop in case of seq retry */
2978 seq
= read_seqbegin(&rename_lock
);
2980 * Need rcu_readlock to protect against the d_parent trashing
2984 if (d_ancestor(old_dentry
, new_dentry
))
2989 } while (read_seqretry(&rename_lock
, seq
));
2993 EXPORT_SYMBOL(is_subdir
);
2995 static enum d_walk_ret
d_genocide_kill(void *data
, struct dentry
*dentry
)
2997 struct dentry
*root
= data
;
2998 if (dentry
!= root
) {
2999 if (d_unhashed(dentry
) || !dentry
->d_inode
)
3002 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3003 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3004 dentry
->d_lockref
.count
--;
3007 return D_WALK_CONTINUE
;
3010 void d_genocide(struct dentry
*parent
)
3012 d_walk(parent
, parent
, d_genocide_kill
);
3015 EXPORT_SYMBOL(d_genocide
);
3017 void d_tmpfile(struct dentry
*dentry
, struct inode
*inode
)
3019 inode_dec_link_count(inode
);
3020 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
3021 !hlist_unhashed(&dentry
->d_u
.d_alias
) ||
3022 !d_unlinked(dentry
));
3023 spin_lock(&dentry
->d_parent
->d_lock
);
3024 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3025 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3026 (unsigned long long)inode
->i_ino
);
3027 spin_unlock(&dentry
->d_lock
);
3028 spin_unlock(&dentry
->d_parent
->d_lock
);
3029 d_instantiate(dentry
, inode
);
3031 EXPORT_SYMBOL(d_tmpfile
);
3033 static __initdata
unsigned long dhash_entries
;
3034 static int __init
set_dhash_entries(char *str
)
3038 dhash_entries
= simple_strtoul(str
, &str
, 0);
3041 __setup("dhash_entries=", set_dhash_entries
);
3043 static void __init
dcache_init_early(void)
3045 /* If hashes are distributed across NUMA nodes, defer
3046 * hash allocation until vmalloc space is available.
3052 alloc_large_system_hash("Dentry cache",
3053 sizeof(struct hlist_bl_head
),
3056 HASH_EARLY
| HASH_ZERO
,
3061 d_hash_shift
= 32 - d_hash_shift
;
3064 static void __init
dcache_init(void)
3067 * A constructor could be added for stable state like the lists,
3068 * but it is probably not worth it because of the cache nature
3071 dentry_cache
= KMEM_CACHE_USERCOPY(dentry
,
3072 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
|SLAB_ACCOUNT
,
3075 /* Hash may have been set up in dcache_init_early */
3080 alloc_large_system_hash("Dentry cache",
3081 sizeof(struct hlist_bl_head
),
3089 d_hash_shift
= 32 - d_hash_shift
;
3092 /* SLAB cache for __getname() consumers */
3093 struct kmem_cache
*names_cachep __read_mostly
;
3094 EXPORT_SYMBOL(names_cachep
);
3096 void __init
vfs_caches_init_early(void)
3100 for (i
= 0; i
< ARRAY_SIZE(in_lookup_hashtable
); i
++)
3101 INIT_HLIST_BL_HEAD(&in_lookup_hashtable
[i
]);
3103 dcache_init_early();
3107 void __init
vfs_caches_init(void)
3109 names_cachep
= kmem_cache_create_usercopy("names_cache", PATH_MAX
, 0,
3110 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, 0, PATH_MAX
, NULL
);
3115 files_maxfiles_init();