perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / fs / f2fs / segment.h
blobab3465faddf1336a7f8f7892bd6685195641bd37
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.h
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
11 /* constant macro */
12 #define NULL_SEGNO ((unsigned int)(~0))
13 #define NULL_SECNO ((unsigned int)(~0))
15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
20 /* L: Logical segment # in volume, R: Relative segment # in main area */
21 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
22 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
24 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
25 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE)
27 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
28 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
29 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
31 #define IS_CURSEG(sbi, seg) \
32 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
33 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
34 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
35 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
36 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
37 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
39 #define IS_CURSEC(sbi, secno) \
40 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
41 (sbi)->segs_per_sec) || \
42 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
43 (sbi)->segs_per_sec) || \
44 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
45 (sbi)->segs_per_sec) || \
46 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
47 (sbi)->segs_per_sec) || \
48 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
49 (sbi)->segs_per_sec) || \
50 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
51 (sbi)->segs_per_sec)) \
53 #define MAIN_BLKADDR(sbi) \
54 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
55 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
56 #define SEG0_BLKADDR(sbi) \
57 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
58 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
60 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
61 #define MAIN_SECS(sbi) ((sbi)->total_sections)
63 #define TOTAL_SEGS(sbi) \
64 (SM_I(sbi) ? SM_I(sbi)->segment_count : \
65 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
66 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
68 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
69 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
70 (sbi)->log_blocks_per_seg))
72 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
73 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
75 #define NEXT_FREE_BLKADDR(sbi, curseg) \
76 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
78 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
79 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
80 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
81 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
82 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
84 #define GET_SEGNO(sbi, blk_addr) \
85 ((!is_valid_data_blkaddr(sbi, blk_addr)) ? \
86 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
87 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
88 #define BLKS_PER_SEC(sbi) \
89 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
90 #define GET_SEC_FROM_SEG(sbi, segno) \
91 ((segno) / (sbi)->segs_per_sec)
92 #define GET_SEG_FROM_SEC(sbi, secno) \
93 ((secno) * (sbi)->segs_per_sec)
94 #define GET_ZONE_FROM_SEC(sbi, secno) \
95 ((secno) / (sbi)->secs_per_zone)
96 #define GET_ZONE_FROM_SEG(sbi, segno) \
97 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
99 #define GET_SUM_BLOCK(sbi, segno) \
100 ((sbi)->sm_info->ssa_blkaddr + (segno))
102 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
103 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
105 #define SIT_ENTRY_OFFSET(sit_i, segno) \
106 ((segno) % (sit_i)->sents_per_block)
107 #define SIT_BLOCK_OFFSET(segno) \
108 ((segno) / SIT_ENTRY_PER_BLOCK)
109 #define START_SEGNO(segno) \
110 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
111 #define SIT_BLK_CNT(sbi) \
112 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
113 #define f2fs_bitmap_size(nr) \
114 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
116 #define SECTOR_FROM_BLOCK(blk_addr) \
117 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
118 #define SECTOR_TO_BLOCK(sectors) \
119 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
122 * indicate a block allocation direction: RIGHT and LEFT.
123 * RIGHT means allocating new sections towards the end of volume.
124 * LEFT means the opposite direction.
126 enum {
127 ALLOC_RIGHT = 0,
128 ALLOC_LEFT
132 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
133 * LFS writes data sequentially with cleaning operations.
134 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
136 enum {
137 LFS = 0,
142 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
143 * GC_CB is based on cost-benefit algorithm.
144 * GC_GREEDY is based on greedy algorithm.
146 enum {
147 GC_CB = 0,
148 GC_GREEDY,
149 ALLOC_NEXT,
150 FLUSH_DEVICE,
151 MAX_GC_POLICY,
155 * BG_GC means the background cleaning job.
156 * FG_GC means the on-demand cleaning job.
157 * FORCE_FG_GC means on-demand cleaning job in background.
159 enum {
160 BG_GC = 0,
161 FG_GC,
162 FORCE_FG_GC,
165 /* for a function parameter to select a victim segment */
166 struct victim_sel_policy {
167 int alloc_mode; /* LFS or SSR */
168 int gc_mode; /* GC_CB or GC_GREEDY */
169 unsigned long *dirty_segmap; /* dirty segment bitmap */
170 unsigned int max_search; /* maximum # of segments to search */
171 unsigned int offset; /* last scanned bitmap offset */
172 unsigned int ofs_unit; /* bitmap search unit */
173 unsigned int min_cost; /* minimum cost */
174 unsigned int min_segno; /* segment # having min. cost */
177 struct seg_entry {
178 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
179 unsigned int valid_blocks:10; /* # of valid blocks */
180 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
181 unsigned int padding:6; /* padding */
182 unsigned char *cur_valid_map; /* validity bitmap of blocks */
183 #ifdef CONFIG_F2FS_CHECK_FS
184 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
185 #endif
187 * # of valid blocks and the validity bitmap stored in the the last
188 * checkpoint pack. This information is used by the SSR mode.
190 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
191 unsigned char *discard_map;
192 unsigned long long mtime; /* modification time of the segment */
195 struct sec_entry {
196 unsigned int valid_blocks; /* # of valid blocks in a section */
199 struct segment_allocation {
200 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
204 * this value is set in page as a private data which indicate that
205 * the page is atomically written, and it is in inmem_pages list.
207 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
208 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
210 #define IS_ATOMIC_WRITTEN_PAGE(page) \
211 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
212 #define IS_DUMMY_WRITTEN_PAGE(page) \
213 (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
215 #define MAX_SKIP_GC_COUNT 16
217 struct inmem_pages {
218 struct list_head list;
219 struct page *page;
220 block_t old_addr; /* for revoking when fail to commit */
223 struct sit_info {
224 const struct segment_allocation *s_ops;
226 block_t sit_base_addr; /* start block address of SIT area */
227 block_t sit_blocks; /* # of blocks used by SIT area */
228 block_t written_valid_blocks; /* # of valid blocks in main area */
229 char *sit_bitmap; /* SIT bitmap pointer */
230 #ifdef CONFIG_F2FS_CHECK_FS
231 char *sit_bitmap_mir; /* SIT bitmap mirror */
232 #endif
233 unsigned int bitmap_size; /* SIT bitmap size */
235 unsigned long *tmp_map; /* bitmap for temporal use */
236 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
237 unsigned int dirty_sentries; /* # of dirty sentries */
238 unsigned int sents_per_block; /* # of SIT entries per block */
239 struct rw_semaphore sentry_lock; /* to protect SIT cache */
240 struct seg_entry *sentries; /* SIT segment-level cache */
241 struct sec_entry *sec_entries; /* SIT section-level cache */
243 /* for cost-benefit algorithm in cleaning procedure */
244 unsigned long long elapsed_time; /* elapsed time after mount */
245 unsigned long long mounted_time; /* mount time */
246 unsigned long long min_mtime; /* min. modification time */
247 unsigned long long max_mtime; /* max. modification time */
249 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
252 struct free_segmap_info {
253 unsigned int start_segno; /* start segment number logically */
254 unsigned int free_segments; /* # of free segments */
255 unsigned int free_sections; /* # of free sections */
256 spinlock_t segmap_lock; /* free segmap lock */
257 unsigned long *free_segmap; /* free segment bitmap */
258 unsigned long *free_secmap; /* free section bitmap */
261 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
262 enum dirty_type {
263 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
264 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
265 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
266 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
267 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
268 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
269 DIRTY, /* to count # of dirty segments */
270 PRE, /* to count # of entirely obsolete segments */
271 NR_DIRTY_TYPE
274 struct dirty_seglist_info {
275 const struct victim_selection *v_ops; /* victim selction operation */
276 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
277 struct mutex seglist_lock; /* lock for segment bitmaps */
278 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
279 unsigned long *victim_secmap; /* background GC victims */
282 /* victim selection function for cleaning and SSR */
283 struct victim_selection {
284 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
285 int, int, char);
288 /* for active log information */
289 struct curseg_info {
290 struct mutex curseg_mutex; /* lock for consistency */
291 struct f2fs_summary_block *sum_blk; /* cached summary block */
292 struct rw_semaphore journal_rwsem; /* protect journal area */
293 struct f2fs_journal *journal; /* cached journal info */
294 unsigned char alloc_type; /* current allocation type */
295 unsigned int segno; /* current segment number */
296 unsigned short next_blkoff; /* next block offset to write */
297 unsigned int zone; /* current zone number */
298 unsigned int next_segno; /* preallocated segment */
301 struct sit_entry_set {
302 struct list_head set_list; /* link with all sit sets */
303 unsigned int start_segno; /* start segno of sits in set */
304 unsigned int entry_cnt; /* the # of sit entries in set */
308 * inline functions
310 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
312 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
315 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
316 unsigned int segno)
318 struct sit_info *sit_i = SIT_I(sbi);
319 return &sit_i->sentries[segno];
322 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
323 unsigned int segno)
325 struct sit_info *sit_i = SIT_I(sbi);
326 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
329 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
330 unsigned int segno, bool use_section)
333 * In order to get # of valid blocks in a section instantly from many
334 * segments, f2fs manages two counting structures separately.
336 if (use_section && sbi->segs_per_sec > 1)
337 return get_sec_entry(sbi, segno)->valid_blocks;
338 else
339 return get_seg_entry(sbi, segno)->valid_blocks;
342 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
343 unsigned int segno)
345 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
348 static inline void seg_info_from_raw_sit(struct seg_entry *se,
349 struct f2fs_sit_entry *rs)
351 se->valid_blocks = GET_SIT_VBLOCKS(rs);
352 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
353 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
354 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
355 #ifdef CONFIG_F2FS_CHECK_FS
356 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
357 #endif
358 se->type = GET_SIT_TYPE(rs);
359 se->mtime = le64_to_cpu(rs->mtime);
362 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
363 struct f2fs_sit_entry *rs)
365 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
366 se->valid_blocks;
367 rs->vblocks = cpu_to_le16(raw_vblocks);
368 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
369 rs->mtime = cpu_to_le64(se->mtime);
372 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
373 struct page *page, unsigned int start)
375 struct f2fs_sit_block *raw_sit;
376 struct seg_entry *se;
377 struct f2fs_sit_entry *rs;
378 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
379 (unsigned long)MAIN_SEGS(sbi));
380 int i;
382 raw_sit = (struct f2fs_sit_block *)page_address(page);
383 memset(raw_sit, 0, PAGE_SIZE);
384 for (i = 0; i < end - start; i++) {
385 rs = &raw_sit->entries[i];
386 se = get_seg_entry(sbi, start + i);
387 __seg_info_to_raw_sit(se, rs);
391 static inline void seg_info_to_raw_sit(struct seg_entry *se,
392 struct f2fs_sit_entry *rs)
394 __seg_info_to_raw_sit(se, rs);
396 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
397 se->ckpt_valid_blocks = se->valid_blocks;
400 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
401 unsigned int max, unsigned int segno)
403 unsigned int ret;
404 spin_lock(&free_i->segmap_lock);
405 ret = find_next_bit(free_i->free_segmap, max, segno);
406 spin_unlock(&free_i->segmap_lock);
407 return ret;
410 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
412 struct free_segmap_info *free_i = FREE_I(sbi);
413 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
414 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
415 unsigned int next;
417 spin_lock(&free_i->segmap_lock);
418 clear_bit(segno, free_i->free_segmap);
419 free_i->free_segments++;
421 next = find_next_bit(free_i->free_segmap,
422 start_segno + sbi->segs_per_sec, start_segno);
423 if (next >= start_segno + sbi->segs_per_sec) {
424 clear_bit(secno, free_i->free_secmap);
425 free_i->free_sections++;
427 spin_unlock(&free_i->segmap_lock);
430 static inline void __set_inuse(struct f2fs_sb_info *sbi,
431 unsigned int segno)
433 struct free_segmap_info *free_i = FREE_I(sbi);
434 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
436 set_bit(segno, free_i->free_segmap);
437 free_i->free_segments--;
438 if (!test_and_set_bit(secno, free_i->free_secmap))
439 free_i->free_sections--;
442 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
443 unsigned int segno)
445 struct free_segmap_info *free_i = FREE_I(sbi);
446 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
447 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
448 unsigned int next;
450 spin_lock(&free_i->segmap_lock);
451 if (test_and_clear_bit(segno, free_i->free_segmap)) {
452 free_i->free_segments++;
454 if (IS_CURSEC(sbi, secno))
455 goto skip_free;
456 next = find_next_bit(free_i->free_segmap,
457 start_segno + sbi->segs_per_sec, start_segno);
458 if (next >= start_segno + sbi->segs_per_sec) {
459 if (test_and_clear_bit(secno, free_i->free_secmap))
460 free_i->free_sections++;
463 skip_free:
464 spin_unlock(&free_i->segmap_lock);
467 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
468 unsigned int segno)
470 struct free_segmap_info *free_i = FREE_I(sbi);
471 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
473 spin_lock(&free_i->segmap_lock);
474 if (!test_and_set_bit(segno, free_i->free_segmap)) {
475 free_i->free_segments--;
476 if (!test_and_set_bit(secno, free_i->free_secmap))
477 free_i->free_sections--;
479 spin_unlock(&free_i->segmap_lock);
482 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
483 void *dst_addr)
485 struct sit_info *sit_i = SIT_I(sbi);
487 #ifdef CONFIG_F2FS_CHECK_FS
488 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
489 sit_i->bitmap_size))
490 f2fs_bug_on(sbi, 1);
491 #endif
492 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
495 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
497 return SIT_I(sbi)->written_valid_blocks;
500 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
502 return FREE_I(sbi)->free_segments;
505 static inline int reserved_segments(struct f2fs_sb_info *sbi)
507 return SM_I(sbi)->reserved_segments;
510 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
512 return FREE_I(sbi)->free_sections;
515 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
517 return DIRTY_I(sbi)->nr_dirty[PRE];
520 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
522 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
523 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
524 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
525 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
526 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
527 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
530 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
532 return SM_I(sbi)->ovp_segments;
535 static inline int reserved_sections(struct f2fs_sb_info *sbi)
537 return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
540 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
542 unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
543 get_pages(sbi, F2FS_DIRTY_DENTS);
544 unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
545 unsigned int segno, left_blocks;
546 int i;
548 /* check current node segment */
549 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
550 segno = CURSEG_I(sbi, i)->segno;
551 left_blocks = sbi->blocks_per_seg -
552 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
554 if (node_blocks > left_blocks)
555 return false;
558 /* check current data segment */
559 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
560 left_blocks = sbi->blocks_per_seg -
561 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
562 if (dent_blocks > left_blocks)
563 return false;
564 return true;
567 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
568 int freed, int needed)
570 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
571 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
572 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
574 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
575 return false;
577 if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
578 has_curseg_enough_space(sbi))
579 return false;
580 return (free_sections(sbi) + freed) <=
581 (node_secs + 2 * dent_secs + imeta_secs +
582 reserved_sections(sbi) + needed);
585 static inline int f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
587 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
588 return 0;
589 if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
590 return 0;
591 return -ENOSPC;
594 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
596 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
599 static inline int utilization(struct f2fs_sb_info *sbi)
601 return div_u64((u64)valid_user_blocks(sbi) * 100,
602 sbi->user_block_count);
606 * Sometimes f2fs may be better to drop out-of-place update policy.
607 * And, users can control the policy through sysfs entries.
608 * There are five policies with triggering conditions as follows.
609 * F2FS_IPU_FORCE - all the time,
610 * F2FS_IPU_SSR - if SSR mode is activated,
611 * F2FS_IPU_UTIL - if FS utilization is over threashold,
612 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
613 * threashold,
614 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
615 * storages. IPU will be triggered only if the # of dirty
616 * pages over min_fsync_blocks.
617 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
619 #define DEF_MIN_IPU_UTIL 70
620 #define DEF_MIN_FSYNC_BLOCKS 8
621 #define DEF_MIN_HOT_BLOCKS 16
623 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */
625 enum {
626 F2FS_IPU_FORCE,
627 F2FS_IPU_SSR,
628 F2FS_IPU_UTIL,
629 F2FS_IPU_SSR_UTIL,
630 F2FS_IPU_FSYNC,
631 F2FS_IPU_ASYNC,
634 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
635 int type)
637 struct curseg_info *curseg = CURSEG_I(sbi, type);
638 return curseg->segno;
641 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
642 int type)
644 struct curseg_info *curseg = CURSEG_I(sbi, type);
645 return curseg->alloc_type;
648 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
650 struct curseg_info *curseg = CURSEG_I(sbi, type);
651 return curseg->next_blkoff;
654 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
656 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
659 static inline void verify_block_addr(struct f2fs_io_info *fio, block_t blk_addr)
661 struct f2fs_sb_info *sbi = fio->sbi;
663 if (__is_meta_io(fio))
664 verify_blkaddr(sbi, blk_addr, META_GENERIC);
665 else
666 verify_blkaddr(sbi, blk_addr, DATA_GENERIC);
670 * Summary block is always treated as an invalid block
672 static inline int check_block_count(struct f2fs_sb_info *sbi,
673 int segno, struct f2fs_sit_entry *raw_sit)
675 #ifdef CONFIG_F2FS_CHECK_FS
676 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
677 int valid_blocks = 0;
678 int cur_pos = 0, next_pos;
680 /* check bitmap with valid block count */
681 do {
682 if (is_valid) {
683 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
684 sbi->blocks_per_seg,
685 cur_pos);
686 valid_blocks += next_pos - cur_pos;
687 } else
688 next_pos = find_next_bit_le(&raw_sit->valid_map,
689 sbi->blocks_per_seg,
690 cur_pos);
691 cur_pos = next_pos;
692 is_valid = !is_valid;
693 } while (cur_pos < sbi->blocks_per_seg);
695 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
696 f2fs_msg(sbi->sb, KERN_ERR,
697 "Mismatch valid blocks %d vs. %d",
698 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
699 set_sbi_flag(sbi, SBI_NEED_FSCK);
700 return -EINVAL;
702 #endif
703 /* check segment usage, and check boundary of a given segment number */
704 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
705 || segno > TOTAL_SEGS(sbi) - 1)) {
706 f2fs_msg(sbi->sb, KERN_ERR,
707 "Wrong valid blocks %d or segno %u",
708 GET_SIT_VBLOCKS(raw_sit), segno);
709 set_sbi_flag(sbi, SBI_NEED_FSCK);
710 return -EINVAL;
712 return 0;
715 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
716 unsigned int start)
718 struct sit_info *sit_i = SIT_I(sbi);
719 unsigned int offset = SIT_BLOCK_OFFSET(start);
720 block_t blk_addr = sit_i->sit_base_addr + offset;
722 check_seg_range(sbi, start);
724 #ifdef CONFIG_F2FS_CHECK_FS
725 if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
726 f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
727 f2fs_bug_on(sbi, 1);
728 #endif
730 /* calculate sit block address */
731 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
732 blk_addr += sit_i->sit_blocks;
734 return blk_addr;
737 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
738 pgoff_t block_addr)
740 struct sit_info *sit_i = SIT_I(sbi);
741 block_addr -= sit_i->sit_base_addr;
742 if (block_addr < sit_i->sit_blocks)
743 block_addr += sit_i->sit_blocks;
744 else
745 block_addr -= sit_i->sit_blocks;
747 return block_addr + sit_i->sit_base_addr;
750 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
752 unsigned int block_off = SIT_BLOCK_OFFSET(start);
754 f2fs_change_bit(block_off, sit_i->sit_bitmap);
755 #ifdef CONFIG_F2FS_CHECK_FS
756 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
757 #endif
760 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
761 bool base_time)
763 struct sit_info *sit_i = SIT_I(sbi);
764 time64_t diff, now = ktime_get_real_seconds();
766 if (now >= sit_i->mounted_time)
767 return sit_i->elapsed_time + now - sit_i->mounted_time;
769 /* system time is set to the past */
770 if (!base_time) {
771 diff = sit_i->mounted_time - now;
772 if (sit_i->elapsed_time >= diff)
773 return sit_i->elapsed_time - diff;
774 return 0;
776 return sit_i->elapsed_time;
779 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
780 unsigned int ofs_in_node, unsigned char version)
782 sum->nid = cpu_to_le32(nid);
783 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
784 sum->version = version;
787 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
789 return __start_cp_addr(sbi) +
790 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
793 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
795 return __start_cp_addr(sbi) +
796 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
797 - (base + 1) + type;
800 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
802 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
803 return true;
804 return false;
808 * It is very important to gather dirty pages and write at once, so that we can
809 * submit a big bio without interfering other data writes.
810 * By default, 512 pages for directory data,
811 * 512 pages (2MB) * 8 for nodes, and
812 * 256 pages * 8 for meta are set.
814 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
816 if (sbi->sb->s_bdi->wb.dirty_exceeded)
817 return 0;
819 if (type == DATA)
820 return sbi->blocks_per_seg;
821 else if (type == NODE)
822 return 8 * sbi->blocks_per_seg;
823 else if (type == META)
824 return 8 * BIO_MAX_PAGES;
825 else
826 return 0;
830 * When writing pages, it'd better align nr_to_write for segment size.
832 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
833 struct writeback_control *wbc)
835 long nr_to_write, desired;
837 if (wbc->sync_mode != WB_SYNC_NONE)
838 return 0;
840 nr_to_write = wbc->nr_to_write;
841 desired = BIO_MAX_PAGES;
842 if (type == NODE)
843 desired <<= 1;
845 wbc->nr_to_write = desired;
846 return desired - nr_to_write;
849 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
851 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
852 bool wakeup = false;
853 int i;
855 if (force)
856 goto wake_up;
858 mutex_lock(&dcc->cmd_lock);
859 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
860 if (i + 1 < dcc->discard_granularity)
861 break;
862 if (!list_empty(&dcc->pend_list[i])) {
863 wakeup = true;
864 break;
867 mutex_unlock(&dcc->cmd_lock);
868 if (!wakeup)
869 return;
870 wake_up:
871 dcc->discard_wake = 1;
872 wake_up_interruptible_all(&dcc->discard_wait_queue);