1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
21 #include <trace/events/f2fs.h>
23 static struct kmem_cache
*ino_entry_slab
;
24 struct kmem_cache
*f2fs_inode_entry_slab
;
26 void f2fs_stop_checkpoint(struct f2fs_sb_info
*sbi
, bool end_io
)
28 f2fs_build_fault_attr(sbi
, 0, 0);
29 set_ckpt_flags(sbi
, CP_ERROR_FLAG
);
31 f2fs_flush_merged_writes(sbi
);
35 * We guarantee no failure on the returned page.
37 struct page
*f2fs_grab_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
39 struct address_space
*mapping
= META_MAPPING(sbi
);
40 struct page
*page
= NULL
;
42 page
= f2fs_grab_cache_page(mapping
, index
, false);
47 f2fs_wait_on_page_writeback(page
, META
, true);
48 if (!PageUptodate(page
))
49 SetPageUptodate(page
);
54 * We guarantee no failure on the returned page.
56 static struct page
*__get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
,
59 struct address_space
*mapping
= META_MAPPING(sbi
);
61 struct f2fs_io_info fio
= {
65 .op_flags
= REQ_META
| REQ_PRIO
,
68 .encrypted_page
= NULL
,
73 if (unlikely(!is_meta
))
74 fio
.op_flags
&= ~REQ_META
;
76 page
= f2fs_grab_cache_page(mapping
, index
, false);
81 if (PageUptodate(page
))
86 err
= f2fs_submit_page_bio(&fio
);
88 f2fs_put_page(page
, 1);
93 if (unlikely(page
->mapping
!= mapping
)) {
94 f2fs_put_page(page
, 1);
98 if (unlikely(!PageUptodate(page
))) {
99 f2fs_put_page(page
, 1);
100 return ERR_PTR(-EIO
);
106 struct page
*f2fs_get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
108 return __get_meta_page(sbi
, index
, true);
111 struct page
*f2fs_get_meta_page_nofail(struct f2fs_sb_info
*sbi
, pgoff_t index
)
117 page
= __get_meta_page(sbi
, index
, true);
119 if (PTR_ERR(page
) == -EIO
&&
120 ++count
<= DEFAULT_RETRY_IO_COUNT
)
122 f2fs_stop_checkpoint(sbi
, false);
128 struct page
*f2fs_get_tmp_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
130 return __get_meta_page(sbi
, index
, false);
133 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info
*sbi
,
134 block_t blkaddr
, int type
)
140 if (unlikely(blkaddr
>= SIT_BLK_CNT(sbi
)))
144 if (unlikely(blkaddr
>= MAIN_BLKADDR(sbi
) ||
145 blkaddr
< SM_I(sbi
)->ssa_blkaddr
))
149 if (unlikely(blkaddr
>= SIT_I(sbi
)->sit_base_addr
||
150 blkaddr
< __start_cp_addr(sbi
)))
155 if (unlikely(blkaddr
>= MAX_BLKADDR(sbi
) ||
156 blkaddr
< MAIN_BLKADDR(sbi
))) {
157 if (type
== DATA_GENERIC
) {
158 f2fs_msg(sbi
->sb
, KERN_WARNING
,
159 "access invalid blkaddr:%u", blkaddr
);
166 if (unlikely(blkaddr
< SEG0_BLKADDR(sbi
) ||
167 blkaddr
>= MAIN_BLKADDR(sbi
)))
178 * Readahead CP/NAT/SIT/SSA pages
180 int f2fs_ra_meta_pages(struct f2fs_sb_info
*sbi
, block_t start
, int nrpages
,
184 block_t blkno
= start
;
185 struct f2fs_io_info fio
= {
189 .op_flags
= sync
? (REQ_META
| REQ_PRIO
) : REQ_RAHEAD
,
190 .encrypted_page
= NULL
,
192 .is_meta
= (type
!= META_POR
),
194 struct blk_plug plug
;
196 if (unlikely(type
== META_POR
))
197 fio
.op_flags
&= ~REQ_META
;
199 blk_start_plug(&plug
);
200 for (; nrpages
-- > 0; blkno
++) {
202 if (!f2fs_is_valid_blkaddr(sbi
, blkno
, type
))
207 if (unlikely(blkno
>=
208 NAT_BLOCK_OFFSET(NM_I(sbi
)->max_nid
)))
210 /* get nat block addr */
211 fio
.new_blkaddr
= current_nat_addr(sbi
,
212 blkno
* NAT_ENTRY_PER_BLOCK
);
215 /* get sit block addr */
216 fio
.new_blkaddr
= current_sit_addr(sbi
,
217 blkno
* SIT_ENTRY_PER_BLOCK
);
222 fio
.new_blkaddr
= blkno
;
228 page
= f2fs_grab_cache_page(META_MAPPING(sbi
),
229 fio
.new_blkaddr
, false);
232 if (PageUptodate(page
)) {
233 f2fs_put_page(page
, 1);
238 f2fs_submit_page_bio(&fio
);
239 f2fs_put_page(page
, 0);
242 blk_finish_plug(&plug
);
243 return blkno
- start
;
246 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info
*sbi
, pgoff_t index
)
249 bool readahead
= false;
251 page
= find_get_page(META_MAPPING(sbi
), index
);
252 if (!page
|| !PageUptodate(page
))
254 f2fs_put_page(page
, 0);
257 f2fs_ra_meta_pages(sbi
, index
, BIO_MAX_PAGES
, META_POR
, true);
260 static int __f2fs_write_meta_page(struct page
*page
,
261 struct writeback_control
*wbc
,
262 enum iostat_type io_type
)
264 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
266 trace_f2fs_writepage(page
, META
);
268 if (unlikely(f2fs_cp_error(sbi
)))
270 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
272 if (wbc
->for_reclaim
&& page
->index
< GET_SUM_BLOCK(sbi
, 0))
275 f2fs_do_write_meta_page(sbi
, page
, io_type
);
276 dec_page_count(sbi
, F2FS_DIRTY_META
);
278 if (wbc
->for_reclaim
)
279 f2fs_submit_merged_write_cond(sbi
, NULL
, page
, 0, META
);
283 if (unlikely(f2fs_cp_error(sbi
)))
284 f2fs_submit_merged_write(sbi
, META
);
289 redirty_page_for_writepage(wbc
, page
);
290 return AOP_WRITEPAGE_ACTIVATE
;
293 static int f2fs_write_meta_page(struct page
*page
,
294 struct writeback_control
*wbc
)
296 return __f2fs_write_meta_page(page
, wbc
, FS_META_IO
);
299 static int f2fs_write_meta_pages(struct address_space
*mapping
,
300 struct writeback_control
*wbc
)
302 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
305 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
308 /* collect a number of dirty meta pages and write together */
309 if (wbc
->for_kupdate
||
310 get_pages(sbi
, F2FS_DIRTY_META
) < nr_pages_to_skip(sbi
, META
))
313 /* if locked failed, cp will flush dirty pages instead */
314 if (!mutex_trylock(&sbi
->cp_mutex
))
317 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
318 diff
= nr_pages_to_write(sbi
, META
, wbc
);
319 written
= f2fs_sync_meta_pages(sbi
, META
, wbc
->nr_to_write
, FS_META_IO
);
320 mutex_unlock(&sbi
->cp_mutex
);
321 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- written
- diff
);
325 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_META
);
326 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
330 long f2fs_sync_meta_pages(struct f2fs_sb_info
*sbi
, enum page_type type
,
331 long nr_to_write
, enum iostat_type io_type
)
333 struct address_space
*mapping
= META_MAPPING(sbi
);
334 pgoff_t index
= 0, prev
= ULONG_MAX
;
338 struct writeback_control wbc
= {
341 struct blk_plug plug
;
345 blk_start_plug(&plug
);
347 while ((nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
348 PAGECACHE_TAG_DIRTY
))) {
351 for (i
= 0; i
< nr_pages
; i
++) {
352 struct page
*page
= pvec
.pages
[i
];
354 if (prev
== ULONG_MAX
)
355 prev
= page
->index
- 1;
356 if (nr_to_write
!= LONG_MAX
&& page
->index
!= prev
+ 1) {
357 pagevec_release(&pvec
);
363 if (unlikely(page
->mapping
!= mapping
)) {
368 if (!PageDirty(page
)) {
369 /* someone wrote it for us */
370 goto continue_unlock
;
373 f2fs_wait_on_page_writeback(page
, META
, true);
375 BUG_ON(PageWriteback(page
));
376 if (!clear_page_dirty_for_io(page
))
377 goto continue_unlock
;
379 if (__f2fs_write_meta_page(page
, &wbc
, io_type
)) {
385 if (unlikely(nwritten
>= nr_to_write
))
388 pagevec_release(&pvec
);
393 f2fs_submit_merged_write(sbi
, type
);
395 blk_finish_plug(&plug
);
400 static int f2fs_set_meta_page_dirty(struct page
*page
)
402 trace_f2fs_set_page_dirty(page
, META
);
404 if (!PageUptodate(page
))
405 SetPageUptodate(page
);
406 if (!PageDirty(page
)) {
407 __set_page_dirty_nobuffers(page
);
408 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_META
);
409 SetPagePrivate(page
);
410 f2fs_trace_pid(page
);
416 const struct address_space_operations f2fs_meta_aops
= {
417 .writepage
= f2fs_write_meta_page
,
418 .writepages
= f2fs_write_meta_pages
,
419 .set_page_dirty
= f2fs_set_meta_page_dirty
,
420 .invalidatepage
= f2fs_invalidate_page
,
421 .releasepage
= f2fs_release_page
,
422 #ifdef CONFIG_MIGRATION
423 .migratepage
= f2fs_migrate_page
,
427 static void __add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
,
428 unsigned int devidx
, int type
)
430 struct inode_management
*im
= &sbi
->im
[type
];
431 struct ino_entry
*e
, *tmp
;
433 tmp
= f2fs_kmem_cache_alloc(ino_entry_slab
, GFP_NOFS
);
435 radix_tree_preload(GFP_NOFS
| __GFP_NOFAIL
);
437 spin_lock(&im
->ino_lock
);
438 e
= radix_tree_lookup(&im
->ino_root
, ino
);
441 if (unlikely(radix_tree_insert(&im
->ino_root
, ino
, e
)))
444 memset(e
, 0, sizeof(struct ino_entry
));
447 list_add_tail(&e
->list
, &im
->ino_list
);
448 if (type
!= ORPHAN_INO
)
452 if (type
== FLUSH_INO
)
453 f2fs_set_bit(devidx
, (char *)&e
->dirty_device
);
455 spin_unlock(&im
->ino_lock
);
456 radix_tree_preload_end();
459 kmem_cache_free(ino_entry_slab
, tmp
);
462 static void __remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
464 struct inode_management
*im
= &sbi
->im
[type
];
467 spin_lock(&im
->ino_lock
);
468 e
= radix_tree_lookup(&im
->ino_root
, ino
);
471 radix_tree_delete(&im
->ino_root
, ino
);
473 spin_unlock(&im
->ino_lock
);
474 kmem_cache_free(ino_entry_slab
, e
);
477 spin_unlock(&im
->ino_lock
);
480 void f2fs_add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
482 /* add new dirty ino entry into list */
483 __add_ino_entry(sbi
, ino
, 0, type
);
486 void f2fs_remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
488 /* remove dirty ino entry from list */
489 __remove_ino_entry(sbi
, ino
, type
);
492 /* mode should be APPEND_INO or UPDATE_INO */
493 bool f2fs_exist_written_data(struct f2fs_sb_info
*sbi
, nid_t ino
, int mode
)
495 struct inode_management
*im
= &sbi
->im
[mode
];
498 spin_lock(&im
->ino_lock
);
499 e
= radix_tree_lookup(&im
->ino_root
, ino
);
500 spin_unlock(&im
->ino_lock
);
501 return e
? true : false;
504 void f2fs_release_ino_entry(struct f2fs_sb_info
*sbi
, bool all
)
506 struct ino_entry
*e
, *tmp
;
509 for (i
= all
? ORPHAN_INO
: APPEND_INO
; i
< MAX_INO_ENTRY
; i
++) {
510 struct inode_management
*im
= &sbi
->im
[i
];
512 spin_lock(&im
->ino_lock
);
513 list_for_each_entry_safe(e
, tmp
, &im
->ino_list
, list
) {
515 radix_tree_delete(&im
->ino_root
, e
->ino
);
516 kmem_cache_free(ino_entry_slab
, e
);
519 spin_unlock(&im
->ino_lock
);
523 void f2fs_set_dirty_device(struct f2fs_sb_info
*sbi
, nid_t ino
,
524 unsigned int devidx
, int type
)
526 __add_ino_entry(sbi
, ino
, devidx
, type
);
529 bool f2fs_is_dirty_device(struct f2fs_sb_info
*sbi
, nid_t ino
,
530 unsigned int devidx
, int type
)
532 struct inode_management
*im
= &sbi
->im
[type
];
534 bool is_dirty
= false;
536 spin_lock(&im
->ino_lock
);
537 e
= radix_tree_lookup(&im
->ino_root
, ino
);
538 if (e
&& f2fs_test_bit(devidx
, (char *)&e
->dirty_device
))
540 spin_unlock(&im
->ino_lock
);
544 int f2fs_acquire_orphan_inode(struct f2fs_sb_info
*sbi
)
546 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
549 spin_lock(&im
->ino_lock
);
551 if (time_to_inject(sbi
, FAULT_ORPHAN
)) {
552 spin_unlock(&im
->ino_lock
);
553 f2fs_show_injection_info(FAULT_ORPHAN
);
557 if (unlikely(im
->ino_num
>= sbi
->max_orphans
))
561 spin_unlock(&im
->ino_lock
);
566 void f2fs_release_orphan_inode(struct f2fs_sb_info
*sbi
)
568 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
570 spin_lock(&im
->ino_lock
);
571 f2fs_bug_on(sbi
, im
->ino_num
== 0);
573 spin_unlock(&im
->ino_lock
);
576 void f2fs_add_orphan_inode(struct inode
*inode
)
578 /* add new orphan ino entry into list */
579 __add_ino_entry(F2FS_I_SB(inode
), inode
->i_ino
, 0, ORPHAN_INO
);
580 f2fs_update_inode_page(inode
);
583 void f2fs_remove_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
585 /* remove orphan entry from orphan list */
586 __remove_ino_entry(sbi
, ino
, ORPHAN_INO
);
589 static int recover_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
595 inode
= f2fs_iget_retry(sbi
->sb
, ino
);
598 * there should be a bug that we can't find the entry
601 f2fs_bug_on(sbi
, PTR_ERR(inode
) == -ENOENT
);
602 return PTR_ERR(inode
);
605 err
= dquot_initialize(inode
);
613 /* truncate all the data during iput */
616 err
= f2fs_get_node_info(sbi
, ino
, &ni
);
620 /* ENOMEM was fully retried in f2fs_evict_inode. */
621 if (ni
.blk_addr
!= NULL_ADDR
) {
628 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
629 f2fs_msg(sbi
->sb
, KERN_WARNING
,
630 "%s: orphan failed (ino=%x), run fsck to fix.",
635 int f2fs_recover_orphan_inodes(struct f2fs_sb_info
*sbi
)
637 block_t start_blk
, orphan_blocks
, i
, j
;
638 unsigned int s_flags
= sbi
->sb
->s_flags
;
644 if (!is_set_ckpt_flags(sbi
, CP_ORPHAN_PRESENT_FLAG
))
647 if (s_flags
& SB_RDONLY
) {
648 f2fs_msg(sbi
->sb
, KERN_INFO
, "orphan cleanup on readonly fs");
649 sbi
->sb
->s_flags
&= ~SB_RDONLY
;
653 /* Needed for iput() to work correctly and not trash data */
654 sbi
->sb
->s_flags
|= SB_ACTIVE
;
657 * Turn on quotas which were not enabled for read-only mounts if
658 * filesystem has quota feature, so that they are updated correctly.
660 quota_enabled
= f2fs_enable_quota_files(sbi
, s_flags
& SB_RDONLY
);
663 start_blk
= __start_cp_addr(sbi
) + 1 + __cp_payload(sbi
);
664 orphan_blocks
= __start_sum_addr(sbi
) - 1 - __cp_payload(sbi
);
666 f2fs_ra_meta_pages(sbi
, start_blk
, orphan_blocks
, META_CP
, true);
668 for (i
= 0; i
< orphan_blocks
; i
++) {
670 struct f2fs_orphan_block
*orphan_blk
;
672 page
= f2fs_get_meta_page(sbi
, start_blk
+ i
);
678 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
679 for (j
= 0; j
< le32_to_cpu(orphan_blk
->entry_count
); j
++) {
680 nid_t ino
= le32_to_cpu(orphan_blk
->ino
[j
]);
681 err
= recover_orphan_inode(sbi
, ino
);
683 f2fs_put_page(page
, 1);
687 f2fs_put_page(page
, 1);
689 /* clear Orphan Flag */
690 clear_ckpt_flags(sbi
, CP_ORPHAN_PRESENT_FLAG
);
692 set_sbi_flag(sbi
, SBI_IS_RECOVERED
);
695 /* Turn quotas off */
697 f2fs_quota_off_umount(sbi
->sb
);
699 sbi
->sb
->s_flags
= s_flags
; /* Restore SB_RDONLY status */
704 static void write_orphan_inodes(struct f2fs_sb_info
*sbi
, block_t start_blk
)
706 struct list_head
*head
;
707 struct f2fs_orphan_block
*orphan_blk
= NULL
;
708 unsigned int nentries
= 0;
709 unsigned short index
= 1;
710 unsigned short orphan_blocks
;
711 struct page
*page
= NULL
;
712 struct ino_entry
*orphan
= NULL
;
713 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
715 orphan_blocks
= GET_ORPHAN_BLOCKS(im
->ino_num
);
718 * we don't need to do spin_lock(&im->ino_lock) here, since all the
719 * orphan inode operations are covered under f2fs_lock_op().
720 * And, spin_lock should be avoided due to page operations below.
722 head
= &im
->ino_list
;
724 /* loop for each orphan inode entry and write them in Jornal block */
725 list_for_each_entry(orphan
, head
, list
) {
727 page
= f2fs_grab_meta_page(sbi
, start_blk
++);
729 (struct f2fs_orphan_block
*)page_address(page
);
730 memset(orphan_blk
, 0, sizeof(*orphan_blk
));
733 orphan_blk
->ino
[nentries
++] = cpu_to_le32(orphan
->ino
);
735 if (nentries
== F2FS_ORPHANS_PER_BLOCK
) {
737 * an orphan block is full of 1020 entries,
738 * then we need to flush current orphan blocks
739 * and bring another one in memory
741 orphan_blk
->blk_addr
= cpu_to_le16(index
);
742 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
743 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
744 set_page_dirty(page
);
745 f2fs_put_page(page
, 1);
753 orphan_blk
->blk_addr
= cpu_to_le16(index
);
754 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
755 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
756 set_page_dirty(page
);
757 f2fs_put_page(page
, 1);
761 static int get_checkpoint_version(struct f2fs_sb_info
*sbi
, block_t cp_addr
,
762 struct f2fs_checkpoint
**cp_block
, struct page
**cp_page
,
763 unsigned long long *version
)
765 unsigned long blk_size
= sbi
->blocksize
;
766 size_t crc_offset
= 0;
769 *cp_page
= f2fs_get_meta_page(sbi
, cp_addr
);
770 if (IS_ERR(*cp_page
))
771 return PTR_ERR(*cp_page
);
773 *cp_block
= (struct f2fs_checkpoint
*)page_address(*cp_page
);
775 crc_offset
= le32_to_cpu((*cp_block
)->checksum_offset
);
776 if (crc_offset
> (blk_size
- sizeof(__le32
))) {
777 f2fs_put_page(*cp_page
, 1);
778 f2fs_msg(sbi
->sb
, KERN_WARNING
,
779 "invalid crc_offset: %zu", crc_offset
);
783 crc
= cur_cp_crc(*cp_block
);
784 if (!f2fs_crc_valid(sbi
, crc
, *cp_block
, crc_offset
)) {
785 f2fs_put_page(*cp_page
, 1);
786 f2fs_msg(sbi
->sb
, KERN_WARNING
, "invalid crc value");
790 *version
= cur_cp_version(*cp_block
);
794 static struct page
*validate_checkpoint(struct f2fs_sb_info
*sbi
,
795 block_t cp_addr
, unsigned long long *version
)
797 struct page
*cp_page_1
= NULL
, *cp_page_2
= NULL
;
798 struct f2fs_checkpoint
*cp_block
= NULL
;
799 unsigned long long cur_version
= 0, pre_version
= 0;
802 err
= get_checkpoint_version(sbi
, cp_addr
, &cp_block
,
803 &cp_page_1
, version
);
807 if (le32_to_cpu(cp_block
->cp_pack_total_block_count
) >
808 sbi
->blocks_per_seg
) {
809 f2fs_msg(sbi
->sb
, KERN_WARNING
,
810 "invalid cp_pack_total_block_count:%u",
811 le32_to_cpu(cp_block
->cp_pack_total_block_count
));
814 pre_version
= *version
;
816 cp_addr
+= le32_to_cpu(cp_block
->cp_pack_total_block_count
) - 1;
817 err
= get_checkpoint_version(sbi
, cp_addr
, &cp_block
,
818 &cp_page_2
, version
);
821 cur_version
= *version
;
823 if (cur_version
== pre_version
) {
824 *version
= cur_version
;
825 f2fs_put_page(cp_page_2
, 1);
828 f2fs_put_page(cp_page_2
, 1);
830 f2fs_put_page(cp_page_1
, 1);
834 int f2fs_get_valid_checkpoint(struct f2fs_sb_info
*sbi
)
836 struct f2fs_checkpoint
*cp_block
;
837 struct f2fs_super_block
*fsb
= sbi
->raw_super
;
838 struct page
*cp1
, *cp2
, *cur_page
;
839 unsigned long blk_size
= sbi
->blocksize
;
840 unsigned long long cp1_version
= 0, cp2_version
= 0;
841 unsigned long long cp_start_blk_no
;
842 unsigned int cp_blks
= 1 + __cp_payload(sbi
);
846 sbi
->ckpt
= f2fs_kzalloc(sbi
, array_size(blk_size
, cp_blks
),
851 * Finding out valid cp block involves read both
852 * sets( cp pack1 and cp pack 2)
854 cp_start_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
855 cp1
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp1_version
);
857 /* The second checkpoint pack should start at the next segment */
858 cp_start_blk_no
+= ((unsigned long long)1) <<
859 le32_to_cpu(fsb
->log_blocks_per_seg
);
860 cp2
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp2_version
);
863 if (ver_after(cp2_version
, cp1_version
))
875 cp_block
= (struct f2fs_checkpoint
*)page_address(cur_page
);
876 memcpy(sbi
->ckpt
, cp_block
, blk_size
);
879 sbi
->cur_cp_pack
= 1;
881 sbi
->cur_cp_pack
= 2;
883 /* Sanity checking of checkpoint */
884 if (f2fs_sanity_check_ckpt(sbi
))
885 goto free_fail_no_cp
;
890 cp_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
892 cp_blk_no
+= 1 << le32_to_cpu(fsb
->log_blocks_per_seg
);
894 for (i
= 1; i
< cp_blks
; i
++) {
895 void *sit_bitmap_ptr
;
896 unsigned char *ckpt
= (unsigned char *)sbi
->ckpt
;
898 cur_page
= f2fs_get_meta_page(sbi
, cp_blk_no
+ i
);
899 if (IS_ERR(cur_page
))
900 goto free_fail_no_cp
;
901 sit_bitmap_ptr
= page_address(cur_page
);
902 memcpy(ckpt
+ i
* blk_size
, sit_bitmap_ptr
, blk_size
);
903 f2fs_put_page(cur_page
, 1);
906 f2fs_put_page(cp1
, 1);
907 f2fs_put_page(cp2
, 1);
911 f2fs_put_page(cp1
, 1);
912 f2fs_put_page(cp2
, 1);
918 static void __add_dirty_inode(struct inode
*inode
, enum inode_type type
)
920 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
921 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
923 if (is_inode_flag_set(inode
, flag
))
926 set_inode_flag(inode
, flag
);
927 if (!f2fs_is_volatile_file(inode
))
928 list_add_tail(&F2FS_I(inode
)->dirty_list
,
929 &sbi
->inode_list
[type
]);
930 stat_inc_dirty_inode(sbi
, type
);
933 static void __remove_dirty_inode(struct inode
*inode
, enum inode_type type
)
935 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
937 if (get_dirty_pages(inode
) || !is_inode_flag_set(inode
, flag
))
940 list_del_init(&F2FS_I(inode
)->dirty_list
);
941 clear_inode_flag(inode
, flag
);
942 stat_dec_dirty_inode(F2FS_I_SB(inode
), type
);
945 void f2fs_update_dirty_page(struct inode
*inode
, struct page
*page
)
947 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
948 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
950 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
951 !S_ISLNK(inode
->i_mode
))
954 spin_lock(&sbi
->inode_lock
[type
]);
955 if (type
!= FILE_INODE
|| test_opt(sbi
, DATA_FLUSH
))
956 __add_dirty_inode(inode
, type
);
957 inode_inc_dirty_pages(inode
);
958 spin_unlock(&sbi
->inode_lock
[type
]);
960 SetPagePrivate(page
);
961 f2fs_trace_pid(page
);
964 void f2fs_remove_dirty_inode(struct inode
*inode
)
966 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
967 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
969 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
970 !S_ISLNK(inode
->i_mode
))
973 if (type
== FILE_INODE
&& !test_opt(sbi
, DATA_FLUSH
))
976 spin_lock(&sbi
->inode_lock
[type
]);
977 __remove_dirty_inode(inode
, type
);
978 spin_unlock(&sbi
->inode_lock
[type
]);
981 int f2fs_sync_dirty_inodes(struct f2fs_sb_info
*sbi
, enum inode_type type
)
983 struct list_head
*head
;
985 struct f2fs_inode_info
*fi
;
986 bool is_dir
= (type
== DIR_INODE
);
987 unsigned long ino
= 0;
989 trace_f2fs_sync_dirty_inodes_enter(sbi
->sb
, is_dir
,
990 get_pages(sbi
, is_dir
?
991 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
993 if (unlikely(f2fs_cp_error(sbi
)))
996 spin_lock(&sbi
->inode_lock
[type
]);
998 head
= &sbi
->inode_list
[type
];
999 if (list_empty(head
)) {
1000 spin_unlock(&sbi
->inode_lock
[type
]);
1001 trace_f2fs_sync_dirty_inodes_exit(sbi
->sb
, is_dir
,
1002 get_pages(sbi
, is_dir
?
1003 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
1006 fi
= list_first_entry(head
, struct f2fs_inode_info
, dirty_list
);
1007 inode
= igrab(&fi
->vfs_inode
);
1008 spin_unlock(&sbi
->inode_lock
[type
]);
1010 unsigned long cur_ino
= inode
->i_ino
;
1013 F2FS_I(inode
)->cp_task
= current
;
1015 filemap_fdatawrite(inode
->i_mapping
);
1018 F2FS_I(inode
)->cp_task
= NULL
;
1021 /* We need to give cpu to another writers. */
1028 * We should submit bio, since it exists several
1029 * wribacking dentry pages in the freeing inode.
1031 f2fs_submit_merged_write(sbi
, DATA
);
1037 int f2fs_sync_inode_meta(struct f2fs_sb_info
*sbi
)
1039 struct list_head
*head
= &sbi
->inode_list
[DIRTY_META
];
1040 struct inode
*inode
;
1041 struct f2fs_inode_info
*fi
;
1042 s64 total
= get_pages(sbi
, F2FS_DIRTY_IMETA
);
1045 if (unlikely(f2fs_cp_error(sbi
)))
1048 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
1049 if (list_empty(head
)) {
1050 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
1053 fi
= list_first_entry(head
, struct f2fs_inode_info
,
1055 inode
= igrab(&fi
->vfs_inode
);
1056 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
1058 sync_inode_metadata(inode
, 0);
1060 /* it's on eviction */
1061 if (is_inode_flag_set(inode
, FI_DIRTY_INODE
))
1062 f2fs_update_inode_page(inode
);
1069 static void __prepare_cp_block(struct f2fs_sb_info
*sbi
)
1071 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1072 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1073 nid_t last_nid
= nm_i
->next_scan_nid
;
1075 next_free_nid(sbi
, &last_nid
);
1076 ckpt
->valid_block_count
= cpu_to_le64(valid_user_blocks(sbi
));
1077 ckpt
->valid_node_count
= cpu_to_le32(valid_node_count(sbi
));
1078 ckpt
->valid_inode_count
= cpu_to_le32(valid_inode_count(sbi
));
1079 ckpt
->next_free_nid
= cpu_to_le32(last_nid
);
1082 static bool __need_flush_quota(struct f2fs_sb_info
*sbi
)
1084 if (!is_journalled_quota(sbi
))
1086 if (is_sbi_flag_set(sbi
, SBI_QUOTA_SKIP_FLUSH
))
1088 if (is_sbi_flag_set(sbi
, SBI_QUOTA_NEED_REPAIR
))
1090 if (is_sbi_flag_set(sbi
, SBI_QUOTA_NEED_FLUSH
))
1092 if (get_pages(sbi
, F2FS_DIRTY_QDATA
))
1098 * Freeze all the FS-operations for checkpoint.
1100 static int block_operations(struct f2fs_sb_info
*sbi
)
1102 struct writeback_control wbc
= {
1103 .sync_mode
= WB_SYNC_ALL
,
1104 .nr_to_write
= LONG_MAX
,
1107 struct blk_plug plug
;
1108 int err
= 0, cnt
= 0;
1110 blk_start_plug(&plug
);
1113 if (__need_flush_quota(sbi
)) {
1116 if (++cnt
> DEFAULT_RETRY_QUOTA_FLUSH_COUNT
) {
1117 set_sbi_flag(sbi
, SBI_QUOTA_SKIP_FLUSH
);
1119 goto retry_flush_dents
;
1121 clear_sbi_flag(sbi
, SBI_QUOTA_NEED_FLUSH
);
1123 /* only failed during mount/umount/freeze/quotactl */
1124 locked
= down_read_trylock(&sbi
->sb
->s_umount
);
1125 f2fs_quota_sync(sbi
->sb
, -1);
1127 up_read(&sbi
->sb
->s_umount
);
1131 if (__need_flush_quota(sbi
)) {
1132 f2fs_unlock_all(sbi
);
1134 goto retry_flush_quotas
;
1138 /* write all the dirty dentry pages */
1139 if (get_pages(sbi
, F2FS_DIRTY_DENTS
)) {
1140 f2fs_unlock_all(sbi
);
1141 err
= f2fs_sync_dirty_inodes(sbi
, DIR_INODE
);
1145 goto retry_flush_quotas
;
1149 * POR: we should ensure that there are no dirty node pages
1150 * until finishing nat/sit flush. inode->i_blocks can be updated.
1152 down_write(&sbi
->node_change
);
1154 if (__need_flush_quota(sbi
)) {
1155 up_write(&sbi
->node_change
);
1156 f2fs_unlock_all(sbi
);
1157 goto retry_flush_quotas
;
1160 if (get_pages(sbi
, F2FS_DIRTY_IMETA
)) {
1161 up_write(&sbi
->node_change
);
1162 f2fs_unlock_all(sbi
);
1163 err
= f2fs_sync_inode_meta(sbi
);
1167 goto retry_flush_quotas
;
1171 down_write(&sbi
->node_write
);
1173 if (get_pages(sbi
, F2FS_DIRTY_NODES
)) {
1174 up_write(&sbi
->node_write
);
1175 atomic_inc(&sbi
->wb_sync_req
[NODE
]);
1176 err
= f2fs_sync_node_pages(sbi
, &wbc
, false, FS_CP_NODE_IO
);
1177 atomic_dec(&sbi
->wb_sync_req
[NODE
]);
1179 up_write(&sbi
->node_change
);
1180 f2fs_unlock_all(sbi
);
1184 goto retry_flush_nodes
;
1188 * sbi->node_change is used only for AIO write_begin path which produces
1189 * dirty node blocks and some checkpoint values by block allocation.
1191 __prepare_cp_block(sbi
);
1192 up_write(&sbi
->node_change
);
1194 blk_finish_plug(&plug
);
1198 static void unblock_operations(struct f2fs_sb_info
*sbi
)
1200 up_write(&sbi
->node_write
);
1201 f2fs_unlock_all(sbi
);
1204 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info
*sbi
)
1209 prepare_to_wait(&sbi
->cp_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
1211 if (!get_pages(sbi
, F2FS_WB_CP_DATA
))
1214 if (unlikely(f2fs_cp_error(sbi
)))
1217 io_schedule_timeout(5*HZ
);
1219 finish_wait(&sbi
->cp_wait
, &wait
);
1222 static void update_ckpt_flags(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1224 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
;
1225 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1226 unsigned long flags
;
1228 spin_lock_irqsave(&sbi
->cp_lock
, flags
);
1230 if ((cpc
->reason
& CP_UMOUNT
) &&
1231 le32_to_cpu(ckpt
->cp_pack_total_block_count
) >
1232 sbi
->blocks_per_seg
- NM_I(sbi
)->nat_bits_blocks
)
1233 disable_nat_bits(sbi
, false);
1235 if (cpc
->reason
& CP_TRIMMED
)
1236 __set_ckpt_flags(ckpt
, CP_TRIMMED_FLAG
);
1238 __clear_ckpt_flags(ckpt
, CP_TRIMMED_FLAG
);
1240 if (cpc
->reason
& CP_UMOUNT
)
1241 __set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1243 __clear_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1245 if (cpc
->reason
& CP_FASTBOOT
)
1246 __set_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1248 __clear_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1251 __set_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1253 __clear_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1255 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
))
1256 __set_ckpt_flags(ckpt
, CP_FSCK_FLAG
);
1258 if (is_sbi_flag_set(sbi
, SBI_CP_DISABLED
))
1259 __set_ckpt_flags(ckpt
, CP_DISABLED_FLAG
);
1261 __clear_ckpt_flags(ckpt
, CP_DISABLED_FLAG
);
1263 if (is_sbi_flag_set(sbi
, SBI_QUOTA_SKIP_FLUSH
))
1264 __set_ckpt_flags(ckpt
, CP_QUOTA_NEED_FSCK_FLAG
);
1266 __clear_ckpt_flags(ckpt
, CP_QUOTA_NEED_FSCK_FLAG
);
1268 if (is_sbi_flag_set(sbi
, SBI_QUOTA_NEED_REPAIR
))
1269 __set_ckpt_flags(ckpt
, CP_QUOTA_NEED_FSCK_FLAG
);
1271 /* set this flag to activate crc|cp_ver for recovery */
1272 __set_ckpt_flags(ckpt
, CP_CRC_RECOVERY_FLAG
);
1273 __clear_ckpt_flags(ckpt
, CP_NOCRC_RECOVERY_FLAG
);
1275 spin_unlock_irqrestore(&sbi
->cp_lock
, flags
);
1278 static void commit_checkpoint(struct f2fs_sb_info
*sbi
,
1279 void *src
, block_t blk_addr
)
1281 struct writeback_control wbc
= {
1286 * pagevec_lookup_tag and lock_page again will take
1287 * some extra time. Therefore, f2fs_update_meta_pages and
1288 * f2fs_sync_meta_pages are combined in this function.
1290 struct page
*page
= f2fs_grab_meta_page(sbi
, blk_addr
);
1293 memcpy(page_address(page
), src
, PAGE_SIZE
);
1294 set_page_dirty(page
);
1296 f2fs_wait_on_page_writeback(page
, META
, true);
1297 f2fs_bug_on(sbi
, PageWriteback(page
));
1298 if (unlikely(!clear_page_dirty_for_io(page
)))
1299 f2fs_bug_on(sbi
, 1);
1301 /* writeout cp pack 2 page */
1302 err
= __f2fs_write_meta_page(page
, &wbc
, FS_CP_META_IO
);
1303 if (unlikely(err
&& f2fs_cp_error(sbi
))) {
1304 f2fs_put_page(page
, 1);
1308 f2fs_bug_on(sbi
, err
);
1309 f2fs_put_page(page
, 0);
1311 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1312 f2fs_submit_merged_write(sbi
, META_FLUSH
);
1315 static int do_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1317 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1318 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1319 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
, flags
;
1321 unsigned int data_sum_blocks
, orphan_blocks
;
1324 int cp_payload_blks
= __cp_payload(sbi
);
1325 struct super_block
*sb
= sbi
->sb
;
1326 struct curseg_info
*seg_i
= CURSEG_I(sbi
, CURSEG_HOT_NODE
);
1330 /* Flush all the NAT/SIT pages */
1331 while (get_pages(sbi
, F2FS_DIRTY_META
)) {
1332 f2fs_sync_meta_pages(sbi
, META
, LONG_MAX
, FS_CP_META_IO
);
1333 if (unlikely(f2fs_cp_error(sbi
)))
1339 * version number is already updated
1341 ckpt
->elapsed_time
= cpu_to_le64(get_mtime(sbi
, true));
1342 ckpt
->free_segment_count
= cpu_to_le32(free_segments(sbi
));
1343 for (i
= 0; i
< NR_CURSEG_NODE_TYPE
; i
++) {
1344 ckpt
->cur_node_segno
[i
] =
1345 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_NODE
));
1346 ckpt
->cur_node_blkoff
[i
] =
1347 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_NODE
));
1348 ckpt
->alloc_type
[i
+ CURSEG_HOT_NODE
] =
1349 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_NODE
);
1351 for (i
= 0; i
< NR_CURSEG_DATA_TYPE
; i
++) {
1352 ckpt
->cur_data_segno
[i
] =
1353 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_DATA
));
1354 ckpt
->cur_data_blkoff
[i
] =
1355 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_DATA
));
1356 ckpt
->alloc_type
[i
+ CURSEG_HOT_DATA
] =
1357 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_DATA
);
1360 /* 2 cp + n data seg summary + orphan inode blocks */
1361 data_sum_blocks
= f2fs_npages_for_summary_flush(sbi
, false);
1362 spin_lock_irqsave(&sbi
->cp_lock
, flags
);
1363 if (data_sum_blocks
< NR_CURSEG_DATA_TYPE
)
1364 __set_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1366 __clear_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1367 spin_unlock_irqrestore(&sbi
->cp_lock
, flags
);
1369 orphan_blocks
= GET_ORPHAN_BLOCKS(orphan_num
);
1370 ckpt
->cp_pack_start_sum
= cpu_to_le32(1 + cp_payload_blks
+
1373 if (__remain_node_summaries(cpc
->reason
))
1374 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1375 cp_payload_blks
+ data_sum_blocks
+
1376 orphan_blocks
+ NR_CURSEG_NODE_TYPE
);
1378 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1379 cp_payload_blks
+ data_sum_blocks
+
1382 /* update ckpt flag for checkpoint */
1383 update_ckpt_flags(sbi
, cpc
);
1385 /* update SIT/NAT bitmap */
1386 get_sit_bitmap(sbi
, __bitmap_ptr(sbi
, SIT_BITMAP
));
1387 get_nat_bitmap(sbi
, __bitmap_ptr(sbi
, NAT_BITMAP
));
1389 crc32
= f2fs_crc32(sbi
, ckpt
, le32_to_cpu(ckpt
->checksum_offset
));
1390 *((__le32
*)((unsigned char *)ckpt
+
1391 le32_to_cpu(ckpt
->checksum_offset
)))
1392 = cpu_to_le32(crc32
);
1394 start_blk
= __start_cp_next_addr(sbi
);
1396 /* write nat bits */
1397 if (enabled_nat_bits(sbi
, cpc
)) {
1398 __u64 cp_ver
= cur_cp_version(ckpt
);
1401 cp_ver
|= ((__u64
)crc32
<< 32);
1402 *(__le64
*)nm_i
->nat_bits
= cpu_to_le64(cp_ver
);
1404 blk
= start_blk
+ sbi
->blocks_per_seg
- nm_i
->nat_bits_blocks
;
1405 for (i
= 0; i
< nm_i
->nat_bits_blocks
; i
++)
1406 f2fs_update_meta_page(sbi
, nm_i
->nat_bits
+
1407 (i
<< F2FS_BLKSIZE_BITS
), blk
+ i
);
1409 /* Flush all the NAT BITS pages */
1410 while (get_pages(sbi
, F2FS_DIRTY_META
)) {
1411 f2fs_sync_meta_pages(sbi
, META
, LONG_MAX
,
1413 if (unlikely(f2fs_cp_error(sbi
)))
1418 /* write out checkpoint buffer at block 0 */
1419 f2fs_update_meta_page(sbi
, ckpt
, start_blk
++);
1421 for (i
= 1; i
< 1 + cp_payload_blks
; i
++)
1422 f2fs_update_meta_page(sbi
, (char *)ckpt
+ i
* F2FS_BLKSIZE
,
1426 write_orphan_inodes(sbi
, start_blk
);
1427 start_blk
+= orphan_blocks
;
1430 f2fs_write_data_summaries(sbi
, start_blk
);
1431 start_blk
+= data_sum_blocks
;
1433 /* Record write statistics in the hot node summary */
1434 kbytes_written
= sbi
->kbytes_written
;
1435 if (sb
->s_bdev
->bd_part
)
1436 kbytes_written
+= BD_PART_WRITTEN(sbi
);
1438 seg_i
->journal
->info
.kbytes_written
= cpu_to_le64(kbytes_written
);
1440 if (__remain_node_summaries(cpc
->reason
)) {
1441 f2fs_write_node_summaries(sbi
, start_blk
);
1442 start_blk
+= NR_CURSEG_NODE_TYPE
;
1445 /* update user_block_counts */
1446 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
1447 percpu_counter_set(&sbi
->alloc_valid_block_count
, 0);
1449 /* Here, we have one bio having CP pack except cp pack 2 page */
1450 f2fs_sync_meta_pages(sbi
, META
, LONG_MAX
, FS_CP_META_IO
);
1452 /* wait for previous submitted meta pages writeback */
1453 f2fs_wait_on_all_pages_writeback(sbi
);
1455 /* flush all device cache */
1456 err
= f2fs_flush_device_cache(sbi
);
1460 /* barrier and flush checkpoint cp pack 2 page if it can */
1461 commit_checkpoint(sbi
, ckpt
, start_blk
);
1462 f2fs_wait_on_all_pages_writeback(sbi
);
1465 * invalidate intermediate page cache borrowed from meta inode
1466 * which are used for migration of encrypted inode's blocks.
1468 if (f2fs_sb_has_encrypt(sbi
->sb
))
1469 invalidate_mapping_pages(META_MAPPING(sbi
),
1470 MAIN_BLKADDR(sbi
), MAX_BLKADDR(sbi
) - 1);
1472 f2fs_release_ino_entry(sbi
, false);
1474 f2fs_reset_fsync_node_info(sbi
);
1476 clear_sbi_flag(sbi
, SBI_IS_DIRTY
);
1477 clear_sbi_flag(sbi
, SBI_NEED_CP
);
1478 clear_sbi_flag(sbi
, SBI_QUOTA_SKIP_FLUSH
);
1479 sbi
->unusable_block_count
= 0;
1480 __set_cp_next_pack(sbi
);
1483 * redirty superblock if metadata like node page or inode cache is
1484 * updated during writing checkpoint.
1486 if (get_pages(sbi
, F2FS_DIRTY_NODES
) ||
1487 get_pages(sbi
, F2FS_DIRTY_IMETA
))
1488 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
1490 f2fs_bug_on(sbi
, get_pages(sbi
, F2FS_DIRTY_DENTS
));
1492 return unlikely(f2fs_cp_error(sbi
)) ? -EIO
: 0;
1496 * We guarantee that this checkpoint procedure will not fail.
1498 int f2fs_write_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1500 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1501 unsigned long long ckpt_ver
;
1504 if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
))) {
1505 if (cpc
->reason
!= CP_PAUSE
)
1507 f2fs_msg(sbi
->sb
, KERN_WARNING
,
1508 "Start checkpoint disabled!");
1510 mutex_lock(&sbi
->cp_mutex
);
1512 if (!is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) &&
1513 ((cpc
->reason
& CP_FASTBOOT
) || (cpc
->reason
& CP_SYNC
) ||
1514 ((cpc
->reason
& CP_DISCARD
) && !sbi
->discard_blks
)))
1516 if (unlikely(f2fs_cp_error(sbi
))) {
1520 if (f2fs_readonly(sbi
->sb
)) {
1525 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "start block_ops");
1527 err
= block_operations(sbi
);
1531 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish block_ops");
1533 f2fs_flush_merged_writes(sbi
);
1535 /* this is the case of multiple fstrims without any changes */
1536 if (cpc
->reason
& CP_DISCARD
) {
1537 if (!f2fs_exist_trim_candidates(sbi
, cpc
)) {
1538 unblock_operations(sbi
);
1542 if (NM_I(sbi
)->dirty_nat_cnt
== 0 &&
1543 SIT_I(sbi
)->dirty_sentries
== 0 &&
1544 prefree_segments(sbi
) == 0) {
1545 f2fs_flush_sit_entries(sbi
, cpc
);
1546 f2fs_clear_prefree_segments(sbi
, cpc
);
1547 unblock_operations(sbi
);
1553 * update checkpoint pack index
1554 * Increase the version number so that
1555 * SIT entries and seg summaries are written at correct place
1557 ckpt_ver
= cur_cp_version(ckpt
);
1558 ckpt
->checkpoint_ver
= cpu_to_le64(++ckpt_ver
);
1560 /* write cached NAT/SIT entries to NAT/SIT area */
1561 err
= f2fs_flush_nat_entries(sbi
, cpc
);
1565 f2fs_flush_sit_entries(sbi
, cpc
);
1567 /* unlock all the fs_lock[] in do_checkpoint() */
1568 err
= do_checkpoint(sbi
, cpc
);
1570 f2fs_release_discard_addrs(sbi
);
1572 f2fs_clear_prefree_segments(sbi
, cpc
);
1574 unblock_operations(sbi
);
1575 stat_inc_cp_count(sbi
->stat_info
);
1577 if (cpc
->reason
& CP_RECOVERY
)
1578 f2fs_msg(sbi
->sb
, KERN_NOTICE
,
1579 "checkpoint: version = %llx", ckpt_ver
);
1581 /* do checkpoint periodically */
1582 f2fs_update_time(sbi
, CP_TIME
);
1583 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish checkpoint");
1585 mutex_unlock(&sbi
->cp_mutex
);
1589 void f2fs_init_ino_entry_info(struct f2fs_sb_info
*sbi
)
1593 for (i
= 0; i
< MAX_INO_ENTRY
; i
++) {
1594 struct inode_management
*im
= &sbi
->im
[i
];
1596 INIT_RADIX_TREE(&im
->ino_root
, GFP_ATOMIC
);
1597 spin_lock_init(&im
->ino_lock
);
1598 INIT_LIST_HEAD(&im
->ino_list
);
1602 sbi
->max_orphans
= (sbi
->blocks_per_seg
- F2FS_CP_PACKS
-
1603 NR_CURSEG_TYPE
- __cp_payload(sbi
)) *
1604 F2FS_ORPHANS_PER_BLOCK
;
1607 int __init
f2fs_create_checkpoint_caches(void)
1609 ino_entry_slab
= f2fs_kmem_cache_create("f2fs_ino_entry",
1610 sizeof(struct ino_entry
));
1611 if (!ino_entry_slab
)
1613 f2fs_inode_entry_slab
= f2fs_kmem_cache_create("f2fs_inode_entry",
1614 sizeof(struct inode_entry
));
1615 if (!f2fs_inode_entry_slab
) {
1616 kmem_cache_destroy(ino_entry_slab
);
1622 void f2fs_destroy_checkpoint_caches(void)
1624 kmem_cache_destroy(ino_entry_slab
);
1625 kmem_cache_destroy(f2fs_inode_entry_slab
);