perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / fs / ext4 / inode.c
blobc3d9a42c561ef54165581a974b2f32e871842d53
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
10 * from
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
49 #include <trace/events/ext4.h>
51 #define MPAGE_DA_EXTENT_TAIL 0x01
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 __u32 csum;
58 __u16 dummy_csum = 0;
59 int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 unsigned int csum_size = sizeof(dummy_csum);
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 offset += csum_size;
65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 EXT4_GOOD_OLD_INODE_SIZE - offset);
68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 offset = offsetof(struct ext4_inode, i_checksum_hi);
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 EXT4_GOOD_OLD_INODE_SIZE,
72 offset - EXT4_GOOD_OLD_INODE_SIZE);
73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 csum_size);
76 offset += csum_size;
78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 EXT4_INODE_SIZE(inode->i_sb) - offset);
82 return csum;
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 struct ext4_inode_info *ei)
88 __u32 provided, calculated;
90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 cpu_to_le32(EXT4_OS_LINUX) ||
92 !ext4_has_metadata_csum(inode->i_sb))
93 return 1;
95 provided = le16_to_cpu(raw->i_checksum_lo);
96 calculated = ext4_inode_csum(inode, raw, ei);
97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 else
101 calculated &= 0xFFFF;
103 return provided == calculated;
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 struct ext4_inode_info *ei)
109 __u32 csum;
111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 cpu_to_le32(EXT4_OS_LINUX) ||
113 !ext4_has_metadata_csum(inode->i_sb))
114 return;
116 csum = ext4_inode_csum(inode, raw, ei);
117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 loff_t new_size)
126 trace_ext4_begin_ordered_truncate(inode, new_size);
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
133 if (!EXT4_I(inode)->jinode)
134 return 0;
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 EXT4_I(inode)->jinode,
137 new_size);
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 int pextents);
148 * Test whether an inode is a fast symlink.
149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
151 int ext4_inode_is_fast_symlink(struct inode *inode)
153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
157 if (ext4_has_inline_data(inode))
158 return 0;
160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
162 return S_ISLNK(inode->i_mode) && inode->i_size &&
163 (inode->i_size < EXT4_N_BLOCKS * 4);
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172 int nblocks)
174 int ret;
177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
178 * moment, get_block can be called only for blocks inside i_size since
179 * page cache has been already dropped and writes are blocked by
180 * i_mutex. So we can safely drop the i_data_sem here.
182 BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 jbd_debug(2, "restarting handle %p\n", handle);
184 up_write(&EXT4_I(inode)->i_data_sem);
185 ret = ext4_journal_restart(handle, nblocks);
186 down_write(&EXT4_I(inode)->i_data_sem);
187 ext4_discard_preallocations(inode);
189 return ret;
193 * Called at the last iput() if i_nlink is zero.
195 void ext4_evict_inode(struct inode *inode)
197 handle_t *handle;
198 int err;
199 int extra_credits = 3;
200 struct ext4_xattr_inode_array *ea_inode_array = NULL;
202 trace_ext4_evict_inode(inode);
204 if (inode->i_nlink) {
206 * When journalling data dirty buffers are tracked only in the
207 * journal. So although mm thinks everything is clean and
208 * ready for reaping the inode might still have some pages to
209 * write in the running transaction or waiting to be
210 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 * (via truncate_inode_pages()) to discard these buffers can
212 * cause data loss. Also even if we did not discard these
213 * buffers, we would have no way to find them after the inode
214 * is reaped and thus user could see stale data if he tries to
215 * read them before the transaction is checkpointed. So be
216 * careful and force everything to disk here... We use
217 * ei->i_datasync_tid to store the newest transaction
218 * containing inode's data.
220 * Note that directories do not have this problem because they
221 * don't use page cache.
223 if (inode->i_ino != EXT4_JOURNAL_INO &&
224 ext4_should_journal_data(inode) &&
225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 inode->i_data.nrpages) {
227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
230 jbd2_complete_transaction(journal, commit_tid);
231 filemap_write_and_wait(&inode->i_data);
233 truncate_inode_pages_final(&inode->i_data);
235 goto no_delete;
238 if (is_bad_inode(inode))
239 goto no_delete;
240 dquot_initialize(inode);
242 if (ext4_should_order_data(inode))
243 ext4_begin_ordered_truncate(inode, 0);
244 truncate_inode_pages_final(&inode->i_data);
247 * Protect us against freezing - iput() caller didn't have to have any
248 * protection against it
250 sb_start_intwrite(inode->i_sb);
252 if (!IS_NOQUOTA(inode))
253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 ext4_blocks_for_truncate(inode)+extra_credits);
257 if (IS_ERR(handle)) {
258 ext4_std_error(inode->i_sb, PTR_ERR(handle));
260 * If we're going to skip the normal cleanup, we still need to
261 * make sure that the in-core orphan linked list is properly
262 * cleaned up.
264 ext4_orphan_del(NULL, inode);
265 sb_end_intwrite(inode->i_sb);
266 goto no_delete;
269 if (IS_SYNC(inode))
270 ext4_handle_sync(handle);
273 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 * special handling of symlinks here because i_size is used to
275 * determine whether ext4_inode_info->i_data contains symlink data or
276 * block mappings. Setting i_size to 0 will remove its fast symlink
277 * status. Erase i_data so that it becomes a valid empty block map.
279 if (ext4_inode_is_fast_symlink(inode))
280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281 inode->i_size = 0;
282 err = ext4_mark_inode_dirty(handle, inode);
283 if (err) {
284 ext4_warning(inode->i_sb,
285 "couldn't mark inode dirty (err %d)", err);
286 goto stop_handle;
288 if (inode->i_blocks) {
289 err = ext4_truncate(inode);
290 if (err) {
291 ext4_error(inode->i_sb,
292 "couldn't truncate inode %lu (err %d)",
293 inode->i_ino, err);
294 goto stop_handle;
298 /* Remove xattr references. */
299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 extra_credits);
301 if (err) {
302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304 ext4_journal_stop(handle);
305 ext4_orphan_del(NULL, inode);
306 sb_end_intwrite(inode->i_sb);
307 ext4_xattr_inode_array_free(ea_inode_array);
308 goto no_delete;
312 * Kill off the orphan record which ext4_truncate created.
313 * AKPM: I think this can be inside the above `if'.
314 * Note that ext4_orphan_del() has to be able to cope with the
315 * deletion of a non-existent orphan - this is because we don't
316 * know if ext4_truncate() actually created an orphan record.
317 * (Well, we could do this if we need to, but heck - it works)
319 ext4_orphan_del(handle, inode);
320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
323 * One subtle ordering requirement: if anything has gone wrong
324 * (transaction abort, IO errors, whatever), then we can still
325 * do these next steps (the fs will already have been marked as
326 * having errors), but we can't free the inode if the mark_dirty
327 * fails.
329 if (ext4_mark_inode_dirty(handle, inode))
330 /* If that failed, just do the required in-core inode clear. */
331 ext4_clear_inode(inode);
332 else
333 ext4_free_inode(handle, inode);
334 ext4_journal_stop(handle);
335 sb_end_intwrite(inode->i_sb);
336 ext4_xattr_inode_array_free(ea_inode_array);
337 return;
338 no_delete:
339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
345 return &EXT4_I(inode)->i_reserved_quota;
347 #endif
350 * Called with i_data_sem down, which is important since we can call
351 * ext4_discard_preallocations() from here.
353 void ext4_da_update_reserve_space(struct inode *inode,
354 int used, int quota_claim)
356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357 struct ext4_inode_info *ei = EXT4_I(inode);
359 spin_lock(&ei->i_block_reservation_lock);
360 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361 if (unlikely(used > ei->i_reserved_data_blocks)) {
362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363 "with only %d reserved data blocks",
364 __func__, inode->i_ino, used,
365 ei->i_reserved_data_blocks);
366 WARN_ON(1);
367 used = ei->i_reserved_data_blocks;
370 /* Update per-inode reservations */
371 ei->i_reserved_data_blocks -= used;
372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
376 /* Update quota subsystem for data blocks */
377 if (quota_claim)
378 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379 else {
381 * We did fallocate with an offset that is already delayed
382 * allocated. So on delayed allocated writeback we should
383 * not re-claim the quota for fallocated blocks.
385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
389 * If we have done all the pending block allocations and if
390 * there aren't any writers on the inode, we can discard the
391 * inode's preallocations.
393 if ((ei->i_reserved_data_blocks == 0) &&
394 (atomic_read(&inode->i_writecount) == 0))
395 ext4_discard_preallocations(inode);
398 static int __check_block_validity(struct inode *inode, const char *func,
399 unsigned int line,
400 struct ext4_map_blocks *map)
402 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
403 map->m_len)) {
404 ext4_error_inode(inode, func, line, map->m_pblk,
405 "lblock %lu mapped to illegal pblock %llu "
406 "(length %d)", (unsigned long) map->m_lblk,
407 map->m_pblk, map->m_len);
408 return -EFSCORRUPTED;
410 return 0;
413 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
414 ext4_lblk_t len)
416 int ret;
418 if (ext4_encrypted_inode(inode))
419 return fscrypt_zeroout_range(inode, lblk, pblk, len);
421 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
422 if (ret > 0)
423 ret = 0;
425 return ret;
428 #define check_block_validity(inode, map) \
429 __check_block_validity((inode), __func__, __LINE__, (map))
431 #ifdef ES_AGGRESSIVE_TEST
432 static void ext4_map_blocks_es_recheck(handle_t *handle,
433 struct inode *inode,
434 struct ext4_map_blocks *es_map,
435 struct ext4_map_blocks *map,
436 int flags)
438 int retval;
440 map->m_flags = 0;
442 * There is a race window that the result is not the same.
443 * e.g. xfstests #223 when dioread_nolock enables. The reason
444 * is that we lookup a block mapping in extent status tree with
445 * out taking i_data_sem. So at the time the unwritten extent
446 * could be converted.
448 down_read(&EXT4_I(inode)->i_data_sem);
449 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
450 retval = ext4_ext_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 } else {
453 retval = ext4_ind_map_blocks(handle, inode, map, flags &
454 EXT4_GET_BLOCKS_KEEP_SIZE);
456 up_read((&EXT4_I(inode)->i_data_sem));
459 * We don't check m_len because extent will be collpased in status
460 * tree. So the m_len might not equal.
462 if (es_map->m_lblk != map->m_lblk ||
463 es_map->m_flags != map->m_flags ||
464 es_map->m_pblk != map->m_pblk) {
465 printk("ES cache assertion failed for inode: %lu "
466 "es_cached ex [%d/%d/%llu/%x] != "
467 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468 inode->i_ino, es_map->m_lblk, es_map->m_len,
469 es_map->m_pblk, es_map->m_flags, map->m_lblk,
470 map->m_len, map->m_pblk, map->m_flags,
471 retval, flags);
474 #endif /* ES_AGGRESSIVE_TEST */
477 * The ext4_map_blocks() function tries to look up the requested blocks,
478 * and returns if the blocks are already mapped.
480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481 * and store the allocated blocks in the result buffer head and mark it
482 * mapped.
484 * If file type is extents based, it will call ext4_ext_map_blocks(),
485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
486 * based files
488 * On success, it returns the number of blocks being mapped or allocated. if
489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
492 * It returns 0 if plain look up failed (blocks have not been allocated), in
493 * that case, @map is returned as unmapped but we still do fill map->m_len to
494 * indicate the length of a hole starting at map->m_lblk.
496 * It returns the error in case of allocation failure.
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499 struct ext4_map_blocks *map, int flags)
501 struct extent_status es;
502 int retval;
503 int ret = 0;
504 #ifdef ES_AGGRESSIVE_TEST
505 struct ext4_map_blocks orig_map;
507 memcpy(&orig_map, map, sizeof(*map));
508 #endif
510 map->m_flags = 0;
511 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
512 "logical block %lu\n", inode->i_ino, flags, map->m_len,
513 (unsigned long) map->m_lblk);
516 * ext4_map_blocks returns an int, and m_len is an unsigned int
518 if (unlikely(map->m_len > INT_MAX))
519 map->m_len = INT_MAX;
521 /* We can handle the block number less than EXT_MAX_BLOCKS */
522 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
523 return -EFSCORRUPTED;
525 /* Lookup extent status tree firstly */
526 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528 map->m_pblk = ext4_es_pblock(&es) +
529 map->m_lblk - es.es_lblk;
530 map->m_flags |= ext4_es_is_written(&es) ?
531 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532 retval = es.es_len - (map->m_lblk - es.es_lblk);
533 if (retval > map->m_len)
534 retval = map->m_len;
535 map->m_len = retval;
536 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537 map->m_pblk = 0;
538 retval = es.es_len - (map->m_lblk - es.es_lblk);
539 if (retval > map->m_len)
540 retval = map->m_len;
541 map->m_len = retval;
542 retval = 0;
543 } else {
544 BUG_ON(1);
546 #ifdef ES_AGGRESSIVE_TEST
547 ext4_map_blocks_es_recheck(handle, inode, map,
548 &orig_map, flags);
549 #endif
550 goto found;
554 * Try to see if we can get the block without requesting a new
555 * file system block.
557 down_read(&EXT4_I(inode)->i_data_sem);
558 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
559 retval = ext4_ext_map_blocks(handle, inode, map, flags &
560 EXT4_GET_BLOCKS_KEEP_SIZE);
561 } else {
562 retval = ext4_ind_map_blocks(handle, inode, map, flags &
563 EXT4_GET_BLOCKS_KEEP_SIZE);
565 if (retval > 0) {
566 unsigned int status;
568 if (unlikely(retval != map->m_len)) {
569 ext4_warning(inode->i_sb,
570 "ES len assertion failed for inode "
571 "%lu: retval %d != map->m_len %d",
572 inode->i_ino, retval, map->m_len);
573 WARN_ON(1);
576 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579 !(status & EXTENT_STATUS_WRITTEN) &&
580 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
581 map->m_lblk + map->m_len - 1))
582 status |= EXTENT_STATUS_DELAYED;
583 ret = ext4_es_insert_extent(inode, map->m_lblk,
584 map->m_len, map->m_pblk, status);
585 if (ret < 0)
586 retval = ret;
588 up_read((&EXT4_I(inode)->i_data_sem));
590 found:
591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592 ret = check_block_validity(inode, map);
593 if (ret != 0)
594 return ret;
597 /* If it is only a block(s) look up */
598 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
599 return retval;
602 * Returns if the blocks have already allocated
604 * Note that if blocks have been preallocated
605 * ext4_ext_get_block() returns the create = 0
606 * with buffer head unmapped.
608 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610 * If we need to convert extent to unwritten
611 * we continue and do the actual work in
612 * ext4_ext_map_blocks()
614 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615 return retval;
618 * Here we clear m_flags because after allocating an new extent,
619 * it will be set again.
621 map->m_flags &= ~EXT4_MAP_FLAGS;
624 * New blocks allocate and/or writing to unwritten extent
625 * will possibly result in updating i_data, so we take
626 * the write lock of i_data_sem, and call get_block()
627 * with create == 1 flag.
629 down_write(&EXT4_I(inode)->i_data_sem);
632 * We need to check for EXT4 here because migrate
633 * could have changed the inode type in between
635 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636 retval = ext4_ext_map_blocks(handle, inode, map, flags);
637 } else {
638 retval = ext4_ind_map_blocks(handle, inode, map, flags);
640 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
642 * We allocated new blocks which will result in
643 * i_data's format changing. Force the migrate
644 * to fail by clearing migrate flags
646 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
650 * Update reserved blocks/metadata blocks after successful
651 * block allocation which had been deferred till now. We don't
652 * support fallocate for non extent files. So we can update
653 * reserve space here.
655 if ((retval > 0) &&
656 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657 ext4_da_update_reserve_space(inode, retval, 1);
660 if (retval > 0) {
661 unsigned int status;
663 if (unlikely(retval != map->m_len)) {
664 ext4_warning(inode->i_sb,
665 "ES len assertion failed for inode "
666 "%lu: retval %d != map->m_len %d",
667 inode->i_ino, retval, map->m_len);
668 WARN_ON(1);
672 * We have to zeroout blocks before inserting them into extent
673 * status tree. Otherwise someone could look them up there and
674 * use them before they are really zeroed. We also have to
675 * unmap metadata before zeroing as otherwise writeback can
676 * overwrite zeros with stale data from block device.
678 if (flags & EXT4_GET_BLOCKS_ZERO &&
679 map->m_flags & EXT4_MAP_MAPPED &&
680 map->m_flags & EXT4_MAP_NEW) {
681 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
682 map->m_len);
683 ret = ext4_issue_zeroout(inode, map->m_lblk,
684 map->m_pblk, map->m_len);
685 if (ret) {
686 retval = ret;
687 goto out_sem;
692 * If the extent has been zeroed out, we don't need to update
693 * extent status tree.
695 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
697 if (ext4_es_is_written(&es))
698 goto out_sem;
700 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703 !(status & EXTENT_STATUS_WRITTEN) &&
704 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
705 map->m_lblk + map->m_len - 1))
706 status |= EXTENT_STATUS_DELAYED;
707 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708 map->m_pblk, status);
709 if (ret < 0) {
710 retval = ret;
711 goto out_sem;
715 out_sem:
716 up_write((&EXT4_I(inode)->i_data_sem));
717 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718 ret = check_block_validity(inode, map);
719 if (ret != 0)
720 return ret;
723 * Inodes with freshly allocated blocks where contents will be
724 * visible after transaction commit must be on transaction's
725 * ordered data list.
727 if (map->m_flags & EXT4_MAP_NEW &&
728 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 !(flags & EXT4_GET_BLOCKS_ZERO) &&
730 !ext4_is_quota_file(inode) &&
731 ext4_should_order_data(inode)) {
732 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
733 ret = ext4_jbd2_inode_add_wait(handle, inode);
734 else
735 ret = ext4_jbd2_inode_add_write(handle, inode);
736 if (ret)
737 return ret;
740 return retval;
744 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
745 * we have to be careful as someone else may be manipulating b_state as well.
747 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
749 unsigned long old_state;
750 unsigned long new_state;
752 flags &= EXT4_MAP_FLAGS;
754 /* Dummy buffer_head? Set non-atomically. */
755 if (!bh->b_page) {
756 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
757 return;
760 * Someone else may be modifying b_state. Be careful! This is ugly but
761 * once we get rid of using bh as a container for mapping information
762 * to pass to / from get_block functions, this can go away.
764 do {
765 old_state = READ_ONCE(bh->b_state);
766 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
767 } while (unlikely(
768 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
771 static int _ext4_get_block(struct inode *inode, sector_t iblock,
772 struct buffer_head *bh, int flags)
774 struct ext4_map_blocks map;
775 int ret = 0;
777 if (ext4_has_inline_data(inode))
778 return -ERANGE;
780 map.m_lblk = iblock;
781 map.m_len = bh->b_size >> inode->i_blkbits;
783 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
784 flags);
785 if (ret > 0) {
786 map_bh(bh, inode->i_sb, map.m_pblk);
787 ext4_update_bh_state(bh, map.m_flags);
788 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
789 ret = 0;
790 } else if (ret == 0) {
791 /* hole case, need to fill in bh->b_size */
792 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
794 return ret;
797 int ext4_get_block(struct inode *inode, sector_t iblock,
798 struct buffer_head *bh, int create)
800 return _ext4_get_block(inode, iblock, bh,
801 create ? EXT4_GET_BLOCKS_CREATE : 0);
805 * Get block function used when preparing for buffered write if we require
806 * creating an unwritten extent if blocks haven't been allocated. The extent
807 * will be converted to written after the IO is complete.
809 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh_result, int create)
812 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813 inode->i_ino, create);
814 return _ext4_get_block(inode, iblock, bh_result,
815 EXT4_GET_BLOCKS_IO_CREATE_EXT);
818 /* Maximum number of blocks we map for direct IO at once. */
819 #define DIO_MAX_BLOCKS 4096
822 * Get blocks function for the cases that need to start a transaction -
823 * generally difference cases of direct IO and DAX IO. It also handles retries
824 * in case of ENOSPC.
826 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
827 struct buffer_head *bh_result, int flags)
829 int dio_credits;
830 handle_t *handle;
831 int retries = 0;
832 int ret;
834 /* Trim mapping request to maximum we can map at once for DIO */
835 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
836 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
837 dio_credits = ext4_chunk_trans_blocks(inode,
838 bh_result->b_size >> inode->i_blkbits);
839 retry:
840 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
841 if (IS_ERR(handle))
842 return PTR_ERR(handle);
844 ret = _ext4_get_block(inode, iblock, bh_result, flags);
845 ext4_journal_stop(handle);
847 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
848 goto retry;
849 return ret;
852 /* Get block function for DIO reads and writes to inodes without extents */
853 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
854 struct buffer_head *bh, int create)
856 /* We don't expect handle for direct IO */
857 WARN_ON_ONCE(ext4_journal_current_handle());
859 if (!create)
860 return _ext4_get_block(inode, iblock, bh, 0);
861 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
865 * Get block function for AIO DIO writes when we create unwritten extent if
866 * blocks are not allocated yet. The extent will be converted to written
867 * after IO is complete.
869 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
870 sector_t iblock, struct buffer_head *bh_result, int create)
872 int ret;
874 /* We don't expect handle for direct IO */
875 WARN_ON_ONCE(ext4_journal_current_handle());
877 ret = ext4_get_block_trans(inode, iblock, bh_result,
878 EXT4_GET_BLOCKS_IO_CREATE_EXT);
881 * When doing DIO using unwritten extents, we need io_end to convert
882 * unwritten extents to written on IO completion. We allocate io_end
883 * once we spot unwritten extent and store it in b_private. Generic
884 * DIO code keeps b_private set and furthermore passes the value to
885 * our completion callback in 'private' argument.
887 if (!ret && buffer_unwritten(bh_result)) {
888 if (!bh_result->b_private) {
889 ext4_io_end_t *io_end;
891 io_end = ext4_init_io_end(inode, GFP_KERNEL);
892 if (!io_end)
893 return -ENOMEM;
894 bh_result->b_private = io_end;
895 ext4_set_io_unwritten_flag(inode, io_end);
897 set_buffer_defer_completion(bh_result);
900 return ret;
904 * Get block function for non-AIO DIO writes when we create unwritten extent if
905 * blocks are not allocated yet. The extent will be converted to written
906 * after IO is complete by ext4_direct_IO_write().
908 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
909 sector_t iblock, struct buffer_head *bh_result, int create)
911 int ret;
913 /* We don't expect handle for direct IO */
914 WARN_ON_ONCE(ext4_journal_current_handle());
916 ret = ext4_get_block_trans(inode, iblock, bh_result,
917 EXT4_GET_BLOCKS_IO_CREATE_EXT);
920 * Mark inode as having pending DIO writes to unwritten extents.
921 * ext4_direct_IO_write() checks this flag and converts extents to
922 * written.
924 if (!ret && buffer_unwritten(bh_result))
925 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
927 return ret;
930 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
931 struct buffer_head *bh_result, int create)
933 int ret;
935 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
936 inode->i_ino, create);
937 /* We don't expect handle for direct IO */
938 WARN_ON_ONCE(ext4_journal_current_handle());
940 ret = _ext4_get_block(inode, iblock, bh_result, 0);
942 * Blocks should have been preallocated! ext4_file_write_iter() checks
943 * that.
945 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
947 return ret;
952 * `handle' can be NULL if create is zero
954 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
955 ext4_lblk_t block, int map_flags)
957 struct ext4_map_blocks map;
958 struct buffer_head *bh;
959 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
960 int err;
962 J_ASSERT(handle != NULL || create == 0);
964 map.m_lblk = block;
965 map.m_len = 1;
966 err = ext4_map_blocks(handle, inode, &map, map_flags);
968 if (err == 0)
969 return create ? ERR_PTR(-ENOSPC) : NULL;
970 if (err < 0)
971 return ERR_PTR(err);
973 bh = sb_getblk(inode->i_sb, map.m_pblk);
974 if (unlikely(!bh))
975 return ERR_PTR(-ENOMEM);
976 if (map.m_flags & EXT4_MAP_NEW) {
977 J_ASSERT(create != 0);
978 J_ASSERT(handle != NULL);
981 * Now that we do not always journal data, we should
982 * keep in mind whether this should always journal the
983 * new buffer as metadata. For now, regular file
984 * writes use ext4_get_block instead, so it's not a
985 * problem.
987 lock_buffer(bh);
988 BUFFER_TRACE(bh, "call get_create_access");
989 err = ext4_journal_get_create_access(handle, bh);
990 if (unlikely(err)) {
991 unlock_buffer(bh);
992 goto errout;
994 if (!buffer_uptodate(bh)) {
995 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
996 set_buffer_uptodate(bh);
998 unlock_buffer(bh);
999 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1000 err = ext4_handle_dirty_metadata(handle, inode, bh);
1001 if (unlikely(err))
1002 goto errout;
1003 } else
1004 BUFFER_TRACE(bh, "not a new buffer");
1005 return bh;
1006 errout:
1007 brelse(bh);
1008 return ERR_PTR(err);
1011 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1012 ext4_lblk_t block, int map_flags)
1014 struct buffer_head *bh;
1016 bh = ext4_getblk(handle, inode, block, map_flags);
1017 if (IS_ERR(bh))
1018 return bh;
1019 if (!bh || buffer_uptodate(bh))
1020 return bh;
1021 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1022 wait_on_buffer(bh);
1023 if (buffer_uptodate(bh))
1024 return bh;
1025 put_bh(bh);
1026 return ERR_PTR(-EIO);
1029 /* Read a contiguous batch of blocks. */
1030 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1031 bool wait, struct buffer_head **bhs)
1033 int i, err;
1035 for (i = 0; i < bh_count; i++) {
1036 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1037 if (IS_ERR(bhs[i])) {
1038 err = PTR_ERR(bhs[i]);
1039 bh_count = i;
1040 goto out_brelse;
1044 for (i = 0; i < bh_count; i++)
1045 /* Note that NULL bhs[i] is valid because of holes. */
1046 if (bhs[i] && !buffer_uptodate(bhs[i]))
1047 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1048 &bhs[i]);
1050 if (!wait)
1051 return 0;
1053 for (i = 0; i < bh_count; i++)
1054 if (bhs[i])
1055 wait_on_buffer(bhs[i]);
1057 for (i = 0; i < bh_count; i++) {
1058 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1059 err = -EIO;
1060 goto out_brelse;
1063 return 0;
1065 out_brelse:
1066 for (i = 0; i < bh_count; i++) {
1067 brelse(bhs[i]);
1068 bhs[i] = NULL;
1070 return err;
1073 int ext4_walk_page_buffers(handle_t *handle,
1074 struct buffer_head *head,
1075 unsigned from,
1076 unsigned to,
1077 int *partial,
1078 int (*fn)(handle_t *handle,
1079 struct buffer_head *bh))
1081 struct buffer_head *bh;
1082 unsigned block_start, block_end;
1083 unsigned blocksize = head->b_size;
1084 int err, ret = 0;
1085 struct buffer_head *next;
1087 for (bh = head, block_start = 0;
1088 ret == 0 && (bh != head || !block_start);
1089 block_start = block_end, bh = next) {
1090 next = bh->b_this_page;
1091 block_end = block_start + blocksize;
1092 if (block_end <= from || block_start >= to) {
1093 if (partial && !buffer_uptodate(bh))
1094 *partial = 1;
1095 continue;
1097 err = (*fn)(handle, bh);
1098 if (!ret)
1099 ret = err;
1101 return ret;
1105 * To preserve ordering, it is essential that the hole instantiation and
1106 * the data write be encapsulated in a single transaction. We cannot
1107 * close off a transaction and start a new one between the ext4_get_block()
1108 * and the commit_write(). So doing the jbd2_journal_start at the start of
1109 * prepare_write() is the right place.
1111 * Also, this function can nest inside ext4_writepage(). In that case, we
1112 * *know* that ext4_writepage() has generated enough buffer credits to do the
1113 * whole page. So we won't block on the journal in that case, which is good,
1114 * because the caller may be PF_MEMALLOC.
1116 * By accident, ext4 can be reentered when a transaction is open via
1117 * quota file writes. If we were to commit the transaction while thus
1118 * reentered, there can be a deadlock - we would be holding a quota
1119 * lock, and the commit would never complete if another thread had a
1120 * transaction open and was blocking on the quota lock - a ranking
1121 * violation.
1123 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1124 * will _not_ run commit under these circumstances because handle->h_ref
1125 * is elevated. We'll still have enough credits for the tiny quotafile
1126 * write.
1128 int do_journal_get_write_access(handle_t *handle,
1129 struct buffer_head *bh)
1131 int dirty = buffer_dirty(bh);
1132 int ret;
1134 if (!buffer_mapped(bh) || buffer_freed(bh))
1135 return 0;
1137 * __block_write_begin() could have dirtied some buffers. Clean
1138 * the dirty bit as jbd2_journal_get_write_access() could complain
1139 * otherwise about fs integrity issues. Setting of the dirty bit
1140 * by __block_write_begin() isn't a real problem here as we clear
1141 * the bit before releasing a page lock and thus writeback cannot
1142 * ever write the buffer.
1144 if (dirty)
1145 clear_buffer_dirty(bh);
1146 BUFFER_TRACE(bh, "get write access");
1147 ret = ext4_journal_get_write_access(handle, bh);
1148 if (!ret && dirty)
1149 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1150 return ret;
1153 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1154 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1155 get_block_t *get_block)
1157 unsigned from = pos & (PAGE_SIZE - 1);
1158 unsigned to = from + len;
1159 struct inode *inode = page->mapping->host;
1160 unsigned block_start, block_end;
1161 sector_t block;
1162 int err = 0;
1163 unsigned blocksize = inode->i_sb->s_blocksize;
1164 unsigned bbits;
1165 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1166 bool decrypt = false;
1168 BUG_ON(!PageLocked(page));
1169 BUG_ON(from > PAGE_SIZE);
1170 BUG_ON(to > PAGE_SIZE);
1171 BUG_ON(from > to);
1173 if (!page_has_buffers(page))
1174 create_empty_buffers(page, blocksize, 0);
1175 head = page_buffers(page);
1176 bbits = ilog2(blocksize);
1177 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1179 for (bh = head, block_start = 0; bh != head || !block_start;
1180 block++, block_start = block_end, bh = bh->b_this_page) {
1181 block_end = block_start + blocksize;
1182 if (block_end <= from || block_start >= to) {
1183 if (PageUptodate(page)) {
1184 if (!buffer_uptodate(bh))
1185 set_buffer_uptodate(bh);
1187 continue;
1189 if (buffer_new(bh))
1190 clear_buffer_new(bh);
1191 if (!buffer_mapped(bh)) {
1192 WARN_ON(bh->b_size != blocksize);
1193 err = get_block(inode, block, bh, 1);
1194 if (err)
1195 break;
1196 if (buffer_new(bh)) {
1197 clean_bdev_bh_alias(bh);
1198 if (PageUptodate(page)) {
1199 clear_buffer_new(bh);
1200 set_buffer_uptodate(bh);
1201 mark_buffer_dirty(bh);
1202 continue;
1204 if (block_end > to || block_start < from)
1205 zero_user_segments(page, to, block_end,
1206 block_start, from);
1207 continue;
1210 if (PageUptodate(page)) {
1211 if (!buffer_uptodate(bh))
1212 set_buffer_uptodate(bh);
1213 continue;
1215 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1216 !buffer_unwritten(bh) &&
1217 (block_start < from || block_end > to)) {
1218 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219 *wait_bh++ = bh;
1220 decrypt = ext4_encrypted_inode(inode) &&
1221 S_ISREG(inode->i_mode);
1225 * If we issued read requests, let them complete.
1227 while (wait_bh > wait) {
1228 wait_on_buffer(*--wait_bh);
1229 if (!buffer_uptodate(*wait_bh))
1230 err = -EIO;
1232 if (unlikely(err))
1233 page_zero_new_buffers(page, from, to);
1234 else if (decrypt)
1235 err = fscrypt_decrypt_page(page->mapping->host, page,
1236 PAGE_SIZE, 0, page->index);
1237 return err;
1239 #endif
1241 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1242 loff_t pos, unsigned len, unsigned flags,
1243 struct page **pagep, void **fsdata)
1245 struct inode *inode = mapping->host;
1246 int ret, needed_blocks;
1247 handle_t *handle;
1248 int retries = 0;
1249 struct page *page;
1250 pgoff_t index;
1251 unsigned from, to;
1253 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254 return -EIO;
1256 trace_ext4_write_begin(inode, pos, len, flags);
1258 * Reserve one block more for addition to orphan list in case
1259 * we allocate blocks but write fails for some reason
1261 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1262 index = pos >> PAGE_SHIFT;
1263 from = pos & (PAGE_SIZE - 1);
1264 to = from + len;
1266 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268 flags, pagep);
1269 if (ret < 0)
1270 return ret;
1271 if (ret == 1)
1272 return 0;
1276 * grab_cache_page_write_begin() can take a long time if the
1277 * system is thrashing due to memory pressure, or if the page
1278 * is being written back. So grab it first before we start
1279 * the transaction handle. This also allows us to allocate
1280 * the page (if needed) without using GFP_NOFS.
1282 retry_grab:
1283 page = grab_cache_page_write_begin(mapping, index, flags);
1284 if (!page)
1285 return -ENOMEM;
1286 unlock_page(page);
1288 retry_journal:
1289 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1290 if (IS_ERR(handle)) {
1291 put_page(page);
1292 return PTR_ERR(handle);
1295 lock_page(page);
1296 if (page->mapping != mapping) {
1297 /* The page got truncated from under us */
1298 unlock_page(page);
1299 put_page(page);
1300 ext4_journal_stop(handle);
1301 goto retry_grab;
1303 /* In case writeback began while the page was unlocked */
1304 wait_for_stable_page(page);
1306 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1307 if (ext4_should_dioread_nolock(inode))
1308 ret = ext4_block_write_begin(page, pos, len,
1309 ext4_get_block_unwritten);
1310 else
1311 ret = ext4_block_write_begin(page, pos, len,
1312 ext4_get_block);
1313 #else
1314 if (ext4_should_dioread_nolock(inode))
1315 ret = __block_write_begin(page, pos, len,
1316 ext4_get_block_unwritten);
1317 else
1318 ret = __block_write_begin(page, pos, len, ext4_get_block);
1319 #endif
1320 if (!ret && ext4_should_journal_data(inode)) {
1321 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322 from, to, NULL,
1323 do_journal_get_write_access);
1326 if (ret) {
1327 unlock_page(page);
1329 * __block_write_begin may have instantiated a few blocks
1330 * outside i_size. Trim these off again. Don't need
1331 * i_size_read because we hold i_mutex.
1333 * Add inode to orphan list in case we crash before
1334 * truncate finishes
1336 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1337 ext4_orphan_add(handle, inode);
1339 ext4_journal_stop(handle);
1340 if (pos + len > inode->i_size) {
1341 ext4_truncate_failed_write(inode);
1343 * If truncate failed early the inode might
1344 * still be on the orphan list; we need to
1345 * make sure the inode is removed from the
1346 * orphan list in that case.
1348 if (inode->i_nlink)
1349 ext4_orphan_del(NULL, inode);
1352 if (ret == -ENOSPC &&
1353 ext4_should_retry_alloc(inode->i_sb, &retries))
1354 goto retry_journal;
1355 put_page(page);
1356 return ret;
1358 *pagep = page;
1359 return ret;
1362 /* For write_end() in data=journal mode */
1363 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1365 int ret;
1366 if (!buffer_mapped(bh) || buffer_freed(bh))
1367 return 0;
1368 set_buffer_uptodate(bh);
1369 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370 clear_buffer_meta(bh);
1371 clear_buffer_prio(bh);
1372 return ret;
1376 * We need to pick up the new inode size which generic_commit_write gave us
1377 * `file' can be NULL - eg, when called from page_symlink().
1379 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1380 * buffers are managed internally.
1382 static int ext4_write_end(struct file *file,
1383 struct address_space *mapping,
1384 loff_t pos, unsigned len, unsigned copied,
1385 struct page *page, void *fsdata)
1387 handle_t *handle = ext4_journal_current_handle();
1388 struct inode *inode = mapping->host;
1389 loff_t old_size = inode->i_size;
1390 int ret = 0, ret2;
1391 int i_size_changed = 0;
1392 int inline_data = ext4_has_inline_data(inode);
1394 trace_ext4_write_end(inode, pos, len, copied);
1395 if (inline_data) {
1396 ret = ext4_write_inline_data_end(inode, pos, len,
1397 copied, page);
1398 if (ret < 0) {
1399 unlock_page(page);
1400 put_page(page);
1401 goto errout;
1403 copied = ret;
1404 } else
1405 copied = block_write_end(file, mapping, pos,
1406 len, copied, page, fsdata);
1408 * it's important to update i_size while still holding page lock:
1409 * page writeout could otherwise come in and zero beyond i_size.
1411 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1412 unlock_page(page);
1413 put_page(page);
1415 if (old_size < pos)
1416 pagecache_isize_extended(inode, old_size, pos);
1418 * Don't mark the inode dirty under page lock. First, it unnecessarily
1419 * makes the holding time of page lock longer. Second, it forces lock
1420 * ordering of page lock and transaction start for journaling
1421 * filesystems.
1423 if (i_size_changed || inline_data)
1424 ext4_mark_inode_dirty(handle, inode);
1426 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1427 /* if we have allocated more blocks and copied
1428 * less. We will have blocks allocated outside
1429 * inode->i_size. So truncate them
1431 ext4_orphan_add(handle, inode);
1432 errout:
1433 ret2 = ext4_journal_stop(handle);
1434 if (!ret)
1435 ret = ret2;
1437 if (pos + len > inode->i_size) {
1438 ext4_truncate_failed_write(inode);
1440 * If truncate failed early the inode might still be
1441 * on the orphan list; we need to make sure the inode
1442 * is removed from the orphan list in that case.
1444 if (inode->i_nlink)
1445 ext4_orphan_del(NULL, inode);
1448 return ret ? ret : copied;
1452 * This is a private version of page_zero_new_buffers() which doesn't
1453 * set the buffer to be dirty, since in data=journalled mode we need
1454 * to call ext4_handle_dirty_metadata() instead.
1456 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1457 struct page *page,
1458 unsigned from, unsigned to)
1460 unsigned int block_start = 0, block_end;
1461 struct buffer_head *head, *bh;
1463 bh = head = page_buffers(page);
1464 do {
1465 block_end = block_start + bh->b_size;
1466 if (buffer_new(bh)) {
1467 if (block_end > from && block_start < to) {
1468 if (!PageUptodate(page)) {
1469 unsigned start, size;
1471 start = max(from, block_start);
1472 size = min(to, block_end) - start;
1474 zero_user(page, start, size);
1475 write_end_fn(handle, bh);
1477 clear_buffer_new(bh);
1480 block_start = block_end;
1481 bh = bh->b_this_page;
1482 } while (bh != head);
1485 static int ext4_journalled_write_end(struct file *file,
1486 struct address_space *mapping,
1487 loff_t pos, unsigned len, unsigned copied,
1488 struct page *page, void *fsdata)
1490 handle_t *handle = ext4_journal_current_handle();
1491 struct inode *inode = mapping->host;
1492 loff_t old_size = inode->i_size;
1493 int ret = 0, ret2;
1494 int partial = 0;
1495 unsigned from, to;
1496 int size_changed = 0;
1497 int inline_data = ext4_has_inline_data(inode);
1499 trace_ext4_journalled_write_end(inode, pos, len, copied);
1500 from = pos & (PAGE_SIZE - 1);
1501 to = from + len;
1503 BUG_ON(!ext4_handle_valid(handle));
1505 if (inline_data) {
1506 ret = ext4_write_inline_data_end(inode, pos, len,
1507 copied, page);
1508 if (ret < 0) {
1509 unlock_page(page);
1510 put_page(page);
1511 goto errout;
1513 copied = ret;
1514 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1515 copied = 0;
1516 ext4_journalled_zero_new_buffers(handle, page, from, to);
1517 } else {
1518 if (unlikely(copied < len))
1519 ext4_journalled_zero_new_buffers(handle, page,
1520 from + copied, to);
1521 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1522 from + copied, &partial,
1523 write_end_fn);
1524 if (!partial)
1525 SetPageUptodate(page);
1527 size_changed = ext4_update_inode_size(inode, pos + copied);
1528 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1529 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1530 unlock_page(page);
1531 put_page(page);
1533 if (old_size < pos)
1534 pagecache_isize_extended(inode, old_size, pos);
1536 if (size_changed || inline_data) {
1537 ret2 = ext4_mark_inode_dirty(handle, inode);
1538 if (!ret)
1539 ret = ret2;
1542 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1543 /* if we have allocated more blocks and copied
1544 * less. We will have blocks allocated outside
1545 * inode->i_size. So truncate them
1547 ext4_orphan_add(handle, inode);
1549 errout:
1550 ret2 = ext4_journal_stop(handle);
1551 if (!ret)
1552 ret = ret2;
1553 if (pos + len > inode->i_size) {
1554 ext4_truncate_failed_write(inode);
1556 * If truncate failed early the inode might still be
1557 * on the orphan list; we need to make sure the inode
1558 * is removed from the orphan list in that case.
1560 if (inode->i_nlink)
1561 ext4_orphan_del(NULL, inode);
1564 return ret ? ret : copied;
1568 * Reserve space for a single cluster
1570 static int ext4_da_reserve_space(struct inode *inode)
1572 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1573 struct ext4_inode_info *ei = EXT4_I(inode);
1574 int ret;
1577 * We will charge metadata quota at writeout time; this saves
1578 * us from metadata over-estimation, though we may go over by
1579 * a small amount in the end. Here we just reserve for data.
1581 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1582 if (ret)
1583 return ret;
1585 spin_lock(&ei->i_block_reservation_lock);
1586 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1587 spin_unlock(&ei->i_block_reservation_lock);
1588 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1589 return -ENOSPC;
1591 ei->i_reserved_data_blocks++;
1592 trace_ext4_da_reserve_space(inode);
1593 spin_unlock(&ei->i_block_reservation_lock);
1595 return 0; /* success */
1598 void ext4_da_release_space(struct inode *inode, int to_free)
1600 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1601 struct ext4_inode_info *ei = EXT4_I(inode);
1603 if (!to_free)
1604 return; /* Nothing to release, exit */
1606 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1608 trace_ext4_da_release_space(inode, to_free);
1609 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1611 * if there aren't enough reserved blocks, then the
1612 * counter is messed up somewhere. Since this
1613 * function is called from invalidate page, it's
1614 * harmless to return without any action.
1616 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1617 "ino %lu, to_free %d with only %d reserved "
1618 "data blocks", inode->i_ino, to_free,
1619 ei->i_reserved_data_blocks);
1620 WARN_ON(1);
1621 to_free = ei->i_reserved_data_blocks;
1623 ei->i_reserved_data_blocks -= to_free;
1625 /* update fs dirty data blocks counter */
1626 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1628 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1630 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1633 static void ext4_da_page_release_reservation(struct page *page,
1634 unsigned int offset,
1635 unsigned int length)
1637 int contiguous_blks = 0;
1638 struct buffer_head *head, *bh;
1639 unsigned int curr_off = 0;
1640 struct inode *inode = page->mapping->host;
1641 unsigned int stop = offset + length;
1642 ext4_fsblk_t lblk;
1644 BUG_ON(stop > PAGE_SIZE || stop < length);
1646 head = page_buffers(page);
1647 bh = head;
1648 do {
1649 unsigned int next_off = curr_off + bh->b_size;
1651 if (next_off > stop)
1652 break;
1654 if ((offset <= curr_off) && (buffer_delay(bh))) {
1655 contiguous_blks++;
1656 clear_buffer_delay(bh);
1657 } else if (contiguous_blks) {
1658 lblk = page->index <<
1659 (PAGE_SHIFT - inode->i_blkbits);
1660 lblk += (curr_off >> inode->i_blkbits) -
1661 contiguous_blks;
1662 ext4_es_remove_blks(inode, lblk, contiguous_blks);
1663 contiguous_blks = 0;
1665 curr_off = next_off;
1666 } while ((bh = bh->b_this_page) != head);
1668 if (contiguous_blks) {
1669 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1670 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1671 ext4_es_remove_blks(inode, lblk, contiguous_blks);
1677 * Delayed allocation stuff
1680 struct mpage_da_data {
1681 struct inode *inode;
1682 struct writeback_control *wbc;
1684 pgoff_t first_page; /* The first page to write */
1685 pgoff_t next_page; /* Current page to examine */
1686 pgoff_t last_page; /* Last page to examine */
1688 * Extent to map - this can be after first_page because that can be
1689 * fully mapped. We somewhat abuse m_flags to store whether the extent
1690 * is delalloc or unwritten.
1692 struct ext4_map_blocks map;
1693 struct ext4_io_submit io_submit; /* IO submission data */
1694 unsigned int do_map:1;
1697 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1698 bool invalidate)
1700 int nr_pages, i;
1701 pgoff_t index, end;
1702 struct pagevec pvec;
1703 struct inode *inode = mpd->inode;
1704 struct address_space *mapping = inode->i_mapping;
1706 /* This is necessary when next_page == 0. */
1707 if (mpd->first_page >= mpd->next_page)
1708 return;
1710 index = mpd->first_page;
1711 end = mpd->next_page - 1;
1712 if (invalidate) {
1713 ext4_lblk_t start, last;
1714 start = index << (PAGE_SHIFT - inode->i_blkbits);
1715 last = end << (PAGE_SHIFT - inode->i_blkbits);
1716 ext4_es_remove_extent(inode, start, last - start + 1);
1719 pagevec_init(&pvec);
1720 while (index <= end) {
1721 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1722 if (nr_pages == 0)
1723 break;
1724 for (i = 0; i < nr_pages; i++) {
1725 struct page *page = pvec.pages[i];
1727 BUG_ON(!PageLocked(page));
1728 BUG_ON(PageWriteback(page));
1729 if (invalidate) {
1730 if (page_mapped(page))
1731 clear_page_dirty_for_io(page);
1732 block_invalidatepage(page, 0, PAGE_SIZE);
1733 ClearPageUptodate(page);
1735 unlock_page(page);
1737 pagevec_release(&pvec);
1741 static void ext4_print_free_blocks(struct inode *inode)
1743 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1744 struct super_block *sb = inode->i_sb;
1745 struct ext4_inode_info *ei = EXT4_I(inode);
1747 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1748 EXT4_C2B(EXT4_SB(inode->i_sb),
1749 ext4_count_free_clusters(sb)));
1750 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1751 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1752 (long long) EXT4_C2B(EXT4_SB(sb),
1753 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1754 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1755 (long long) EXT4_C2B(EXT4_SB(sb),
1756 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1757 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1758 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1759 ei->i_reserved_data_blocks);
1760 return;
1763 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1765 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1769 * ext4_insert_delayed_block - adds a delayed block to the extents status
1770 * tree, incrementing the reserved cluster/block
1771 * count or making a pending reservation
1772 * where needed
1774 * @inode - file containing the newly added block
1775 * @lblk - logical block to be added
1777 * Returns 0 on success, negative error code on failure.
1779 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1781 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1782 int ret;
1783 bool allocated = false;
1786 * If the cluster containing lblk is shared with a delayed,
1787 * written, or unwritten extent in a bigalloc file system, it's
1788 * already been accounted for and does not need to be reserved.
1789 * A pending reservation must be made for the cluster if it's
1790 * shared with a written or unwritten extent and doesn't already
1791 * have one. Written and unwritten extents can be purged from the
1792 * extents status tree if the system is under memory pressure, so
1793 * it's necessary to examine the extent tree if a search of the
1794 * extents status tree doesn't get a match.
1796 if (sbi->s_cluster_ratio == 1) {
1797 ret = ext4_da_reserve_space(inode);
1798 if (ret != 0) /* ENOSPC */
1799 goto errout;
1800 } else { /* bigalloc */
1801 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1802 if (!ext4_es_scan_clu(inode,
1803 &ext4_es_is_mapped, lblk)) {
1804 ret = ext4_clu_mapped(inode,
1805 EXT4_B2C(sbi, lblk));
1806 if (ret < 0)
1807 goto errout;
1808 if (ret == 0) {
1809 ret = ext4_da_reserve_space(inode);
1810 if (ret != 0) /* ENOSPC */
1811 goto errout;
1812 } else {
1813 allocated = true;
1815 } else {
1816 allocated = true;
1821 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1823 errout:
1824 return ret;
1828 * This function is grabs code from the very beginning of
1829 * ext4_map_blocks, but assumes that the caller is from delayed write
1830 * time. This function looks up the requested blocks and sets the
1831 * buffer delay bit under the protection of i_data_sem.
1833 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1834 struct ext4_map_blocks *map,
1835 struct buffer_head *bh)
1837 struct extent_status es;
1838 int retval;
1839 sector_t invalid_block = ~((sector_t) 0xffff);
1840 #ifdef ES_AGGRESSIVE_TEST
1841 struct ext4_map_blocks orig_map;
1843 memcpy(&orig_map, map, sizeof(*map));
1844 #endif
1846 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1847 invalid_block = ~0;
1849 map->m_flags = 0;
1850 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1851 "logical block %lu\n", inode->i_ino, map->m_len,
1852 (unsigned long) map->m_lblk);
1854 /* Lookup extent status tree firstly */
1855 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1856 if (ext4_es_is_hole(&es)) {
1857 retval = 0;
1858 down_read(&EXT4_I(inode)->i_data_sem);
1859 goto add_delayed;
1863 * Delayed extent could be allocated by fallocate.
1864 * So we need to check it.
1866 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1867 map_bh(bh, inode->i_sb, invalid_block);
1868 set_buffer_new(bh);
1869 set_buffer_delay(bh);
1870 return 0;
1873 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1874 retval = es.es_len - (iblock - es.es_lblk);
1875 if (retval > map->m_len)
1876 retval = map->m_len;
1877 map->m_len = retval;
1878 if (ext4_es_is_written(&es))
1879 map->m_flags |= EXT4_MAP_MAPPED;
1880 else if (ext4_es_is_unwritten(&es))
1881 map->m_flags |= EXT4_MAP_UNWRITTEN;
1882 else
1883 BUG_ON(1);
1885 #ifdef ES_AGGRESSIVE_TEST
1886 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1887 #endif
1888 return retval;
1892 * Try to see if we can get the block without requesting a new
1893 * file system block.
1895 down_read(&EXT4_I(inode)->i_data_sem);
1896 if (ext4_has_inline_data(inode))
1897 retval = 0;
1898 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1899 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1900 else
1901 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1903 add_delayed:
1904 if (retval == 0) {
1905 int ret;
1908 * XXX: __block_prepare_write() unmaps passed block,
1909 * is it OK?
1912 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1913 if (ret != 0) {
1914 retval = ret;
1915 goto out_unlock;
1918 map_bh(bh, inode->i_sb, invalid_block);
1919 set_buffer_new(bh);
1920 set_buffer_delay(bh);
1921 } else if (retval > 0) {
1922 int ret;
1923 unsigned int status;
1925 if (unlikely(retval != map->m_len)) {
1926 ext4_warning(inode->i_sb,
1927 "ES len assertion failed for inode "
1928 "%lu: retval %d != map->m_len %d",
1929 inode->i_ino, retval, map->m_len);
1930 WARN_ON(1);
1933 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1934 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1935 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1936 map->m_pblk, status);
1937 if (ret != 0)
1938 retval = ret;
1941 out_unlock:
1942 up_read((&EXT4_I(inode)->i_data_sem));
1944 return retval;
1948 * This is a special get_block_t callback which is used by
1949 * ext4_da_write_begin(). It will either return mapped block or
1950 * reserve space for a single block.
1952 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1953 * We also have b_blocknr = -1 and b_bdev initialized properly
1955 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1956 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1957 * initialized properly.
1959 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1960 struct buffer_head *bh, int create)
1962 struct ext4_map_blocks map;
1963 int ret = 0;
1965 BUG_ON(create == 0);
1966 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1968 map.m_lblk = iblock;
1969 map.m_len = 1;
1972 * first, we need to know whether the block is allocated already
1973 * preallocated blocks are unmapped but should treated
1974 * the same as allocated blocks.
1976 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1977 if (ret <= 0)
1978 return ret;
1980 map_bh(bh, inode->i_sb, map.m_pblk);
1981 ext4_update_bh_state(bh, map.m_flags);
1983 if (buffer_unwritten(bh)) {
1984 /* A delayed write to unwritten bh should be marked
1985 * new and mapped. Mapped ensures that we don't do
1986 * get_block multiple times when we write to the same
1987 * offset and new ensures that we do proper zero out
1988 * for partial write.
1990 set_buffer_new(bh);
1991 set_buffer_mapped(bh);
1993 return 0;
1996 static int bget_one(handle_t *handle, struct buffer_head *bh)
1998 get_bh(bh);
1999 return 0;
2002 static int bput_one(handle_t *handle, struct buffer_head *bh)
2004 put_bh(bh);
2005 return 0;
2008 static int __ext4_journalled_writepage(struct page *page,
2009 unsigned int len)
2011 struct address_space *mapping = page->mapping;
2012 struct inode *inode = mapping->host;
2013 struct buffer_head *page_bufs = NULL;
2014 handle_t *handle = NULL;
2015 int ret = 0, err = 0;
2016 int inline_data = ext4_has_inline_data(inode);
2017 struct buffer_head *inode_bh = NULL;
2019 ClearPageChecked(page);
2021 if (inline_data) {
2022 BUG_ON(page->index != 0);
2023 BUG_ON(len > ext4_get_max_inline_size(inode));
2024 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2025 if (inode_bh == NULL)
2026 goto out;
2027 } else {
2028 page_bufs = page_buffers(page);
2029 if (!page_bufs) {
2030 BUG();
2031 goto out;
2033 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2034 NULL, bget_one);
2037 * We need to release the page lock before we start the
2038 * journal, so grab a reference so the page won't disappear
2039 * out from under us.
2041 get_page(page);
2042 unlock_page(page);
2044 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2045 ext4_writepage_trans_blocks(inode));
2046 if (IS_ERR(handle)) {
2047 ret = PTR_ERR(handle);
2048 put_page(page);
2049 goto out_no_pagelock;
2051 BUG_ON(!ext4_handle_valid(handle));
2053 lock_page(page);
2054 put_page(page);
2055 if (page->mapping != mapping) {
2056 /* The page got truncated from under us */
2057 ext4_journal_stop(handle);
2058 ret = 0;
2059 goto out;
2062 if (inline_data) {
2063 ret = ext4_mark_inode_dirty(handle, inode);
2064 } else {
2065 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2066 do_journal_get_write_access);
2068 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2069 write_end_fn);
2071 if (ret == 0)
2072 ret = err;
2073 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2074 err = ext4_journal_stop(handle);
2075 if (!ret)
2076 ret = err;
2078 if (!ext4_has_inline_data(inode))
2079 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2080 NULL, bput_one);
2081 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2082 out:
2083 unlock_page(page);
2084 out_no_pagelock:
2085 brelse(inode_bh);
2086 return ret;
2090 * Note that we don't need to start a transaction unless we're journaling data
2091 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2092 * need to file the inode to the transaction's list in ordered mode because if
2093 * we are writing back data added by write(), the inode is already there and if
2094 * we are writing back data modified via mmap(), no one guarantees in which
2095 * transaction the data will hit the disk. In case we are journaling data, we
2096 * cannot start transaction directly because transaction start ranks above page
2097 * lock so we have to do some magic.
2099 * This function can get called via...
2100 * - ext4_writepages after taking page lock (have journal handle)
2101 * - journal_submit_inode_data_buffers (no journal handle)
2102 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2103 * - grab_page_cache when doing write_begin (have journal handle)
2105 * We don't do any block allocation in this function. If we have page with
2106 * multiple blocks we need to write those buffer_heads that are mapped. This
2107 * is important for mmaped based write. So if we do with blocksize 1K
2108 * truncate(f, 1024);
2109 * a = mmap(f, 0, 4096);
2110 * a[0] = 'a';
2111 * truncate(f, 4096);
2112 * we have in the page first buffer_head mapped via page_mkwrite call back
2113 * but other buffer_heads would be unmapped but dirty (dirty done via the
2114 * do_wp_page). So writepage should write the first block. If we modify
2115 * the mmap area beyond 1024 we will again get a page_fault and the
2116 * page_mkwrite callback will do the block allocation and mark the
2117 * buffer_heads mapped.
2119 * We redirty the page if we have any buffer_heads that is either delay or
2120 * unwritten in the page.
2122 * We can get recursively called as show below.
2124 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2125 * ext4_writepage()
2127 * But since we don't do any block allocation we should not deadlock.
2128 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2130 static int ext4_writepage(struct page *page,
2131 struct writeback_control *wbc)
2133 int ret = 0;
2134 loff_t size;
2135 unsigned int len;
2136 struct buffer_head *page_bufs = NULL;
2137 struct inode *inode = page->mapping->host;
2138 struct ext4_io_submit io_submit;
2139 bool keep_towrite = false;
2141 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2142 ext4_invalidatepage(page, 0, PAGE_SIZE);
2143 unlock_page(page);
2144 return -EIO;
2147 trace_ext4_writepage(page);
2148 size = i_size_read(inode);
2149 if (page->index == size >> PAGE_SHIFT)
2150 len = size & ~PAGE_MASK;
2151 else
2152 len = PAGE_SIZE;
2154 page_bufs = page_buffers(page);
2156 * We cannot do block allocation or other extent handling in this
2157 * function. If there are buffers needing that, we have to redirty
2158 * the page. But we may reach here when we do a journal commit via
2159 * journal_submit_inode_data_buffers() and in that case we must write
2160 * allocated buffers to achieve data=ordered mode guarantees.
2162 * Also, if there is only one buffer per page (the fs block
2163 * size == the page size), if one buffer needs block
2164 * allocation or needs to modify the extent tree to clear the
2165 * unwritten flag, we know that the page can't be written at
2166 * all, so we might as well refuse the write immediately.
2167 * Unfortunately if the block size != page size, we can't as
2168 * easily detect this case using ext4_walk_page_buffers(), but
2169 * for the extremely common case, this is an optimization that
2170 * skips a useless round trip through ext4_bio_write_page().
2172 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2173 ext4_bh_delay_or_unwritten)) {
2174 redirty_page_for_writepage(wbc, page);
2175 if ((current->flags & PF_MEMALLOC) ||
2176 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2178 * For memory cleaning there's no point in writing only
2179 * some buffers. So just bail out. Warn if we came here
2180 * from direct reclaim.
2182 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2183 == PF_MEMALLOC);
2184 unlock_page(page);
2185 return 0;
2187 keep_towrite = true;
2190 if (PageChecked(page) && ext4_should_journal_data(inode))
2192 * It's mmapped pagecache. Add buffers and journal it. There
2193 * doesn't seem much point in redirtying the page here.
2195 return __ext4_journalled_writepage(page, len);
2197 ext4_io_submit_init(&io_submit, wbc);
2198 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2199 if (!io_submit.io_end) {
2200 redirty_page_for_writepage(wbc, page);
2201 unlock_page(page);
2202 return -ENOMEM;
2204 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2205 ext4_io_submit(&io_submit);
2206 /* Drop io_end reference we got from init */
2207 ext4_put_io_end_defer(io_submit.io_end);
2208 return ret;
2211 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2213 int len;
2214 loff_t size;
2215 int err;
2217 BUG_ON(page->index != mpd->first_page);
2218 clear_page_dirty_for_io(page);
2220 * We have to be very careful here! Nothing protects writeback path
2221 * against i_size changes and the page can be writeably mapped into
2222 * page tables. So an application can be growing i_size and writing
2223 * data through mmap while writeback runs. clear_page_dirty_for_io()
2224 * write-protects our page in page tables and the page cannot get
2225 * written to again until we release page lock. So only after
2226 * clear_page_dirty_for_io() we are safe to sample i_size for
2227 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2228 * on the barrier provided by TestClearPageDirty in
2229 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2230 * after page tables are updated.
2232 size = i_size_read(mpd->inode);
2233 if (page->index == size >> PAGE_SHIFT)
2234 len = size & ~PAGE_MASK;
2235 else
2236 len = PAGE_SIZE;
2237 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2238 if (!err)
2239 mpd->wbc->nr_to_write--;
2240 mpd->first_page++;
2242 return err;
2245 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2248 * mballoc gives us at most this number of blocks...
2249 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2250 * The rest of mballoc seems to handle chunks up to full group size.
2252 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2255 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2257 * @mpd - extent of blocks
2258 * @lblk - logical number of the block in the file
2259 * @bh - buffer head we want to add to the extent
2261 * The function is used to collect contig. blocks in the same state. If the
2262 * buffer doesn't require mapping for writeback and we haven't started the
2263 * extent of buffers to map yet, the function returns 'true' immediately - the
2264 * caller can write the buffer right away. Otherwise the function returns true
2265 * if the block has been added to the extent, false if the block couldn't be
2266 * added.
2268 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2269 struct buffer_head *bh)
2271 struct ext4_map_blocks *map = &mpd->map;
2273 /* Buffer that doesn't need mapping for writeback? */
2274 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2275 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2276 /* So far no extent to map => we write the buffer right away */
2277 if (map->m_len == 0)
2278 return true;
2279 return false;
2282 /* First block in the extent? */
2283 if (map->m_len == 0) {
2284 /* We cannot map unless handle is started... */
2285 if (!mpd->do_map)
2286 return false;
2287 map->m_lblk = lblk;
2288 map->m_len = 1;
2289 map->m_flags = bh->b_state & BH_FLAGS;
2290 return true;
2293 /* Don't go larger than mballoc is willing to allocate */
2294 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2295 return false;
2297 /* Can we merge the block to our big extent? */
2298 if (lblk == map->m_lblk + map->m_len &&
2299 (bh->b_state & BH_FLAGS) == map->m_flags) {
2300 map->m_len++;
2301 return true;
2303 return false;
2307 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2309 * @mpd - extent of blocks for mapping
2310 * @head - the first buffer in the page
2311 * @bh - buffer we should start processing from
2312 * @lblk - logical number of the block in the file corresponding to @bh
2314 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2315 * the page for IO if all buffers in this page were mapped and there's no
2316 * accumulated extent of buffers to map or add buffers in the page to the
2317 * extent of buffers to map. The function returns 1 if the caller can continue
2318 * by processing the next page, 0 if it should stop adding buffers to the
2319 * extent to map because we cannot extend it anymore. It can also return value
2320 * < 0 in case of error during IO submission.
2322 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2323 struct buffer_head *head,
2324 struct buffer_head *bh,
2325 ext4_lblk_t lblk)
2327 struct inode *inode = mpd->inode;
2328 int err;
2329 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2330 >> inode->i_blkbits;
2332 do {
2333 BUG_ON(buffer_locked(bh));
2335 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2336 /* Found extent to map? */
2337 if (mpd->map.m_len)
2338 return 0;
2339 /* Buffer needs mapping and handle is not started? */
2340 if (!mpd->do_map)
2341 return 0;
2342 /* Everything mapped so far and we hit EOF */
2343 break;
2345 } while (lblk++, (bh = bh->b_this_page) != head);
2346 /* So far everything mapped? Submit the page for IO. */
2347 if (mpd->map.m_len == 0) {
2348 err = mpage_submit_page(mpd, head->b_page);
2349 if (err < 0)
2350 return err;
2352 return lblk < blocks;
2356 * mpage_map_buffers - update buffers corresponding to changed extent and
2357 * submit fully mapped pages for IO
2359 * @mpd - description of extent to map, on return next extent to map
2361 * Scan buffers corresponding to changed extent (we expect corresponding pages
2362 * to be already locked) and update buffer state according to new extent state.
2363 * We map delalloc buffers to their physical location, clear unwritten bits,
2364 * and mark buffers as uninit when we perform writes to unwritten extents
2365 * and do extent conversion after IO is finished. If the last page is not fully
2366 * mapped, we update @map to the next extent in the last page that needs
2367 * mapping. Otherwise we submit the page for IO.
2369 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2371 struct pagevec pvec;
2372 int nr_pages, i;
2373 struct inode *inode = mpd->inode;
2374 struct buffer_head *head, *bh;
2375 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2376 pgoff_t start, end;
2377 ext4_lblk_t lblk;
2378 sector_t pblock;
2379 int err;
2381 start = mpd->map.m_lblk >> bpp_bits;
2382 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2383 lblk = start << bpp_bits;
2384 pblock = mpd->map.m_pblk;
2386 pagevec_init(&pvec);
2387 while (start <= end) {
2388 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2389 &start, end);
2390 if (nr_pages == 0)
2391 break;
2392 for (i = 0; i < nr_pages; i++) {
2393 struct page *page = pvec.pages[i];
2395 bh = head = page_buffers(page);
2396 do {
2397 if (lblk < mpd->map.m_lblk)
2398 continue;
2399 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2401 * Buffer after end of mapped extent.
2402 * Find next buffer in the page to map.
2404 mpd->map.m_len = 0;
2405 mpd->map.m_flags = 0;
2407 * FIXME: If dioread_nolock supports
2408 * blocksize < pagesize, we need to make
2409 * sure we add size mapped so far to
2410 * io_end->size as the following call
2411 * can submit the page for IO.
2413 err = mpage_process_page_bufs(mpd, head,
2414 bh, lblk);
2415 pagevec_release(&pvec);
2416 if (err > 0)
2417 err = 0;
2418 return err;
2420 if (buffer_delay(bh)) {
2421 clear_buffer_delay(bh);
2422 bh->b_blocknr = pblock++;
2424 clear_buffer_unwritten(bh);
2425 } while (lblk++, (bh = bh->b_this_page) != head);
2428 * FIXME: This is going to break if dioread_nolock
2429 * supports blocksize < pagesize as we will try to
2430 * convert potentially unmapped parts of inode.
2432 mpd->io_submit.io_end->size += PAGE_SIZE;
2433 /* Page fully mapped - let IO run! */
2434 err = mpage_submit_page(mpd, page);
2435 if (err < 0) {
2436 pagevec_release(&pvec);
2437 return err;
2440 pagevec_release(&pvec);
2442 /* Extent fully mapped and matches with page boundary. We are done. */
2443 mpd->map.m_len = 0;
2444 mpd->map.m_flags = 0;
2445 return 0;
2448 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2450 struct inode *inode = mpd->inode;
2451 struct ext4_map_blocks *map = &mpd->map;
2452 int get_blocks_flags;
2453 int err, dioread_nolock;
2455 trace_ext4_da_write_pages_extent(inode, map);
2457 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2458 * to convert an unwritten extent to be initialized (in the case
2459 * where we have written into one or more preallocated blocks). It is
2460 * possible that we're going to need more metadata blocks than
2461 * previously reserved. However we must not fail because we're in
2462 * writeback and there is nothing we can do about it so it might result
2463 * in data loss. So use reserved blocks to allocate metadata if
2464 * possible.
2466 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2467 * the blocks in question are delalloc blocks. This indicates
2468 * that the blocks and quotas has already been checked when
2469 * the data was copied into the page cache.
2471 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2472 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2473 EXT4_GET_BLOCKS_IO_SUBMIT;
2474 dioread_nolock = ext4_should_dioread_nolock(inode);
2475 if (dioread_nolock)
2476 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2477 if (map->m_flags & (1 << BH_Delay))
2478 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2480 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2481 if (err < 0)
2482 return err;
2483 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2484 if (!mpd->io_submit.io_end->handle &&
2485 ext4_handle_valid(handle)) {
2486 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2487 handle->h_rsv_handle = NULL;
2489 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2492 BUG_ON(map->m_len == 0);
2493 if (map->m_flags & EXT4_MAP_NEW) {
2494 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2495 map->m_len);
2497 return 0;
2501 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2502 * mpd->len and submit pages underlying it for IO
2504 * @handle - handle for journal operations
2505 * @mpd - extent to map
2506 * @give_up_on_write - we set this to true iff there is a fatal error and there
2507 * is no hope of writing the data. The caller should discard
2508 * dirty pages to avoid infinite loops.
2510 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2511 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2512 * them to initialized or split the described range from larger unwritten
2513 * extent. Note that we need not map all the described range since allocation
2514 * can return less blocks or the range is covered by more unwritten extents. We
2515 * cannot map more because we are limited by reserved transaction credits. On
2516 * the other hand we always make sure that the last touched page is fully
2517 * mapped so that it can be written out (and thus forward progress is
2518 * guaranteed). After mapping we submit all mapped pages for IO.
2520 static int mpage_map_and_submit_extent(handle_t *handle,
2521 struct mpage_da_data *mpd,
2522 bool *give_up_on_write)
2524 struct inode *inode = mpd->inode;
2525 struct ext4_map_blocks *map = &mpd->map;
2526 int err;
2527 loff_t disksize;
2528 int progress = 0;
2530 mpd->io_submit.io_end->offset =
2531 ((loff_t)map->m_lblk) << inode->i_blkbits;
2532 do {
2533 err = mpage_map_one_extent(handle, mpd);
2534 if (err < 0) {
2535 struct super_block *sb = inode->i_sb;
2537 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2538 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2539 goto invalidate_dirty_pages;
2541 * Let the uper layers retry transient errors.
2542 * In the case of ENOSPC, if ext4_count_free_blocks()
2543 * is non-zero, a commit should free up blocks.
2545 if ((err == -ENOMEM) ||
2546 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2547 if (progress)
2548 goto update_disksize;
2549 return err;
2551 ext4_msg(sb, KERN_CRIT,
2552 "Delayed block allocation failed for "
2553 "inode %lu at logical offset %llu with"
2554 " max blocks %u with error %d",
2555 inode->i_ino,
2556 (unsigned long long)map->m_lblk,
2557 (unsigned)map->m_len, -err);
2558 ext4_msg(sb, KERN_CRIT,
2559 "This should not happen!! Data will "
2560 "be lost\n");
2561 if (err == -ENOSPC)
2562 ext4_print_free_blocks(inode);
2563 invalidate_dirty_pages:
2564 *give_up_on_write = true;
2565 return err;
2567 progress = 1;
2569 * Update buffer state, submit mapped pages, and get us new
2570 * extent to map
2572 err = mpage_map_and_submit_buffers(mpd);
2573 if (err < 0)
2574 goto update_disksize;
2575 } while (map->m_len);
2577 update_disksize:
2579 * Update on-disk size after IO is submitted. Races with
2580 * truncate are avoided by checking i_size under i_data_sem.
2582 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2583 if (disksize > EXT4_I(inode)->i_disksize) {
2584 int err2;
2585 loff_t i_size;
2587 down_write(&EXT4_I(inode)->i_data_sem);
2588 i_size = i_size_read(inode);
2589 if (disksize > i_size)
2590 disksize = i_size;
2591 if (disksize > EXT4_I(inode)->i_disksize)
2592 EXT4_I(inode)->i_disksize = disksize;
2593 up_write(&EXT4_I(inode)->i_data_sem);
2594 err2 = ext4_mark_inode_dirty(handle, inode);
2595 if (err2)
2596 ext4_error(inode->i_sb,
2597 "Failed to mark inode %lu dirty",
2598 inode->i_ino);
2599 if (!err)
2600 err = err2;
2602 return err;
2606 * Calculate the total number of credits to reserve for one writepages
2607 * iteration. This is called from ext4_writepages(). We map an extent of
2608 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2609 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2610 * bpp - 1 blocks in bpp different extents.
2612 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2614 int bpp = ext4_journal_blocks_per_page(inode);
2616 return ext4_meta_trans_blocks(inode,
2617 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2621 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2622 * and underlying extent to map
2624 * @mpd - where to look for pages
2626 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2627 * IO immediately. When we find a page which isn't mapped we start accumulating
2628 * extent of buffers underlying these pages that needs mapping (formed by
2629 * either delayed or unwritten buffers). We also lock the pages containing
2630 * these buffers. The extent found is returned in @mpd structure (starting at
2631 * mpd->lblk with length mpd->len blocks).
2633 * Note that this function can attach bios to one io_end structure which are
2634 * neither logically nor physically contiguous. Although it may seem as an
2635 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2636 * case as we need to track IO to all buffers underlying a page in one io_end.
2638 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2640 struct address_space *mapping = mpd->inode->i_mapping;
2641 struct pagevec pvec;
2642 unsigned int nr_pages;
2643 long left = mpd->wbc->nr_to_write;
2644 pgoff_t index = mpd->first_page;
2645 pgoff_t end = mpd->last_page;
2646 int tag;
2647 int i, err = 0;
2648 int blkbits = mpd->inode->i_blkbits;
2649 ext4_lblk_t lblk;
2650 struct buffer_head *head;
2652 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2653 tag = PAGECACHE_TAG_TOWRITE;
2654 else
2655 tag = PAGECACHE_TAG_DIRTY;
2657 pagevec_init(&pvec);
2658 mpd->map.m_len = 0;
2659 mpd->next_page = index;
2660 while (index <= end) {
2661 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2662 tag);
2663 if (nr_pages == 0)
2664 goto out;
2666 for (i = 0; i < nr_pages; i++) {
2667 struct page *page = pvec.pages[i];
2670 * Accumulated enough dirty pages? This doesn't apply
2671 * to WB_SYNC_ALL mode. For integrity sync we have to
2672 * keep going because someone may be concurrently
2673 * dirtying pages, and we might have synced a lot of
2674 * newly appeared dirty pages, but have not synced all
2675 * of the old dirty pages.
2677 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2678 goto out;
2680 /* If we can't merge this page, we are done. */
2681 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2682 goto out;
2684 lock_page(page);
2686 * If the page is no longer dirty, or its mapping no
2687 * longer corresponds to inode we are writing (which
2688 * means it has been truncated or invalidated), or the
2689 * page is already under writeback and we are not doing
2690 * a data integrity writeback, skip the page
2692 if (!PageDirty(page) ||
2693 (PageWriteback(page) &&
2694 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2695 unlikely(page->mapping != mapping)) {
2696 unlock_page(page);
2697 continue;
2700 wait_on_page_writeback(page);
2701 BUG_ON(PageWriteback(page));
2703 if (mpd->map.m_len == 0)
2704 mpd->first_page = page->index;
2705 mpd->next_page = page->index + 1;
2706 /* Add all dirty buffers to mpd */
2707 lblk = ((ext4_lblk_t)page->index) <<
2708 (PAGE_SHIFT - blkbits);
2709 head = page_buffers(page);
2710 err = mpage_process_page_bufs(mpd, head, head, lblk);
2711 if (err <= 0)
2712 goto out;
2713 err = 0;
2714 left--;
2716 pagevec_release(&pvec);
2717 cond_resched();
2719 return 0;
2720 out:
2721 pagevec_release(&pvec);
2722 return err;
2725 static int ext4_writepages(struct address_space *mapping,
2726 struct writeback_control *wbc)
2728 pgoff_t writeback_index = 0;
2729 long nr_to_write = wbc->nr_to_write;
2730 int range_whole = 0;
2731 int cycled = 1;
2732 handle_t *handle = NULL;
2733 struct mpage_da_data mpd;
2734 struct inode *inode = mapping->host;
2735 int needed_blocks, rsv_blocks = 0, ret = 0;
2736 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2737 bool done;
2738 struct blk_plug plug;
2739 bool give_up_on_write = false;
2741 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2742 return -EIO;
2744 percpu_down_read(&sbi->s_journal_flag_rwsem);
2745 trace_ext4_writepages(inode, wbc);
2748 * No pages to write? This is mainly a kludge to avoid starting
2749 * a transaction for special inodes like journal inode on last iput()
2750 * because that could violate lock ordering on umount
2752 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2753 goto out_writepages;
2755 if (ext4_should_journal_data(inode)) {
2756 ret = generic_writepages(mapping, wbc);
2757 goto out_writepages;
2761 * If the filesystem has aborted, it is read-only, so return
2762 * right away instead of dumping stack traces later on that
2763 * will obscure the real source of the problem. We test
2764 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2765 * the latter could be true if the filesystem is mounted
2766 * read-only, and in that case, ext4_writepages should
2767 * *never* be called, so if that ever happens, we would want
2768 * the stack trace.
2770 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2771 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2772 ret = -EROFS;
2773 goto out_writepages;
2776 if (ext4_should_dioread_nolock(inode)) {
2778 * We may need to convert up to one extent per block in
2779 * the page and we may dirty the inode.
2781 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2785 * If we have inline data and arrive here, it means that
2786 * we will soon create the block for the 1st page, so
2787 * we'd better clear the inline data here.
2789 if (ext4_has_inline_data(inode)) {
2790 /* Just inode will be modified... */
2791 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2792 if (IS_ERR(handle)) {
2793 ret = PTR_ERR(handle);
2794 goto out_writepages;
2796 BUG_ON(ext4_test_inode_state(inode,
2797 EXT4_STATE_MAY_INLINE_DATA));
2798 ext4_destroy_inline_data(handle, inode);
2799 ext4_journal_stop(handle);
2802 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2803 range_whole = 1;
2805 if (wbc->range_cyclic) {
2806 writeback_index = mapping->writeback_index;
2807 if (writeback_index)
2808 cycled = 0;
2809 mpd.first_page = writeback_index;
2810 mpd.last_page = -1;
2811 } else {
2812 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2813 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2816 mpd.inode = inode;
2817 mpd.wbc = wbc;
2818 ext4_io_submit_init(&mpd.io_submit, wbc);
2819 retry:
2820 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2821 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2822 done = false;
2823 blk_start_plug(&plug);
2826 * First writeback pages that don't need mapping - we can avoid
2827 * starting a transaction unnecessarily and also avoid being blocked
2828 * in the block layer on device congestion while having transaction
2829 * started.
2831 mpd.do_map = 0;
2832 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2833 if (!mpd.io_submit.io_end) {
2834 ret = -ENOMEM;
2835 goto unplug;
2837 ret = mpage_prepare_extent_to_map(&mpd);
2838 /* Submit prepared bio */
2839 ext4_io_submit(&mpd.io_submit);
2840 ext4_put_io_end_defer(mpd.io_submit.io_end);
2841 mpd.io_submit.io_end = NULL;
2842 /* Unlock pages we didn't use */
2843 mpage_release_unused_pages(&mpd, false);
2844 if (ret < 0)
2845 goto unplug;
2847 while (!done && mpd.first_page <= mpd.last_page) {
2848 /* For each extent of pages we use new io_end */
2849 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2850 if (!mpd.io_submit.io_end) {
2851 ret = -ENOMEM;
2852 break;
2856 * We have two constraints: We find one extent to map and we
2857 * must always write out whole page (makes a difference when
2858 * blocksize < pagesize) so that we don't block on IO when we
2859 * try to write out the rest of the page. Journalled mode is
2860 * not supported by delalloc.
2862 BUG_ON(ext4_should_journal_data(inode));
2863 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2865 /* start a new transaction */
2866 handle = ext4_journal_start_with_reserve(inode,
2867 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2868 if (IS_ERR(handle)) {
2869 ret = PTR_ERR(handle);
2870 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2871 "%ld pages, ino %lu; err %d", __func__,
2872 wbc->nr_to_write, inode->i_ino, ret);
2873 /* Release allocated io_end */
2874 ext4_put_io_end(mpd.io_submit.io_end);
2875 mpd.io_submit.io_end = NULL;
2876 break;
2878 mpd.do_map = 1;
2880 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2881 ret = mpage_prepare_extent_to_map(&mpd);
2882 if (!ret) {
2883 if (mpd.map.m_len)
2884 ret = mpage_map_and_submit_extent(handle, &mpd,
2885 &give_up_on_write);
2886 else {
2888 * We scanned the whole range (or exhausted
2889 * nr_to_write), submitted what was mapped and
2890 * didn't find anything needing mapping. We are
2891 * done.
2893 done = true;
2897 * Caution: If the handle is synchronous,
2898 * ext4_journal_stop() can wait for transaction commit
2899 * to finish which may depend on writeback of pages to
2900 * complete or on page lock to be released. In that
2901 * case, we have to wait until after after we have
2902 * submitted all the IO, released page locks we hold,
2903 * and dropped io_end reference (for extent conversion
2904 * to be able to complete) before stopping the handle.
2906 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2907 ext4_journal_stop(handle);
2908 handle = NULL;
2909 mpd.do_map = 0;
2911 /* Submit prepared bio */
2912 ext4_io_submit(&mpd.io_submit);
2913 /* Unlock pages we didn't use */
2914 mpage_release_unused_pages(&mpd, give_up_on_write);
2916 * Drop our io_end reference we got from init. We have
2917 * to be careful and use deferred io_end finishing if
2918 * we are still holding the transaction as we can
2919 * release the last reference to io_end which may end
2920 * up doing unwritten extent conversion.
2922 if (handle) {
2923 ext4_put_io_end_defer(mpd.io_submit.io_end);
2924 ext4_journal_stop(handle);
2925 } else
2926 ext4_put_io_end(mpd.io_submit.io_end);
2927 mpd.io_submit.io_end = NULL;
2929 if (ret == -ENOSPC && sbi->s_journal) {
2931 * Commit the transaction which would
2932 * free blocks released in the transaction
2933 * and try again
2935 jbd2_journal_force_commit_nested(sbi->s_journal);
2936 ret = 0;
2937 continue;
2939 /* Fatal error - ENOMEM, EIO... */
2940 if (ret)
2941 break;
2943 unplug:
2944 blk_finish_plug(&plug);
2945 if (!ret && !cycled && wbc->nr_to_write > 0) {
2946 cycled = 1;
2947 mpd.last_page = writeback_index - 1;
2948 mpd.first_page = 0;
2949 goto retry;
2952 /* Update index */
2953 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2955 * Set the writeback_index so that range_cyclic
2956 * mode will write it back later
2958 mapping->writeback_index = mpd.first_page;
2960 out_writepages:
2961 trace_ext4_writepages_result(inode, wbc, ret,
2962 nr_to_write - wbc->nr_to_write);
2963 percpu_up_read(&sbi->s_journal_flag_rwsem);
2964 return ret;
2967 static int ext4_dax_writepages(struct address_space *mapping,
2968 struct writeback_control *wbc)
2970 int ret;
2971 long nr_to_write = wbc->nr_to_write;
2972 struct inode *inode = mapping->host;
2973 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2975 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2976 return -EIO;
2978 percpu_down_read(&sbi->s_journal_flag_rwsem);
2979 trace_ext4_writepages(inode, wbc);
2981 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2982 trace_ext4_writepages_result(inode, wbc, ret,
2983 nr_to_write - wbc->nr_to_write);
2984 percpu_up_read(&sbi->s_journal_flag_rwsem);
2985 return ret;
2988 static int ext4_nonda_switch(struct super_block *sb)
2990 s64 free_clusters, dirty_clusters;
2991 struct ext4_sb_info *sbi = EXT4_SB(sb);
2994 * switch to non delalloc mode if we are running low
2995 * on free block. The free block accounting via percpu
2996 * counters can get slightly wrong with percpu_counter_batch getting
2997 * accumulated on each CPU without updating global counters
2998 * Delalloc need an accurate free block accounting. So switch
2999 * to non delalloc when we are near to error range.
3001 free_clusters =
3002 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3003 dirty_clusters =
3004 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3006 * Start pushing delalloc when 1/2 of free blocks are dirty.
3008 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3009 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3011 if (2 * free_clusters < 3 * dirty_clusters ||
3012 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3014 * free block count is less than 150% of dirty blocks
3015 * or free blocks is less than watermark
3017 return 1;
3019 return 0;
3022 /* We always reserve for an inode update; the superblock could be there too */
3023 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3025 if (likely(ext4_has_feature_large_file(inode->i_sb)))
3026 return 1;
3028 if (pos + len <= 0x7fffffffULL)
3029 return 1;
3031 /* We might need to update the superblock to set LARGE_FILE */
3032 return 2;
3035 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3036 loff_t pos, unsigned len, unsigned flags,
3037 struct page **pagep, void **fsdata)
3039 int ret, retries = 0;
3040 struct page *page;
3041 pgoff_t index;
3042 struct inode *inode = mapping->host;
3043 handle_t *handle;
3045 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3046 return -EIO;
3048 index = pos >> PAGE_SHIFT;
3050 if (ext4_nonda_switch(inode->i_sb) ||
3051 S_ISLNK(inode->i_mode)) {
3052 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3053 return ext4_write_begin(file, mapping, pos,
3054 len, flags, pagep, fsdata);
3056 *fsdata = (void *)0;
3057 trace_ext4_da_write_begin(inode, pos, len, flags);
3059 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3060 ret = ext4_da_write_inline_data_begin(mapping, inode,
3061 pos, len, flags,
3062 pagep, fsdata);
3063 if (ret < 0)
3064 return ret;
3065 if (ret == 1)
3066 return 0;
3070 * grab_cache_page_write_begin() can take a long time if the
3071 * system is thrashing due to memory pressure, or if the page
3072 * is being written back. So grab it first before we start
3073 * the transaction handle. This also allows us to allocate
3074 * the page (if needed) without using GFP_NOFS.
3076 retry_grab:
3077 page = grab_cache_page_write_begin(mapping, index, flags);
3078 if (!page)
3079 return -ENOMEM;
3080 unlock_page(page);
3083 * With delayed allocation, we don't log the i_disksize update
3084 * if there is delayed block allocation. But we still need
3085 * to journalling the i_disksize update if writes to the end
3086 * of file which has an already mapped buffer.
3088 retry_journal:
3089 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3090 ext4_da_write_credits(inode, pos, len));
3091 if (IS_ERR(handle)) {
3092 put_page(page);
3093 return PTR_ERR(handle);
3096 lock_page(page);
3097 if (page->mapping != mapping) {
3098 /* The page got truncated from under us */
3099 unlock_page(page);
3100 put_page(page);
3101 ext4_journal_stop(handle);
3102 goto retry_grab;
3104 /* In case writeback began while the page was unlocked */
3105 wait_for_stable_page(page);
3107 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3108 ret = ext4_block_write_begin(page, pos, len,
3109 ext4_da_get_block_prep);
3110 #else
3111 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3112 #endif
3113 if (ret < 0) {
3114 unlock_page(page);
3115 ext4_journal_stop(handle);
3117 * block_write_begin may have instantiated a few blocks
3118 * outside i_size. Trim these off again. Don't need
3119 * i_size_read because we hold i_mutex.
3121 if (pos + len > inode->i_size)
3122 ext4_truncate_failed_write(inode);
3124 if (ret == -ENOSPC &&
3125 ext4_should_retry_alloc(inode->i_sb, &retries))
3126 goto retry_journal;
3128 put_page(page);
3129 return ret;
3132 *pagep = page;
3133 return ret;
3137 * Check if we should update i_disksize
3138 * when write to the end of file but not require block allocation
3140 static int ext4_da_should_update_i_disksize(struct page *page,
3141 unsigned long offset)
3143 struct buffer_head *bh;
3144 struct inode *inode = page->mapping->host;
3145 unsigned int idx;
3146 int i;
3148 bh = page_buffers(page);
3149 idx = offset >> inode->i_blkbits;
3151 for (i = 0; i < idx; i++)
3152 bh = bh->b_this_page;
3154 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3155 return 0;
3156 return 1;
3159 static int ext4_da_write_end(struct file *file,
3160 struct address_space *mapping,
3161 loff_t pos, unsigned len, unsigned copied,
3162 struct page *page, void *fsdata)
3164 struct inode *inode = mapping->host;
3165 int ret = 0, ret2;
3166 handle_t *handle = ext4_journal_current_handle();
3167 loff_t new_i_size;
3168 unsigned long start, end;
3169 int write_mode = (int)(unsigned long)fsdata;
3171 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3172 return ext4_write_end(file, mapping, pos,
3173 len, copied, page, fsdata);
3175 trace_ext4_da_write_end(inode, pos, len, copied);
3176 start = pos & (PAGE_SIZE - 1);
3177 end = start + copied - 1;
3180 * generic_write_end() will run mark_inode_dirty() if i_size
3181 * changes. So let's piggyback the i_disksize mark_inode_dirty
3182 * into that.
3184 new_i_size = pos + copied;
3185 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3186 if (ext4_has_inline_data(inode) ||
3187 ext4_da_should_update_i_disksize(page, end)) {
3188 ext4_update_i_disksize(inode, new_i_size);
3189 /* We need to mark inode dirty even if
3190 * new_i_size is less that inode->i_size
3191 * bu greater than i_disksize.(hint delalloc)
3193 ext4_mark_inode_dirty(handle, inode);
3197 if (write_mode != CONVERT_INLINE_DATA &&
3198 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3199 ext4_has_inline_data(inode))
3200 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3201 page);
3202 else
3203 ret2 = generic_write_end(file, mapping, pos, len, copied,
3204 page, fsdata);
3206 copied = ret2;
3207 if (ret2 < 0)
3208 ret = ret2;
3209 ret2 = ext4_journal_stop(handle);
3210 if (!ret)
3211 ret = ret2;
3213 return ret ? ret : copied;
3216 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3217 unsigned int length)
3220 * Drop reserved blocks
3222 BUG_ON(!PageLocked(page));
3223 if (!page_has_buffers(page))
3224 goto out;
3226 ext4_da_page_release_reservation(page, offset, length);
3228 out:
3229 ext4_invalidatepage(page, offset, length);
3231 return;
3235 * Force all delayed allocation blocks to be allocated for a given inode.
3237 int ext4_alloc_da_blocks(struct inode *inode)
3239 trace_ext4_alloc_da_blocks(inode);
3241 if (!EXT4_I(inode)->i_reserved_data_blocks)
3242 return 0;
3245 * We do something simple for now. The filemap_flush() will
3246 * also start triggering a write of the data blocks, which is
3247 * not strictly speaking necessary (and for users of
3248 * laptop_mode, not even desirable). However, to do otherwise
3249 * would require replicating code paths in:
3251 * ext4_writepages() ->
3252 * write_cache_pages() ---> (via passed in callback function)
3253 * __mpage_da_writepage() -->
3254 * mpage_add_bh_to_extent()
3255 * mpage_da_map_blocks()
3257 * The problem is that write_cache_pages(), located in
3258 * mm/page-writeback.c, marks pages clean in preparation for
3259 * doing I/O, which is not desirable if we're not planning on
3260 * doing I/O at all.
3262 * We could call write_cache_pages(), and then redirty all of
3263 * the pages by calling redirty_page_for_writepage() but that
3264 * would be ugly in the extreme. So instead we would need to
3265 * replicate parts of the code in the above functions,
3266 * simplifying them because we wouldn't actually intend to
3267 * write out the pages, but rather only collect contiguous
3268 * logical block extents, call the multi-block allocator, and
3269 * then update the buffer heads with the block allocations.
3271 * For now, though, we'll cheat by calling filemap_flush(),
3272 * which will map the blocks, and start the I/O, but not
3273 * actually wait for the I/O to complete.
3275 return filemap_flush(inode->i_mapping);
3279 * bmap() is special. It gets used by applications such as lilo and by
3280 * the swapper to find the on-disk block of a specific piece of data.
3282 * Naturally, this is dangerous if the block concerned is still in the
3283 * journal. If somebody makes a swapfile on an ext4 data-journaling
3284 * filesystem and enables swap, then they may get a nasty shock when the
3285 * data getting swapped to that swapfile suddenly gets overwritten by
3286 * the original zero's written out previously to the journal and
3287 * awaiting writeback in the kernel's buffer cache.
3289 * So, if we see any bmap calls here on a modified, data-journaled file,
3290 * take extra steps to flush any blocks which might be in the cache.
3292 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3294 struct inode *inode = mapping->host;
3295 journal_t *journal;
3296 int err;
3299 * We can get here for an inline file via the FIBMAP ioctl
3301 if (ext4_has_inline_data(inode))
3302 return 0;
3304 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3305 test_opt(inode->i_sb, DELALLOC)) {
3307 * With delalloc we want to sync the file
3308 * so that we can make sure we allocate
3309 * blocks for file
3311 filemap_write_and_wait(mapping);
3314 if (EXT4_JOURNAL(inode) &&
3315 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3317 * This is a REALLY heavyweight approach, but the use of
3318 * bmap on dirty files is expected to be extremely rare:
3319 * only if we run lilo or swapon on a freshly made file
3320 * do we expect this to happen.
3322 * (bmap requires CAP_SYS_RAWIO so this does not
3323 * represent an unprivileged user DOS attack --- we'd be
3324 * in trouble if mortal users could trigger this path at
3325 * will.)
3327 * NB. EXT4_STATE_JDATA is not set on files other than
3328 * regular files. If somebody wants to bmap a directory
3329 * or symlink and gets confused because the buffer
3330 * hasn't yet been flushed to disk, they deserve
3331 * everything they get.
3334 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3335 journal = EXT4_JOURNAL(inode);
3336 jbd2_journal_lock_updates(journal);
3337 err = jbd2_journal_flush(journal);
3338 jbd2_journal_unlock_updates(journal);
3340 if (err)
3341 return 0;
3344 return generic_block_bmap(mapping, block, ext4_get_block);
3347 static int ext4_readpage(struct file *file, struct page *page)
3349 int ret = -EAGAIN;
3350 struct inode *inode = page->mapping->host;
3352 trace_ext4_readpage(page);
3354 if (ext4_has_inline_data(inode))
3355 ret = ext4_readpage_inline(inode, page);
3357 if (ret == -EAGAIN)
3358 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3359 false);
3361 return ret;
3364 static int
3365 ext4_readpages(struct file *file, struct address_space *mapping,
3366 struct list_head *pages, unsigned nr_pages)
3368 struct inode *inode = mapping->host;
3370 /* If the file has inline data, no need to do readpages. */
3371 if (ext4_has_inline_data(inode))
3372 return 0;
3374 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3377 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3378 unsigned int length)
3380 trace_ext4_invalidatepage(page, offset, length);
3382 /* No journalling happens on data buffers when this function is used */
3383 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3385 block_invalidatepage(page, offset, length);
3388 static int __ext4_journalled_invalidatepage(struct page *page,
3389 unsigned int offset,
3390 unsigned int length)
3392 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3394 trace_ext4_journalled_invalidatepage(page, offset, length);
3397 * If it's a full truncate we just forget about the pending dirtying
3399 if (offset == 0 && length == PAGE_SIZE)
3400 ClearPageChecked(page);
3402 return jbd2_journal_invalidatepage(journal, page, offset, length);
3405 /* Wrapper for aops... */
3406 static void ext4_journalled_invalidatepage(struct page *page,
3407 unsigned int offset,
3408 unsigned int length)
3410 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3413 static int ext4_releasepage(struct page *page, gfp_t wait)
3415 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3417 trace_ext4_releasepage(page);
3419 /* Page has dirty journalled data -> cannot release */
3420 if (PageChecked(page))
3421 return 0;
3422 if (journal)
3423 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3424 else
3425 return try_to_free_buffers(page);
3428 static bool ext4_inode_datasync_dirty(struct inode *inode)
3430 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3432 if (journal)
3433 return !jbd2_transaction_committed(journal,
3434 EXT4_I(inode)->i_datasync_tid);
3435 /* Any metadata buffers to write? */
3436 if (!list_empty(&inode->i_mapping->private_list))
3437 return true;
3438 return inode->i_state & I_DIRTY_DATASYNC;
3441 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3442 unsigned flags, struct iomap *iomap)
3444 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3445 unsigned int blkbits = inode->i_blkbits;
3446 unsigned long first_block, last_block;
3447 struct ext4_map_blocks map;
3448 bool delalloc = false;
3449 int ret;
3451 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3452 return -EINVAL;
3453 first_block = offset >> blkbits;
3454 last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3455 EXT4_MAX_LOGICAL_BLOCK);
3457 if (flags & IOMAP_REPORT) {
3458 if (ext4_has_inline_data(inode)) {
3459 ret = ext4_inline_data_iomap(inode, iomap);
3460 if (ret != -EAGAIN) {
3461 if (ret == 0 && offset >= iomap->length)
3462 ret = -ENOENT;
3463 return ret;
3466 } else {
3467 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3468 return -ERANGE;
3471 map.m_lblk = first_block;
3472 map.m_len = last_block - first_block + 1;
3474 if (flags & IOMAP_REPORT) {
3475 ret = ext4_map_blocks(NULL, inode, &map, 0);
3476 if (ret < 0)
3477 return ret;
3479 if (ret == 0) {
3480 ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3481 struct extent_status es;
3483 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3484 map.m_lblk, end, &es);
3486 if (!es.es_len || es.es_lblk > end) {
3487 /* entire range is a hole */
3488 } else if (es.es_lblk > map.m_lblk) {
3489 /* range starts with a hole */
3490 map.m_len = es.es_lblk - map.m_lblk;
3491 } else {
3492 ext4_lblk_t offs = 0;
3494 if (es.es_lblk < map.m_lblk)
3495 offs = map.m_lblk - es.es_lblk;
3496 map.m_lblk = es.es_lblk + offs;
3497 map.m_len = es.es_len - offs;
3498 delalloc = true;
3501 } else if (flags & IOMAP_WRITE) {
3502 int dio_credits;
3503 handle_t *handle;
3504 int retries = 0;
3506 /* Trim mapping request to maximum we can map at once for DIO */
3507 if (map.m_len > DIO_MAX_BLOCKS)
3508 map.m_len = DIO_MAX_BLOCKS;
3509 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3510 retry:
3512 * Either we allocate blocks and then we don't get unwritten
3513 * extent so we have reserved enough credits, or the blocks
3514 * are already allocated and unwritten and in that case
3515 * extent conversion fits in the credits as well.
3517 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3518 dio_credits);
3519 if (IS_ERR(handle))
3520 return PTR_ERR(handle);
3522 ret = ext4_map_blocks(handle, inode, &map,
3523 EXT4_GET_BLOCKS_CREATE_ZERO);
3524 if (ret < 0) {
3525 ext4_journal_stop(handle);
3526 if (ret == -ENOSPC &&
3527 ext4_should_retry_alloc(inode->i_sb, &retries))
3528 goto retry;
3529 return ret;
3533 * If we added blocks beyond i_size, we need to make sure they
3534 * will get truncated if we crash before updating i_size in
3535 * ext4_iomap_end(). For faults we don't need to do that (and
3536 * even cannot because for orphan list operations inode_lock is
3537 * required) - if we happen to instantiate block beyond i_size,
3538 * it is because we race with truncate which has already added
3539 * the inode to the orphan list.
3541 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3542 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3543 int err;
3545 err = ext4_orphan_add(handle, inode);
3546 if (err < 0) {
3547 ext4_journal_stop(handle);
3548 return err;
3551 ext4_journal_stop(handle);
3552 } else {
3553 ret = ext4_map_blocks(NULL, inode, &map, 0);
3554 if (ret < 0)
3555 return ret;
3558 iomap->flags = 0;
3559 if (ext4_inode_datasync_dirty(inode))
3560 iomap->flags |= IOMAP_F_DIRTY;
3561 iomap->bdev = inode->i_sb->s_bdev;
3562 iomap->dax_dev = sbi->s_daxdev;
3563 iomap->offset = (u64)first_block << blkbits;
3564 iomap->length = (u64)map.m_len << blkbits;
3566 if (ret == 0) {
3567 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3568 iomap->addr = IOMAP_NULL_ADDR;
3569 } else {
3570 if (map.m_flags & EXT4_MAP_MAPPED) {
3571 iomap->type = IOMAP_MAPPED;
3572 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3573 iomap->type = IOMAP_UNWRITTEN;
3574 } else {
3575 WARN_ON_ONCE(1);
3576 return -EIO;
3578 iomap->addr = (u64)map.m_pblk << blkbits;
3581 if (map.m_flags & EXT4_MAP_NEW)
3582 iomap->flags |= IOMAP_F_NEW;
3584 return 0;
3587 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3588 ssize_t written, unsigned flags, struct iomap *iomap)
3590 int ret = 0;
3591 handle_t *handle;
3592 int blkbits = inode->i_blkbits;
3593 bool truncate = false;
3595 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3596 return 0;
3598 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3599 if (IS_ERR(handle)) {
3600 ret = PTR_ERR(handle);
3601 goto orphan_del;
3603 if (ext4_update_inode_size(inode, offset + written))
3604 ext4_mark_inode_dirty(handle, inode);
3606 * We may need to truncate allocated but not written blocks beyond EOF.
3608 if (iomap->offset + iomap->length >
3609 ALIGN(inode->i_size, 1 << blkbits)) {
3610 ext4_lblk_t written_blk, end_blk;
3612 written_blk = (offset + written) >> blkbits;
3613 end_blk = (offset + length) >> blkbits;
3614 if (written_blk < end_blk && ext4_can_truncate(inode))
3615 truncate = true;
3618 * Remove inode from orphan list if we were extending a inode and
3619 * everything went fine.
3621 if (!truncate && inode->i_nlink &&
3622 !list_empty(&EXT4_I(inode)->i_orphan))
3623 ext4_orphan_del(handle, inode);
3624 ext4_journal_stop(handle);
3625 if (truncate) {
3626 ext4_truncate_failed_write(inode);
3627 orphan_del:
3629 * If truncate failed early the inode might still be on the
3630 * orphan list; we need to make sure the inode is removed from
3631 * the orphan list in that case.
3633 if (inode->i_nlink)
3634 ext4_orphan_del(NULL, inode);
3636 return ret;
3639 const struct iomap_ops ext4_iomap_ops = {
3640 .iomap_begin = ext4_iomap_begin,
3641 .iomap_end = ext4_iomap_end,
3644 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3645 ssize_t size, void *private)
3647 ext4_io_end_t *io_end = private;
3649 /* if not async direct IO just return */
3650 if (!io_end)
3651 return 0;
3653 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3654 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3655 io_end, io_end->inode->i_ino, iocb, offset, size);
3658 * Error during AIO DIO. We cannot convert unwritten extents as the
3659 * data was not written. Just clear the unwritten flag and drop io_end.
3661 if (size <= 0) {
3662 ext4_clear_io_unwritten_flag(io_end);
3663 size = 0;
3665 io_end->offset = offset;
3666 io_end->size = size;
3667 ext4_put_io_end(io_end);
3669 return 0;
3673 * Handling of direct IO writes.
3675 * For ext4 extent files, ext4 will do direct-io write even to holes,
3676 * preallocated extents, and those write extend the file, no need to
3677 * fall back to buffered IO.
3679 * For holes, we fallocate those blocks, mark them as unwritten
3680 * If those blocks were preallocated, we mark sure they are split, but
3681 * still keep the range to write as unwritten.
3683 * The unwritten extents will be converted to written when DIO is completed.
3684 * For async direct IO, since the IO may still pending when return, we
3685 * set up an end_io call back function, which will do the conversion
3686 * when async direct IO completed.
3688 * If the O_DIRECT write will extend the file then add this inode to the
3689 * orphan list. So recovery will truncate it back to the original size
3690 * if the machine crashes during the write.
3693 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3695 struct file *file = iocb->ki_filp;
3696 struct inode *inode = file->f_mapping->host;
3697 struct ext4_inode_info *ei = EXT4_I(inode);
3698 ssize_t ret;
3699 loff_t offset = iocb->ki_pos;
3700 size_t count = iov_iter_count(iter);
3701 int overwrite = 0;
3702 get_block_t *get_block_func = NULL;
3703 int dio_flags = 0;
3704 loff_t final_size = offset + count;
3705 int orphan = 0;
3706 handle_t *handle;
3708 if (final_size > inode->i_size || final_size > ei->i_disksize) {
3709 /* Credits for sb + inode write */
3710 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3711 if (IS_ERR(handle)) {
3712 ret = PTR_ERR(handle);
3713 goto out;
3715 ret = ext4_orphan_add(handle, inode);
3716 if (ret) {
3717 ext4_journal_stop(handle);
3718 goto out;
3720 orphan = 1;
3721 ext4_update_i_disksize(inode, inode->i_size);
3722 ext4_journal_stop(handle);
3725 BUG_ON(iocb->private == NULL);
3728 * Make all waiters for direct IO properly wait also for extent
3729 * conversion. This also disallows race between truncate() and
3730 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3732 inode_dio_begin(inode);
3734 /* If we do a overwrite dio, i_mutex locking can be released */
3735 overwrite = *((int *)iocb->private);
3737 if (overwrite)
3738 inode_unlock(inode);
3741 * For extent mapped files we could direct write to holes and fallocate.
3743 * Allocated blocks to fill the hole are marked as unwritten to prevent
3744 * parallel buffered read to expose the stale data before DIO complete
3745 * the data IO.
3747 * As to previously fallocated extents, ext4 get_block will just simply
3748 * mark the buffer mapped but still keep the extents unwritten.
3750 * For non AIO case, we will convert those unwritten extents to written
3751 * after return back from blockdev_direct_IO. That way we save us from
3752 * allocating io_end structure and also the overhead of offloading
3753 * the extent convertion to a workqueue.
3755 * For async DIO, the conversion needs to be deferred when the
3756 * IO is completed. The ext4 end_io callback function will be
3757 * called to take care of the conversion work. Here for async
3758 * case, we allocate an io_end structure to hook to the iocb.
3760 iocb->private = NULL;
3761 if (overwrite)
3762 get_block_func = ext4_dio_get_block_overwrite;
3763 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3764 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3765 get_block_func = ext4_dio_get_block;
3766 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3767 } else if (is_sync_kiocb(iocb)) {
3768 get_block_func = ext4_dio_get_block_unwritten_sync;
3769 dio_flags = DIO_LOCKING;
3770 } else {
3771 get_block_func = ext4_dio_get_block_unwritten_async;
3772 dio_flags = DIO_LOCKING;
3774 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3775 get_block_func, ext4_end_io_dio, NULL,
3776 dio_flags);
3778 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3779 EXT4_STATE_DIO_UNWRITTEN)) {
3780 int err;
3782 * for non AIO case, since the IO is already
3783 * completed, we could do the conversion right here
3785 err = ext4_convert_unwritten_extents(NULL, inode,
3786 offset, ret);
3787 if (err < 0)
3788 ret = err;
3789 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3792 inode_dio_end(inode);
3793 /* take i_mutex locking again if we do a ovewrite dio */
3794 if (overwrite)
3795 inode_lock(inode);
3797 if (ret < 0 && final_size > inode->i_size)
3798 ext4_truncate_failed_write(inode);
3800 /* Handle extending of i_size after direct IO write */
3801 if (orphan) {
3802 int err;
3804 /* Credits for sb + inode write */
3805 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3806 if (IS_ERR(handle)) {
3808 * We wrote the data but cannot extend
3809 * i_size. Bail out. In async io case, we do
3810 * not return error here because we have
3811 * already submmitted the corresponding
3812 * bio. Returning error here makes the caller
3813 * think that this IO is done and failed
3814 * resulting in race with bio's completion
3815 * handler.
3817 if (!ret)
3818 ret = PTR_ERR(handle);
3819 if (inode->i_nlink)
3820 ext4_orphan_del(NULL, inode);
3822 goto out;
3824 if (inode->i_nlink)
3825 ext4_orphan_del(handle, inode);
3826 if (ret > 0) {
3827 loff_t end = offset + ret;
3828 if (end > inode->i_size || end > ei->i_disksize) {
3829 ext4_update_i_disksize(inode, end);
3830 if (end > inode->i_size)
3831 i_size_write(inode, end);
3833 * We're going to return a positive `ret'
3834 * here due to non-zero-length I/O, so there's
3835 * no way of reporting error returns from
3836 * ext4_mark_inode_dirty() to userspace. So
3837 * ignore it.
3839 ext4_mark_inode_dirty(handle, inode);
3842 err = ext4_journal_stop(handle);
3843 if (ret == 0)
3844 ret = err;
3846 out:
3847 return ret;
3850 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3852 struct address_space *mapping = iocb->ki_filp->f_mapping;
3853 struct inode *inode = mapping->host;
3854 size_t count = iov_iter_count(iter);
3855 ssize_t ret;
3858 * Shared inode_lock is enough for us - it protects against concurrent
3859 * writes & truncates and since we take care of writing back page cache,
3860 * we are protected against page writeback as well.
3862 inode_lock_shared(inode);
3863 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3864 iocb->ki_pos + count - 1);
3865 if (ret)
3866 goto out_unlock;
3867 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3868 iter, ext4_dio_get_block, NULL, NULL, 0);
3869 out_unlock:
3870 inode_unlock_shared(inode);
3871 return ret;
3874 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3876 struct file *file = iocb->ki_filp;
3877 struct inode *inode = file->f_mapping->host;
3878 size_t count = iov_iter_count(iter);
3879 loff_t offset = iocb->ki_pos;
3880 ssize_t ret;
3882 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3883 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3884 return 0;
3885 #endif
3888 * If we are doing data journalling we don't support O_DIRECT
3890 if (ext4_should_journal_data(inode))
3891 return 0;
3893 /* Let buffer I/O handle the inline data case. */
3894 if (ext4_has_inline_data(inode))
3895 return 0;
3897 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3898 if (iov_iter_rw(iter) == READ)
3899 ret = ext4_direct_IO_read(iocb, iter);
3900 else
3901 ret = ext4_direct_IO_write(iocb, iter);
3902 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3903 return ret;
3907 * Pages can be marked dirty completely asynchronously from ext4's journalling
3908 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3909 * much here because ->set_page_dirty is called under VFS locks. The page is
3910 * not necessarily locked.
3912 * We cannot just dirty the page and leave attached buffers clean, because the
3913 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3914 * or jbddirty because all the journalling code will explode.
3916 * So what we do is to mark the page "pending dirty" and next time writepage
3917 * is called, propagate that into the buffers appropriately.
3919 static int ext4_journalled_set_page_dirty(struct page *page)
3921 SetPageChecked(page);
3922 return __set_page_dirty_nobuffers(page);
3925 static int ext4_set_page_dirty(struct page *page)
3927 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3928 WARN_ON_ONCE(!page_has_buffers(page));
3929 return __set_page_dirty_buffers(page);
3932 static const struct address_space_operations ext4_aops = {
3933 .readpage = ext4_readpage,
3934 .readpages = ext4_readpages,
3935 .writepage = ext4_writepage,
3936 .writepages = ext4_writepages,
3937 .write_begin = ext4_write_begin,
3938 .write_end = ext4_write_end,
3939 .set_page_dirty = ext4_set_page_dirty,
3940 .bmap = ext4_bmap,
3941 .invalidatepage = ext4_invalidatepage,
3942 .releasepage = ext4_releasepage,
3943 .direct_IO = ext4_direct_IO,
3944 .migratepage = buffer_migrate_page,
3945 .is_partially_uptodate = block_is_partially_uptodate,
3946 .error_remove_page = generic_error_remove_page,
3949 static const struct address_space_operations ext4_journalled_aops = {
3950 .readpage = ext4_readpage,
3951 .readpages = ext4_readpages,
3952 .writepage = ext4_writepage,
3953 .writepages = ext4_writepages,
3954 .write_begin = ext4_write_begin,
3955 .write_end = ext4_journalled_write_end,
3956 .set_page_dirty = ext4_journalled_set_page_dirty,
3957 .bmap = ext4_bmap,
3958 .invalidatepage = ext4_journalled_invalidatepage,
3959 .releasepage = ext4_releasepage,
3960 .direct_IO = ext4_direct_IO,
3961 .is_partially_uptodate = block_is_partially_uptodate,
3962 .error_remove_page = generic_error_remove_page,
3965 static const struct address_space_operations ext4_da_aops = {
3966 .readpage = ext4_readpage,
3967 .readpages = ext4_readpages,
3968 .writepage = ext4_writepage,
3969 .writepages = ext4_writepages,
3970 .write_begin = ext4_da_write_begin,
3971 .write_end = ext4_da_write_end,
3972 .set_page_dirty = ext4_set_page_dirty,
3973 .bmap = ext4_bmap,
3974 .invalidatepage = ext4_da_invalidatepage,
3975 .releasepage = ext4_releasepage,
3976 .direct_IO = ext4_direct_IO,
3977 .migratepage = buffer_migrate_page,
3978 .is_partially_uptodate = block_is_partially_uptodate,
3979 .error_remove_page = generic_error_remove_page,
3982 static const struct address_space_operations ext4_dax_aops = {
3983 .writepages = ext4_dax_writepages,
3984 .direct_IO = noop_direct_IO,
3985 .set_page_dirty = noop_set_page_dirty,
3986 .bmap = ext4_bmap,
3987 .invalidatepage = noop_invalidatepage,
3990 void ext4_set_aops(struct inode *inode)
3992 switch (ext4_inode_journal_mode(inode)) {
3993 case EXT4_INODE_ORDERED_DATA_MODE:
3994 case EXT4_INODE_WRITEBACK_DATA_MODE:
3995 break;
3996 case EXT4_INODE_JOURNAL_DATA_MODE:
3997 inode->i_mapping->a_ops = &ext4_journalled_aops;
3998 return;
3999 default:
4000 BUG();
4002 if (IS_DAX(inode))
4003 inode->i_mapping->a_ops = &ext4_dax_aops;
4004 else if (test_opt(inode->i_sb, DELALLOC))
4005 inode->i_mapping->a_ops = &ext4_da_aops;
4006 else
4007 inode->i_mapping->a_ops = &ext4_aops;
4010 static int __ext4_block_zero_page_range(handle_t *handle,
4011 struct address_space *mapping, loff_t from, loff_t length)
4013 ext4_fsblk_t index = from >> PAGE_SHIFT;
4014 unsigned offset = from & (PAGE_SIZE-1);
4015 unsigned blocksize, pos;
4016 ext4_lblk_t iblock;
4017 struct inode *inode = mapping->host;
4018 struct buffer_head *bh;
4019 struct page *page;
4020 int err = 0;
4022 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4023 mapping_gfp_constraint(mapping, ~__GFP_FS));
4024 if (!page)
4025 return -ENOMEM;
4027 blocksize = inode->i_sb->s_blocksize;
4029 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4031 if (!page_has_buffers(page))
4032 create_empty_buffers(page, blocksize, 0);
4034 /* Find the buffer that contains "offset" */
4035 bh = page_buffers(page);
4036 pos = blocksize;
4037 while (offset >= pos) {
4038 bh = bh->b_this_page;
4039 iblock++;
4040 pos += blocksize;
4042 if (buffer_freed(bh)) {
4043 BUFFER_TRACE(bh, "freed: skip");
4044 goto unlock;
4046 if (!buffer_mapped(bh)) {
4047 BUFFER_TRACE(bh, "unmapped");
4048 ext4_get_block(inode, iblock, bh, 0);
4049 /* unmapped? It's a hole - nothing to do */
4050 if (!buffer_mapped(bh)) {
4051 BUFFER_TRACE(bh, "still unmapped");
4052 goto unlock;
4056 /* Ok, it's mapped. Make sure it's up-to-date */
4057 if (PageUptodate(page))
4058 set_buffer_uptodate(bh);
4060 if (!buffer_uptodate(bh)) {
4061 err = -EIO;
4062 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4063 wait_on_buffer(bh);
4064 /* Uhhuh. Read error. Complain and punt. */
4065 if (!buffer_uptodate(bh))
4066 goto unlock;
4067 if (S_ISREG(inode->i_mode) &&
4068 ext4_encrypted_inode(inode)) {
4069 /* We expect the key to be set. */
4070 BUG_ON(!fscrypt_has_encryption_key(inode));
4071 BUG_ON(blocksize != PAGE_SIZE);
4072 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4073 page, PAGE_SIZE, 0, page->index));
4076 if (ext4_should_journal_data(inode)) {
4077 BUFFER_TRACE(bh, "get write access");
4078 err = ext4_journal_get_write_access(handle, bh);
4079 if (err)
4080 goto unlock;
4082 zero_user(page, offset, length);
4083 BUFFER_TRACE(bh, "zeroed end of block");
4085 if (ext4_should_journal_data(inode)) {
4086 err = ext4_handle_dirty_metadata(handle, inode, bh);
4087 } else {
4088 err = 0;
4089 mark_buffer_dirty(bh);
4090 if (ext4_should_order_data(inode))
4091 err = ext4_jbd2_inode_add_write(handle, inode);
4094 unlock:
4095 unlock_page(page);
4096 put_page(page);
4097 return err;
4101 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4102 * starting from file offset 'from'. The range to be zero'd must
4103 * be contained with in one block. If the specified range exceeds
4104 * the end of the block it will be shortened to end of the block
4105 * that cooresponds to 'from'
4107 static int ext4_block_zero_page_range(handle_t *handle,
4108 struct address_space *mapping, loff_t from, loff_t length)
4110 struct inode *inode = mapping->host;
4111 unsigned offset = from & (PAGE_SIZE-1);
4112 unsigned blocksize = inode->i_sb->s_blocksize;
4113 unsigned max = blocksize - (offset & (blocksize - 1));
4116 * correct length if it does not fall between
4117 * 'from' and the end of the block
4119 if (length > max || length < 0)
4120 length = max;
4122 if (IS_DAX(inode)) {
4123 return iomap_zero_range(inode, from, length, NULL,
4124 &ext4_iomap_ops);
4126 return __ext4_block_zero_page_range(handle, mapping, from, length);
4130 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4131 * up to the end of the block which corresponds to `from'.
4132 * This required during truncate. We need to physically zero the tail end
4133 * of that block so it doesn't yield old data if the file is later grown.
4135 static int ext4_block_truncate_page(handle_t *handle,
4136 struct address_space *mapping, loff_t from)
4138 unsigned offset = from & (PAGE_SIZE-1);
4139 unsigned length;
4140 unsigned blocksize;
4141 struct inode *inode = mapping->host;
4143 /* If we are processing an encrypted inode during orphan list handling */
4144 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4145 return 0;
4147 blocksize = inode->i_sb->s_blocksize;
4148 length = blocksize - (offset & (blocksize - 1));
4150 return ext4_block_zero_page_range(handle, mapping, from, length);
4153 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4154 loff_t lstart, loff_t length)
4156 struct super_block *sb = inode->i_sb;
4157 struct address_space *mapping = inode->i_mapping;
4158 unsigned partial_start, partial_end;
4159 ext4_fsblk_t start, end;
4160 loff_t byte_end = (lstart + length - 1);
4161 int err = 0;
4163 partial_start = lstart & (sb->s_blocksize - 1);
4164 partial_end = byte_end & (sb->s_blocksize - 1);
4166 start = lstart >> sb->s_blocksize_bits;
4167 end = byte_end >> sb->s_blocksize_bits;
4169 /* Handle partial zero within the single block */
4170 if (start == end &&
4171 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4172 err = ext4_block_zero_page_range(handle, mapping,
4173 lstart, length);
4174 return err;
4176 /* Handle partial zero out on the start of the range */
4177 if (partial_start) {
4178 err = ext4_block_zero_page_range(handle, mapping,
4179 lstart, sb->s_blocksize);
4180 if (err)
4181 return err;
4183 /* Handle partial zero out on the end of the range */
4184 if (partial_end != sb->s_blocksize - 1)
4185 err = ext4_block_zero_page_range(handle, mapping,
4186 byte_end - partial_end,
4187 partial_end + 1);
4188 return err;
4191 int ext4_can_truncate(struct inode *inode)
4193 if (S_ISREG(inode->i_mode))
4194 return 1;
4195 if (S_ISDIR(inode->i_mode))
4196 return 1;
4197 if (S_ISLNK(inode->i_mode))
4198 return !ext4_inode_is_fast_symlink(inode);
4199 return 0;
4203 * We have to make sure i_disksize gets properly updated before we truncate
4204 * page cache due to hole punching or zero range. Otherwise i_disksize update
4205 * can get lost as it may have been postponed to submission of writeback but
4206 * that will never happen after we truncate page cache.
4208 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4209 loff_t len)
4211 handle_t *handle;
4212 loff_t size = i_size_read(inode);
4214 WARN_ON(!inode_is_locked(inode));
4215 if (offset > size || offset + len < size)
4216 return 0;
4218 if (EXT4_I(inode)->i_disksize >= size)
4219 return 0;
4221 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4222 if (IS_ERR(handle))
4223 return PTR_ERR(handle);
4224 ext4_update_i_disksize(inode, size);
4225 ext4_mark_inode_dirty(handle, inode);
4226 ext4_journal_stop(handle);
4228 return 0;
4231 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4233 up_write(&ei->i_mmap_sem);
4234 schedule();
4235 down_write(&ei->i_mmap_sem);
4238 int ext4_break_layouts(struct inode *inode)
4240 struct ext4_inode_info *ei = EXT4_I(inode);
4241 struct page *page;
4242 int error;
4244 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4245 return -EINVAL;
4247 do {
4248 page = dax_layout_busy_page(inode->i_mapping);
4249 if (!page)
4250 return 0;
4252 error = ___wait_var_event(&page->_refcount,
4253 atomic_read(&page->_refcount) == 1,
4254 TASK_INTERRUPTIBLE, 0, 0,
4255 ext4_wait_dax_page(ei));
4256 } while (error == 0);
4258 return error;
4262 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4263 * associated with the given offset and length
4265 * @inode: File inode
4266 * @offset: The offset where the hole will begin
4267 * @len: The length of the hole
4269 * Returns: 0 on success or negative on failure
4272 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4274 struct super_block *sb = inode->i_sb;
4275 ext4_lblk_t first_block, stop_block;
4276 struct address_space *mapping = inode->i_mapping;
4277 loff_t first_block_offset, last_block_offset;
4278 handle_t *handle;
4279 unsigned int credits;
4280 int ret = 0;
4282 if (!S_ISREG(inode->i_mode))
4283 return -EOPNOTSUPP;
4285 trace_ext4_punch_hole(inode, offset, length, 0);
4288 * Write out all dirty pages to avoid race conditions
4289 * Then release them.
4291 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4292 ret = filemap_write_and_wait_range(mapping, offset,
4293 offset + length - 1);
4294 if (ret)
4295 return ret;
4298 inode_lock(inode);
4300 /* No need to punch hole beyond i_size */
4301 if (offset >= inode->i_size)
4302 goto out_mutex;
4305 * If the hole extends beyond i_size, set the hole
4306 * to end after the page that contains i_size
4308 if (offset + length > inode->i_size) {
4309 length = inode->i_size +
4310 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4311 offset;
4314 if (offset & (sb->s_blocksize - 1) ||
4315 (offset + length) & (sb->s_blocksize - 1)) {
4317 * Attach jinode to inode for jbd2 if we do any zeroing of
4318 * partial block
4320 ret = ext4_inode_attach_jinode(inode);
4321 if (ret < 0)
4322 goto out_mutex;
4326 /* Wait all existing dio workers, newcomers will block on i_mutex */
4327 inode_dio_wait(inode);
4330 * Prevent page faults from reinstantiating pages we have released from
4331 * page cache.
4333 down_write(&EXT4_I(inode)->i_mmap_sem);
4335 ret = ext4_break_layouts(inode);
4336 if (ret)
4337 goto out_dio;
4339 first_block_offset = round_up(offset, sb->s_blocksize);
4340 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4342 /* Now release the pages and zero block aligned part of pages*/
4343 if (last_block_offset > first_block_offset) {
4344 ret = ext4_update_disksize_before_punch(inode, offset, length);
4345 if (ret)
4346 goto out_dio;
4347 truncate_pagecache_range(inode, first_block_offset,
4348 last_block_offset);
4351 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4352 credits = ext4_writepage_trans_blocks(inode);
4353 else
4354 credits = ext4_blocks_for_truncate(inode);
4355 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4356 if (IS_ERR(handle)) {
4357 ret = PTR_ERR(handle);
4358 ext4_std_error(sb, ret);
4359 goto out_dio;
4362 ret = ext4_zero_partial_blocks(handle, inode, offset,
4363 length);
4364 if (ret)
4365 goto out_stop;
4367 first_block = (offset + sb->s_blocksize - 1) >>
4368 EXT4_BLOCK_SIZE_BITS(sb);
4369 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4371 /* If there are blocks to remove, do it */
4372 if (stop_block > first_block) {
4374 down_write(&EXT4_I(inode)->i_data_sem);
4375 ext4_discard_preallocations(inode);
4377 ret = ext4_es_remove_extent(inode, first_block,
4378 stop_block - first_block);
4379 if (ret) {
4380 up_write(&EXT4_I(inode)->i_data_sem);
4381 goto out_stop;
4384 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4385 ret = ext4_ext_remove_space(inode, first_block,
4386 stop_block - 1);
4387 else
4388 ret = ext4_ind_remove_space(handle, inode, first_block,
4389 stop_block);
4391 up_write(&EXT4_I(inode)->i_data_sem);
4393 if (IS_SYNC(inode))
4394 ext4_handle_sync(handle);
4396 inode->i_mtime = inode->i_ctime = current_time(inode);
4397 ext4_mark_inode_dirty(handle, inode);
4398 if (ret >= 0)
4399 ext4_update_inode_fsync_trans(handle, inode, 1);
4400 out_stop:
4401 ext4_journal_stop(handle);
4402 out_dio:
4403 up_write(&EXT4_I(inode)->i_mmap_sem);
4404 out_mutex:
4405 inode_unlock(inode);
4406 return ret;
4409 int ext4_inode_attach_jinode(struct inode *inode)
4411 struct ext4_inode_info *ei = EXT4_I(inode);
4412 struct jbd2_inode *jinode;
4414 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4415 return 0;
4417 jinode = jbd2_alloc_inode(GFP_KERNEL);
4418 spin_lock(&inode->i_lock);
4419 if (!ei->jinode) {
4420 if (!jinode) {
4421 spin_unlock(&inode->i_lock);
4422 return -ENOMEM;
4424 ei->jinode = jinode;
4425 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4426 jinode = NULL;
4428 spin_unlock(&inode->i_lock);
4429 if (unlikely(jinode != NULL))
4430 jbd2_free_inode(jinode);
4431 return 0;
4435 * ext4_truncate()
4437 * We block out ext4_get_block() block instantiations across the entire
4438 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4439 * simultaneously on behalf of the same inode.
4441 * As we work through the truncate and commit bits of it to the journal there
4442 * is one core, guiding principle: the file's tree must always be consistent on
4443 * disk. We must be able to restart the truncate after a crash.
4445 * The file's tree may be transiently inconsistent in memory (although it
4446 * probably isn't), but whenever we close off and commit a journal transaction,
4447 * the contents of (the filesystem + the journal) must be consistent and
4448 * restartable. It's pretty simple, really: bottom up, right to left (although
4449 * left-to-right works OK too).
4451 * Note that at recovery time, journal replay occurs *before* the restart of
4452 * truncate against the orphan inode list.
4454 * The committed inode has the new, desired i_size (which is the same as
4455 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4456 * that this inode's truncate did not complete and it will again call
4457 * ext4_truncate() to have another go. So there will be instantiated blocks
4458 * to the right of the truncation point in a crashed ext4 filesystem. But
4459 * that's fine - as long as they are linked from the inode, the post-crash
4460 * ext4_truncate() run will find them and release them.
4462 int ext4_truncate(struct inode *inode)
4464 struct ext4_inode_info *ei = EXT4_I(inode);
4465 unsigned int credits;
4466 int err = 0;
4467 handle_t *handle;
4468 struct address_space *mapping = inode->i_mapping;
4471 * There is a possibility that we're either freeing the inode
4472 * or it's a completely new inode. In those cases we might not
4473 * have i_mutex locked because it's not necessary.
4475 if (!(inode->i_state & (I_NEW|I_FREEING)))
4476 WARN_ON(!inode_is_locked(inode));
4477 trace_ext4_truncate_enter(inode);
4479 if (!ext4_can_truncate(inode))
4480 return 0;
4482 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4484 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4485 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4487 if (ext4_has_inline_data(inode)) {
4488 int has_inline = 1;
4490 err = ext4_inline_data_truncate(inode, &has_inline);
4491 if (err)
4492 return err;
4493 if (has_inline)
4494 return 0;
4497 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4498 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4499 if (ext4_inode_attach_jinode(inode) < 0)
4500 return 0;
4503 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4504 credits = ext4_writepage_trans_blocks(inode);
4505 else
4506 credits = ext4_blocks_for_truncate(inode);
4508 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4509 if (IS_ERR(handle))
4510 return PTR_ERR(handle);
4512 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4513 ext4_block_truncate_page(handle, mapping, inode->i_size);
4516 * We add the inode to the orphan list, so that if this
4517 * truncate spans multiple transactions, and we crash, we will
4518 * resume the truncate when the filesystem recovers. It also
4519 * marks the inode dirty, to catch the new size.
4521 * Implication: the file must always be in a sane, consistent
4522 * truncatable state while each transaction commits.
4524 err = ext4_orphan_add(handle, inode);
4525 if (err)
4526 goto out_stop;
4528 down_write(&EXT4_I(inode)->i_data_sem);
4530 ext4_discard_preallocations(inode);
4532 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4533 err = ext4_ext_truncate(handle, inode);
4534 else
4535 ext4_ind_truncate(handle, inode);
4537 up_write(&ei->i_data_sem);
4538 if (err)
4539 goto out_stop;
4541 if (IS_SYNC(inode))
4542 ext4_handle_sync(handle);
4544 out_stop:
4546 * If this was a simple ftruncate() and the file will remain alive,
4547 * then we need to clear up the orphan record which we created above.
4548 * However, if this was a real unlink then we were called by
4549 * ext4_evict_inode(), and we allow that function to clean up the
4550 * orphan info for us.
4552 if (inode->i_nlink)
4553 ext4_orphan_del(handle, inode);
4555 inode->i_mtime = inode->i_ctime = current_time(inode);
4556 ext4_mark_inode_dirty(handle, inode);
4557 ext4_journal_stop(handle);
4559 trace_ext4_truncate_exit(inode);
4560 return err;
4564 * ext4_get_inode_loc returns with an extra refcount against the inode's
4565 * underlying buffer_head on success. If 'in_mem' is true, we have all
4566 * data in memory that is needed to recreate the on-disk version of this
4567 * inode.
4569 static int __ext4_get_inode_loc(struct inode *inode,
4570 struct ext4_iloc *iloc, int in_mem)
4572 struct ext4_group_desc *gdp;
4573 struct buffer_head *bh;
4574 struct super_block *sb = inode->i_sb;
4575 ext4_fsblk_t block;
4576 int inodes_per_block, inode_offset;
4578 iloc->bh = NULL;
4579 if (inode->i_ino < EXT4_ROOT_INO ||
4580 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4581 return -EFSCORRUPTED;
4583 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4584 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4585 if (!gdp)
4586 return -EIO;
4589 * Figure out the offset within the block group inode table
4591 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4592 inode_offset = ((inode->i_ino - 1) %
4593 EXT4_INODES_PER_GROUP(sb));
4594 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4595 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4597 bh = sb_getblk(sb, block);
4598 if (unlikely(!bh))
4599 return -ENOMEM;
4600 if (!buffer_uptodate(bh)) {
4601 lock_buffer(bh);
4604 * If the buffer has the write error flag, we have failed
4605 * to write out another inode in the same block. In this
4606 * case, we don't have to read the block because we may
4607 * read the old inode data successfully.
4609 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4610 set_buffer_uptodate(bh);
4612 if (buffer_uptodate(bh)) {
4613 /* someone brought it uptodate while we waited */
4614 unlock_buffer(bh);
4615 goto has_buffer;
4619 * If we have all information of the inode in memory and this
4620 * is the only valid inode in the block, we need not read the
4621 * block.
4623 if (in_mem) {
4624 struct buffer_head *bitmap_bh;
4625 int i, start;
4627 start = inode_offset & ~(inodes_per_block - 1);
4629 /* Is the inode bitmap in cache? */
4630 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4631 if (unlikely(!bitmap_bh))
4632 goto make_io;
4635 * If the inode bitmap isn't in cache then the
4636 * optimisation may end up performing two reads instead
4637 * of one, so skip it.
4639 if (!buffer_uptodate(bitmap_bh)) {
4640 brelse(bitmap_bh);
4641 goto make_io;
4643 for (i = start; i < start + inodes_per_block; i++) {
4644 if (i == inode_offset)
4645 continue;
4646 if (ext4_test_bit(i, bitmap_bh->b_data))
4647 break;
4649 brelse(bitmap_bh);
4650 if (i == start + inodes_per_block) {
4651 /* all other inodes are free, so skip I/O */
4652 memset(bh->b_data, 0, bh->b_size);
4653 set_buffer_uptodate(bh);
4654 unlock_buffer(bh);
4655 goto has_buffer;
4659 make_io:
4661 * If we need to do any I/O, try to pre-readahead extra
4662 * blocks from the inode table.
4664 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4665 ext4_fsblk_t b, end, table;
4666 unsigned num;
4667 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4669 table = ext4_inode_table(sb, gdp);
4670 /* s_inode_readahead_blks is always a power of 2 */
4671 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4672 if (table > b)
4673 b = table;
4674 end = b + ra_blks;
4675 num = EXT4_INODES_PER_GROUP(sb);
4676 if (ext4_has_group_desc_csum(sb))
4677 num -= ext4_itable_unused_count(sb, gdp);
4678 table += num / inodes_per_block;
4679 if (end > table)
4680 end = table;
4681 while (b <= end)
4682 sb_breadahead(sb, b++);
4686 * There are other valid inodes in the buffer, this inode
4687 * has in-inode xattrs, or we don't have this inode in memory.
4688 * Read the block from disk.
4690 trace_ext4_load_inode(inode);
4691 get_bh(bh);
4692 bh->b_end_io = end_buffer_read_sync;
4693 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4694 wait_on_buffer(bh);
4695 if (!buffer_uptodate(bh)) {
4696 EXT4_ERROR_INODE_BLOCK(inode, block,
4697 "unable to read itable block");
4698 brelse(bh);
4699 return -EIO;
4702 has_buffer:
4703 iloc->bh = bh;
4704 return 0;
4707 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4709 /* We have all inode data except xattrs in memory here. */
4710 return __ext4_get_inode_loc(inode, iloc,
4711 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4714 static bool ext4_should_use_dax(struct inode *inode)
4716 if (!test_opt(inode->i_sb, DAX))
4717 return false;
4718 if (!S_ISREG(inode->i_mode))
4719 return false;
4720 if (ext4_should_journal_data(inode))
4721 return false;
4722 if (ext4_has_inline_data(inode))
4723 return false;
4724 if (ext4_encrypted_inode(inode))
4725 return false;
4726 return true;
4729 void ext4_set_inode_flags(struct inode *inode)
4731 unsigned int flags = EXT4_I(inode)->i_flags;
4732 unsigned int new_fl = 0;
4734 if (flags & EXT4_SYNC_FL)
4735 new_fl |= S_SYNC;
4736 if (flags & EXT4_APPEND_FL)
4737 new_fl |= S_APPEND;
4738 if (flags & EXT4_IMMUTABLE_FL)
4739 new_fl |= S_IMMUTABLE;
4740 if (flags & EXT4_NOATIME_FL)
4741 new_fl |= S_NOATIME;
4742 if (flags & EXT4_DIRSYNC_FL)
4743 new_fl |= S_DIRSYNC;
4744 if (ext4_should_use_dax(inode))
4745 new_fl |= S_DAX;
4746 if (flags & EXT4_ENCRYPT_FL)
4747 new_fl |= S_ENCRYPTED;
4748 inode_set_flags(inode, new_fl,
4749 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4750 S_ENCRYPTED);
4753 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4754 struct ext4_inode_info *ei)
4756 blkcnt_t i_blocks ;
4757 struct inode *inode = &(ei->vfs_inode);
4758 struct super_block *sb = inode->i_sb;
4760 if (ext4_has_feature_huge_file(sb)) {
4761 /* we are using combined 48 bit field */
4762 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4763 le32_to_cpu(raw_inode->i_blocks_lo);
4764 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4765 /* i_blocks represent file system block size */
4766 return i_blocks << (inode->i_blkbits - 9);
4767 } else {
4768 return i_blocks;
4770 } else {
4771 return le32_to_cpu(raw_inode->i_blocks_lo);
4775 static inline int ext4_iget_extra_inode(struct inode *inode,
4776 struct ext4_inode *raw_inode,
4777 struct ext4_inode_info *ei)
4779 __le32 *magic = (void *)raw_inode +
4780 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4782 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4783 EXT4_INODE_SIZE(inode->i_sb) &&
4784 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4785 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4786 return ext4_find_inline_data_nolock(inode);
4787 } else
4788 EXT4_I(inode)->i_inline_off = 0;
4789 return 0;
4792 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4794 if (!ext4_has_feature_project(inode->i_sb))
4795 return -EOPNOTSUPP;
4796 *projid = EXT4_I(inode)->i_projid;
4797 return 0;
4801 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4802 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4803 * set.
4805 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4807 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4808 inode_set_iversion_raw(inode, val);
4809 else
4810 inode_set_iversion_queried(inode, val);
4812 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4814 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4815 return inode_peek_iversion_raw(inode);
4816 else
4817 return inode_peek_iversion(inode);
4820 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4822 struct ext4_iloc iloc;
4823 struct ext4_inode *raw_inode;
4824 struct ext4_inode_info *ei;
4825 struct inode *inode;
4826 journal_t *journal = EXT4_SB(sb)->s_journal;
4827 long ret;
4828 loff_t size;
4829 int block;
4830 uid_t i_uid;
4831 gid_t i_gid;
4832 projid_t i_projid;
4834 inode = iget_locked(sb, ino);
4835 if (!inode)
4836 return ERR_PTR(-ENOMEM);
4837 if (!(inode->i_state & I_NEW))
4838 return inode;
4840 ei = EXT4_I(inode);
4841 iloc.bh = NULL;
4843 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4844 if (ret < 0)
4845 goto bad_inode;
4846 raw_inode = ext4_raw_inode(&iloc);
4848 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4849 EXT4_ERROR_INODE(inode, "root inode unallocated");
4850 ret = -EFSCORRUPTED;
4851 goto bad_inode;
4854 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4855 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4856 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4857 EXT4_INODE_SIZE(inode->i_sb) ||
4858 (ei->i_extra_isize & 3)) {
4859 EXT4_ERROR_INODE(inode,
4860 "bad extra_isize %u (inode size %u)",
4861 ei->i_extra_isize,
4862 EXT4_INODE_SIZE(inode->i_sb));
4863 ret = -EFSCORRUPTED;
4864 goto bad_inode;
4866 } else
4867 ei->i_extra_isize = 0;
4869 /* Precompute checksum seed for inode metadata */
4870 if (ext4_has_metadata_csum(sb)) {
4871 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4872 __u32 csum;
4873 __le32 inum = cpu_to_le32(inode->i_ino);
4874 __le32 gen = raw_inode->i_generation;
4875 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4876 sizeof(inum));
4877 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4878 sizeof(gen));
4881 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4882 EXT4_ERROR_INODE(inode, "checksum invalid");
4883 ret = -EFSBADCRC;
4884 goto bad_inode;
4887 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4888 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4889 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4890 if (ext4_has_feature_project(sb) &&
4891 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4892 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4893 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4894 else
4895 i_projid = EXT4_DEF_PROJID;
4897 if (!(test_opt(inode->i_sb, NO_UID32))) {
4898 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4899 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4901 i_uid_write(inode, i_uid);
4902 i_gid_write(inode, i_gid);
4903 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4904 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4906 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4907 ei->i_inline_off = 0;
4908 ei->i_dir_start_lookup = 0;
4909 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4910 /* We now have enough fields to check if the inode was active or not.
4911 * This is needed because nfsd might try to access dead inodes
4912 * the test is that same one that e2fsck uses
4913 * NeilBrown 1999oct15
4915 if (inode->i_nlink == 0) {
4916 if ((inode->i_mode == 0 ||
4917 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4918 ino != EXT4_BOOT_LOADER_INO) {
4919 /* this inode is deleted */
4920 ret = -ESTALE;
4921 goto bad_inode;
4923 /* The only unlinked inodes we let through here have
4924 * valid i_mode and are being read by the orphan
4925 * recovery code: that's fine, we're about to complete
4926 * the process of deleting those.
4927 * OR it is the EXT4_BOOT_LOADER_INO which is
4928 * not initialized on a new filesystem. */
4930 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4931 ext4_set_inode_flags(inode);
4932 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4933 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4934 if (ext4_has_feature_64bit(sb))
4935 ei->i_file_acl |=
4936 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4937 inode->i_size = ext4_isize(sb, raw_inode);
4938 if ((size = i_size_read(inode)) < 0) {
4939 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4940 ret = -EFSCORRUPTED;
4941 goto bad_inode;
4943 ei->i_disksize = inode->i_size;
4944 #ifdef CONFIG_QUOTA
4945 ei->i_reserved_quota = 0;
4946 #endif
4947 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4948 ei->i_block_group = iloc.block_group;
4949 ei->i_last_alloc_group = ~0;
4951 * NOTE! The in-memory inode i_data array is in little-endian order
4952 * even on big-endian machines: we do NOT byteswap the block numbers!
4954 for (block = 0; block < EXT4_N_BLOCKS; block++)
4955 ei->i_data[block] = raw_inode->i_block[block];
4956 INIT_LIST_HEAD(&ei->i_orphan);
4959 * Set transaction id's of transactions that have to be committed
4960 * to finish f[data]sync. We set them to currently running transaction
4961 * as we cannot be sure that the inode or some of its metadata isn't
4962 * part of the transaction - the inode could have been reclaimed and
4963 * now it is reread from disk.
4965 if (journal) {
4966 transaction_t *transaction;
4967 tid_t tid;
4969 read_lock(&journal->j_state_lock);
4970 if (journal->j_running_transaction)
4971 transaction = journal->j_running_transaction;
4972 else
4973 transaction = journal->j_committing_transaction;
4974 if (transaction)
4975 tid = transaction->t_tid;
4976 else
4977 tid = journal->j_commit_sequence;
4978 read_unlock(&journal->j_state_lock);
4979 ei->i_sync_tid = tid;
4980 ei->i_datasync_tid = tid;
4983 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4984 if (ei->i_extra_isize == 0) {
4985 /* The extra space is currently unused. Use it. */
4986 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4987 ei->i_extra_isize = sizeof(struct ext4_inode) -
4988 EXT4_GOOD_OLD_INODE_SIZE;
4989 } else {
4990 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4991 if (ret)
4992 goto bad_inode;
4996 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4997 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4998 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4999 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5001 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5002 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5004 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5005 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5006 ivers |=
5007 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5009 ext4_inode_set_iversion_queried(inode, ivers);
5012 ret = 0;
5013 if (ei->i_file_acl &&
5014 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5015 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5016 ei->i_file_acl);
5017 ret = -EFSCORRUPTED;
5018 goto bad_inode;
5019 } else if (!ext4_has_inline_data(inode)) {
5020 /* validate the block references in the inode */
5021 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5022 (S_ISLNK(inode->i_mode) &&
5023 !ext4_inode_is_fast_symlink(inode))) {
5024 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5025 ret = ext4_ext_check_inode(inode);
5026 else
5027 ret = ext4_ind_check_inode(inode);
5030 if (ret)
5031 goto bad_inode;
5033 if (S_ISREG(inode->i_mode)) {
5034 inode->i_op = &ext4_file_inode_operations;
5035 inode->i_fop = &ext4_file_operations;
5036 ext4_set_aops(inode);
5037 } else if (S_ISDIR(inode->i_mode)) {
5038 inode->i_op = &ext4_dir_inode_operations;
5039 inode->i_fop = &ext4_dir_operations;
5040 } else if (S_ISLNK(inode->i_mode)) {
5041 /* VFS does not allow setting these so must be corruption */
5042 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5043 EXT4_ERROR_INODE(inode,
5044 "immutable or append flags not allowed on symlinks");
5045 ret = -EFSCORRUPTED;
5046 goto bad_inode;
5048 if (ext4_encrypted_inode(inode)) {
5049 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5050 ext4_set_aops(inode);
5051 } else if (ext4_inode_is_fast_symlink(inode)) {
5052 inode->i_link = (char *)ei->i_data;
5053 inode->i_op = &ext4_fast_symlink_inode_operations;
5054 nd_terminate_link(ei->i_data, inode->i_size,
5055 sizeof(ei->i_data) - 1);
5056 } else {
5057 inode->i_op = &ext4_symlink_inode_operations;
5058 ext4_set_aops(inode);
5060 inode_nohighmem(inode);
5061 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5062 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5063 inode->i_op = &ext4_special_inode_operations;
5064 if (raw_inode->i_block[0])
5065 init_special_inode(inode, inode->i_mode,
5066 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5067 else
5068 init_special_inode(inode, inode->i_mode,
5069 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5070 } else if (ino == EXT4_BOOT_LOADER_INO) {
5071 make_bad_inode(inode);
5072 } else {
5073 ret = -EFSCORRUPTED;
5074 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5075 goto bad_inode;
5077 brelse(iloc.bh);
5079 unlock_new_inode(inode);
5080 return inode;
5082 bad_inode:
5083 brelse(iloc.bh);
5084 iget_failed(inode);
5085 return ERR_PTR(ret);
5088 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
5090 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
5091 return ERR_PTR(-EFSCORRUPTED);
5092 return ext4_iget(sb, ino);
5095 static int ext4_inode_blocks_set(handle_t *handle,
5096 struct ext4_inode *raw_inode,
5097 struct ext4_inode_info *ei)
5099 struct inode *inode = &(ei->vfs_inode);
5100 u64 i_blocks = inode->i_blocks;
5101 struct super_block *sb = inode->i_sb;
5103 if (i_blocks <= ~0U) {
5105 * i_blocks can be represented in a 32 bit variable
5106 * as multiple of 512 bytes
5108 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5109 raw_inode->i_blocks_high = 0;
5110 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5111 return 0;
5113 if (!ext4_has_feature_huge_file(sb))
5114 return -EFBIG;
5116 if (i_blocks <= 0xffffffffffffULL) {
5118 * i_blocks can be represented in a 48 bit variable
5119 * as multiple of 512 bytes
5121 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5122 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5123 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5124 } else {
5125 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5126 /* i_block is stored in file system block size */
5127 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5128 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5129 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5131 return 0;
5134 struct other_inode {
5135 unsigned long orig_ino;
5136 struct ext4_inode *raw_inode;
5139 static int other_inode_match(struct inode * inode, unsigned long ino,
5140 void *data)
5142 struct other_inode *oi = (struct other_inode *) data;
5144 if ((inode->i_ino != ino) ||
5145 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5146 I_DIRTY_INODE)) ||
5147 ((inode->i_state & I_DIRTY_TIME) == 0))
5148 return 0;
5149 spin_lock(&inode->i_lock);
5150 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5151 I_DIRTY_INODE)) == 0) &&
5152 (inode->i_state & I_DIRTY_TIME)) {
5153 struct ext4_inode_info *ei = EXT4_I(inode);
5155 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5156 spin_unlock(&inode->i_lock);
5158 spin_lock(&ei->i_raw_lock);
5159 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5160 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5161 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5162 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5163 spin_unlock(&ei->i_raw_lock);
5164 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5165 return -1;
5167 spin_unlock(&inode->i_lock);
5168 return -1;
5172 * Opportunistically update the other time fields for other inodes in
5173 * the same inode table block.
5175 static void ext4_update_other_inodes_time(struct super_block *sb,
5176 unsigned long orig_ino, char *buf)
5178 struct other_inode oi;
5179 unsigned long ino;
5180 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5181 int inode_size = EXT4_INODE_SIZE(sb);
5183 oi.orig_ino = orig_ino;
5185 * Calculate the first inode in the inode table block. Inode
5186 * numbers are one-based. That is, the first inode in a block
5187 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5189 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5190 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5191 if (ino == orig_ino)
5192 continue;
5193 oi.raw_inode = (struct ext4_inode *) buf;
5194 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5199 * Post the struct inode info into an on-disk inode location in the
5200 * buffer-cache. This gobbles the caller's reference to the
5201 * buffer_head in the inode location struct.
5203 * The caller must have write access to iloc->bh.
5205 static int ext4_do_update_inode(handle_t *handle,
5206 struct inode *inode,
5207 struct ext4_iloc *iloc)
5209 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5210 struct ext4_inode_info *ei = EXT4_I(inode);
5211 struct buffer_head *bh = iloc->bh;
5212 struct super_block *sb = inode->i_sb;
5213 int err = 0, rc, block;
5214 int need_datasync = 0, set_large_file = 0;
5215 uid_t i_uid;
5216 gid_t i_gid;
5217 projid_t i_projid;
5219 spin_lock(&ei->i_raw_lock);
5221 /* For fields not tracked in the in-memory inode,
5222 * initialise them to zero for new inodes. */
5223 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5224 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5226 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5227 i_uid = i_uid_read(inode);
5228 i_gid = i_gid_read(inode);
5229 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5230 if (!(test_opt(inode->i_sb, NO_UID32))) {
5231 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5232 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5234 * Fix up interoperability with old kernels. Otherwise, old inodes get
5235 * re-used with the upper 16 bits of the uid/gid intact
5237 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5238 raw_inode->i_uid_high = 0;
5239 raw_inode->i_gid_high = 0;
5240 } else {
5241 raw_inode->i_uid_high =
5242 cpu_to_le16(high_16_bits(i_uid));
5243 raw_inode->i_gid_high =
5244 cpu_to_le16(high_16_bits(i_gid));
5246 } else {
5247 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5248 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5249 raw_inode->i_uid_high = 0;
5250 raw_inode->i_gid_high = 0;
5252 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5254 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5255 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5256 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5257 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5259 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5260 if (err) {
5261 spin_unlock(&ei->i_raw_lock);
5262 goto out_brelse;
5264 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5265 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5266 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5267 raw_inode->i_file_acl_high =
5268 cpu_to_le16(ei->i_file_acl >> 32);
5269 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5270 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5271 ext4_isize_set(raw_inode, ei->i_disksize);
5272 need_datasync = 1;
5274 if (ei->i_disksize > 0x7fffffffULL) {
5275 if (!ext4_has_feature_large_file(sb) ||
5276 EXT4_SB(sb)->s_es->s_rev_level ==
5277 cpu_to_le32(EXT4_GOOD_OLD_REV))
5278 set_large_file = 1;
5280 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5281 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5282 if (old_valid_dev(inode->i_rdev)) {
5283 raw_inode->i_block[0] =
5284 cpu_to_le32(old_encode_dev(inode->i_rdev));
5285 raw_inode->i_block[1] = 0;
5286 } else {
5287 raw_inode->i_block[0] = 0;
5288 raw_inode->i_block[1] =
5289 cpu_to_le32(new_encode_dev(inode->i_rdev));
5290 raw_inode->i_block[2] = 0;
5292 } else if (!ext4_has_inline_data(inode)) {
5293 for (block = 0; block < EXT4_N_BLOCKS; block++)
5294 raw_inode->i_block[block] = ei->i_data[block];
5297 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5298 u64 ivers = ext4_inode_peek_iversion(inode);
5300 raw_inode->i_disk_version = cpu_to_le32(ivers);
5301 if (ei->i_extra_isize) {
5302 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5303 raw_inode->i_version_hi =
5304 cpu_to_le32(ivers >> 32);
5305 raw_inode->i_extra_isize =
5306 cpu_to_le16(ei->i_extra_isize);
5310 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5311 i_projid != EXT4_DEF_PROJID);
5313 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5314 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5315 raw_inode->i_projid = cpu_to_le32(i_projid);
5317 ext4_inode_csum_set(inode, raw_inode, ei);
5318 spin_unlock(&ei->i_raw_lock);
5319 if (inode->i_sb->s_flags & SB_LAZYTIME)
5320 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5321 bh->b_data);
5323 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5324 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5325 if (!err)
5326 err = rc;
5327 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5328 if (set_large_file) {
5329 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5330 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5331 if (err)
5332 goto out_brelse;
5333 ext4_update_dynamic_rev(sb);
5334 ext4_set_feature_large_file(sb);
5335 ext4_handle_sync(handle);
5336 err = ext4_handle_dirty_super(handle, sb);
5338 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5339 out_brelse:
5340 brelse(bh);
5341 ext4_std_error(inode->i_sb, err);
5342 return err;
5346 * ext4_write_inode()
5348 * We are called from a few places:
5350 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5351 * Here, there will be no transaction running. We wait for any running
5352 * transaction to commit.
5354 * - Within flush work (sys_sync(), kupdate and such).
5355 * We wait on commit, if told to.
5357 * - Within iput_final() -> write_inode_now()
5358 * We wait on commit, if told to.
5360 * In all cases it is actually safe for us to return without doing anything,
5361 * because the inode has been copied into a raw inode buffer in
5362 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5363 * writeback.
5365 * Note that we are absolutely dependent upon all inode dirtiers doing the
5366 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5367 * which we are interested.
5369 * It would be a bug for them to not do this. The code:
5371 * mark_inode_dirty(inode)
5372 * stuff();
5373 * inode->i_size = expr;
5375 * is in error because write_inode() could occur while `stuff()' is running,
5376 * and the new i_size will be lost. Plus the inode will no longer be on the
5377 * superblock's dirty inode list.
5379 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5381 int err;
5383 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5384 return 0;
5386 if (EXT4_SB(inode->i_sb)->s_journal) {
5387 if (ext4_journal_current_handle()) {
5388 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5389 dump_stack();
5390 return -EIO;
5394 * No need to force transaction in WB_SYNC_NONE mode. Also
5395 * ext4_sync_fs() will force the commit after everything is
5396 * written.
5398 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5399 return 0;
5401 err = ext4_force_commit(inode->i_sb);
5402 } else {
5403 struct ext4_iloc iloc;
5405 err = __ext4_get_inode_loc(inode, &iloc, 0);
5406 if (err)
5407 return err;
5409 * sync(2) will flush the whole buffer cache. No need to do
5410 * it here separately for each inode.
5412 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5413 sync_dirty_buffer(iloc.bh);
5414 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5415 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5416 "IO error syncing inode");
5417 err = -EIO;
5419 brelse(iloc.bh);
5421 return err;
5425 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5426 * buffers that are attached to a page stradding i_size and are undergoing
5427 * commit. In that case we have to wait for commit to finish and try again.
5429 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5431 struct page *page;
5432 unsigned offset;
5433 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5434 tid_t commit_tid = 0;
5435 int ret;
5437 offset = inode->i_size & (PAGE_SIZE - 1);
5439 * All buffers in the last page remain valid? Then there's nothing to
5440 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5441 * blocksize case
5443 if (offset > PAGE_SIZE - i_blocksize(inode))
5444 return;
5445 while (1) {
5446 page = find_lock_page(inode->i_mapping,
5447 inode->i_size >> PAGE_SHIFT);
5448 if (!page)
5449 return;
5450 ret = __ext4_journalled_invalidatepage(page, offset,
5451 PAGE_SIZE - offset);
5452 unlock_page(page);
5453 put_page(page);
5454 if (ret != -EBUSY)
5455 return;
5456 commit_tid = 0;
5457 read_lock(&journal->j_state_lock);
5458 if (journal->j_committing_transaction)
5459 commit_tid = journal->j_committing_transaction->t_tid;
5460 read_unlock(&journal->j_state_lock);
5461 if (commit_tid)
5462 jbd2_log_wait_commit(journal, commit_tid);
5467 * ext4_setattr()
5469 * Called from notify_change.
5471 * We want to trap VFS attempts to truncate the file as soon as
5472 * possible. In particular, we want to make sure that when the VFS
5473 * shrinks i_size, we put the inode on the orphan list and modify
5474 * i_disksize immediately, so that during the subsequent flushing of
5475 * dirty pages and freeing of disk blocks, we can guarantee that any
5476 * commit will leave the blocks being flushed in an unused state on
5477 * disk. (On recovery, the inode will get truncated and the blocks will
5478 * be freed, so we have a strong guarantee that no future commit will
5479 * leave these blocks visible to the user.)
5481 * Another thing we have to assure is that if we are in ordered mode
5482 * and inode is still attached to the committing transaction, we must
5483 * we start writeout of all the dirty pages which are being truncated.
5484 * This way we are sure that all the data written in the previous
5485 * transaction are already on disk (truncate waits for pages under
5486 * writeback).
5488 * Called with inode->i_mutex down.
5490 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5492 struct inode *inode = d_inode(dentry);
5493 int error, rc = 0;
5494 int orphan = 0;
5495 const unsigned int ia_valid = attr->ia_valid;
5497 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5498 return -EIO;
5500 error = setattr_prepare(dentry, attr);
5501 if (error)
5502 return error;
5504 error = fscrypt_prepare_setattr(dentry, attr);
5505 if (error)
5506 return error;
5508 if (is_quota_modification(inode, attr)) {
5509 error = dquot_initialize(inode);
5510 if (error)
5511 return error;
5513 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5514 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5515 handle_t *handle;
5517 /* (user+group)*(old+new) structure, inode write (sb,
5518 * inode block, ? - but truncate inode update has it) */
5519 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5520 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5521 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5522 if (IS_ERR(handle)) {
5523 error = PTR_ERR(handle);
5524 goto err_out;
5527 /* dquot_transfer() calls back ext4_get_inode_usage() which
5528 * counts xattr inode references.
5530 down_read(&EXT4_I(inode)->xattr_sem);
5531 error = dquot_transfer(inode, attr);
5532 up_read(&EXT4_I(inode)->xattr_sem);
5534 if (error) {
5535 ext4_journal_stop(handle);
5536 return error;
5538 /* Update corresponding info in inode so that everything is in
5539 * one transaction */
5540 if (attr->ia_valid & ATTR_UID)
5541 inode->i_uid = attr->ia_uid;
5542 if (attr->ia_valid & ATTR_GID)
5543 inode->i_gid = attr->ia_gid;
5544 error = ext4_mark_inode_dirty(handle, inode);
5545 ext4_journal_stop(handle);
5548 if (attr->ia_valid & ATTR_SIZE) {
5549 handle_t *handle;
5550 loff_t oldsize = inode->i_size;
5551 int shrink = (attr->ia_size <= inode->i_size);
5553 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5554 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5556 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5557 return -EFBIG;
5559 if (!S_ISREG(inode->i_mode))
5560 return -EINVAL;
5562 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5563 inode_inc_iversion(inode);
5565 if (ext4_should_order_data(inode) &&
5566 (attr->ia_size < inode->i_size)) {
5567 error = ext4_begin_ordered_truncate(inode,
5568 attr->ia_size);
5569 if (error)
5570 goto err_out;
5572 if (attr->ia_size != inode->i_size) {
5573 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5574 if (IS_ERR(handle)) {
5575 error = PTR_ERR(handle);
5576 goto err_out;
5578 if (ext4_handle_valid(handle) && shrink) {
5579 error = ext4_orphan_add(handle, inode);
5580 orphan = 1;
5583 * Update c/mtime on truncate up, ext4_truncate() will
5584 * update c/mtime in shrink case below
5586 if (!shrink) {
5587 inode->i_mtime = current_time(inode);
5588 inode->i_ctime = inode->i_mtime;
5590 down_write(&EXT4_I(inode)->i_data_sem);
5591 EXT4_I(inode)->i_disksize = attr->ia_size;
5592 rc = ext4_mark_inode_dirty(handle, inode);
5593 if (!error)
5594 error = rc;
5596 * We have to update i_size under i_data_sem together
5597 * with i_disksize to avoid races with writeback code
5598 * running ext4_wb_update_i_disksize().
5600 if (!error)
5601 i_size_write(inode, attr->ia_size);
5602 up_write(&EXT4_I(inode)->i_data_sem);
5603 ext4_journal_stop(handle);
5604 if (error) {
5605 if (orphan)
5606 ext4_orphan_del(NULL, inode);
5607 goto err_out;
5610 if (!shrink)
5611 pagecache_isize_extended(inode, oldsize, inode->i_size);
5614 * Blocks are going to be removed from the inode. Wait
5615 * for dio in flight. Temporarily disable
5616 * dioread_nolock to prevent livelock.
5618 if (orphan) {
5619 if (!ext4_should_journal_data(inode)) {
5620 inode_dio_wait(inode);
5621 } else
5622 ext4_wait_for_tail_page_commit(inode);
5624 down_write(&EXT4_I(inode)->i_mmap_sem);
5626 rc = ext4_break_layouts(inode);
5627 if (rc) {
5628 up_write(&EXT4_I(inode)->i_mmap_sem);
5629 error = rc;
5630 goto err_out;
5634 * Truncate pagecache after we've waited for commit
5635 * in data=journal mode to make pages freeable.
5637 truncate_pagecache(inode, inode->i_size);
5638 if (shrink) {
5639 rc = ext4_truncate(inode);
5640 if (rc)
5641 error = rc;
5643 up_write(&EXT4_I(inode)->i_mmap_sem);
5646 if (!error) {
5647 setattr_copy(inode, attr);
5648 mark_inode_dirty(inode);
5652 * If the call to ext4_truncate failed to get a transaction handle at
5653 * all, we need to clean up the in-core orphan list manually.
5655 if (orphan && inode->i_nlink)
5656 ext4_orphan_del(NULL, inode);
5658 if (!error && (ia_valid & ATTR_MODE))
5659 rc = posix_acl_chmod(inode, inode->i_mode);
5661 err_out:
5662 ext4_std_error(inode->i_sb, error);
5663 if (!error)
5664 error = rc;
5665 return error;
5668 int ext4_getattr(const struct path *path, struct kstat *stat,
5669 u32 request_mask, unsigned int query_flags)
5671 struct inode *inode = d_inode(path->dentry);
5672 struct ext4_inode *raw_inode;
5673 struct ext4_inode_info *ei = EXT4_I(inode);
5674 unsigned int flags;
5676 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5677 stat->result_mask |= STATX_BTIME;
5678 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5679 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5682 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5683 if (flags & EXT4_APPEND_FL)
5684 stat->attributes |= STATX_ATTR_APPEND;
5685 if (flags & EXT4_COMPR_FL)
5686 stat->attributes |= STATX_ATTR_COMPRESSED;
5687 if (flags & EXT4_ENCRYPT_FL)
5688 stat->attributes |= STATX_ATTR_ENCRYPTED;
5689 if (flags & EXT4_IMMUTABLE_FL)
5690 stat->attributes |= STATX_ATTR_IMMUTABLE;
5691 if (flags & EXT4_NODUMP_FL)
5692 stat->attributes |= STATX_ATTR_NODUMP;
5694 stat->attributes_mask |= (STATX_ATTR_APPEND |
5695 STATX_ATTR_COMPRESSED |
5696 STATX_ATTR_ENCRYPTED |
5697 STATX_ATTR_IMMUTABLE |
5698 STATX_ATTR_NODUMP);
5700 generic_fillattr(inode, stat);
5701 return 0;
5704 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5705 u32 request_mask, unsigned int query_flags)
5707 struct inode *inode = d_inode(path->dentry);
5708 u64 delalloc_blocks;
5710 ext4_getattr(path, stat, request_mask, query_flags);
5713 * If there is inline data in the inode, the inode will normally not
5714 * have data blocks allocated (it may have an external xattr block).
5715 * Report at least one sector for such files, so tools like tar, rsync,
5716 * others don't incorrectly think the file is completely sparse.
5718 if (unlikely(ext4_has_inline_data(inode)))
5719 stat->blocks += (stat->size + 511) >> 9;
5722 * We can't update i_blocks if the block allocation is delayed
5723 * otherwise in the case of system crash before the real block
5724 * allocation is done, we will have i_blocks inconsistent with
5725 * on-disk file blocks.
5726 * We always keep i_blocks updated together with real
5727 * allocation. But to not confuse with user, stat
5728 * will return the blocks that include the delayed allocation
5729 * blocks for this file.
5731 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5732 EXT4_I(inode)->i_reserved_data_blocks);
5733 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5734 return 0;
5737 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5738 int pextents)
5740 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5741 return ext4_ind_trans_blocks(inode, lblocks);
5742 return ext4_ext_index_trans_blocks(inode, pextents);
5746 * Account for index blocks, block groups bitmaps and block group
5747 * descriptor blocks if modify datablocks and index blocks
5748 * worse case, the indexs blocks spread over different block groups
5750 * If datablocks are discontiguous, they are possible to spread over
5751 * different block groups too. If they are contiguous, with flexbg,
5752 * they could still across block group boundary.
5754 * Also account for superblock, inode, quota and xattr blocks
5756 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5757 int pextents)
5759 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5760 int gdpblocks;
5761 int idxblocks;
5762 int ret = 0;
5765 * How many index blocks need to touch to map @lblocks logical blocks
5766 * to @pextents physical extents?
5768 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5770 ret = idxblocks;
5773 * Now let's see how many group bitmaps and group descriptors need
5774 * to account
5776 groups = idxblocks + pextents;
5777 gdpblocks = groups;
5778 if (groups > ngroups)
5779 groups = ngroups;
5780 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5781 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5783 /* bitmaps and block group descriptor blocks */
5784 ret += groups + gdpblocks;
5786 /* Blocks for super block, inode, quota and xattr blocks */
5787 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5789 return ret;
5793 * Calculate the total number of credits to reserve to fit
5794 * the modification of a single pages into a single transaction,
5795 * which may include multiple chunks of block allocations.
5797 * This could be called via ext4_write_begin()
5799 * We need to consider the worse case, when
5800 * one new block per extent.
5802 int ext4_writepage_trans_blocks(struct inode *inode)
5804 int bpp = ext4_journal_blocks_per_page(inode);
5805 int ret;
5807 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5809 /* Account for data blocks for journalled mode */
5810 if (ext4_should_journal_data(inode))
5811 ret += bpp;
5812 return ret;
5816 * Calculate the journal credits for a chunk of data modification.
5818 * This is called from DIO, fallocate or whoever calling
5819 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5821 * journal buffers for data blocks are not included here, as DIO
5822 * and fallocate do no need to journal data buffers.
5824 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5826 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5830 * The caller must have previously called ext4_reserve_inode_write().
5831 * Give this, we know that the caller already has write access to iloc->bh.
5833 int ext4_mark_iloc_dirty(handle_t *handle,
5834 struct inode *inode, struct ext4_iloc *iloc)
5836 int err = 0;
5838 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5839 return -EIO;
5841 if (IS_I_VERSION(inode))
5842 inode_inc_iversion(inode);
5844 /* the do_update_inode consumes one bh->b_count */
5845 get_bh(iloc->bh);
5847 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5848 err = ext4_do_update_inode(handle, inode, iloc);
5849 put_bh(iloc->bh);
5850 return err;
5854 * On success, We end up with an outstanding reference count against
5855 * iloc->bh. This _must_ be cleaned up later.
5859 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5860 struct ext4_iloc *iloc)
5862 int err;
5864 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5865 return -EIO;
5867 err = ext4_get_inode_loc(inode, iloc);
5868 if (!err) {
5869 BUFFER_TRACE(iloc->bh, "get_write_access");
5870 err = ext4_journal_get_write_access(handle, iloc->bh);
5871 if (err) {
5872 brelse(iloc->bh);
5873 iloc->bh = NULL;
5876 ext4_std_error(inode->i_sb, err);
5877 return err;
5880 static int __ext4_expand_extra_isize(struct inode *inode,
5881 unsigned int new_extra_isize,
5882 struct ext4_iloc *iloc,
5883 handle_t *handle, int *no_expand)
5885 struct ext4_inode *raw_inode;
5886 struct ext4_xattr_ibody_header *header;
5887 int error;
5889 raw_inode = ext4_raw_inode(iloc);
5891 header = IHDR(inode, raw_inode);
5893 /* No extended attributes present */
5894 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5895 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5896 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5897 EXT4_I(inode)->i_extra_isize, 0,
5898 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5899 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5900 return 0;
5903 /* try to expand with EAs present */
5904 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5905 raw_inode, handle);
5906 if (error) {
5908 * Inode size expansion failed; don't try again
5910 *no_expand = 1;
5913 return error;
5917 * Expand an inode by new_extra_isize bytes.
5918 * Returns 0 on success or negative error number on failure.
5920 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5921 unsigned int new_extra_isize,
5922 struct ext4_iloc iloc,
5923 handle_t *handle)
5925 int no_expand;
5926 int error;
5928 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5929 return -EOVERFLOW;
5932 * In nojournal mode, we can immediately attempt to expand
5933 * the inode. When journaled, we first need to obtain extra
5934 * buffer credits since we may write into the EA block
5935 * with this same handle. If journal_extend fails, then it will
5936 * only result in a minor loss of functionality for that inode.
5937 * If this is felt to be critical, then e2fsck should be run to
5938 * force a large enough s_min_extra_isize.
5940 if (ext4_handle_valid(handle) &&
5941 jbd2_journal_extend(handle,
5942 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5943 return -ENOSPC;
5945 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5946 return -EBUSY;
5948 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5949 handle, &no_expand);
5950 ext4_write_unlock_xattr(inode, &no_expand);
5952 return error;
5955 int ext4_expand_extra_isize(struct inode *inode,
5956 unsigned int new_extra_isize,
5957 struct ext4_iloc *iloc)
5959 handle_t *handle;
5960 int no_expand;
5961 int error, rc;
5963 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5964 brelse(iloc->bh);
5965 return -EOVERFLOW;
5968 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5969 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5970 if (IS_ERR(handle)) {
5971 error = PTR_ERR(handle);
5972 brelse(iloc->bh);
5973 return error;
5976 ext4_write_lock_xattr(inode, &no_expand);
5978 BUFFER_TRACE(iloc.bh, "get_write_access");
5979 error = ext4_journal_get_write_access(handle, iloc->bh);
5980 if (error) {
5981 brelse(iloc->bh);
5982 goto out_stop;
5985 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5986 handle, &no_expand);
5988 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5989 if (!error)
5990 error = rc;
5992 ext4_write_unlock_xattr(inode, &no_expand);
5993 out_stop:
5994 ext4_journal_stop(handle);
5995 return error;
5999 * What we do here is to mark the in-core inode as clean with respect to inode
6000 * dirtiness (it may still be data-dirty).
6001 * This means that the in-core inode may be reaped by prune_icache
6002 * without having to perform any I/O. This is a very good thing,
6003 * because *any* task may call prune_icache - even ones which
6004 * have a transaction open against a different journal.
6006 * Is this cheating? Not really. Sure, we haven't written the
6007 * inode out, but prune_icache isn't a user-visible syncing function.
6008 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6009 * we start and wait on commits.
6011 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6013 struct ext4_iloc iloc;
6014 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6015 int err;
6017 might_sleep();
6018 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6019 err = ext4_reserve_inode_write(handle, inode, &iloc);
6020 if (err)
6021 return err;
6023 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6024 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6025 iloc, handle);
6027 return ext4_mark_iloc_dirty(handle, inode, &iloc);
6031 * ext4_dirty_inode() is called from __mark_inode_dirty()
6033 * We're really interested in the case where a file is being extended.
6034 * i_size has been changed by generic_commit_write() and we thus need
6035 * to include the updated inode in the current transaction.
6037 * Also, dquot_alloc_block() will always dirty the inode when blocks
6038 * are allocated to the file.
6040 * If the inode is marked synchronous, we don't honour that here - doing
6041 * so would cause a commit on atime updates, which we don't bother doing.
6042 * We handle synchronous inodes at the highest possible level.
6044 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
6045 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6046 * to copy into the on-disk inode structure are the timestamp files.
6048 void ext4_dirty_inode(struct inode *inode, int flags)
6050 handle_t *handle;
6052 if (flags == I_DIRTY_TIME)
6053 return;
6054 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6055 if (IS_ERR(handle))
6056 goto out;
6058 ext4_mark_inode_dirty(handle, inode);
6060 ext4_journal_stop(handle);
6061 out:
6062 return;
6065 #if 0
6067 * Bind an inode's backing buffer_head into this transaction, to prevent
6068 * it from being flushed to disk early. Unlike
6069 * ext4_reserve_inode_write, this leaves behind no bh reference and
6070 * returns no iloc structure, so the caller needs to repeat the iloc
6071 * lookup to mark the inode dirty later.
6073 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
6075 struct ext4_iloc iloc;
6077 int err = 0;
6078 if (handle) {
6079 err = ext4_get_inode_loc(inode, &iloc);
6080 if (!err) {
6081 BUFFER_TRACE(iloc.bh, "get_write_access");
6082 err = jbd2_journal_get_write_access(handle, iloc.bh);
6083 if (!err)
6084 err = ext4_handle_dirty_metadata(handle,
6085 NULL,
6086 iloc.bh);
6087 brelse(iloc.bh);
6090 ext4_std_error(inode->i_sb, err);
6091 return err;
6093 #endif
6095 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6097 journal_t *journal;
6098 handle_t *handle;
6099 int err;
6100 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6103 * We have to be very careful here: changing a data block's
6104 * journaling status dynamically is dangerous. If we write a
6105 * data block to the journal, change the status and then delete
6106 * that block, we risk forgetting to revoke the old log record
6107 * from the journal and so a subsequent replay can corrupt data.
6108 * So, first we make sure that the journal is empty and that
6109 * nobody is changing anything.
6112 journal = EXT4_JOURNAL(inode);
6113 if (!journal)
6114 return 0;
6115 if (is_journal_aborted(journal))
6116 return -EROFS;
6118 /* Wait for all existing dio workers */
6119 inode_dio_wait(inode);
6122 * Before flushing the journal and switching inode's aops, we have
6123 * to flush all dirty data the inode has. There can be outstanding
6124 * delayed allocations, there can be unwritten extents created by
6125 * fallocate or buffered writes in dioread_nolock mode covered by
6126 * dirty data which can be converted only after flushing the dirty
6127 * data (and journalled aops don't know how to handle these cases).
6129 if (val) {
6130 down_write(&EXT4_I(inode)->i_mmap_sem);
6131 err = filemap_write_and_wait(inode->i_mapping);
6132 if (err < 0) {
6133 up_write(&EXT4_I(inode)->i_mmap_sem);
6134 return err;
6138 percpu_down_write(&sbi->s_journal_flag_rwsem);
6139 jbd2_journal_lock_updates(journal);
6142 * OK, there are no updates running now, and all cached data is
6143 * synced to disk. We are now in a completely consistent state
6144 * which doesn't have anything in the journal, and we know that
6145 * no filesystem updates are running, so it is safe to modify
6146 * the inode's in-core data-journaling state flag now.
6149 if (val)
6150 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6151 else {
6152 err = jbd2_journal_flush(journal);
6153 if (err < 0) {
6154 jbd2_journal_unlock_updates(journal);
6155 percpu_up_write(&sbi->s_journal_flag_rwsem);
6156 return err;
6158 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6160 ext4_set_aops(inode);
6162 jbd2_journal_unlock_updates(journal);
6163 percpu_up_write(&sbi->s_journal_flag_rwsem);
6165 if (val)
6166 up_write(&EXT4_I(inode)->i_mmap_sem);
6168 /* Finally we can mark the inode as dirty. */
6170 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6171 if (IS_ERR(handle))
6172 return PTR_ERR(handle);
6174 err = ext4_mark_inode_dirty(handle, inode);
6175 ext4_handle_sync(handle);
6176 ext4_journal_stop(handle);
6177 ext4_std_error(inode->i_sb, err);
6179 return err;
6182 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6184 return !buffer_mapped(bh);
6187 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6189 struct vm_area_struct *vma = vmf->vma;
6190 struct page *page = vmf->page;
6191 loff_t size;
6192 unsigned long len;
6193 int err;
6194 vm_fault_t ret;
6195 struct file *file = vma->vm_file;
6196 struct inode *inode = file_inode(file);
6197 struct address_space *mapping = inode->i_mapping;
6198 handle_t *handle;
6199 get_block_t *get_block;
6200 int retries = 0;
6202 sb_start_pagefault(inode->i_sb);
6203 file_update_time(vma->vm_file);
6205 down_read(&EXT4_I(inode)->i_mmap_sem);
6207 err = ext4_convert_inline_data(inode);
6208 if (err)
6209 goto out_ret;
6211 /* Delalloc case is easy... */
6212 if (test_opt(inode->i_sb, DELALLOC) &&
6213 !ext4_should_journal_data(inode) &&
6214 !ext4_nonda_switch(inode->i_sb)) {
6215 do {
6216 err = block_page_mkwrite(vma, vmf,
6217 ext4_da_get_block_prep);
6218 } while (err == -ENOSPC &&
6219 ext4_should_retry_alloc(inode->i_sb, &retries));
6220 goto out_ret;
6223 lock_page(page);
6224 size = i_size_read(inode);
6225 /* Page got truncated from under us? */
6226 if (page->mapping != mapping || page_offset(page) > size) {
6227 unlock_page(page);
6228 ret = VM_FAULT_NOPAGE;
6229 goto out;
6232 if (page->index == size >> PAGE_SHIFT)
6233 len = size & ~PAGE_MASK;
6234 else
6235 len = PAGE_SIZE;
6237 * Return if we have all the buffers mapped. This avoids the need to do
6238 * journal_start/journal_stop which can block and take a long time
6240 if (page_has_buffers(page)) {
6241 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6242 0, len, NULL,
6243 ext4_bh_unmapped)) {
6244 /* Wait so that we don't change page under IO */
6245 wait_for_stable_page(page);
6246 ret = VM_FAULT_LOCKED;
6247 goto out;
6250 unlock_page(page);
6251 /* OK, we need to fill the hole... */
6252 if (ext4_should_dioread_nolock(inode))
6253 get_block = ext4_get_block_unwritten;
6254 else
6255 get_block = ext4_get_block;
6256 retry_alloc:
6257 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6258 ext4_writepage_trans_blocks(inode));
6259 if (IS_ERR(handle)) {
6260 ret = VM_FAULT_SIGBUS;
6261 goto out;
6263 err = block_page_mkwrite(vma, vmf, get_block);
6264 if (!err && ext4_should_journal_data(inode)) {
6265 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6266 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6267 unlock_page(page);
6268 ret = VM_FAULT_SIGBUS;
6269 ext4_journal_stop(handle);
6270 goto out;
6272 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6274 ext4_journal_stop(handle);
6275 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6276 goto retry_alloc;
6277 out_ret:
6278 ret = block_page_mkwrite_return(err);
6279 out:
6280 up_read(&EXT4_I(inode)->i_mmap_sem);
6281 sb_end_pagefault(inode->i_sb);
6282 return ret;
6285 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6287 struct inode *inode = file_inode(vmf->vma->vm_file);
6288 vm_fault_t ret;
6290 down_read(&EXT4_I(inode)->i_mmap_sem);
6291 ret = filemap_fault(vmf);
6292 up_read(&EXT4_I(inode)->i_mmap_sem);
6294 return ret;