1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
12 #define NULL_SEGNO ((unsigned int)(~0))
13 #define NULL_SECNO ((unsigned int)(~0))
15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
20 /* L: Logical segment # in volume, R: Relative segment # in main area */
21 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
22 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
24 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
25 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE)
27 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
28 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
29 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
31 #define IS_CURSEG(sbi, seg) \
32 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
33 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
34 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
35 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
36 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
37 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
39 #define IS_CURSEC(sbi, secno) \
40 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
41 (sbi)->segs_per_sec) || \
42 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
43 (sbi)->segs_per_sec) || \
44 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
45 (sbi)->segs_per_sec) || \
46 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
47 (sbi)->segs_per_sec) || \
48 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
49 (sbi)->segs_per_sec) || \
50 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
51 (sbi)->segs_per_sec)) \
53 #define MAIN_BLKADDR(sbi) \
54 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
55 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
56 #define SEG0_BLKADDR(sbi) \
57 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
58 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
60 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
61 #define MAIN_SECS(sbi) ((sbi)->total_sections)
63 #define TOTAL_SEGS(sbi) \
64 (SM_I(sbi) ? SM_I(sbi)->segment_count : \
65 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
66 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
68 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
69 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
70 (sbi)->log_blocks_per_seg))
72 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
73 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
75 #define NEXT_FREE_BLKADDR(sbi, curseg) \
76 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
78 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
79 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
80 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
81 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
82 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
84 #define GET_SEGNO(sbi, blk_addr) \
85 ((!is_valid_data_blkaddr(sbi, blk_addr)) ? \
86 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
87 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
88 #define BLKS_PER_SEC(sbi) \
89 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
90 #define GET_SEC_FROM_SEG(sbi, segno) \
91 ((segno) / (sbi)->segs_per_sec)
92 #define GET_SEG_FROM_SEC(sbi, secno) \
93 ((secno) * (sbi)->segs_per_sec)
94 #define GET_ZONE_FROM_SEC(sbi, secno) \
95 ((secno) / (sbi)->secs_per_zone)
96 #define GET_ZONE_FROM_SEG(sbi, segno) \
97 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
99 #define GET_SUM_BLOCK(sbi, segno) \
100 ((sbi)->sm_info->ssa_blkaddr + (segno))
102 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
103 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
105 #define SIT_ENTRY_OFFSET(sit_i, segno) \
106 ((segno) % (sit_i)->sents_per_block)
107 #define SIT_BLOCK_OFFSET(segno) \
108 ((segno) / SIT_ENTRY_PER_BLOCK)
109 #define START_SEGNO(segno) \
110 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
111 #define SIT_BLK_CNT(sbi) \
112 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
113 #define f2fs_bitmap_size(nr) \
114 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
116 #define SECTOR_FROM_BLOCK(blk_addr) \
117 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
118 #define SECTOR_TO_BLOCK(sectors) \
119 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
122 * indicate a block allocation direction: RIGHT and LEFT.
123 * RIGHT means allocating new sections towards the end of volume.
124 * LEFT means the opposite direction.
132 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
133 * LFS writes data sequentially with cleaning operations.
134 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
142 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
143 * GC_CB is based on cost-benefit algorithm.
144 * GC_GREEDY is based on greedy algorithm.
155 * BG_GC means the background cleaning job.
156 * FG_GC means the on-demand cleaning job.
157 * FORCE_FG_GC means on-demand cleaning job in background.
165 /* for a function parameter to select a victim segment */
166 struct victim_sel_policy
{
167 int alloc_mode
; /* LFS or SSR */
168 int gc_mode
; /* GC_CB or GC_GREEDY */
169 unsigned long *dirty_segmap
; /* dirty segment bitmap */
170 unsigned int max_search
; /* maximum # of segments to search */
171 unsigned int offset
; /* last scanned bitmap offset */
172 unsigned int ofs_unit
; /* bitmap search unit */
173 unsigned int min_cost
; /* minimum cost */
174 unsigned int min_segno
; /* segment # having min. cost */
178 unsigned int type
:6; /* segment type like CURSEG_XXX_TYPE */
179 unsigned int valid_blocks
:10; /* # of valid blocks */
180 unsigned int ckpt_valid_blocks
:10; /* # of valid blocks last cp */
181 unsigned int padding
:6; /* padding */
182 unsigned char *cur_valid_map
; /* validity bitmap of blocks */
183 #ifdef CONFIG_F2FS_CHECK_FS
184 unsigned char *cur_valid_map_mir
; /* mirror of current valid bitmap */
187 * # of valid blocks and the validity bitmap stored in the the last
188 * checkpoint pack. This information is used by the SSR mode.
190 unsigned char *ckpt_valid_map
; /* validity bitmap of blocks last cp */
191 unsigned char *discard_map
;
192 unsigned long long mtime
; /* modification time of the segment */
196 unsigned int valid_blocks
; /* # of valid blocks in a section */
199 struct segment_allocation
{
200 void (*allocate_segment
)(struct f2fs_sb_info
*, int, bool);
204 * this value is set in page as a private data which indicate that
205 * the page is atomically written, and it is in inmem_pages list.
207 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
208 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
210 #define IS_ATOMIC_WRITTEN_PAGE(page) \
211 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
212 #define IS_DUMMY_WRITTEN_PAGE(page) \
213 (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
215 #define MAX_SKIP_GC_COUNT 16
218 struct list_head list
;
220 block_t old_addr
; /* for revoking when fail to commit */
224 const struct segment_allocation
*s_ops
;
226 block_t sit_base_addr
; /* start block address of SIT area */
227 block_t sit_blocks
; /* # of blocks used by SIT area */
228 block_t written_valid_blocks
; /* # of valid blocks in main area */
229 char *sit_bitmap
; /* SIT bitmap pointer */
230 #ifdef CONFIG_F2FS_CHECK_FS
231 char *sit_bitmap_mir
; /* SIT bitmap mirror */
233 unsigned int bitmap_size
; /* SIT bitmap size */
235 unsigned long *tmp_map
; /* bitmap for temporal use */
236 unsigned long *dirty_sentries_bitmap
; /* bitmap for dirty sentries */
237 unsigned int dirty_sentries
; /* # of dirty sentries */
238 unsigned int sents_per_block
; /* # of SIT entries per block */
239 struct rw_semaphore sentry_lock
; /* to protect SIT cache */
240 struct seg_entry
*sentries
; /* SIT segment-level cache */
241 struct sec_entry
*sec_entries
; /* SIT section-level cache */
243 /* for cost-benefit algorithm in cleaning procedure */
244 unsigned long long elapsed_time
; /* elapsed time after mount */
245 unsigned long long mounted_time
; /* mount time */
246 unsigned long long min_mtime
; /* min. modification time */
247 unsigned long long max_mtime
; /* max. modification time */
249 unsigned int last_victim
[MAX_GC_POLICY
]; /* last victim segment # */
252 struct free_segmap_info
{
253 unsigned int start_segno
; /* start segment number logically */
254 unsigned int free_segments
; /* # of free segments */
255 unsigned int free_sections
; /* # of free sections */
256 spinlock_t segmap_lock
; /* free segmap lock */
257 unsigned long *free_segmap
; /* free segment bitmap */
258 unsigned long *free_secmap
; /* free section bitmap */
261 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
263 DIRTY_HOT_DATA
, /* dirty segments assigned as hot data logs */
264 DIRTY_WARM_DATA
, /* dirty segments assigned as warm data logs */
265 DIRTY_COLD_DATA
, /* dirty segments assigned as cold data logs */
266 DIRTY_HOT_NODE
, /* dirty segments assigned as hot node logs */
267 DIRTY_WARM_NODE
, /* dirty segments assigned as warm node logs */
268 DIRTY_COLD_NODE
, /* dirty segments assigned as cold node logs */
269 DIRTY
, /* to count # of dirty segments */
270 PRE
, /* to count # of entirely obsolete segments */
274 struct dirty_seglist_info
{
275 const struct victim_selection
*v_ops
; /* victim selction operation */
276 unsigned long *dirty_segmap
[NR_DIRTY_TYPE
];
277 struct mutex seglist_lock
; /* lock for segment bitmaps */
278 int nr_dirty
[NR_DIRTY_TYPE
]; /* # of dirty segments */
279 unsigned long *victim_secmap
; /* background GC victims */
282 /* victim selection function for cleaning and SSR */
283 struct victim_selection
{
284 int (*get_victim
)(struct f2fs_sb_info
*, unsigned int *,
288 /* for active log information */
290 struct mutex curseg_mutex
; /* lock for consistency */
291 struct f2fs_summary_block
*sum_blk
; /* cached summary block */
292 struct rw_semaphore journal_rwsem
; /* protect journal area */
293 struct f2fs_journal
*journal
; /* cached journal info */
294 unsigned char alloc_type
; /* current allocation type */
295 unsigned int segno
; /* current segment number */
296 unsigned short next_blkoff
; /* next block offset to write */
297 unsigned int zone
; /* current zone number */
298 unsigned int next_segno
; /* preallocated segment */
301 struct sit_entry_set
{
302 struct list_head set_list
; /* link with all sit sets */
303 unsigned int start_segno
; /* start segno of sits in set */
304 unsigned int entry_cnt
; /* the # of sit entries in set */
310 static inline struct curseg_info
*CURSEG_I(struct f2fs_sb_info
*sbi
, int type
)
312 return (struct curseg_info
*)(SM_I(sbi
)->curseg_array
+ type
);
315 static inline struct seg_entry
*get_seg_entry(struct f2fs_sb_info
*sbi
,
318 struct sit_info
*sit_i
= SIT_I(sbi
);
319 return &sit_i
->sentries
[segno
];
322 static inline struct sec_entry
*get_sec_entry(struct f2fs_sb_info
*sbi
,
325 struct sit_info
*sit_i
= SIT_I(sbi
);
326 return &sit_i
->sec_entries
[GET_SEC_FROM_SEG(sbi
, segno
)];
329 static inline unsigned int get_valid_blocks(struct f2fs_sb_info
*sbi
,
330 unsigned int segno
, bool use_section
)
333 * In order to get # of valid blocks in a section instantly from many
334 * segments, f2fs manages two counting structures separately.
336 if (use_section
&& sbi
->segs_per_sec
> 1)
337 return get_sec_entry(sbi
, segno
)->valid_blocks
;
339 return get_seg_entry(sbi
, segno
)->valid_blocks
;
342 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info
*sbi
,
345 return get_seg_entry(sbi
, segno
)->ckpt_valid_blocks
;
348 static inline void seg_info_from_raw_sit(struct seg_entry
*se
,
349 struct f2fs_sit_entry
*rs
)
351 se
->valid_blocks
= GET_SIT_VBLOCKS(rs
);
352 se
->ckpt_valid_blocks
= GET_SIT_VBLOCKS(rs
);
353 memcpy(se
->cur_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
354 memcpy(se
->ckpt_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
355 #ifdef CONFIG_F2FS_CHECK_FS
356 memcpy(se
->cur_valid_map_mir
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
358 se
->type
= GET_SIT_TYPE(rs
);
359 se
->mtime
= le64_to_cpu(rs
->mtime
);
362 static inline void __seg_info_to_raw_sit(struct seg_entry
*se
,
363 struct f2fs_sit_entry
*rs
)
365 unsigned short raw_vblocks
= (se
->type
<< SIT_VBLOCKS_SHIFT
) |
367 rs
->vblocks
= cpu_to_le16(raw_vblocks
);
368 memcpy(rs
->valid_map
, se
->cur_valid_map
, SIT_VBLOCK_MAP_SIZE
);
369 rs
->mtime
= cpu_to_le64(se
->mtime
);
372 static inline void seg_info_to_sit_page(struct f2fs_sb_info
*sbi
,
373 struct page
*page
, unsigned int start
)
375 struct f2fs_sit_block
*raw_sit
;
376 struct seg_entry
*se
;
377 struct f2fs_sit_entry
*rs
;
378 unsigned int end
= min(start
+ SIT_ENTRY_PER_BLOCK
,
379 (unsigned long)MAIN_SEGS(sbi
));
382 raw_sit
= (struct f2fs_sit_block
*)page_address(page
);
383 memset(raw_sit
, 0, PAGE_SIZE
);
384 for (i
= 0; i
< end
- start
; i
++) {
385 rs
= &raw_sit
->entries
[i
];
386 se
= get_seg_entry(sbi
, start
+ i
);
387 __seg_info_to_raw_sit(se
, rs
);
391 static inline void seg_info_to_raw_sit(struct seg_entry
*se
,
392 struct f2fs_sit_entry
*rs
)
394 __seg_info_to_raw_sit(se
, rs
);
396 memcpy(se
->ckpt_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
397 se
->ckpt_valid_blocks
= se
->valid_blocks
;
400 static inline unsigned int find_next_inuse(struct free_segmap_info
*free_i
,
401 unsigned int max
, unsigned int segno
)
404 spin_lock(&free_i
->segmap_lock
);
405 ret
= find_next_bit(free_i
->free_segmap
, max
, segno
);
406 spin_unlock(&free_i
->segmap_lock
);
410 static inline void __set_free(struct f2fs_sb_info
*sbi
, unsigned int segno
)
412 struct free_segmap_info
*free_i
= FREE_I(sbi
);
413 unsigned int secno
= GET_SEC_FROM_SEG(sbi
, segno
);
414 unsigned int start_segno
= GET_SEG_FROM_SEC(sbi
, secno
);
417 spin_lock(&free_i
->segmap_lock
);
418 clear_bit(segno
, free_i
->free_segmap
);
419 free_i
->free_segments
++;
421 next
= find_next_bit(free_i
->free_segmap
,
422 start_segno
+ sbi
->segs_per_sec
, start_segno
);
423 if (next
>= start_segno
+ sbi
->segs_per_sec
) {
424 clear_bit(secno
, free_i
->free_secmap
);
425 free_i
->free_sections
++;
427 spin_unlock(&free_i
->segmap_lock
);
430 static inline void __set_inuse(struct f2fs_sb_info
*sbi
,
433 struct free_segmap_info
*free_i
= FREE_I(sbi
);
434 unsigned int secno
= GET_SEC_FROM_SEG(sbi
, segno
);
436 set_bit(segno
, free_i
->free_segmap
);
437 free_i
->free_segments
--;
438 if (!test_and_set_bit(secno
, free_i
->free_secmap
))
439 free_i
->free_sections
--;
442 static inline void __set_test_and_free(struct f2fs_sb_info
*sbi
,
445 struct free_segmap_info
*free_i
= FREE_I(sbi
);
446 unsigned int secno
= GET_SEC_FROM_SEG(sbi
, segno
);
447 unsigned int start_segno
= GET_SEG_FROM_SEC(sbi
, secno
);
450 spin_lock(&free_i
->segmap_lock
);
451 if (test_and_clear_bit(segno
, free_i
->free_segmap
)) {
452 free_i
->free_segments
++;
454 if (IS_CURSEC(sbi
, secno
))
456 next
= find_next_bit(free_i
->free_segmap
,
457 start_segno
+ sbi
->segs_per_sec
, start_segno
);
458 if (next
>= start_segno
+ sbi
->segs_per_sec
) {
459 if (test_and_clear_bit(secno
, free_i
->free_secmap
))
460 free_i
->free_sections
++;
464 spin_unlock(&free_i
->segmap_lock
);
467 static inline void __set_test_and_inuse(struct f2fs_sb_info
*sbi
,
470 struct free_segmap_info
*free_i
= FREE_I(sbi
);
471 unsigned int secno
= GET_SEC_FROM_SEG(sbi
, segno
);
473 spin_lock(&free_i
->segmap_lock
);
474 if (!test_and_set_bit(segno
, free_i
->free_segmap
)) {
475 free_i
->free_segments
--;
476 if (!test_and_set_bit(secno
, free_i
->free_secmap
))
477 free_i
->free_sections
--;
479 spin_unlock(&free_i
->segmap_lock
);
482 static inline void get_sit_bitmap(struct f2fs_sb_info
*sbi
,
485 struct sit_info
*sit_i
= SIT_I(sbi
);
487 #ifdef CONFIG_F2FS_CHECK_FS
488 if (memcmp(sit_i
->sit_bitmap
, sit_i
->sit_bitmap_mir
,
492 memcpy(dst_addr
, sit_i
->sit_bitmap
, sit_i
->bitmap_size
);
495 static inline block_t
written_block_count(struct f2fs_sb_info
*sbi
)
497 return SIT_I(sbi
)->written_valid_blocks
;
500 static inline unsigned int free_segments(struct f2fs_sb_info
*sbi
)
502 return FREE_I(sbi
)->free_segments
;
505 static inline int reserved_segments(struct f2fs_sb_info
*sbi
)
507 return SM_I(sbi
)->reserved_segments
;
510 static inline unsigned int free_sections(struct f2fs_sb_info
*sbi
)
512 return FREE_I(sbi
)->free_sections
;
515 static inline unsigned int prefree_segments(struct f2fs_sb_info
*sbi
)
517 return DIRTY_I(sbi
)->nr_dirty
[PRE
];
520 static inline unsigned int dirty_segments(struct f2fs_sb_info
*sbi
)
522 return DIRTY_I(sbi
)->nr_dirty
[DIRTY_HOT_DATA
] +
523 DIRTY_I(sbi
)->nr_dirty
[DIRTY_WARM_DATA
] +
524 DIRTY_I(sbi
)->nr_dirty
[DIRTY_COLD_DATA
] +
525 DIRTY_I(sbi
)->nr_dirty
[DIRTY_HOT_NODE
] +
526 DIRTY_I(sbi
)->nr_dirty
[DIRTY_WARM_NODE
] +
527 DIRTY_I(sbi
)->nr_dirty
[DIRTY_COLD_NODE
];
530 static inline int overprovision_segments(struct f2fs_sb_info
*sbi
)
532 return SM_I(sbi
)->ovp_segments
;
535 static inline int reserved_sections(struct f2fs_sb_info
*sbi
)
537 return GET_SEC_FROM_SEG(sbi
, (unsigned int)reserved_segments(sbi
));
540 static inline bool has_curseg_enough_space(struct f2fs_sb_info
*sbi
)
542 unsigned int node_blocks
= get_pages(sbi
, F2FS_DIRTY_NODES
) +
543 get_pages(sbi
, F2FS_DIRTY_DENTS
);
544 unsigned int dent_blocks
= get_pages(sbi
, F2FS_DIRTY_DENTS
);
545 unsigned int segno
, left_blocks
;
548 /* check current node segment */
549 for (i
= CURSEG_HOT_NODE
; i
<= CURSEG_COLD_NODE
; i
++) {
550 segno
= CURSEG_I(sbi
, i
)->segno
;
551 left_blocks
= sbi
->blocks_per_seg
-
552 get_seg_entry(sbi
, segno
)->ckpt_valid_blocks
;
554 if (node_blocks
> left_blocks
)
558 /* check current data segment */
559 segno
= CURSEG_I(sbi
, CURSEG_HOT_DATA
)->segno
;
560 left_blocks
= sbi
->blocks_per_seg
-
561 get_seg_entry(sbi
, segno
)->ckpt_valid_blocks
;
562 if (dent_blocks
> left_blocks
)
567 static inline bool has_not_enough_free_secs(struct f2fs_sb_info
*sbi
,
568 int freed
, int needed
)
570 int node_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_NODES
);
571 int dent_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_DENTS
);
572 int imeta_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_IMETA
);
574 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
577 if (free_sections(sbi
) + freed
== reserved_sections(sbi
) + needed
&&
578 has_curseg_enough_space(sbi
))
580 return (free_sections(sbi
) + freed
) <=
581 (node_secs
+ 2 * dent_secs
+ imeta_secs
+
582 reserved_sections(sbi
) + needed
);
585 static inline int f2fs_is_checkpoint_ready(struct f2fs_sb_info
*sbi
)
587 if (likely(!is_sbi_flag_set(sbi
, SBI_CP_DISABLED
)))
589 if (likely(!has_not_enough_free_secs(sbi
, 0, 0)))
594 static inline bool excess_prefree_segs(struct f2fs_sb_info
*sbi
)
596 return prefree_segments(sbi
) > SM_I(sbi
)->rec_prefree_segments
;
599 static inline int utilization(struct f2fs_sb_info
*sbi
)
601 return div_u64((u64
)valid_user_blocks(sbi
) * 100,
602 sbi
->user_block_count
);
606 * Sometimes f2fs may be better to drop out-of-place update policy.
607 * And, users can control the policy through sysfs entries.
608 * There are five policies with triggering conditions as follows.
609 * F2FS_IPU_FORCE - all the time,
610 * F2FS_IPU_SSR - if SSR mode is activated,
611 * F2FS_IPU_UTIL - if FS utilization is over threashold,
612 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
614 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
615 * storages. IPU will be triggered only if the # of dirty
616 * pages over min_fsync_blocks.
617 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
619 #define DEF_MIN_IPU_UTIL 70
620 #define DEF_MIN_FSYNC_BLOCKS 8
621 #define DEF_MIN_HOT_BLOCKS 16
623 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */
634 static inline unsigned int curseg_segno(struct f2fs_sb_info
*sbi
,
637 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
638 return curseg
->segno
;
641 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info
*sbi
,
644 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
645 return curseg
->alloc_type
;
648 static inline unsigned short curseg_blkoff(struct f2fs_sb_info
*sbi
, int type
)
650 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
651 return curseg
->next_blkoff
;
654 static inline void check_seg_range(struct f2fs_sb_info
*sbi
, unsigned int segno
)
656 f2fs_bug_on(sbi
, segno
> TOTAL_SEGS(sbi
) - 1);
659 static inline void verify_block_addr(struct f2fs_io_info
*fio
, block_t blk_addr
)
661 struct f2fs_sb_info
*sbi
= fio
->sbi
;
663 if (__is_meta_io(fio
))
664 verify_blkaddr(sbi
, blk_addr
, META_GENERIC
);
666 verify_blkaddr(sbi
, blk_addr
, DATA_GENERIC
);
670 * Summary block is always treated as an invalid block
672 static inline int check_block_count(struct f2fs_sb_info
*sbi
,
673 int segno
, struct f2fs_sit_entry
*raw_sit
)
675 #ifdef CONFIG_F2FS_CHECK_FS
676 bool is_valid
= test_bit_le(0, raw_sit
->valid_map
) ? true : false;
677 int valid_blocks
= 0;
678 int cur_pos
= 0, next_pos
;
680 /* check bitmap with valid block count */
683 next_pos
= find_next_zero_bit_le(&raw_sit
->valid_map
,
686 valid_blocks
+= next_pos
- cur_pos
;
688 next_pos
= find_next_bit_le(&raw_sit
->valid_map
,
692 is_valid
= !is_valid
;
693 } while (cur_pos
< sbi
->blocks_per_seg
);
695 if (unlikely(GET_SIT_VBLOCKS(raw_sit
) != valid_blocks
)) {
696 f2fs_msg(sbi
->sb
, KERN_ERR
,
697 "Mismatch valid blocks %d vs. %d",
698 GET_SIT_VBLOCKS(raw_sit
), valid_blocks
);
699 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
703 /* check segment usage, and check boundary of a given segment number */
704 if (unlikely(GET_SIT_VBLOCKS(raw_sit
) > sbi
->blocks_per_seg
705 || segno
> TOTAL_SEGS(sbi
) - 1)) {
706 f2fs_msg(sbi
->sb
, KERN_ERR
,
707 "Wrong valid blocks %d or segno %u",
708 GET_SIT_VBLOCKS(raw_sit
), segno
);
709 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
715 static inline pgoff_t
current_sit_addr(struct f2fs_sb_info
*sbi
,
718 struct sit_info
*sit_i
= SIT_I(sbi
);
719 unsigned int offset
= SIT_BLOCK_OFFSET(start
);
720 block_t blk_addr
= sit_i
->sit_base_addr
+ offset
;
722 check_seg_range(sbi
, start
);
724 #ifdef CONFIG_F2FS_CHECK_FS
725 if (f2fs_test_bit(offset
, sit_i
->sit_bitmap
) !=
726 f2fs_test_bit(offset
, sit_i
->sit_bitmap_mir
))
730 /* calculate sit block address */
731 if (f2fs_test_bit(offset
, sit_i
->sit_bitmap
))
732 blk_addr
+= sit_i
->sit_blocks
;
737 static inline pgoff_t
next_sit_addr(struct f2fs_sb_info
*sbi
,
740 struct sit_info
*sit_i
= SIT_I(sbi
);
741 block_addr
-= sit_i
->sit_base_addr
;
742 if (block_addr
< sit_i
->sit_blocks
)
743 block_addr
+= sit_i
->sit_blocks
;
745 block_addr
-= sit_i
->sit_blocks
;
747 return block_addr
+ sit_i
->sit_base_addr
;
750 static inline void set_to_next_sit(struct sit_info
*sit_i
, unsigned int start
)
752 unsigned int block_off
= SIT_BLOCK_OFFSET(start
);
754 f2fs_change_bit(block_off
, sit_i
->sit_bitmap
);
755 #ifdef CONFIG_F2FS_CHECK_FS
756 f2fs_change_bit(block_off
, sit_i
->sit_bitmap_mir
);
760 static inline unsigned long long get_mtime(struct f2fs_sb_info
*sbi
,
763 struct sit_info
*sit_i
= SIT_I(sbi
);
764 time64_t diff
, now
= ktime_get_real_seconds();
766 if (now
>= sit_i
->mounted_time
)
767 return sit_i
->elapsed_time
+ now
- sit_i
->mounted_time
;
769 /* system time is set to the past */
771 diff
= sit_i
->mounted_time
- now
;
772 if (sit_i
->elapsed_time
>= diff
)
773 return sit_i
->elapsed_time
- diff
;
776 return sit_i
->elapsed_time
;
779 static inline void set_summary(struct f2fs_summary
*sum
, nid_t nid
,
780 unsigned int ofs_in_node
, unsigned char version
)
782 sum
->nid
= cpu_to_le32(nid
);
783 sum
->ofs_in_node
= cpu_to_le16(ofs_in_node
);
784 sum
->version
= version
;
787 static inline block_t
start_sum_block(struct f2fs_sb_info
*sbi
)
789 return __start_cp_addr(sbi
) +
790 le32_to_cpu(F2FS_CKPT(sbi
)->cp_pack_start_sum
);
793 static inline block_t
sum_blk_addr(struct f2fs_sb_info
*sbi
, int base
, int type
)
795 return __start_cp_addr(sbi
) +
796 le32_to_cpu(F2FS_CKPT(sbi
)->cp_pack_total_block_count
)
800 static inline bool sec_usage_check(struct f2fs_sb_info
*sbi
, unsigned int secno
)
802 if (IS_CURSEC(sbi
, secno
) || (sbi
->cur_victim_sec
== secno
))
808 * It is very important to gather dirty pages and write at once, so that we can
809 * submit a big bio without interfering other data writes.
810 * By default, 512 pages for directory data,
811 * 512 pages (2MB) * 8 for nodes, and
812 * 256 pages * 8 for meta are set.
814 static inline int nr_pages_to_skip(struct f2fs_sb_info
*sbi
, int type
)
816 if (sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
820 return sbi
->blocks_per_seg
;
821 else if (type
== NODE
)
822 return 8 * sbi
->blocks_per_seg
;
823 else if (type
== META
)
824 return 8 * BIO_MAX_PAGES
;
830 * When writing pages, it'd better align nr_to_write for segment size.
832 static inline long nr_pages_to_write(struct f2fs_sb_info
*sbi
, int type
,
833 struct writeback_control
*wbc
)
835 long nr_to_write
, desired
;
837 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
840 nr_to_write
= wbc
->nr_to_write
;
841 desired
= BIO_MAX_PAGES
;
845 wbc
->nr_to_write
= desired
;
846 return desired
- nr_to_write
;
849 static inline void wake_up_discard_thread(struct f2fs_sb_info
*sbi
, bool force
)
851 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
858 mutex_lock(&dcc
->cmd_lock
);
859 for (i
= MAX_PLIST_NUM
- 1; i
>= 0; i
--) {
860 if (i
+ 1 < dcc
->discard_granularity
)
862 if (!list_empty(&dcc
->pend_list
[i
])) {
867 mutex_unlock(&dcc
->cmd_lock
);
871 dcc
->discard_wake
= 1;
872 wake_up_interruptible_all(&dcc
->discard_wait_queue
);