2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/pagemap.h>
15 #include <linux/uio.h>
16 #include <linux/blkdev.h>
18 #include <linux/mount.h>
20 #include <linux/gfs2_ondisk.h>
21 #include <linux/falloc.h>
22 #include <linux/swap.h>
23 #include <linux/crc32.h>
24 #include <linux/writeback.h>
25 #include <linux/uaccess.h>
26 #include <linux/dlm.h>
27 #include <linux/dlm_plock.h>
28 #include <linux/delay.h>
29 #include <linux/backing-dev.h>
47 * gfs2_llseek - seek to a location in a file
50 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
52 * SEEK_END requires the glock for the file because it references the
55 * Returns: The new offset, or errno
58 static loff_t
gfs2_llseek(struct file
*file
, loff_t offset
, int whence
)
60 struct gfs2_inode
*ip
= GFS2_I(file
->f_mapping
->host
);
61 struct gfs2_holder i_gh
;
66 error
= gfs2_glock_nq_init(ip
->i_gl
, LM_ST_SHARED
, LM_FLAG_ANY
,
69 error
= generic_file_llseek(file
, offset
, whence
);
70 gfs2_glock_dq_uninit(&i_gh
);
75 error
= gfs2_seek_data(file
, offset
);
79 error
= gfs2_seek_hole(file
, offset
);
85 * These don't reference inode->i_size and don't depend on the
86 * block mapping, so we don't need the glock.
88 error
= generic_file_llseek(file
, offset
, whence
);
98 * gfs2_readdir - Iterator for a directory
99 * @file: The directory to read from
100 * @ctx: What to feed directory entries to
105 static int gfs2_readdir(struct file
*file
, struct dir_context
*ctx
)
107 struct inode
*dir
= file
->f_mapping
->host
;
108 struct gfs2_inode
*dip
= GFS2_I(dir
);
109 struct gfs2_holder d_gh
;
112 error
= gfs2_glock_nq_init(dip
->i_gl
, LM_ST_SHARED
, 0, &d_gh
);
116 error
= gfs2_dir_read(dir
, ctx
, &file
->f_ra
);
118 gfs2_glock_dq_uninit(&d_gh
);
126 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
127 * and to GFS2_DIF_JDATA for non-directories.
132 } fsflag_gfs2flag
[] = {
133 {FS_SYNC_FL
, GFS2_DIF_SYNC
},
134 {FS_IMMUTABLE_FL
, GFS2_DIF_IMMUTABLE
},
135 {FS_APPEND_FL
, GFS2_DIF_APPENDONLY
},
136 {FS_NOATIME_FL
, GFS2_DIF_NOATIME
},
137 {FS_INDEX_FL
, GFS2_DIF_EXHASH
},
138 {FS_TOPDIR_FL
, GFS2_DIF_TOPDIR
},
139 {FS_JOURNAL_DATA_FL
, GFS2_DIF_JDATA
| GFS2_DIF_INHERIT_JDATA
},
142 static int gfs2_get_flags(struct file
*filp
, u32 __user
*ptr
)
144 struct inode
*inode
= file_inode(filp
);
145 struct gfs2_inode
*ip
= GFS2_I(inode
);
146 struct gfs2_holder gh
;
148 u32 gfsflags
, fsflags
= 0;
150 gfs2_holder_init(ip
->i_gl
, LM_ST_SHARED
, 0, &gh
);
151 error
= gfs2_glock_nq(&gh
);
155 gfsflags
= ip
->i_diskflags
;
156 if (S_ISDIR(inode
->i_mode
))
157 gfsflags
&= ~GFS2_DIF_JDATA
;
159 gfsflags
&= ~GFS2_DIF_INHERIT_JDATA
;
160 for (i
= 0; i
< ARRAY_SIZE(fsflag_gfs2flag
); i
++)
161 if (gfsflags
& fsflag_gfs2flag
[i
].gfsflag
)
162 fsflags
|= fsflag_gfs2flag
[i
].fsflag
;
164 if (put_user(fsflags
, ptr
))
169 gfs2_holder_uninit(&gh
);
173 void gfs2_set_inode_flags(struct inode
*inode
)
175 struct gfs2_inode
*ip
= GFS2_I(inode
);
176 unsigned int flags
= inode
->i_flags
;
178 flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
|S_NOSEC
);
179 if ((ip
->i_eattr
== 0) && !is_sxid(inode
->i_mode
))
181 if (ip
->i_diskflags
& GFS2_DIF_IMMUTABLE
)
182 flags
|= S_IMMUTABLE
;
183 if (ip
->i_diskflags
& GFS2_DIF_APPENDONLY
)
185 if (ip
->i_diskflags
& GFS2_DIF_NOATIME
)
187 if (ip
->i_diskflags
& GFS2_DIF_SYNC
)
189 inode
->i_flags
= flags
;
192 /* Flags that can be set by user space */
193 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \
194 GFS2_DIF_IMMUTABLE| \
195 GFS2_DIF_APPENDONLY| \
199 GFS2_DIF_INHERIT_JDATA)
202 * do_gfs2_set_flags - set flags on an inode
203 * @filp: file pointer
204 * @reqflags: The flags to set
205 * @mask: Indicates which flags are valid
208 static int do_gfs2_set_flags(struct file
*filp
, u32 reqflags
, u32 mask
)
210 struct inode
*inode
= file_inode(filp
);
211 struct gfs2_inode
*ip
= GFS2_I(inode
);
212 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
213 struct buffer_head
*bh
;
214 struct gfs2_holder gh
;
216 u32 new_flags
, flags
;
218 error
= mnt_want_write_file(filp
);
222 error
= gfs2_glock_nq_init(ip
->i_gl
, LM_ST_EXCLUSIVE
, 0, &gh
);
227 if (!inode_owner_or_capable(inode
))
231 flags
= ip
->i_diskflags
;
232 new_flags
= (flags
& ~mask
) | (reqflags
& mask
);
233 if ((new_flags
^ flags
) == 0)
237 if (IS_IMMUTABLE(inode
) && (new_flags
& GFS2_DIF_IMMUTABLE
))
239 if (IS_APPEND(inode
) && (new_flags
& GFS2_DIF_APPENDONLY
))
241 if (((new_flags
^ flags
) & GFS2_DIF_IMMUTABLE
) &&
242 !capable(CAP_LINUX_IMMUTABLE
))
244 if (!IS_IMMUTABLE(inode
)) {
245 error
= gfs2_permission(inode
, MAY_WRITE
);
249 if ((flags
^ new_flags
) & GFS2_DIF_JDATA
) {
250 if (new_flags
& GFS2_DIF_JDATA
)
251 gfs2_log_flush(sdp
, ip
->i_gl
,
252 GFS2_LOG_HEAD_FLUSH_NORMAL
|
254 error
= filemap_fdatawrite(inode
->i_mapping
);
257 error
= filemap_fdatawait(inode
->i_mapping
);
260 if (new_flags
& GFS2_DIF_JDATA
)
261 gfs2_ordered_del_inode(ip
);
263 error
= gfs2_trans_begin(sdp
, RES_DINODE
, 0);
266 error
= gfs2_meta_inode_buffer(ip
, &bh
);
269 inode
->i_ctime
= current_time(inode
);
270 gfs2_trans_add_meta(ip
->i_gl
, bh
);
271 ip
->i_diskflags
= new_flags
;
272 gfs2_dinode_out(ip
, bh
->b_data
);
274 gfs2_set_inode_flags(inode
);
275 gfs2_set_aops(inode
);
279 gfs2_glock_dq_uninit(&gh
);
281 mnt_drop_write_file(filp
);
285 static int gfs2_set_flags(struct file
*filp
, u32 __user
*ptr
)
287 struct inode
*inode
= file_inode(filp
);
288 u32 fsflags
, gfsflags
= 0;
292 if (get_user(fsflags
, ptr
))
295 for (i
= 0; i
< ARRAY_SIZE(fsflag_gfs2flag
); i
++) {
296 if (fsflags
& fsflag_gfs2flag
[i
].fsflag
) {
297 fsflags
&= ~fsflag_gfs2flag
[i
].fsflag
;
298 gfsflags
|= fsflag_gfs2flag
[i
].gfsflag
;
301 if (fsflags
|| gfsflags
& ~GFS2_FLAGS_USER_SET
)
304 mask
= GFS2_FLAGS_USER_SET
;
305 if (S_ISDIR(inode
->i_mode
)) {
306 mask
&= ~GFS2_DIF_JDATA
;
308 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */
309 if (gfsflags
& GFS2_DIF_TOPDIR
)
311 mask
&= ~(GFS2_DIF_TOPDIR
| GFS2_DIF_INHERIT_JDATA
);
314 return do_gfs2_set_flags(filp
, gfsflags
, mask
);
317 static int gfs2_getlabel(struct file
*filp
, char __user
*label
)
319 struct inode
*inode
= file_inode(filp
);
320 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
322 if (copy_to_user(label
, sdp
->sd_sb
.sb_locktable
, GFS2_LOCKNAME_LEN
))
328 static long gfs2_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
331 case FS_IOC_GETFLAGS
:
332 return gfs2_get_flags(filp
, (u32 __user
*)arg
);
333 case FS_IOC_SETFLAGS
:
334 return gfs2_set_flags(filp
, (u32 __user
*)arg
);
336 return gfs2_fitrim(filp
, (void __user
*)arg
);
337 case FS_IOC_GETFSLABEL
:
338 return gfs2_getlabel(filp
, (char __user
*)arg
);
345 * gfs2_size_hint - Give a hint to the size of a write request
346 * @filep: The struct file
347 * @offset: The file offset of the write
348 * @size: The length of the write
350 * When we are about to do a write, this function records the total
351 * write size in order to provide a suitable hint to the lower layers
352 * about how many blocks will be required.
356 static void gfs2_size_hint(struct file
*filep
, loff_t offset
, size_t size
)
358 struct inode
*inode
= file_inode(filep
);
359 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
360 struct gfs2_inode
*ip
= GFS2_I(inode
);
361 size_t blks
= (size
+ sdp
->sd_sb
.sb_bsize
- 1) >> sdp
->sd_sb
.sb_bsize_shift
;
362 int hint
= min_t(size_t, INT_MAX
, blks
);
364 if (hint
> atomic_read(&ip
->i_sizehint
))
365 atomic_set(&ip
->i_sizehint
, hint
);
369 * gfs2_allocate_page_backing - Use bmap to allocate blocks
370 * @page: The (locked) page to allocate backing for
372 * We try to allocate all the blocks required for the page in
373 * one go. This might fail for various reasons, so we keep
374 * trying until all the blocks to back this page are allocated.
375 * If some of the blocks are already allocated, thats ok too.
378 static int gfs2_allocate_page_backing(struct page
*page
)
380 struct inode
*inode
= page
->mapping
->host
;
381 struct buffer_head bh
;
382 unsigned long size
= PAGE_SIZE
;
383 u64 lblock
= page
->index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
388 gfs2_block_map(inode
, lblock
, &bh
, 1);
389 if (!buffer_mapped(&bh
))
392 lblock
+= (bh
.b_size
>> inode
->i_blkbits
);
398 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
399 * @vma: The virtual memory area
400 * @vmf: The virtual memory fault containing the page to become writable
402 * When the page becomes writable, we need to ensure that we have
403 * blocks allocated on disk to back that page.
406 static vm_fault_t
gfs2_page_mkwrite(struct vm_fault
*vmf
)
408 struct page
*page
= vmf
->page
;
409 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
410 struct gfs2_inode
*ip
= GFS2_I(inode
);
411 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
412 struct gfs2_alloc_parms ap
= { .aflags
= 0, };
413 unsigned long last_index
;
414 u64 pos
= page
->index
<< PAGE_SHIFT
;
415 unsigned int data_blocks
, ind_blocks
, rblocks
;
416 struct gfs2_holder gh
;
420 sb_start_pagefault(inode
->i_sb
);
422 ret
= gfs2_rsqa_alloc(ip
);
426 gfs2_size_hint(vmf
->vma
->vm_file
, pos
, PAGE_SIZE
);
428 gfs2_holder_init(ip
->i_gl
, LM_ST_EXCLUSIVE
, 0, &gh
);
429 ret
= gfs2_glock_nq(&gh
);
433 /* Update file times before taking page lock */
434 file_update_time(vmf
->vma
->vm_file
);
436 set_bit(GLF_DIRTY
, &ip
->i_gl
->gl_flags
);
437 set_bit(GIF_SW_PAGED
, &ip
->i_flags
);
439 if (!gfs2_write_alloc_required(ip
, pos
, PAGE_SIZE
)) {
441 if (!PageUptodate(page
) || page
->mapping
!= inode
->i_mapping
) {
448 ret
= gfs2_rindex_update(sdp
);
452 gfs2_write_calc_reserv(ip
, PAGE_SIZE
, &data_blocks
, &ind_blocks
);
453 ap
.target
= data_blocks
+ ind_blocks
;
454 ret
= gfs2_quota_lock_check(ip
, &ap
);
457 ret
= gfs2_inplace_reserve(ip
, &ap
);
459 goto out_quota_unlock
;
461 rblocks
= RES_DINODE
+ ind_blocks
;
462 if (gfs2_is_jdata(ip
))
463 rblocks
+= data_blocks
? data_blocks
: 1;
464 if (ind_blocks
|| data_blocks
) {
465 rblocks
+= RES_STATFS
+ RES_QUOTA
;
466 rblocks
+= gfs2_rg_blocks(ip
, data_blocks
+ ind_blocks
);
468 ret
= gfs2_trans_begin(sdp
, rblocks
, 0);
474 size
= i_size_read(inode
);
475 last_index
= (size
- 1) >> PAGE_SHIFT
;
476 /* Check page index against inode size */
477 if (size
== 0 || (page
->index
> last_index
))
481 /* If truncated, we must retry the operation, we may have raced
482 * with the glock demotion code.
484 if (!PageUptodate(page
) || page
->mapping
!= inode
->i_mapping
)
487 /* Unstuff, if required, and allocate backing blocks for page */
489 if (gfs2_is_stuffed(ip
))
490 ret
= gfs2_unstuff_dinode(ip
, page
);
492 ret
= gfs2_allocate_page_backing(page
);
499 gfs2_inplace_release(ip
);
501 gfs2_quota_unlock(ip
);
505 gfs2_holder_uninit(&gh
);
507 set_page_dirty(page
);
508 wait_for_stable_page(page
);
511 sb_end_pagefault(inode
->i_sb
);
512 return block_page_mkwrite_return(ret
);
515 static const struct vm_operations_struct gfs2_vm_ops
= {
516 .fault
= filemap_fault
,
517 .map_pages
= filemap_map_pages
,
518 .page_mkwrite
= gfs2_page_mkwrite
,
523 * @file: The file to map
524 * @vma: The VMA which described the mapping
526 * There is no need to get a lock here unless we should be updating
527 * atime. We ignore any locking errors since the only consequence is
528 * a missed atime update (which will just be deferred until later).
533 static int gfs2_mmap(struct file
*file
, struct vm_area_struct
*vma
)
535 struct gfs2_inode
*ip
= GFS2_I(file
->f_mapping
->host
);
537 if (!(file
->f_flags
& O_NOATIME
) &&
538 !IS_NOATIME(&ip
->i_inode
)) {
539 struct gfs2_holder i_gh
;
542 error
= gfs2_glock_nq_init(ip
->i_gl
, LM_ST_SHARED
, LM_FLAG_ANY
,
546 /* grab lock to update inode */
547 gfs2_glock_dq_uninit(&i_gh
);
550 vma
->vm_ops
= &gfs2_vm_ops
;
556 * gfs2_open_common - This is common to open and atomic_open
557 * @inode: The inode being opened
558 * @file: The file being opened
560 * This maybe called under a glock or not depending upon how it has
561 * been called. We must always be called under a glock for regular
562 * files, however. For other file types, it does not matter whether
563 * we hold the glock or not.
565 * Returns: Error code or 0 for success
568 int gfs2_open_common(struct inode
*inode
, struct file
*file
)
570 struct gfs2_file
*fp
;
573 if (S_ISREG(inode
->i_mode
)) {
574 ret
= generic_file_open(inode
, file
);
579 fp
= kzalloc(sizeof(struct gfs2_file
), GFP_NOFS
);
583 mutex_init(&fp
->f_fl_mutex
);
585 gfs2_assert_warn(GFS2_SB(inode
), !file
->private_data
);
586 file
->private_data
= fp
;
591 * gfs2_open - open a file
592 * @inode: the inode to open
593 * @file: the struct file for this opening
595 * After atomic_open, this function is only used for opening files
596 * which are already cached. We must still get the glock for regular
597 * files to ensure that we have the file size uptodate for the large
598 * file check which is in the common code. That is only an issue for
599 * regular files though.
604 static int gfs2_open(struct inode
*inode
, struct file
*file
)
606 struct gfs2_inode
*ip
= GFS2_I(inode
);
607 struct gfs2_holder i_gh
;
609 bool need_unlock
= false;
611 if (S_ISREG(ip
->i_inode
.i_mode
)) {
612 error
= gfs2_glock_nq_init(ip
->i_gl
, LM_ST_SHARED
, LM_FLAG_ANY
,
619 error
= gfs2_open_common(inode
, file
);
622 gfs2_glock_dq_uninit(&i_gh
);
628 * gfs2_release - called to close a struct file
629 * @inode: the inode the struct file belongs to
630 * @file: the struct file being closed
635 static int gfs2_release(struct inode
*inode
, struct file
*file
)
637 struct gfs2_inode
*ip
= GFS2_I(inode
);
639 kfree(file
->private_data
);
640 file
->private_data
= NULL
;
642 if (!(file
->f_mode
& FMODE_WRITE
))
645 gfs2_rsqa_delete(ip
, &inode
->i_writecount
);
650 * gfs2_fsync - sync the dirty data for a file (across the cluster)
651 * @file: the file that points to the dentry
652 * @start: the start position in the file to sync
653 * @end: the end position in the file to sync
654 * @datasync: set if we can ignore timestamp changes
656 * We split the data flushing here so that we don't wait for the data
657 * until after we've also sent the metadata to disk. Note that for
658 * data=ordered, we will write & wait for the data at the log flush
659 * stage anyway, so this is unlikely to make much of a difference
660 * except in the data=writeback case.
662 * If the fdatawrite fails due to any reason except -EIO, we will
663 * continue the remainder of the fsync, although we'll still report
664 * the error at the end. This is to match filemap_write_and_wait_range()
670 static int gfs2_fsync(struct file
*file
, loff_t start
, loff_t end
,
673 struct address_space
*mapping
= file
->f_mapping
;
674 struct inode
*inode
= mapping
->host
;
675 int sync_state
= inode
->i_state
& I_DIRTY_ALL
;
676 struct gfs2_inode
*ip
= GFS2_I(inode
);
677 int ret
= 0, ret1
= 0;
679 if (mapping
->nrpages
) {
680 ret1
= filemap_fdatawrite_range(mapping
, start
, end
);
685 if (!gfs2_is_jdata(ip
))
686 sync_state
&= ~I_DIRTY_PAGES
;
688 sync_state
&= ~(I_DIRTY_SYNC
| I_DIRTY_TIME
);
691 ret
= sync_inode_metadata(inode
, 1);
694 if (gfs2_is_jdata(ip
))
695 ret
= file_write_and_wait(file
);
698 gfs2_ail_flush(ip
->i_gl
, 1);
701 if (mapping
->nrpages
)
702 ret
= file_fdatawait_range(file
, start
, end
);
704 return ret
? ret
: ret1
;
707 static ssize_t
gfs2_file_direct_read(struct kiocb
*iocb
, struct iov_iter
*to
)
709 struct file
*file
= iocb
->ki_filp
;
710 struct gfs2_inode
*ip
= GFS2_I(file
->f_mapping
->host
);
711 size_t count
= iov_iter_count(to
);
712 struct gfs2_holder gh
;
716 return 0; /* skip atime */
718 gfs2_holder_init(ip
->i_gl
, LM_ST_DEFERRED
, 0, &gh
);
719 ret
= gfs2_glock_nq(&gh
);
723 ret
= iomap_dio_rw(iocb
, to
, &gfs2_iomap_ops
, NULL
);
727 gfs2_holder_uninit(&gh
);
731 static ssize_t
gfs2_file_direct_write(struct kiocb
*iocb
, struct iov_iter
*from
)
733 struct file
*file
= iocb
->ki_filp
;
734 struct inode
*inode
= file
->f_mapping
->host
;
735 struct gfs2_inode
*ip
= GFS2_I(inode
);
736 size_t len
= iov_iter_count(from
);
737 loff_t offset
= iocb
->ki_pos
;
738 struct gfs2_holder gh
;
742 * Deferred lock, even if its a write, since we do no allocation on
743 * this path. All we need to change is the atime, and this lock mode
744 * ensures that other nodes have flushed their buffered read caches
745 * (i.e. their page cache entries for this inode). We do not,
746 * unfortunately, have the option of only flushing a range like the
749 gfs2_holder_init(ip
->i_gl
, LM_ST_DEFERRED
, 0, &gh
);
750 ret
= gfs2_glock_nq(&gh
);
754 /* Silently fall back to buffered I/O when writing beyond EOF */
755 if (offset
+ len
> i_size_read(&ip
->i_inode
))
758 ret
= iomap_dio_rw(iocb
, from
, &gfs2_iomap_ops
, NULL
);
763 gfs2_holder_uninit(&gh
);
767 static ssize_t
gfs2_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
771 if (iocb
->ki_flags
& IOCB_DIRECT
) {
772 ret
= gfs2_file_direct_read(iocb
, to
);
773 if (likely(ret
!= -ENOTBLK
))
775 iocb
->ki_flags
&= ~IOCB_DIRECT
;
777 return generic_file_read_iter(iocb
, to
);
781 * gfs2_file_write_iter - Perform a write to a file
782 * @iocb: The io context
783 * @from: The data to write
785 * We have to do a lock/unlock here to refresh the inode size for
786 * O_APPEND writes, otherwise we can land up writing at the wrong
787 * offset. There is still a race, but provided the app is using its
788 * own file locking, this will make O_APPEND work as expected.
792 static ssize_t
gfs2_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
794 struct file
*file
= iocb
->ki_filp
;
795 struct inode
*inode
= file_inode(file
);
796 struct gfs2_inode
*ip
= GFS2_I(inode
);
797 ssize_t written
= 0, ret
;
799 ret
= gfs2_rsqa_alloc(ip
);
803 gfs2_size_hint(file
, iocb
->ki_pos
, iov_iter_count(from
));
805 if (iocb
->ki_flags
& IOCB_APPEND
) {
806 struct gfs2_holder gh
;
808 ret
= gfs2_glock_nq_init(ip
->i_gl
, LM_ST_SHARED
, 0, &gh
);
811 gfs2_glock_dq_uninit(&gh
);
815 ret
= generic_write_checks(iocb
, from
);
819 /* We can write back this queue in page reclaim */
820 current
->backing_dev_info
= inode_to_bdi(inode
);
822 ret
= file_remove_privs(file
);
826 ret
= file_update_time(file
);
830 if (iocb
->ki_flags
& IOCB_DIRECT
) {
831 struct address_space
*mapping
= file
->f_mapping
;
835 written
= gfs2_file_direct_write(iocb
, from
);
836 if (written
< 0 || !iov_iter_count(from
))
839 ret
= iomap_file_buffered_write(iocb
, from
, &gfs2_iomap_ops
);
840 if (unlikely(ret
< 0))
845 * We need to ensure that the page cache pages are written to
846 * disk and invalidated to preserve the expected O_DIRECT
850 endbyte
= pos
+ buffered
- 1;
851 ret
= filemap_write_and_wait_range(mapping
, pos
, endbyte
);
853 iocb
->ki_pos
+= buffered
;
855 invalidate_mapping_pages(mapping
,
857 endbyte
>> PAGE_SHIFT
);
860 * We don't know how much we wrote, so just return
861 * the number of bytes which were direct-written
865 ret
= iomap_file_buffered_write(iocb
, from
, &gfs2_iomap_ops
);
871 current
->backing_dev_info
= NULL
;
874 if (likely(ret
> 0)) {
875 /* Handle various SYNC-type writes */
876 ret
= generic_write_sync(iocb
, ret
);
878 return written
? written
: ret
;
881 static int fallocate_chunk(struct inode
*inode
, loff_t offset
, loff_t len
,
884 struct super_block
*sb
= inode
->i_sb
;
885 struct gfs2_inode
*ip
= GFS2_I(inode
);
886 loff_t end
= offset
+ len
;
887 struct buffer_head
*dibh
;
890 error
= gfs2_meta_inode_buffer(ip
, &dibh
);
894 gfs2_trans_add_meta(ip
->i_gl
, dibh
);
896 if (gfs2_is_stuffed(ip
)) {
897 error
= gfs2_unstuff_dinode(ip
, NULL
);
902 while (offset
< end
) {
903 struct iomap iomap
= { };
905 error
= gfs2_iomap_get_alloc(inode
, offset
, end
- offset
,
909 offset
= iomap
.offset
+ iomap
.length
;
910 if (!(iomap
.flags
& IOMAP_F_NEW
))
912 error
= sb_issue_zeroout(sb
, iomap
.addr
>> inode
->i_blkbits
,
913 iomap
.length
>> inode
->i_blkbits
,
916 fs_err(GFS2_SB(inode
), "Failed to zero data buffers\n");
925 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
926 * blocks, determine how many bytes can be written.
927 * @ip: The inode in question.
928 * @len: Max cap of bytes. What we return in *len must be <= this.
929 * @data_blocks: Compute and return the number of data blocks needed
930 * @ind_blocks: Compute and return the number of indirect blocks needed
931 * @max_blocks: The total blocks available to work with.
933 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
935 static void calc_max_reserv(struct gfs2_inode
*ip
, loff_t
*len
,
936 unsigned int *data_blocks
, unsigned int *ind_blocks
,
937 unsigned int max_blocks
)
940 const struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
941 unsigned int tmp
, max_data
= max_blocks
- 3 * (sdp
->sd_max_height
- 1);
943 for (tmp
= max_data
; tmp
> sdp
->sd_diptrs
;) {
944 tmp
= DIV_ROUND_UP(tmp
, sdp
->sd_inptrs
);
948 *data_blocks
= max_data
;
949 *ind_blocks
= max_blocks
- max_data
;
950 *len
= ((loff_t
)max_data
- 3) << sdp
->sd_sb
.sb_bsize_shift
;
953 gfs2_write_calc_reserv(ip
, max
, data_blocks
, ind_blocks
);
957 static long __gfs2_fallocate(struct file
*file
, int mode
, loff_t offset
, loff_t len
)
959 struct inode
*inode
= file_inode(file
);
960 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
961 struct gfs2_inode
*ip
= GFS2_I(inode
);
962 struct gfs2_alloc_parms ap
= { .aflags
= 0, };
963 unsigned int data_blocks
= 0, ind_blocks
= 0, rblocks
;
964 loff_t bytes
, max_bytes
, max_blks
;
966 const loff_t pos
= offset
;
967 const loff_t count
= len
;
968 loff_t bsize_mask
= ~((loff_t
)sdp
->sd_sb
.sb_bsize
- 1);
969 loff_t next
= (offset
+ len
- 1) >> sdp
->sd_sb
.sb_bsize_shift
;
970 loff_t max_chunk_size
= UINT_MAX
& bsize_mask
;
972 next
= (next
+ 1) << sdp
->sd_sb
.sb_bsize_shift
;
974 offset
&= bsize_mask
;
977 bytes
= sdp
->sd_max_rg_data
* sdp
->sd_sb
.sb_bsize
/ 2;
982 bytes
= sdp
->sd_sb
.sb_bsize
;
984 gfs2_size_hint(file
, offset
, len
);
986 gfs2_write_calc_reserv(ip
, PAGE_SIZE
, &data_blocks
, &ind_blocks
);
987 ap
.min_target
= data_blocks
+ ind_blocks
;
992 if (!gfs2_write_alloc_required(ip
, offset
, bytes
)) {
998 /* We need to determine how many bytes we can actually
999 * fallocate without exceeding quota or going over the
1000 * end of the fs. We start off optimistically by assuming
1001 * we can write max_bytes */
1002 max_bytes
= (len
> max_chunk_size
) ? max_chunk_size
: len
;
1004 /* Since max_bytes is most likely a theoretical max, we
1005 * calculate a more realistic 'bytes' to serve as a good
1006 * starting point for the number of bytes we may be able
1008 gfs2_write_calc_reserv(ip
, bytes
, &data_blocks
, &ind_blocks
);
1009 ap
.target
= data_blocks
+ ind_blocks
;
1011 error
= gfs2_quota_lock_check(ip
, &ap
);
1014 /* ap.allowed tells us how many blocks quota will allow
1015 * us to write. Check if this reduces max_blks */
1016 max_blks
= UINT_MAX
;
1018 max_blks
= ap
.allowed
;
1020 error
= gfs2_inplace_reserve(ip
, &ap
);
1024 /* check if the selected rgrp limits our max_blks further */
1025 if (ap
.allowed
&& ap
.allowed
< max_blks
)
1026 max_blks
= ap
.allowed
;
1028 /* Almost done. Calculate bytes that can be written using
1029 * max_blks. We also recompute max_bytes, data_blocks and
1031 calc_max_reserv(ip
, &max_bytes
, &data_blocks
,
1032 &ind_blocks
, max_blks
);
1034 rblocks
= RES_DINODE
+ ind_blocks
+ RES_STATFS
+ RES_QUOTA
+
1035 RES_RG_HDR
+ gfs2_rg_blocks(ip
, data_blocks
+ ind_blocks
);
1036 if (gfs2_is_jdata(ip
))
1037 rblocks
+= data_blocks
? data_blocks
: 1;
1039 error
= gfs2_trans_begin(sdp
, rblocks
,
1040 PAGE_SIZE
/sdp
->sd_sb
.sb_bsize
);
1042 goto out_trans_fail
;
1044 error
= fallocate_chunk(inode
, offset
, max_bytes
, mode
);
1045 gfs2_trans_end(sdp
);
1048 goto out_trans_fail
;
1051 offset
+= max_bytes
;
1052 gfs2_inplace_release(ip
);
1053 gfs2_quota_unlock(ip
);
1056 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && (pos
+ count
) > inode
->i_size
) {
1057 i_size_write(inode
, pos
+ count
);
1058 file_update_time(file
);
1059 mark_inode_dirty(inode
);
1062 if ((file
->f_flags
& O_DSYNC
) || IS_SYNC(file
->f_mapping
->host
))
1063 return vfs_fsync_range(file
, pos
, pos
+ count
- 1,
1064 (file
->f_flags
& __O_SYNC
) ? 0 : 1);
1068 gfs2_inplace_release(ip
);
1070 gfs2_quota_unlock(ip
);
1074 static long gfs2_fallocate(struct file
*file
, int mode
, loff_t offset
, loff_t len
)
1076 struct inode
*inode
= file_inode(file
);
1077 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
1078 struct gfs2_inode
*ip
= GFS2_I(inode
);
1079 struct gfs2_holder gh
;
1082 if (mode
& ~(FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
))
1084 /* fallocate is needed by gfs2_grow to reserve space in the rindex */
1085 if (gfs2_is_jdata(ip
) && inode
!= sdp
->sd_rindex
)
1090 gfs2_holder_init(ip
->i_gl
, LM_ST_EXCLUSIVE
, 0, &gh
);
1091 ret
= gfs2_glock_nq(&gh
);
1095 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
1096 (offset
+ len
) > inode
->i_size
) {
1097 ret
= inode_newsize_ok(inode
, offset
+ len
);
1102 ret
= get_write_access(inode
);
1106 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
1107 ret
= __gfs2_punch_hole(file
, offset
, len
);
1109 ret
= gfs2_rsqa_alloc(ip
);
1113 ret
= __gfs2_fallocate(file
, mode
, offset
, len
);
1116 gfs2_rs_deltree(&ip
->i_res
);
1120 put_write_access(inode
);
1124 gfs2_holder_uninit(&gh
);
1125 inode_unlock(inode
);
1129 static ssize_t
gfs2_file_splice_write(struct pipe_inode_info
*pipe
,
1130 struct file
*out
, loff_t
*ppos
,
1131 size_t len
, unsigned int flags
)
1134 struct gfs2_inode
*ip
= GFS2_I(out
->f_mapping
->host
);
1136 error
= gfs2_rsqa_alloc(ip
);
1138 return (ssize_t
)error
;
1140 gfs2_size_hint(out
, *ppos
, len
);
1142 return iter_file_splice_write(pipe
, out
, ppos
, len
, flags
);
1145 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
1148 * gfs2_lock - acquire/release a posix lock on a file
1149 * @file: the file pointer
1150 * @cmd: either modify or retrieve lock state, possibly wait
1151 * @fl: type and range of lock
1156 static int gfs2_lock(struct file
*file
, int cmd
, struct file_lock
*fl
)
1158 struct gfs2_inode
*ip
= GFS2_I(file
->f_mapping
->host
);
1159 struct gfs2_sbd
*sdp
= GFS2_SB(file
->f_mapping
->host
);
1160 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1162 if (!(fl
->fl_flags
& FL_POSIX
))
1164 if (__mandatory_lock(&ip
->i_inode
) && fl
->fl_type
!= F_UNLCK
)
1167 if (cmd
== F_CANCELLK
) {
1170 fl
->fl_type
= F_UNLCK
;
1172 if (unlikely(test_bit(SDF_SHUTDOWN
, &sdp
->sd_flags
))) {
1173 if (fl
->fl_type
== F_UNLCK
)
1174 locks_lock_file_wait(file
, fl
);
1178 return dlm_posix_get(ls
->ls_dlm
, ip
->i_no_addr
, file
, fl
);
1179 else if (fl
->fl_type
== F_UNLCK
)
1180 return dlm_posix_unlock(ls
->ls_dlm
, ip
->i_no_addr
, file
, fl
);
1182 return dlm_posix_lock(ls
->ls_dlm
, ip
->i_no_addr
, file
, cmd
, fl
);
1185 static int do_flock(struct file
*file
, int cmd
, struct file_lock
*fl
)
1187 struct gfs2_file
*fp
= file
->private_data
;
1188 struct gfs2_holder
*fl_gh
= &fp
->f_fl_gh
;
1189 struct gfs2_inode
*ip
= GFS2_I(file_inode(file
));
1190 struct gfs2_glock
*gl
;
1196 state
= (fl
->fl_type
== F_WRLCK
) ? LM_ST_EXCLUSIVE
: LM_ST_SHARED
;
1197 flags
= (IS_SETLKW(cmd
) ? 0 : LM_FLAG_TRY_1CB
) | GL_EXACT
;
1199 mutex_lock(&fp
->f_fl_mutex
);
1201 if (gfs2_holder_initialized(fl_gh
)) {
1202 if (fl_gh
->gh_state
== state
)
1204 locks_lock_file_wait(file
,
1205 &(struct file_lock
) {
1207 .fl_flags
= FL_FLOCK
1209 gfs2_glock_dq(fl_gh
);
1210 gfs2_holder_reinit(state
, flags
, fl_gh
);
1212 error
= gfs2_glock_get(GFS2_SB(&ip
->i_inode
), ip
->i_no_addr
,
1213 &gfs2_flock_glops
, CREATE
, &gl
);
1216 gfs2_holder_init(gl
, state
, flags
, fl_gh
);
1219 for (sleeptime
= 1; sleeptime
<= 4; sleeptime
<<= 1) {
1220 error
= gfs2_glock_nq(fl_gh
);
1221 if (error
!= GLR_TRYFAILED
)
1223 fl_gh
->gh_flags
= LM_FLAG_TRY
| GL_EXACT
;
1224 fl_gh
->gh_error
= 0;
1228 gfs2_holder_uninit(fl_gh
);
1229 if (error
== GLR_TRYFAILED
)
1232 error
= locks_lock_file_wait(file
, fl
);
1233 gfs2_assert_warn(GFS2_SB(&ip
->i_inode
), !error
);
1237 mutex_unlock(&fp
->f_fl_mutex
);
1241 static void do_unflock(struct file
*file
, struct file_lock
*fl
)
1243 struct gfs2_file
*fp
= file
->private_data
;
1244 struct gfs2_holder
*fl_gh
= &fp
->f_fl_gh
;
1246 mutex_lock(&fp
->f_fl_mutex
);
1247 locks_lock_file_wait(file
, fl
);
1248 if (gfs2_holder_initialized(fl_gh
)) {
1249 gfs2_glock_dq(fl_gh
);
1250 gfs2_holder_uninit(fl_gh
);
1252 mutex_unlock(&fp
->f_fl_mutex
);
1256 * gfs2_flock - acquire/release a flock lock on a file
1257 * @file: the file pointer
1258 * @cmd: either modify or retrieve lock state, possibly wait
1259 * @fl: type and range of lock
1264 static int gfs2_flock(struct file
*file
, int cmd
, struct file_lock
*fl
)
1266 if (!(fl
->fl_flags
& FL_FLOCK
))
1268 if (fl
->fl_type
& LOCK_MAND
)
1271 if (fl
->fl_type
== F_UNLCK
) {
1272 do_unflock(file
, fl
);
1275 return do_flock(file
, cmd
, fl
);
1279 const struct file_operations gfs2_file_fops
= {
1280 .llseek
= gfs2_llseek
,
1281 .read_iter
= gfs2_file_read_iter
,
1282 .write_iter
= gfs2_file_write_iter
,
1283 .unlocked_ioctl
= gfs2_ioctl
,
1286 .release
= gfs2_release
,
1287 .fsync
= gfs2_fsync
,
1289 .flock
= gfs2_flock
,
1290 .splice_read
= generic_file_splice_read
,
1291 .splice_write
= gfs2_file_splice_write
,
1292 .setlease
= simple_nosetlease
,
1293 .fallocate
= gfs2_fallocate
,
1296 const struct file_operations gfs2_dir_fops
= {
1297 .iterate_shared
= gfs2_readdir
,
1298 .unlocked_ioctl
= gfs2_ioctl
,
1300 .release
= gfs2_release
,
1301 .fsync
= gfs2_fsync
,
1303 .flock
= gfs2_flock
,
1304 .llseek
= default_llseek
,
1307 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1309 const struct file_operations gfs2_file_fops_nolock
= {
1310 .llseek
= gfs2_llseek
,
1311 .read_iter
= gfs2_file_read_iter
,
1312 .write_iter
= gfs2_file_write_iter
,
1313 .unlocked_ioctl
= gfs2_ioctl
,
1316 .release
= gfs2_release
,
1317 .fsync
= gfs2_fsync
,
1318 .splice_read
= generic_file_splice_read
,
1319 .splice_write
= gfs2_file_splice_write
,
1320 .setlease
= generic_setlease
,
1321 .fallocate
= gfs2_fallocate
,
1324 const struct file_operations gfs2_dir_fops_nolock
= {
1325 .iterate_shared
= gfs2_readdir
,
1326 .unlocked_ioctl
= gfs2_ioctl
,
1328 .release
= gfs2_release
,
1329 .fsync
= gfs2_fsync
,
1330 .llseek
= default_llseek
,