perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / fs / f2fs / checkpoint.c
blob9c28ea439e0bbc5073f8314d840c75353b784903
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/checkpoint.c
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
17 #include "f2fs.h"
18 #include "node.h"
19 #include "segment.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
23 static struct kmem_cache *ino_entry_slab;
24 struct kmem_cache *f2fs_inode_entry_slab;
26 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
28 f2fs_build_fault_attr(sbi, 0, 0);
29 set_ckpt_flags(sbi, CP_ERROR_FLAG);
30 if (!end_io)
31 f2fs_flush_merged_writes(sbi);
35 * We guarantee no failure on the returned page.
37 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
39 struct address_space *mapping = META_MAPPING(sbi);
40 struct page *page = NULL;
41 repeat:
42 page = f2fs_grab_cache_page(mapping, index, false);
43 if (!page) {
44 cond_resched();
45 goto repeat;
47 f2fs_wait_on_page_writeback(page, META, true);
48 if (!PageUptodate(page))
49 SetPageUptodate(page);
50 return page;
54 * We guarantee no failure on the returned page.
56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
57 bool is_meta)
59 struct address_space *mapping = META_MAPPING(sbi);
60 struct page *page;
61 struct f2fs_io_info fio = {
62 .sbi = sbi,
63 .type = META,
64 .op = REQ_OP_READ,
65 .op_flags = REQ_META | REQ_PRIO,
66 .old_blkaddr = index,
67 .new_blkaddr = index,
68 .encrypted_page = NULL,
69 .is_meta = is_meta,
71 int err;
73 if (unlikely(!is_meta))
74 fio.op_flags &= ~REQ_META;
75 repeat:
76 page = f2fs_grab_cache_page(mapping, index, false);
77 if (!page) {
78 cond_resched();
79 goto repeat;
81 if (PageUptodate(page))
82 goto out;
84 fio.page = page;
86 err = f2fs_submit_page_bio(&fio);
87 if (err) {
88 f2fs_put_page(page, 1);
89 return ERR_PTR(err);
92 lock_page(page);
93 if (unlikely(page->mapping != mapping)) {
94 f2fs_put_page(page, 1);
95 goto repeat;
98 if (unlikely(!PageUptodate(page))) {
99 f2fs_put_page(page, 1);
100 return ERR_PTR(-EIO);
102 out:
103 return page;
106 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
108 return __get_meta_page(sbi, index, true);
111 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index)
113 struct page *page;
114 int count = 0;
116 retry:
117 page = __get_meta_page(sbi, index, true);
118 if (IS_ERR(page)) {
119 if (PTR_ERR(page) == -EIO &&
120 ++count <= DEFAULT_RETRY_IO_COUNT)
121 goto retry;
122 f2fs_stop_checkpoint(sbi, false);
124 return page;
127 /* for POR only */
128 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
130 return __get_meta_page(sbi, index, false);
133 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
134 block_t blkaddr, int type)
136 switch (type) {
137 case META_NAT:
138 break;
139 case META_SIT:
140 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
141 return false;
142 break;
143 case META_SSA:
144 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
145 blkaddr < SM_I(sbi)->ssa_blkaddr))
146 return false;
147 break;
148 case META_CP:
149 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
150 blkaddr < __start_cp_addr(sbi)))
151 return false;
152 break;
153 case META_POR:
154 case DATA_GENERIC:
155 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
156 blkaddr < MAIN_BLKADDR(sbi))) {
157 if (type == DATA_GENERIC) {
158 f2fs_msg(sbi->sb, KERN_WARNING,
159 "access invalid blkaddr:%u", blkaddr);
160 WARN_ON(1);
162 return false;
164 break;
165 case META_GENERIC:
166 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
167 blkaddr >= MAIN_BLKADDR(sbi)))
168 return false;
169 break;
170 default:
171 BUG();
174 return true;
178 * Readahead CP/NAT/SIT/SSA pages
180 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
181 int type, bool sync)
183 struct page *page;
184 block_t blkno = start;
185 struct f2fs_io_info fio = {
186 .sbi = sbi,
187 .type = META,
188 .op = REQ_OP_READ,
189 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
190 .encrypted_page = NULL,
191 .in_list = false,
192 .is_meta = (type != META_POR),
194 struct blk_plug plug;
196 if (unlikely(type == META_POR))
197 fio.op_flags &= ~REQ_META;
199 blk_start_plug(&plug);
200 for (; nrpages-- > 0; blkno++) {
202 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
203 goto out;
205 switch (type) {
206 case META_NAT:
207 if (unlikely(blkno >=
208 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
209 blkno = 0;
210 /* get nat block addr */
211 fio.new_blkaddr = current_nat_addr(sbi,
212 blkno * NAT_ENTRY_PER_BLOCK);
213 break;
214 case META_SIT:
215 /* get sit block addr */
216 fio.new_blkaddr = current_sit_addr(sbi,
217 blkno * SIT_ENTRY_PER_BLOCK);
218 break;
219 case META_SSA:
220 case META_CP:
221 case META_POR:
222 fio.new_blkaddr = blkno;
223 break;
224 default:
225 BUG();
228 page = f2fs_grab_cache_page(META_MAPPING(sbi),
229 fio.new_blkaddr, false);
230 if (!page)
231 continue;
232 if (PageUptodate(page)) {
233 f2fs_put_page(page, 1);
234 continue;
237 fio.page = page;
238 f2fs_submit_page_bio(&fio);
239 f2fs_put_page(page, 0);
241 out:
242 blk_finish_plug(&plug);
243 return blkno - start;
246 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
248 struct page *page;
249 bool readahead = false;
251 page = find_get_page(META_MAPPING(sbi), index);
252 if (!page || !PageUptodate(page))
253 readahead = true;
254 f2fs_put_page(page, 0);
256 if (readahead)
257 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
260 static int __f2fs_write_meta_page(struct page *page,
261 struct writeback_control *wbc,
262 enum iostat_type io_type)
264 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
266 trace_f2fs_writepage(page, META);
268 if (unlikely(f2fs_cp_error(sbi)))
269 goto redirty_out;
270 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
271 goto redirty_out;
272 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
273 goto redirty_out;
275 f2fs_do_write_meta_page(sbi, page, io_type);
276 dec_page_count(sbi, F2FS_DIRTY_META);
278 if (wbc->for_reclaim)
279 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
281 unlock_page(page);
283 if (unlikely(f2fs_cp_error(sbi)))
284 f2fs_submit_merged_write(sbi, META);
286 return 0;
288 redirty_out:
289 redirty_page_for_writepage(wbc, page);
290 return AOP_WRITEPAGE_ACTIVATE;
293 static int f2fs_write_meta_page(struct page *page,
294 struct writeback_control *wbc)
296 return __f2fs_write_meta_page(page, wbc, FS_META_IO);
299 static int f2fs_write_meta_pages(struct address_space *mapping,
300 struct writeback_control *wbc)
302 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
303 long diff, written;
305 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
306 goto skip_write;
308 /* collect a number of dirty meta pages and write together */
309 if (wbc->for_kupdate ||
310 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
311 goto skip_write;
313 /* if locked failed, cp will flush dirty pages instead */
314 if (!mutex_trylock(&sbi->cp_mutex))
315 goto skip_write;
317 trace_f2fs_writepages(mapping->host, wbc, META);
318 diff = nr_pages_to_write(sbi, META, wbc);
319 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
320 mutex_unlock(&sbi->cp_mutex);
321 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
322 return 0;
324 skip_write:
325 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
326 trace_f2fs_writepages(mapping->host, wbc, META);
327 return 0;
330 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
331 long nr_to_write, enum iostat_type io_type)
333 struct address_space *mapping = META_MAPPING(sbi);
334 pgoff_t index = 0, prev = ULONG_MAX;
335 struct pagevec pvec;
336 long nwritten = 0;
337 int nr_pages;
338 struct writeback_control wbc = {
339 .for_reclaim = 0,
341 struct blk_plug plug;
343 pagevec_init(&pvec);
345 blk_start_plug(&plug);
347 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
348 PAGECACHE_TAG_DIRTY))) {
349 int i;
351 for (i = 0; i < nr_pages; i++) {
352 struct page *page = pvec.pages[i];
354 if (prev == ULONG_MAX)
355 prev = page->index - 1;
356 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
357 pagevec_release(&pvec);
358 goto stop;
361 lock_page(page);
363 if (unlikely(page->mapping != mapping)) {
364 continue_unlock:
365 unlock_page(page);
366 continue;
368 if (!PageDirty(page)) {
369 /* someone wrote it for us */
370 goto continue_unlock;
373 f2fs_wait_on_page_writeback(page, META, true);
375 BUG_ON(PageWriteback(page));
376 if (!clear_page_dirty_for_io(page))
377 goto continue_unlock;
379 if (__f2fs_write_meta_page(page, &wbc, io_type)) {
380 unlock_page(page);
381 break;
383 nwritten++;
384 prev = page->index;
385 if (unlikely(nwritten >= nr_to_write))
386 break;
388 pagevec_release(&pvec);
389 cond_resched();
391 stop:
392 if (nwritten)
393 f2fs_submit_merged_write(sbi, type);
395 blk_finish_plug(&plug);
397 return nwritten;
400 static int f2fs_set_meta_page_dirty(struct page *page)
402 trace_f2fs_set_page_dirty(page, META);
404 if (!PageUptodate(page))
405 SetPageUptodate(page);
406 if (!PageDirty(page)) {
407 __set_page_dirty_nobuffers(page);
408 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
409 SetPagePrivate(page);
410 f2fs_trace_pid(page);
411 return 1;
413 return 0;
416 const struct address_space_operations f2fs_meta_aops = {
417 .writepage = f2fs_write_meta_page,
418 .writepages = f2fs_write_meta_pages,
419 .set_page_dirty = f2fs_set_meta_page_dirty,
420 .invalidatepage = f2fs_invalidate_page,
421 .releasepage = f2fs_release_page,
422 #ifdef CONFIG_MIGRATION
423 .migratepage = f2fs_migrate_page,
424 #endif
427 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
428 unsigned int devidx, int type)
430 struct inode_management *im = &sbi->im[type];
431 struct ino_entry *e, *tmp;
433 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
435 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
437 spin_lock(&im->ino_lock);
438 e = radix_tree_lookup(&im->ino_root, ino);
439 if (!e) {
440 e = tmp;
441 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
442 f2fs_bug_on(sbi, 1);
444 memset(e, 0, sizeof(struct ino_entry));
445 e->ino = ino;
447 list_add_tail(&e->list, &im->ino_list);
448 if (type != ORPHAN_INO)
449 im->ino_num++;
452 if (type == FLUSH_INO)
453 f2fs_set_bit(devidx, (char *)&e->dirty_device);
455 spin_unlock(&im->ino_lock);
456 radix_tree_preload_end();
458 if (e != tmp)
459 kmem_cache_free(ino_entry_slab, tmp);
462 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
464 struct inode_management *im = &sbi->im[type];
465 struct ino_entry *e;
467 spin_lock(&im->ino_lock);
468 e = radix_tree_lookup(&im->ino_root, ino);
469 if (e) {
470 list_del(&e->list);
471 radix_tree_delete(&im->ino_root, ino);
472 im->ino_num--;
473 spin_unlock(&im->ino_lock);
474 kmem_cache_free(ino_entry_slab, e);
475 return;
477 spin_unlock(&im->ino_lock);
480 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
482 /* add new dirty ino entry into list */
483 __add_ino_entry(sbi, ino, 0, type);
486 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
488 /* remove dirty ino entry from list */
489 __remove_ino_entry(sbi, ino, type);
492 /* mode should be APPEND_INO or UPDATE_INO */
493 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
495 struct inode_management *im = &sbi->im[mode];
496 struct ino_entry *e;
498 spin_lock(&im->ino_lock);
499 e = radix_tree_lookup(&im->ino_root, ino);
500 spin_unlock(&im->ino_lock);
501 return e ? true : false;
504 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
506 struct ino_entry *e, *tmp;
507 int i;
509 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
510 struct inode_management *im = &sbi->im[i];
512 spin_lock(&im->ino_lock);
513 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
514 list_del(&e->list);
515 radix_tree_delete(&im->ino_root, e->ino);
516 kmem_cache_free(ino_entry_slab, e);
517 im->ino_num--;
519 spin_unlock(&im->ino_lock);
523 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
524 unsigned int devidx, int type)
526 __add_ino_entry(sbi, ino, devidx, type);
529 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
530 unsigned int devidx, int type)
532 struct inode_management *im = &sbi->im[type];
533 struct ino_entry *e;
534 bool is_dirty = false;
536 spin_lock(&im->ino_lock);
537 e = radix_tree_lookup(&im->ino_root, ino);
538 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
539 is_dirty = true;
540 spin_unlock(&im->ino_lock);
541 return is_dirty;
544 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
546 struct inode_management *im = &sbi->im[ORPHAN_INO];
547 int err = 0;
549 spin_lock(&im->ino_lock);
551 if (time_to_inject(sbi, FAULT_ORPHAN)) {
552 spin_unlock(&im->ino_lock);
553 f2fs_show_injection_info(FAULT_ORPHAN);
554 return -ENOSPC;
557 if (unlikely(im->ino_num >= sbi->max_orphans))
558 err = -ENOSPC;
559 else
560 im->ino_num++;
561 spin_unlock(&im->ino_lock);
563 return err;
566 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
568 struct inode_management *im = &sbi->im[ORPHAN_INO];
570 spin_lock(&im->ino_lock);
571 f2fs_bug_on(sbi, im->ino_num == 0);
572 im->ino_num--;
573 spin_unlock(&im->ino_lock);
576 void f2fs_add_orphan_inode(struct inode *inode)
578 /* add new orphan ino entry into list */
579 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
580 f2fs_update_inode_page(inode);
583 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
585 /* remove orphan entry from orphan list */
586 __remove_ino_entry(sbi, ino, ORPHAN_INO);
589 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
591 struct inode *inode;
592 struct node_info ni;
593 int err;
595 inode = f2fs_iget_retry(sbi->sb, ino);
596 if (IS_ERR(inode)) {
598 * there should be a bug that we can't find the entry
599 * to orphan inode.
601 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
602 return PTR_ERR(inode);
605 err = dquot_initialize(inode);
606 if (err) {
607 iput(inode);
608 goto err_out;
611 clear_nlink(inode);
613 /* truncate all the data during iput */
614 iput(inode);
616 err = f2fs_get_node_info(sbi, ino, &ni);
617 if (err)
618 goto err_out;
620 /* ENOMEM was fully retried in f2fs_evict_inode. */
621 if (ni.blk_addr != NULL_ADDR) {
622 err = -EIO;
623 goto err_out;
625 return 0;
627 err_out:
628 set_sbi_flag(sbi, SBI_NEED_FSCK);
629 f2fs_msg(sbi->sb, KERN_WARNING,
630 "%s: orphan failed (ino=%x), run fsck to fix.",
631 __func__, ino);
632 return err;
635 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
637 block_t start_blk, orphan_blocks, i, j;
638 unsigned int s_flags = sbi->sb->s_flags;
639 int err = 0;
640 #ifdef CONFIG_QUOTA
641 int quota_enabled;
642 #endif
644 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
645 return 0;
647 if (s_flags & SB_RDONLY) {
648 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
649 sbi->sb->s_flags &= ~SB_RDONLY;
652 #ifdef CONFIG_QUOTA
653 /* Needed for iput() to work correctly and not trash data */
654 sbi->sb->s_flags |= SB_ACTIVE;
657 * Turn on quotas which were not enabled for read-only mounts if
658 * filesystem has quota feature, so that they are updated correctly.
660 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
661 #endif
663 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
664 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
666 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
668 for (i = 0; i < orphan_blocks; i++) {
669 struct page *page;
670 struct f2fs_orphan_block *orphan_blk;
672 page = f2fs_get_meta_page(sbi, start_blk + i);
673 if (IS_ERR(page)) {
674 err = PTR_ERR(page);
675 goto out;
678 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
679 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
680 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
681 err = recover_orphan_inode(sbi, ino);
682 if (err) {
683 f2fs_put_page(page, 1);
684 goto out;
687 f2fs_put_page(page, 1);
689 /* clear Orphan Flag */
690 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
691 out:
692 set_sbi_flag(sbi, SBI_IS_RECOVERED);
694 #ifdef CONFIG_QUOTA
695 /* Turn quotas off */
696 if (quota_enabled)
697 f2fs_quota_off_umount(sbi->sb);
698 #endif
699 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
701 return err;
704 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
706 struct list_head *head;
707 struct f2fs_orphan_block *orphan_blk = NULL;
708 unsigned int nentries = 0;
709 unsigned short index = 1;
710 unsigned short orphan_blocks;
711 struct page *page = NULL;
712 struct ino_entry *orphan = NULL;
713 struct inode_management *im = &sbi->im[ORPHAN_INO];
715 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
718 * we don't need to do spin_lock(&im->ino_lock) here, since all the
719 * orphan inode operations are covered under f2fs_lock_op().
720 * And, spin_lock should be avoided due to page operations below.
722 head = &im->ino_list;
724 /* loop for each orphan inode entry and write them in Jornal block */
725 list_for_each_entry(orphan, head, list) {
726 if (!page) {
727 page = f2fs_grab_meta_page(sbi, start_blk++);
728 orphan_blk =
729 (struct f2fs_orphan_block *)page_address(page);
730 memset(orphan_blk, 0, sizeof(*orphan_blk));
733 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
735 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
737 * an orphan block is full of 1020 entries,
738 * then we need to flush current orphan blocks
739 * and bring another one in memory
741 orphan_blk->blk_addr = cpu_to_le16(index);
742 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
743 orphan_blk->entry_count = cpu_to_le32(nentries);
744 set_page_dirty(page);
745 f2fs_put_page(page, 1);
746 index++;
747 nentries = 0;
748 page = NULL;
752 if (page) {
753 orphan_blk->blk_addr = cpu_to_le16(index);
754 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
755 orphan_blk->entry_count = cpu_to_le32(nentries);
756 set_page_dirty(page);
757 f2fs_put_page(page, 1);
761 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
762 struct f2fs_checkpoint **cp_block, struct page **cp_page,
763 unsigned long long *version)
765 unsigned long blk_size = sbi->blocksize;
766 size_t crc_offset = 0;
767 __u32 crc = 0;
769 *cp_page = f2fs_get_meta_page(sbi, cp_addr);
770 if (IS_ERR(*cp_page))
771 return PTR_ERR(*cp_page);
773 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
775 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
776 if (crc_offset > (blk_size - sizeof(__le32))) {
777 f2fs_put_page(*cp_page, 1);
778 f2fs_msg(sbi->sb, KERN_WARNING,
779 "invalid crc_offset: %zu", crc_offset);
780 return -EINVAL;
783 crc = cur_cp_crc(*cp_block);
784 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
785 f2fs_put_page(*cp_page, 1);
786 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
787 return -EINVAL;
790 *version = cur_cp_version(*cp_block);
791 return 0;
794 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
795 block_t cp_addr, unsigned long long *version)
797 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
798 struct f2fs_checkpoint *cp_block = NULL;
799 unsigned long long cur_version = 0, pre_version = 0;
800 int err;
802 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
803 &cp_page_1, version);
804 if (err)
805 return NULL;
807 if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
808 sbi->blocks_per_seg) {
809 f2fs_msg(sbi->sb, KERN_WARNING,
810 "invalid cp_pack_total_block_count:%u",
811 le32_to_cpu(cp_block->cp_pack_total_block_count));
812 goto invalid_cp;
814 pre_version = *version;
816 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
817 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
818 &cp_page_2, version);
819 if (err)
820 goto invalid_cp;
821 cur_version = *version;
823 if (cur_version == pre_version) {
824 *version = cur_version;
825 f2fs_put_page(cp_page_2, 1);
826 return cp_page_1;
828 f2fs_put_page(cp_page_2, 1);
829 invalid_cp:
830 f2fs_put_page(cp_page_1, 1);
831 return NULL;
834 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
836 struct f2fs_checkpoint *cp_block;
837 struct f2fs_super_block *fsb = sbi->raw_super;
838 struct page *cp1, *cp2, *cur_page;
839 unsigned long blk_size = sbi->blocksize;
840 unsigned long long cp1_version = 0, cp2_version = 0;
841 unsigned long long cp_start_blk_no;
842 unsigned int cp_blks = 1 + __cp_payload(sbi);
843 block_t cp_blk_no;
844 int i;
846 sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks),
847 GFP_KERNEL);
848 if (!sbi->ckpt)
849 return -ENOMEM;
851 * Finding out valid cp block involves read both
852 * sets( cp pack1 and cp pack 2)
854 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
855 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
857 /* The second checkpoint pack should start at the next segment */
858 cp_start_blk_no += ((unsigned long long)1) <<
859 le32_to_cpu(fsb->log_blocks_per_seg);
860 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
862 if (cp1 && cp2) {
863 if (ver_after(cp2_version, cp1_version))
864 cur_page = cp2;
865 else
866 cur_page = cp1;
867 } else if (cp1) {
868 cur_page = cp1;
869 } else if (cp2) {
870 cur_page = cp2;
871 } else {
872 goto fail_no_cp;
875 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
876 memcpy(sbi->ckpt, cp_block, blk_size);
878 if (cur_page == cp1)
879 sbi->cur_cp_pack = 1;
880 else
881 sbi->cur_cp_pack = 2;
883 /* Sanity checking of checkpoint */
884 if (f2fs_sanity_check_ckpt(sbi))
885 goto free_fail_no_cp;
887 if (cp_blks <= 1)
888 goto done;
890 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
891 if (cur_page == cp2)
892 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
894 for (i = 1; i < cp_blks; i++) {
895 void *sit_bitmap_ptr;
896 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
898 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
899 if (IS_ERR(cur_page))
900 goto free_fail_no_cp;
901 sit_bitmap_ptr = page_address(cur_page);
902 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
903 f2fs_put_page(cur_page, 1);
905 done:
906 f2fs_put_page(cp1, 1);
907 f2fs_put_page(cp2, 1);
908 return 0;
910 free_fail_no_cp:
911 f2fs_put_page(cp1, 1);
912 f2fs_put_page(cp2, 1);
913 fail_no_cp:
914 kfree(sbi->ckpt);
915 return -EINVAL;
918 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
920 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
921 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
923 if (is_inode_flag_set(inode, flag))
924 return;
926 set_inode_flag(inode, flag);
927 if (!f2fs_is_volatile_file(inode))
928 list_add_tail(&F2FS_I(inode)->dirty_list,
929 &sbi->inode_list[type]);
930 stat_inc_dirty_inode(sbi, type);
933 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
935 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
937 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
938 return;
940 list_del_init(&F2FS_I(inode)->dirty_list);
941 clear_inode_flag(inode, flag);
942 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
945 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
947 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
948 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
950 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
951 !S_ISLNK(inode->i_mode))
952 return;
954 spin_lock(&sbi->inode_lock[type]);
955 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
956 __add_dirty_inode(inode, type);
957 inode_inc_dirty_pages(inode);
958 spin_unlock(&sbi->inode_lock[type]);
960 SetPagePrivate(page);
961 f2fs_trace_pid(page);
964 void f2fs_remove_dirty_inode(struct inode *inode)
966 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
967 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
969 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
970 !S_ISLNK(inode->i_mode))
971 return;
973 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
974 return;
976 spin_lock(&sbi->inode_lock[type]);
977 __remove_dirty_inode(inode, type);
978 spin_unlock(&sbi->inode_lock[type]);
981 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
983 struct list_head *head;
984 struct inode *inode;
985 struct f2fs_inode_info *fi;
986 bool is_dir = (type == DIR_INODE);
987 unsigned long ino = 0;
989 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
990 get_pages(sbi, is_dir ?
991 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
992 retry:
993 if (unlikely(f2fs_cp_error(sbi)))
994 return -EIO;
996 spin_lock(&sbi->inode_lock[type]);
998 head = &sbi->inode_list[type];
999 if (list_empty(head)) {
1000 spin_unlock(&sbi->inode_lock[type]);
1001 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1002 get_pages(sbi, is_dir ?
1003 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1004 return 0;
1006 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1007 inode = igrab(&fi->vfs_inode);
1008 spin_unlock(&sbi->inode_lock[type]);
1009 if (inode) {
1010 unsigned long cur_ino = inode->i_ino;
1012 if (is_dir)
1013 F2FS_I(inode)->cp_task = current;
1015 filemap_fdatawrite(inode->i_mapping);
1017 if (is_dir)
1018 F2FS_I(inode)->cp_task = NULL;
1020 iput(inode);
1021 /* We need to give cpu to another writers. */
1022 if (ino == cur_ino)
1023 cond_resched();
1024 else
1025 ino = cur_ino;
1026 } else {
1028 * We should submit bio, since it exists several
1029 * wribacking dentry pages in the freeing inode.
1031 f2fs_submit_merged_write(sbi, DATA);
1032 cond_resched();
1034 goto retry;
1037 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1039 struct list_head *head = &sbi->inode_list[DIRTY_META];
1040 struct inode *inode;
1041 struct f2fs_inode_info *fi;
1042 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1044 while (total--) {
1045 if (unlikely(f2fs_cp_error(sbi)))
1046 return -EIO;
1048 spin_lock(&sbi->inode_lock[DIRTY_META]);
1049 if (list_empty(head)) {
1050 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1051 return 0;
1053 fi = list_first_entry(head, struct f2fs_inode_info,
1054 gdirty_list);
1055 inode = igrab(&fi->vfs_inode);
1056 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1057 if (inode) {
1058 sync_inode_metadata(inode, 0);
1060 /* it's on eviction */
1061 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1062 f2fs_update_inode_page(inode);
1063 iput(inode);
1066 return 0;
1069 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1071 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1072 struct f2fs_nm_info *nm_i = NM_I(sbi);
1073 nid_t last_nid = nm_i->next_scan_nid;
1075 next_free_nid(sbi, &last_nid);
1076 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1077 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1078 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1079 ckpt->next_free_nid = cpu_to_le32(last_nid);
1082 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1084 if (!is_journalled_quota(sbi))
1085 return false;
1086 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1087 return false;
1088 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1089 return false;
1090 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH))
1091 return true;
1092 if (get_pages(sbi, F2FS_DIRTY_QDATA))
1093 return true;
1094 return false;
1098 * Freeze all the FS-operations for checkpoint.
1100 static int block_operations(struct f2fs_sb_info *sbi)
1102 struct writeback_control wbc = {
1103 .sync_mode = WB_SYNC_ALL,
1104 .nr_to_write = LONG_MAX,
1105 .for_reclaim = 0,
1107 struct blk_plug plug;
1108 int err = 0, cnt = 0;
1110 blk_start_plug(&plug);
1112 retry_flush_quotas:
1113 if (__need_flush_quota(sbi)) {
1114 int locked;
1116 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1117 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1118 f2fs_lock_all(sbi);
1119 goto retry_flush_dents;
1121 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1123 /* only failed during mount/umount/freeze/quotactl */
1124 locked = down_read_trylock(&sbi->sb->s_umount);
1125 f2fs_quota_sync(sbi->sb, -1);
1126 if (locked)
1127 up_read(&sbi->sb->s_umount);
1130 f2fs_lock_all(sbi);
1131 if (__need_flush_quota(sbi)) {
1132 f2fs_unlock_all(sbi);
1133 cond_resched();
1134 goto retry_flush_quotas;
1137 retry_flush_dents:
1138 /* write all the dirty dentry pages */
1139 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1140 f2fs_unlock_all(sbi);
1141 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1142 if (err)
1143 goto out;
1144 cond_resched();
1145 goto retry_flush_quotas;
1149 * POR: we should ensure that there are no dirty node pages
1150 * until finishing nat/sit flush. inode->i_blocks can be updated.
1152 down_write(&sbi->node_change);
1154 if (__need_flush_quota(sbi)) {
1155 up_write(&sbi->node_change);
1156 f2fs_unlock_all(sbi);
1157 goto retry_flush_quotas;
1160 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1161 up_write(&sbi->node_change);
1162 f2fs_unlock_all(sbi);
1163 err = f2fs_sync_inode_meta(sbi);
1164 if (err)
1165 goto out;
1166 cond_resched();
1167 goto retry_flush_quotas;
1170 retry_flush_nodes:
1171 down_write(&sbi->node_write);
1173 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1174 up_write(&sbi->node_write);
1175 atomic_inc(&sbi->wb_sync_req[NODE]);
1176 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1177 atomic_dec(&sbi->wb_sync_req[NODE]);
1178 if (err) {
1179 up_write(&sbi->node_change);
1180 f2fs_unlock_all(sbi);
1181 goto out;
1183 cond_resched();
1184 goto retry_flush_nodes;
1188 * sbi->node_change is used only for AIO write_begin path which produces
1189 * dirty node blocks and some checkpoint values by block allocation.
1191 __prepare_cp_block(sbi);
1192 up_write(&sbi->node_change);
1193 out:
1194 blk_finish_plug(&plug);
1195 return err;
1198 static void unblock_operations(struct f2fs_sb_info *sbi)
1200 up_write(&sbi->node_write);
1201 f2fs_unlock_all(sbi);
1204 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1206 DEFINE_WAIT(wait);
1208 for (;;) {
1209 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1211 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1212 break;
1214 if (unlikely(f2fs_cp_error(sbi)))
1215 break;
1217 io_schedule_timeout(5*HZ);
1219 finish_wait(&sbi->cp_wait, &wait);
1222 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1224 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1225 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1226 unsigned long flags;
1228 spin_lock_irqsave(&sbi->cp_lock, flags);
1230 if ((cpc->reason & CP_UMOUNT) &&
1231 le32_to_cpu(ckpt->cp_pack_total_block_count) >
1232 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1233 disable_nat_bits(sbi, false);
1235 if (cpc->reason & CP_TRIMMED)
1236 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1237 else
1238 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1240 if (cpc->reason & CP_UMOUNT)
1241 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1242 else
1243 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1245 if (cpc->reason & CP_FASTBOOT)
1246 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1247 else
1248 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1250 if (orphan_num)
1251 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1252 else
1253 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1255 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1256 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1258 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1259 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1260 else
1261 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1263 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1264 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1265 else
1266 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1268 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1269 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1271 /* set this flag to activate crc|cp_ver for recovery */
1272 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1273 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1275 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1278 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1279 void *src, block_t blk_addr)
1281 struct writeback_control wbc = {
1282 .for_reclaim = 0,
1286 * pagevec_lookup_tag and lock_page again will take
1287 * some extra time. Therefore, f2fs_update_meta_pages and
1288 * f2fs_sync_meta_pages are combined in this function.
1290 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1291 int err;
1293 memcpy(page_address(page), src, PAGE_SIZE);
1294 set_page_dirty(page);
1296 f2fs_wait_on_page_writeback(page, META, true);
1297 f2fs_bug_on(sbi, PageWriteback(page));
1298 if (unlikely(!clear_page_dirty_for_io(page)))
1299 f2fs_bug_on(sbi, 1);
1301 /* writeout cp pack 2 page */
1302 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1303 if (unlikely(err && f2fs_cp_error(sbi))) {
1304 f2fs_put_page(page, 1);
1305 return;
1308 f2fs_bug_on(sbi, err);
1309 f2fs_put_page(page, 0);
1311 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1312 f2fs_submit_merged_write(sbi, META_FLUSH);
1315 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1317 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1318 struct f2fs_nm_info *nm_i = NM_I(sbi);
1319 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1320 block_t start_blk;
1321 unsigned int data_sum_blocks, orphan_blocks;
1322 __u32 crc32 = 0;
1323 int i;
1324 int cp_payload_blks = __cp_payload(sbi);
1325 struct super_block *sb = sbi->sb;
1326 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1327 u64 kbytes_written;
1328 int err;
1330 /* Flush all the NAT/SIT pages */
1331 while (get_pages(sbi, F2FS_DIRTY_META)) {
1332 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1333 if (unlikely(f2fs_cp_error(sbi)))
1334 break;
1338 * modify checkpoint
1339 * version number is already updated
1341 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1342 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1343 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1344 ckpt->cur_node_segno[i] =
1345 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1346 ckpt->cur_node_blkoff[i] =
1347 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1348 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1349 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1351 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1352 ckpt->cur_data_segno[i] =
1353 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1354 ckpt->cur_data_blkoff[i] =
1355 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1356 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1357 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1360 /* 2 cp + n data seg summary + orphan inode blocks */
1361 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1362 spin_lock_irqsave(&sbi->cp_lock, flags);
1363 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1364 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1365 else
1366 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1367 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1369 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1370 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1371 orphan_blocks);
1373 if (__remain_node_summaries(cpc->reason))
1374 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1375 cp_payload_blks + data_sum_blocks +
1376 orphan_blocks + NR_CURSEG_NODE_TYPE);
1377 else
1378 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1379 cp_payload_blks + data_sum_blocks +
1380 orphan_blocks);
1382 /* update ckpt flag for checkpoint */
1383 update_ckpt_flags(sbi, cpc);
1385 /* update SIT/NAT bitmap */
1386 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1387 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1389 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1390 *((__le32 *)((unsigned char *)ckpt +
1391 le32_to_cpu(ckpt->checksum_offset)))
1392 = cpu_to_le32(crc32);
1394 start_blk = __start_cp_next_addr(sbi);
1396 /* write nat bits */
1397 if (enabled_nat_bits(sbi, cpc)) {
1398 __u64 cp_ver = cur_cp_version(ckpt);
1399 block_t blk;
1401 cp_ver |= ((__u64)crc32 << 32);
1402 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1404 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1405 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1406 f2fs_update_meta_page(sbi, nm_i->nat_bits +
1407 (i << F2FS_BLKSIZE_BITS), blk + i);
1409 /* Flush all the NAT BITS pages */
1410 while (get_pages(sbi, F2FS_DIRTY_META)) {
1411 f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1412 FS_CP_META_IO);
1413 if (unlikely(f2fs_cp_error(sbi)))
1414 break;
1418 /* write out checkpoint buffer at block 0 */
1419 f2fs_update_meta_page(sbi, ckpt, start_blk++);
1421 for (i = 1; i < 1 + cp_payload_blks; i++)
1422 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1423 start_blk++);
1425 if (orphan_num) {
1426 write_orphan_inodes(sbi, start_blk);
1427 start_blk += orphan_blocks;
1430 f2fs_write_data_summaries(sbi, start_blk);
1431 start_blk += data_sum_blocks;
1433 /* Record write statistics in the hot node summary */
1434 kbytes_written = sbi->kbytes_written;
1435 if (sb->s_bdev->bd_part)
1436 kbytes_written += BD_PART_WRITTEN(sbi);
1438 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1440 if (__remain_node_summaries(cpc->reason)) {
1441 f2fs_write_node_summaries(sbi, start_blk);
1442 start_blk += NR_CURSEG_NODE_TYPE;
1445 /* update user_block_counts */
1446 sbi->last_valid_block_count = sbi->total_valid_block_count;
1447 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1449 /* Here, we have one bio having CP pack except cp pack 2 page */
1450 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1452 /* wait for previous submitted meta pages writeback */
1453 f2fs_wait_on_all_pages_writeback(sbi);
1455 /* flush all device cache */
1456 err = f2fs_flush_device_cache(sbi);
1457 if (err)
1458 return err;
1460 /* barrier and flush checkpoint cp pack 2 page if it can */
1461 commit_checkpoint(sbi, ckpt, start_blk);
1462 f2fs_wait_on_all_pages_writeback(sbi);
1465 * invalidate intermediate page cache borrowed from meta inode
1466 * which are used for migration of encrypted inode's blocks.
1468 if (f2fs_sb_has_encrypt(sbi->sb))
1469 invalidate_mapping_pages(META_MAPPING(sbi),
1470 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1472 f2fs_release_ino_entry(sbi, false);
1474 f2fs_reset_fsync_node_info(sbi);
1476 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1477 clear_sbi_flag(sbi, SBI_NEED_CP);
1478 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1479 sbi->unusable_block_count = 0;
1480 __set_cp_next_pack(sbi);
1483 * redirty superblock if metadata like node page or inode cache is
1484 * updated during writing checkpoint.
1486 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1487 get_pages(sbi, F2FS_DIRTY_IMETA))
1488 set_sbi_flag(sbi, SBI_IS_DIRTY);
1490 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1492 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1496 * We guarantee that this checkpoint procedure will not fail.
1498 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1500 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1501 unsigned long long ckpt_ver;
1502 int err = 0;
1504 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1505 if (cpc->reason != CP_PAUSE)
1506 return 0;
1507 f2fs_msg(sbi->sb, KERN_WARNING,
1508 "Start checkpoint disabled!");
1510 mutex_lock(&sbi->cp_mutex);
1512 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1513 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1514 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1515 goto out;
1516 if (unlikely(f2fs_cp_error(sbi))) {
1517 err = -EIO;
1518 goto out;
1520 if (f2fs_readonly(sbi->sb)) {
1521 err = -EROFS;
1522 goto out;
1525 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1527 err = block_operations(sbi);
1528 if (err)
1529 goto out;
1531 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1533 f2fs_flush_merged_writes(sbi);
1535 /* this is the case of multiple fstrims without any changes */
1536 if (cpc->reason & CP_DISCARD) {
1537 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1538 unblock_operations(sbi);
1539 goto out;
1542 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1543 SIT_I(sbi)->dirty_sentries == 0 &&
1544 prefree_segments(sbi) == 0) {
1545 f2fs_flush_sit_entries(sbi, cpc);
1546 f2fs_clear_prefree_segments(sbi, cpc);
1547 unblock_operations(sbi);
1548 goto out;
1553 * update checkpoint pack index
1554 * Increase the version number so that
1555 * SIT entries and seg summaries are written at correct place
1557 ckpt_ver = cur_cp_version(ckpt);
1558 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1560 /* write cached NAT/SIT entries to NAT/SIT area */
1561 err = f2fs_flush_nat_entries(sbi, cpc);
1562 if (err)
1563 goto stop;
1565 f2fs_flush_sit_entries(sbi, cpc);
1567 /* unlock all the fs_lock[] in do_checkpoint() */
1568 err = do_checkpoint(sbi, cpc);
1569 if (err)
1570 f2fs_release_discard_addrs(sbi);
1571 else
1572 f2fs_clear_prefree_segments(sbi, cpc);
1573 stop:
1574 unblock_operations(sbi);
1575 stat_inc_cp_count(sbi->stat_info);
1577 if (cpc->reason & CP_RECOVERY)
1578 f2fs_msg(sbi->sb, KERN_NOTICE,
1579 "checkpoint: version = %llx", ckpt_ver);
1581 /* do checkpoint periodically */
1582 f2fs_update_time(sbi, CP_TIME);
1583 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1584 out:
1585 mutex_unlock(&sbi->cp_mutex);
1586 return err;
1589 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1591 int i;
1593 for (i = 0; i < MAX_INO_ENTRY; i++) {
1594 struct inode_management *im = &sbi->im[i];
1596 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1597 spin_lock_init(&im->ino_lock);
1598 INIT_LIST_HEAD(&im->ino_list);
1599 im->ino_num = 0;
1602 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1603 NR_CURSEG_TYPE - __cp_payload(sbi)) *
1604 F2FS_ORPHANS_PER_BLOCK;
1607 int __init f2fs_create_checkpoint_caches(void)
1609 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1610 sizeof(struct ino_entry));
1611 if (!ino_entry_slab)
1612 return -ENOMEM;
1613 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1614 sizeof(struct inode_entry));
1615 if (!f2fs_inode_entry_slab) {
1616 kmem_cache_destroy(ino_entry_slab);
1617 return -ENOMEM;
1619 return 0;
1622 void f2fs_destroy_checkpoint_caches(void)
1624 kmem_cache_destroy(ino_entry_slab);
1625 kmem_cache_destroy(f2fs_inode_entry_slab);