2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/completion.h>
15 #include <linux/buffer_head.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/prefetch.h>
19 #include <linux/blkdev.h>
20 #include <linux/rbtree.h>
21 #include <linux/random.h>
36 #include "trace_gfs2.h"
39 #define BFITNOENT ((u32)~0)
40 #define NO_BLOCK ((u64)~0)
42 #if BITS_PER_LONG == 32
43 #define LBITMASK (0x55555555UL)
44 #define LBITSKIP55 (0x55555555UL)
45 #define LBITSKIP00 (0x00000000UL)
47 #define LBITMASK (0x5555555555555555UL)
48 #define LBITSKIP55 (0x5555555555555555UL)
49 #define LBITSKIP00 (0x0000000000000000UL)
53 * These routines are used by the resource group routines (rgrp.c)
54 * to keep track of block allocation. Each block is represented by two
55 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
58 * 1 = Used (not metadata)
59 * 2 = Unlinked (still in use) inode
68 static const char valid_change
[16] = {
76 static int gfs2_rbm_find(struct gfs2_rbm
*rbm
, u8 state
, u32
*minext
,
77 const struct gfs2_inode
*ip
, bool nowrap
);
81 * gfs2_setbit - Set a bit in the bitmaps
82 * @rbm: The position of the bit to set
83 * @do_clone: Also set the clone bitmap, if it exists
84 * @new_state: the new state of the block
88 static inline void gfs2_setbit(const struct gfs2_rbm
*rbm
, bool do_clone
,
89 unsigned char new_state
)
91 unsigned char *byte1
, *byte2
, *end
, cur_state
;
92 struct gfs2_bitmap
*bi
= rbm_bi(rbm
);
93 unsigned int buflen
= bi
->bi_bytes
;
94 const unsigned int bit
= (rbm
->offset
% GFS2_NBBY
) * GFS2_BIT_SIZE
;
96 byte1
= bi
->bi_bh
->b_data
+ bi
->bi_offset
+ (rbm
->offset
/ GFS2_NBBY
);
97 end
= bi
->bi_bh
->b_data
+ bi
->bi_offset
+ buflen
;
101 cur_state
= (*byte1
>> bit
) & GFS2_BIT_MASK
;
103 if (unlikely(!valid_change
[new_state
* 4 + cur_state
])) {
104 struct gfs2_sbd
*sdp
= rbm
->rgd
->rd_sbd
;
106 fs_warn(sdp
, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
107 rbm
->offset
, cur_state
, new_state
);
108 fs_warn(sdp
, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
109 (unsigned long long)rbm
->rgd
->rd_addr
, bi
->bi_start
,
110 (unsigned long long)bi
->bi_bh
->b_blocknr
);
111 fs_warn(sdp
, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
112 bi
->bi_offset
, bi
->bi_bytes
,
113 (unsigned long long)gfs2_rbm_to_block(rbm
));
115 gfs2_consist_rgrpd(rbm
->rgd
);
118 *byte1
^= (cur_state
^ new_state
) << bit
;
120 if (do_clone
&& bi
->bi_clone
) {
121 byte2
= bi
->bi_clone
+ bi
->bi_offset
+ (rbm
->offset
/ GFS2_NBBY
);
122 cur_state
= (*byte2
>> bit
) & GFS2_BIT_MASK
;
123 *byte2
^= (cur_state
^ new_state
) << bit
;
128 * gfs2_testbit - test a bit in the bitmaps
129 * @rbm: The bit to test
130 * @use_clone: If true, test the clone bitmap, not the official bitmap.
132 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
133 * not the "real" bitmaps, to avoid allocating recently freed blocks.
135 * Returns: The two bit block state of the requested bit
138 static inline u8
gfs2_testbit(const struct gfs2_rbm
*rbm
, bool use_clone
)
140 struct gfs2_bitmap
*bi
= rbm_bi(rbm
);
145 if (use_clone
&& bi
->bi_clone
)
146 buffer
= bi
->bi_clone
;
148 buffer
= bi
->bi_bh
->b_data
;
149 buffer
+= bi
->bi_offset
;
150 byte
= buffer
+ (rbm
->offset
/ GFS2_NBBY
);
151 bit
= (rbm
->offset
% GFS2_NBBY
) * GFS2_BIT_SIZE
;
153 return (*byte
>> bit
) & GFS2_BIT_MASK
;
158 * @ptr: Pointer to bitmap data
159 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
160 * @state: The state we are searching for
162 * We xor the bitmap data with a patter which is the bitwise opposite
163 * of what we are looking for, this gives rise to a pattern of ones
164 * wherever there is a match. Since we have two bits per entry, we
165 * take this pattern, shift it down by one place and then and it with
166 * the original. All the even bit positions (0,2,4, etc) then represent
167 * successful matches, so we mask with 0x55555..... to remove the unwanted
170 * This allows searching of a whole u64 at once (32 blocks) with a
171 * single test (on 64 bit arches).
174 static inline u64
gfs2_bit_search(const __le64
*ptr
, u64 mask
, u8 state
)
177 static const u64 search
[] = {
178 [0] = 0xffffffffffffffffULL
,
179 [1] = 0xaaaaaaaaaaaaaaaaULL
,
180 [2] = 0x5555555555555555ULL
,
181 [3] = 0x0000000000000000ULL
,
183 tmp
= le64_to_cpu(*ptr
) ^ search
[state
];
190 * rs_cmp - multi-block reservation range compare
191 * @blk: absolute file system block number of the new reservation
192 * @len: number of blocks in the new reservation
193 * @rs: existing reservation to compare against
195 * returns: 1 if the block range is beyond the reach of the reservation
196 * -1 if the block range is before the start of the reservation
197 * 0 if the block range overlaps with the reservation
199 static inline int rs_cmp(u64 blk
, u32 len
, struct gfs2_blkreserv
*rs
)
201 u64 startblk
= gfs2_rbm_to_block(&rs
->rs_rbm
);
203 if (blk
>= startblk
+ rs
->rs_free
)
205 if (blk
+ len
- 1 < startblk
)
211 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
212 * a block in a given allocation state.
213 * @buf: the buffer that holds the bitmaps
214 * @len: the length (in bytes) of the buffer
215 * @goal: start search at this block's bit-pair (within @buffer)
216 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
218 * Scope of @goal and returned block number is only within this bitmap buffer,
219 * not entire rgrp or filesystem. @buffer will be offset from the actual
220 * beginning of a bitmap block buffer, skipping any header structures, but
221 * headers are always a multiple of 64 bits long so that the buffer is
222 * always aligned to a 64 bit boundary.
224 * The size of the buffer is in bytes, but is it assumed that it is
225 * always ok to read a complete multiple of 64 bits at the end
226 * of the block in case the end is no aligned to a natural boundary.
228 * Return: the block number (bitmap buffer scope) that was found
231 static u32
gfs2_bitfit(const u8
*buf
, const unsigned int len
,
234 u32 spoint
= (goal
<< 1) & ((8*sizeof(u64
)) - 1);
235 const __le64
*ptr
= ((__le64
*)buf
) + (goal
>> 5);
236 const __le64
*end
= (__le64
*)(buf
+ ALIGN(len
, sizeof(u64
)));
238 u64 mask
= 0x5555555555555555ULL
;
241 /* Mask off bits we don't care about at the start of the search */
243 tmp
= gfs2_bit_search(ptr
, mask
, state
);
245 while(tmp
== 0 && ptr
< end
) {
246 tmp
= gfs2_bit_search(ptr
, 0x5555555555555555ULL
, state
);
249 /* Mask off any bits which are more than len bytes from the start */
250 if (ptr
== end
&& (len
& (sizeof(u64
) - 1)))
251 tmp
&= (((u64
)~0) >> (64 - 8*(len
& (sizeof(u64
) - 1))));
252 /* Didn't find anything, so return */
257 bit
/= 2; /* two bits per entry in the bitmap */
258 return (((const unsigned char *)ptr
- buf
) * GFS2_NBBY
) + bit
;
262 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
263 * @rbm: The rbm with rgd already set correctly
264 * @block: The block number (filesystem relative)
266 * This sets the bi and offset members of an rbm based on a
267 * resource group and a filesystem relative block number. The
268 * resource group must be set in the rbm on entry, the bi and
269 * offset members will be set by this function.
271 * Returns: 0 on success, or an error code
274 static int gfs2_rbm_from_block(struct gfs2_rbm
*rbm
, u64 block
)
276 if (!rgrp_contains_block(rbm
->rgd
, block
))
279 rbm
->offset
= block
- rbm
->rgd
->rd_data0
;
280 /* Check if the block is within the first block */
281 if (rbm
->offset
< rbm_bi(rbm
)->bi_blocks
)
284 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
285 rbm
->offset
+= (sizeof(struct gfs2_rgrp
) -
286 sizeof(struct gfs2_meta_header
)) * GFS2_NBBY
;
287 rbm
->bii
= rbm
->offset
/ rbm
->rgd
->rd_sbd
->sd_blocks_per_bitmap
;
288 rbm
->offset
-= rbm
->bii
* rbm
->rgd
->rd_sbd
->sd_blocks_per_bitmap
;
293 * gfs2_rbm_incr - increment an rbm structure
294 * @rbm: The rbm with rgd already set correctly
296 * This function takes an existing rbm structure and increments it to the next
297 * viable block offset.
299 * Returns: If incrementing the offset would cause the rbm to go past the
300 * end of the rgrp, true is returned, otherwise false.
304 static bool gfs2_rbm_incr(struct gfs2_rbm
*rbm
)
306 if (rbm
->offset
+ 1 < rbm_bi(rbm
)->bi_blocks
) { /* in the same bitmap */
310 if (rbm
->bii
== rbm
->rgd
->rd_length
- 1) /* at the last bitmap */
319 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
320 * @rbm: Position to search (value/result)
321 * @n_unaligned: Number of unaligned blocks to check
322 * @len: Decremented for each block found (terminate on zero)
324 * Returns: true if a non-free block is encountered
327 static bool gfs2_unaligned_extlen(struct gfs2_rbm
*rbm
, u32 n_unaligned
, u32
*len
)
332 for (n
= 0; n
< n_unaligned
; n
++) {
333 res
= gfs2_testbit(rbm
, true);
334 if (res
!= GFS2_BLKST_FREE
)
339 if (gfs2_rbm_incr(rbm
))
347 * gfs2_free_extlen - Return extent length of free blocks
348 * @rrbm: Starting position
349 * @len: Max length to check
351 * Starting at the block specified by the rbm, see how many free blocks
352 * there are, not reading more than len blocks ahead. This can be done
353 * using memchr_inv when the blocks are byte aligned, but has to be done
354 * on a block by block basis in case of unaligned blocks. Also this
355 * function can cope with bitmap boundaries (although it must stop on
356 * a resource group boundary)
358 * Returns: Number of free blocks in the extent
361 static u32
gfs2_free_extlen(const struct gfs2_rbm
*rrbm
, u32 len
)
363 struct gfs2_rbm rbm
= *rrbm
;
364 u32 n_unaligned
= rbm
.offset
& 3;
368 u8
*ptr
, *start
, *end
;
370 struct gfs2_bitmap
*bi
;
373 gfs2_unaligned_extlen(&rbm
, 4 - n_unaligned
, &len
))
376 n_unaligned
= len
& 3;
377 /* Start is now byte aligned */
380 start
= bi
->bi_bh
->b_data
;
382 start
= bi
->bi_clone
;
383 start
+= bi
->bi_offset
;
384 end
= start
+ bi
->bi_bytes
;
385 BUG_ON(rbm
.offset
& 3);
386 start
+= (rbm
.offset
/ GFS2_NBBY
);
387 bytes
= min_t(u32
, len
/ GFS2_NBBY
, (end
- start
));
388 ptr
= memchr_inv(start
, 0, bytes
);
389 chunk_size
= ((ptr
== NULL
) ? bytes
: (ptr
- start
));
390 chunk_size
*= GFS2_NBBY
;
391 BUG_ON(len
< chunk_size
);
393 block
= gfs2_rbm_to_block(&rbm
);
394 if (gfs2_rbm_from_block(&rbm
, block
+ chunk_size
)) {
402 n_unaligned
= len
& 3;
405 /* Deal with any bits left over at the end */
407 gfs2_unaligned_extlen(&rbm
, n_unaligned
, &len
);
413 * gfs2_bitcount - count the number of bits in a certain state
414 * @rgd: the resource group descriptor
415 * @buffer: the buffer that holds the bitmaps
416 * @buflen: the length (in bytes) of the buffer
417 * @state: the state of the block we're looking for
419 * Returns: The number of bits
422 static u32
gfs2_bitcount(struct gfs2_rgrpd
*rgd
, const u8
*buffer
,
423 unsigned int buflen
, u8 state
)
425 const u8
*byte
= buffer
;
426 const u8
*end
= buffer
+ buflen
;
427 const u8 state1
= state
<< 2;
428 const u8 state2
= state
<< 4;
429 const u8 state3
= state
<< 6;
432 for (; byte
< end
; byte
++) {
433 if (((*byte
) & 0x03) == state
)
435 if (((*byte
) & 0x0C) == state1
)
437 if (((*byte
) & 0x30) == state2
)
439 if (((*byte
) & 0xC0) == state3
)
447 * gfs2_rgrp_verify - Verify that a resource group is consistent
452 void gfs2_rgrp_verify(struct gfs2_rgrpd
*rgd
)
454 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
455 struct gfs2_bitmap
*bi
= NULL
;
456 u32 length
= rgd
->rd_length
;
460 memset(count
, 0, 4 * sizeof(u32
));
462 /* Count # blocks in each of 4 possible allocation states */
463 for (buf
= 0; buf
< length
; buf
++) {
464 bi
= rgd
->rd_bits
+ buf
;
465 for (x
= 0; x
< 4; x
++)
466 count
[x
] += gfs2_bitcount(rgd
,
472 if (count
[0] != rgd
->rd_free
) {
473 if (gfs2_consist_rgrpd(rgd
))
474 fs_err(sdp
, "free data mismatch: %u != %u\n",
475 count
[0], rgd
->rd_free
);
479 tmp
= rgd
->rd_data
- rgd
->rd_free
- rgd
->rd_dinodes
;
480 if (count
[1] != tmp
) {
481 if (gfs2_consist_rgrpd(rgd
))
482 fs_err(sdp
, "used data mismatch: %u != %u\n",
487 if (count
[2] + count
[3] != rgd
->rd_dinodes
) {
488 if (gfs2_consist_rgrpd(rgd
))
489 fs_err(sdp
, "used metadata mismatch: %u != %u\n",
490 count
[2] + count
[3], rgd
->rd_dinodes
);
496 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
497 * @sdp: The GFS2 superblock
498 * @blk: The data block number
499 * @exact: True if this needs to be an exact match
501 * The @exact argument should be set to true by most callers. The exception
502 * is when we need to match blocks which are not represented by the rgrp
503 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
504 * there for alignment purposes. Another way of looking at it is that @exact
505 * matches only valid data/metadata blocks, but with @exact false, it will
506 * match any block within the extent of the rgrp.
508 * Returns: The resource group, or NULL if not found
511 struct gfs2_rgrpd
*gfs2_blk2rgrpd(struct gfs2_sbd
*sdp
, u64 blk
, bool exact
)
513 struct rb_node
*n
, *next
;
514 struct gfs2_rgrpd
*cur
;
516 spin_lock(&sdp
->sd_rindex_spin
);
517 n
= sdp
->sd_rindex_tree
.rb_node
;
519 cur
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
521 if (blk
< cur
->rd_addr
)
523 else if (blk
>= cur
->rd_data0
+ cur
->rd_data
)
526 spin_unlock(&sdp
->sd_rindex_spin
);
528 if (blk
< cur
->rd_addr
)
530 if (blk
>= cur
->rd_data0
+ cur
->rd_data
)
537 spin_unlock(&sdp
->sd_rindex_spin
);
543 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
544 * @sdp: The GFS2 superblock
546 * Returns: The first rgrp in the filesystem
549 struct gfs2_rgrpd
*gfs2_rgrpd_get_first(struct gfs2_sbd
*sdp
)
551 const struct rb_node
*n
;
552 struct gfs2_rgrpd
*rgd
;
554 spin_lock(&sdp
->sd_rindex_spin
);
555 n
= rb_first(&sdp
->sd_rindex_tree
);
556 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
557 spin_unlock(&sdp
->sd_rindex_spin
);
563 * gfs2_rgrpd_get_next - get the next RG
564 * @rgd: the resource group descriptor
566 * Returns: The next rgrp
569 struct gfs2_rgrpd
*gfs2_rgrpd_get_next(struct gfs2_rgrpd
*rgd
)
571 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
572 const struct rb_node
*n
;
574 spin_lock(&sdp
->sd_rindex_spin
);
575 n
= rb_next(&rgd
->rd_node
);
577 n
= rb_first(&sdp
->sd_rindex_tree
);
579 if (unlikely(&rgd
->rd_node
== n
)) {
580 spin_unlock(&sdp
->sd_rindex_spin
);
583 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
584 spin_unlock(&sdp
->sd_rindex_spin
);
588 void check_and_update_goal(struct gfs2_inode
*ip
)
590 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
591 if (!ip
->i_goal
|| gfs2_blk2rgrpd(sdp
, ip
->i_goal
, 1) == NULL
)
592 ip
->i_goal
= ip
->i_no_addr
;
595 void gfs2_free_clones(struct gfs2_rgrpd
*rgd
)
599 for (x
= 0; x
< rgd
->rd_length
; x
++) {
600 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
607 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
608 * plus a quota allocations data structure, if necessary
609 * @ip: the inode for this reservation
611 int gfs2_rsqa_alloc(struct gfs2_inode
*ip
)
613 return gfs2_qa_alloc(ip
);
616 static void dump_rs(struct seq_file
*seq
, const struct gfs2_blkreserv
*rs
)
618 struct gfs2_inode
*ip
= container_of(rs
, struct gfs2_inode
, i_res
);
620 gfs2_print_dbg(seq
, " B: n:%llu s:%llu b:%u f:%u\n",
621 (unsigned long long)ip
->i_no_addr
,
622 (unsigned long long)gfs2_rbm_to_block(&rs
->rs_rbm
),
623 rs
->rs_rbm
.offset
, rs
->rs_free
);
627 * __rs_deltree - remove a multi-block reservation from the rgd tree
628 * @rs: The reservation to remove
631 static void __rs_deltree(struct gfs2_blkreserv
*rs
)
633 struct gfs2_rgrpd
*rgd
;
635 if (!gfs2_rs_active(rs
))
638 rgd
= rs
->rs_rbm
.rgd
;
639 trace_gfs2_rs(rs
, TRACE_RS_TREEDEL
);
640 rb_erase(&rs
->rs_node
, &rgd
->rd_rstree
);
641 RB_CLEAR_NODE(&rs
->rs_node
);
644 u64 last_block
= gfs2_rbm_to_block(&rs
->rs_rbm
) +
646 struct gfs2_rbm last_rbm
= { .rgd
= rs
->rs_rbm
.rgd
, };
647 struct gfs2_bitmap
*start
, *last
;
649 /* return reserved blocks to the rgrp */
650 BUG_ON(rs
->rs_rbm
.rgd
->rd_reserved
< rs
->rs_free
);
651 rs
->rs_rbm
.rgd
->rd_reserved
-= rs
->rs_free
;
652 /* The rgrp extent failure point is likely not to increase;
653 it will only do so if the freed blocks are somehow
654 contiguous with a span of free blocks that follows. Still,
655 it will force the number to be recalculated later. */
656 rgd
->rd_extfail_pt
+= rs
->rs_free
;
658 if (gfs2_rbm_from_block(&last_rbm
, last_block
))
660 start
= rbm_bi(&rs
->rs_rbm
);
661 last
= rbm_bi(&last_rbm
);
663 clear_bit(GBF_FULL
, &start
->bi_flags
);
664 while (start
++ != last
);
669 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
670 * @rs: The reservation to remove
673 void gfs2_rs_deltree(struct gfs2_blkreserv
*rs
)
675 struct gfs2_rgrpd
*rgd
;
677 rgd
= rs
->rs_rbm
.rgd
;
679 spin_lock(&rgd
->rd_rsspin
);
682 spin_unlock(&rgd
->rd_rsspin
);
687 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
688 * @ip: The inode for this reservation
689 * @wcount: The inode's write count, or NULL
692 void gfs2_rsqa_delete(struct gfs2_inode
*ip
, atomic_t
*wcount
)
694 down_write(&ip
->i_rw_mutex
);
695 if ((wcount
== NULL
) || (atomic_read(wcount
) <= 1))
696 gfs2_rs_deltree(&ip
->i_res
);
697 up_write(&ip
->i_rw_mutex
);
698 gfs2_qa_delete(ip
, wcount
);
702 * return_all_reservations - return all reserved blocks back to the rgrp.
703 * @rgd: the rgrp that needs its space back
705 * We previously reserved a bunch of blocks for allocation. Now we need to
706 * give them back. This leave the reservation structures in tact, but removes
707 * all of their corresponding "no-fly zones".
709 static void return_all_reservations(struct gfs2_rgrpd
*rgd
)
712 struct gfs2_blkreserv
*rs
;
714 spin_lock(&rgd
->rd_rsspin
);
715 while ((n
= rb_first(&rgd
->rd_rstree
))) {
716 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
719 spin_unlock(&rgd
->rd_rsspin
);
722 void gfs2_clear_rgrpd(struct gfs2_sbd
*sdp
)
725 struct gfs2_rgrpd
*rgd
;
726 struct gfs2_glock
*gl
;
728 while ((n
= rb_first(&sdp
->sd_rindex_tree
))) {
729 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
732 rb_erase(n
, &sdp
->sd_rindex_tree
);
735 glock_clear_object(gl
, rgd
);
739 gfs2_free_clones(rgd
);
742 return_all_reservations(rgd
);
743 kmem_cache_free(gfs2_rgrpd_cachep
, rgd
);
747 static void gfs2_rindex_print(const struct gfs2_rgrpd
*rgd
)
749 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
751 fs_info(sdp
, "ri_addr = %llu\n", (unsigned long long)rgd
->rd_addr
);
752 fs_info(sdp
, "ri_length = %u\n", rgd
->rd_length
);
753 fs_info(sdp
, "ri_data0 = %llu\n", (unsigned long long)rgd
->rd_data0
);
754 fs_info(sdp
, "ri_data = %u\n", rgd
->rd_data
);
755 fs_info(sdp
, "ri_bitbytes = %u\n", rgd
->rd_bitbytes
);
759 * gfs2_compute_bitstructs - Compute the bitmap sizes
760 * @rgd: The resource group descriptor
762 * Calculates bitmap descriptors, one for each block that contains bitmap data
767 static int compute_bitstructs(struct gfs2_rgrpd
*rgd
)
769 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
770 struct gfs2_bitmap
*bi
;
771 u32 length
= rgd
->rd_length
; /* # blocks in hdr & bitmap */
772 u32 bytes_left
, bytes
;
778 rgd
->rd_bits
= kcalloc(length
, sizeof(struct gfs2_bitmap
), GFP_NOFS
);
782 bytes_left
= rgd
->rd_bitbytes
;
784 for (x
= 0; x
< length
; x
++) {
785 bi
= rgd
->rd_bits
+ x
;
788 /* small rgrp; bitmap stored completely in header block */
791 bi
->bi_offset
= sizeof(struct gfs2_rgrp
);
793 bi
->bi_bytes
= bytes
;
794 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
797 bytes
= sdp
->sd_sb
.sb_bsize
- sizeof(struct gfs2_rgrp
);
798 bi
->bi_offset
= sizeof(struct gfs2_rgrp
);
800 bi
->bi_bytes
= bytes
;
801 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
803 } else if (x
+ 1 == length
) {
805 bi
->bi_offset
= sizeof(struct gfs2_meta_header
);
806 bi
->bi_start
= rgd
->rd_bitbytes
- bytes_left
;
807 bi
->bi_bytes
= bytes
;
808 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
811 bytes
= sdp
->sd_sb
.sb_bsize
-
812 sizeof(struct gfs2_meta_header
);
813 bi
->bi_offset
= sizeof(struct gfs2_meta_header
);
814 bi
->bi_start
= rgd
->rd_bitbytes
- bytes_left
;
815 bi
->bi_bytes
= bytes
;
816 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
823 gfs2_consist_rgrpd(rgd
);
826 bi
= rgd
->rd_bits
+ (length
- 1);
827 if ((bi
->bi_start
+ bi
->bi_bytes
) * GFS2_NBBY
!= rgd
->rd_data
) {
828 if (gfs2_consist_rgrpd(rgd
)) {
829 gfs2_rindex_print(rgd
);
830 fs_err(sdp
, "start=%u len=%u offset=%u\n",
831 bi
->bi_start
, bi
->bi_bytes
, bi
->bi_offset
);
840 * gfs2_ri_total - Total up the file system space, according to the rindex.
841 * @sdp: the filesystem
844 u64
gfs2_ri_total(struct gfs2_sbd
*sdp
)
847 struct inode
*inode
= sdp
->sd_rindex
;
848 struct gfs2_inode
*ip
= GFS2_I(inode
);
849 char buf
[sizeof(struct gfs2_rindex
)];
852 for (rgrps
= 0;; rgrps
++) {
853 loff_t pos
= rgrps
* sizeof(struct gfs2_rindex
);
855 if (pos
+ sizeof(struct gfs2_rindex
) > i_size_read(inode
))
857 error
= gfs2_internal_read(ip
, buf
, &pos
,
858 sizeof(struct gfs2_rindex
));
859 if (error
!= sizeof(struct gfs2_rindex
))
861 total_data
+= be32_to_cpu(((struct gfs2_rindex
*)buf
)->ri_data
);
866 static int rgd_insert(struct gfs2_rgrpd
*rgd
)
868 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
869 struct rb_node
**newn
= &sdp
->sd_rindex_tree
.rb_node
, *parent
= NULL
;
871 /* Figure out where to put new node */
873 struct gfs2_rgrpd
*cur
= rb_entry(*newn
, struct gfs2_rgrpd
,
877 if (rgd
->rd_addr
< cur
->rd_addr
)
878 newn
= &((*newn
)->rb_left
);
879 else if (rgd
->rd_addr
> cur
->rd_addr
)
880 newn
= &((*newn
)->rb_right
);
885 rb_link_node(&rgd
->rd_node
, parent
, newn
);
886 rb_insert_color(&rgd
->rd_node
, &sdp
->sd_rindex_tree
);
892 * read_rindex_entry - Pull in a new resource index entry from the disk
893 * @ip: Pointer to the rindex inode
895 * Returns: 0 on success, > 0 on EOF, error code otherwise
898 static int read_rindex_entry(struct gfs2_inode
*ip
)
900 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
901 const unsigned bsize
= sdp
->sd_sb
.sb_bsize
;
902 loff_t pos
= sdp
->sd_rgrps
* sizeof(struct gfs2_rindex
);
903 struct gfs2_rindex buf
;
905 struct gfs2_rgrpd
*rgd
;
907 if (pos
>= i_size_read(&ip
->i_inode
))
910 error
= gfs2_internal_read(ip
, (char *)&buf
, &pos
,
911 sizeof(struct gfs2_rindex
));
913 if (error
!= sizeof(struct gfs2_rindex
))
914 return (error
== 0) ? 1 : error
;
916 rgd
= kmem_cache_zalloc(gfs2_rgrpd_cachep
, GFP_NOFS
);
922 rgd
->rd_addr
= be64_to_cpu(buf
.ri_addr
);
923 rgd
->rd_length
= be32_to_cpu(buf
.ri_length
);
924 rgd
->rd_data0
= be64_to_cpu(buf
.ri_data0
);
925 rgd
->rd_data
= be32_to_cpu(buf
.ri_data
);
926 rgd
->rd_bitbytes
= be32_to_cpu(buf
.ri_bitbytes
);
927 spin_lock_init(&rgd
->rd_rsspin
);
929 error
= compute_bitstructs(rgd
);
933 error
= gfs2_glock_get(sdp
, rgd
->rd_addr
,
934 &gfs2_rgrp_glops
, CREATE
, &rgd
->rd_gl
);
938 rgd
->rd_rgl
= (struct gfs2_rgrp_lvb
*)rgd
->rd_gl
->gl_lksb
.sb_lvbptr
;
939 rgd
->rd_flags
&= ~(GFS2_RDF_UPTODATE
| GFS2_RDF_PREFERRED
);
940 if (rgd
->rd_data
> sdp
->sd_max_rg_data
)
941 sdp
->sd_max_rg_data
= rgd
->rd_data
;
942 spin_lock(&sdp
->sd_rindex_spin
);
943 error
= rgd_insert(rgd
);
944 spin_unlock(&sdp
->sd_rindex_spin
);
946 glock_set_object(rgd
->rd_gl
, rgd
);
947 rgd
->rd_gl
->gl_vm
.start
= (rgd
->rd_addr
* bsize
) & PAGE_MASK
;
948 rgd
->rd_gl
->gl_vm
.end
= PAGE_ALIGN((rgd
->rd_addr
+
949 rgd
->rd_length
) * bsize
) - 1;
953 error
= 0; /* someone else read in the rgrp; free it and ignore it */
954 gfs2_glock_put(rgd
->rd_gl
);
959 kmem_cache_free(gfs2_rgrpd_cachep
, rgd
);
964 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
965 * @sdp: the GFS2 superblock
967 * The purpose of this function is to select a subset of the resource groups
968 * and mark them as PREFERRED. We do it in such a way that each node prefers
969 * to use a unique set of rgrps to minimize glock contention.
971 static void set_rgrp_preferences(struct gfs2_sbd
*sdp
)
973 struct gfs2_rgrpd
*rgd
, *first
;
976 /* Skip an initial number of rgrps, based on this node's journal ID.
977 That should start each node out on its own set. */
978 rgd
= gfs2_rgrpd_get_first(sdp
);
979 for (i
= 0; i
< sdp
->sd_lockstruct
.ls_jid
; i
++)
980 rgd
= gfs2_rgrpd_get_next(rgd
);
984 rgd
->rd_flags
|= GFS2_RDF_PREFERRED
;
985 for (i
= 0; i
< sdp
->sd_journals
; i
++) {
986 rgd
= gfs2_rgrpd_get_next(rgd
);
987 if (!rgd
|| rgd
== first
)
990 } while (rgd
&& rgd
!= first
);
994 * gfs2_ri_update - Pull in a new resource index from the disk
995 * @ip: pointer to the rindex inode
997 * Returns: 0 on successful update, error code otherwise
1000 static int gfs2_ri_update(struct gfs2_inode
*ip
)
1002 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
1006 error
= read_rindex_entry(ip
);
1007 } while (error
== 0);
1012 set_rgrp_preferences(sdp
);
1014 sdp
->sd_rindex_uptodate
= 1;
1019 * gfs2_rindex_update - Update the rindex if required
1020 * @sdp: The GFS2 superblock
1022 * We grab a lock on the rindex inode to make sure that it doesn't
1023 * change whilst we are performing an operation. We keep this lock
1024 * for quite long periods of time compared to other locks. This
1025 * doesn't matter, since it is shared and it is very, very rarely
1026 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1028 * This makes sure that we're using the latest copy of the resource index
1029 * special file, which might have been updated if someone expanded the
1030 * filesystem (via gfs2_grow utility), which adds new resource groups.
1032 * Returns: 0 on succeess, error code otherwise
1035 int gfs2_rindex_update(struct gfs2_sbd
*sdp
)
1037 struct gfs2_inode
*ip
= GFS2_I(sdp
->sd_rindex
);
1038 struct gfs2_glock
*gl
= ip
->i_gl
;
1039 struct gfs2_holder ri_gh
;
1041 int unlock_required
= 0;
1043 /* Read new copy from disk if we don't have the latest */
1044 if (!sdp
->sd_rindex_uptodate
) {
1045 if (!gfs2_glock_is_locked_by_me(gl
)) {
1046 error
= gfs2_glock_nq_init(gl
, LM_ST_SHARED
, 0, &ri_gh
);
1049 unlock_required
= 1;
1051 if (!sdp
->sd_rindex_uptodate
)
1052 error
= gfs2_ri_update(ip
);
1053 if (unlock_required
)
1054 gfs2_glock_dq_uninit(&ri_gh
);
1060 static void gfs2_rgrp_in(struct gfs2_rgrpd
*rgd
, const void *buf
)
1062 const struct gfs2_rgrp
*str
= buf
;
1065 rg_flags
= be32_to_cpu(str
->rg_flags
);
1066 rg_flags
&= ~GFS2_RDF_MASK
;
1067 rgd
->rd_flags
&= GFS2_RDF_MASK
;
1068 rgd
->rd_flags
|= rg_flags
;
1069 rgd
->rd_free
= be32_to_cpu(str
->rg_free
);
1070 rgd
->rd_dinodes
= be32_to_cpu(str
->rg_dinodes
);
1071 rgd
->rd_igeneration
= be64_to_cpu(str
->rg_igeneration
);
1072 /* rd_data0, rd_data and rd_bitbytes already set from rindex */
1075 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb
*rgl
, const void *buf
)
1077 const struct gfs2_rgrp
*str
= buf
;
1079 rgl
->rl_magic
= cpu_to_be32(GFS2_MAGIC
);
1080 rgl
->rl_flags
= str
->rg_flags
;
1081 rgl
->rl_free
= str
->rg_free
;
1082 rgl
->rl_dinodes
= str
->rg_dinodes
;
1083 rgl
->rl_igeneration
= str
->rg_igeneration
;
1087 static void gfs2_rgrp_out(struct gfs2_rgrpd
*rgd
, void *buf
)
1089 struct gfs2_rgrpd
*next
= gfs2_rgrpd_get_next(rgd
);
1090 struct gfs2_rgrp
*str
= buf
;
1093 str
->rg_flags
= cpu_to_be32(rgd
->rd_flags
& ~GFS2_RDF_MASK
);
1094 str
->rg_free
= cpu_to_be32(rgd
->rd_free
);
1095 str
->rg_dinodes
= cpu_to_be32(rgd
->rd_dinodes
);
1098 else if (next
->rd_addr
> rgd
->rd_addr
)
1099 str
->rg_skip
= cpu_to_be32(next
->rd_addr
- rgd
->rd_addr
);
1100 str
->rg_igeneration
= cpu_to_be64(rgd
->rd_igeneration
);
1101 str
->rg_data0
= cpu_to_be64(rgd
->rd_data0
);
1102 str
->rg_data
= cpu_to_be32(rgd
->rd_data
);
1103 str
->rg_bitbytes
= cpu_to_be32(rgd
->rd_bitbytes
);
1105 crc
= gfs2_disk_hash(buf
, sizeof(struct gfs2_rgrp
));
1106 str
->rg_crc
= cpu_to_be32(crc
);
1108 memset(&str
->rg_reserved
, 0, sizeof(str
->rg_reserved
));
1109 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
, buf
);
1112 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd
*rgd
)
1114 struct gfs2_rgrp_lvb
*rgl
= rgd
->rd_rgl
;
1115 struct gfs2_rgrp
*str
= (struct gfs2_rgrp
*)rgd
->rd_bits
[0].bi_bh
->b_data
;
1118 if (rgl
->rl_flags
!= str
->rg_flags
) {
1119 printk(KERN_WARNING
"GFS2: rgd: %llu lvb flag mismatch %u/%u",
1120 (unsigned long long)rgd
->rd_addr
,
1121 be32_to_cpu(rgl
->rl_flags
), be32_to_cpu(str
->rg_flags
));
1124 if (rgl
->rl_free
!= str
->rg_free
) {
1125 printk(KERN_WARNING
"GFS2: rgd: %llu lvb free mismatch %u/%u",
1126 (unsigned long long)rgd
->rd_addr
,
1127 be32_to_cpu(rgl
->rl_free
), be32_to_cpu(str
->rg_free
));
1130 if (rgl
->rl_dinodes
!= str
->rg_dinodes
) {
1131 printk(KERN_WARNING
"GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1132 (unsigned long long)rgd
->rd_addr
,
1133 be32_to_cpu(rgl
->rl_dinodes
),
1134 be32_to_cpu(str
->rg_dinodes
));
1137 if (rgl
->rl_igeneration
!= str
->rg_igeneration
) {
1138 printk(KERN_WARNING
"GFS2: rgd: %llu lvb igen mismatch "
1139 "%llu/%llu", (unsigned long long)rgd
->rd_addr
,
1140 (unsigned long long)be64_to_cpu(rgl
->rl_igeneration
),
1141 (unsigned long long)be64_to_cpu(str
->rg_igeneration
));
1147 static u32
count_unlinked(struct gfs2_rgrpd
*rgd
)
1149 struct gfs2_bitmap
*bi
;
1150 const u32 length
= rgd
->rd_length
;
1151 const u8
*buffer
= NULL
;
1152 u32 i
, goal
, count
= 0;
1154 for (i
= 0, bi
= rgd
->rd_bits
; i
< length
; i
++, bi
++) {
1156 buffer
= bi
->bi_bh
->b_data
+ bi
->bi_offset
;
1157 WARN_ON(!buffer_uptodate(bi
->bi_bh
));
1158 while (goal
< bi
->bi_blocks
) {
1159 goal
= gfs2_bitfit(buffer
, bi
->bi_bytes
, goal
,
1160 GFS2_BLKST_UNLINKED
);
1161 if (goal
== BFITNOENT
)
1173 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1174 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1176 * Read in all of a Resource Group's header and bitmap blocks.
1177 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1182 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd
*rgd
)
1184 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1185 struct gfs2_glock
*gl
= rgd
->rd_gl
;
1186 unsigned int length
= rgd
->rd_length
;
1187 struct gfs2_bitmap
*bi
;
1191 if (rgd
->rd_bits
[0].bi_bh
!= NULL
)
1194 for (x
= 0; x
< length
; x
++) {
1195 bi
= rgd
->rd_bits
+ x
;
1196 error
= gfs2_meta_read(gl
, rgd
->rd_addr
+ x
, 0, 0, &bi
->bi_bh
);
1201 for (y
= length
; y
--;) {
1202 bi
= rgd
->rd_bits
+ y
;
1203 error
= gfs2_meta_wait(sdp
, bi
->bi_bh
);
1206 if (gfs2_metatype_check(sdp
, bi
->bi_bh
, y
? GFS2_METATYPE_RB
:
1207 GFS2_METATYPE_RG
)) {
1213 if (!(rgd
->rd_flags
& GFS2_RDF_UPTODATE
)) {
1214 for (x
= 0; x
< length
; x
++)
1215 clear_bit(GBF_FULL
, &rgd
->rd_bits
[x
].bi_flags
);
1216 gfs2_rgrp_in(rgd
, (rgd
->rd_bits
[0].bi_bh
)->b_data
);
1217 rgd
->rd_flags
|= (GFS2_RDF_UPTODATE
| GFS2_RDF_CHECK
);
1218 rgd
->rd_free_clone
= rgd
->rd_free
;
1219 /* max out the rgrp allocation failure point */
1220 rgd
->rd_extfail_pt
= rgd
->rd_free
;
1222 if (cpu_to_be32(GFS2_MAGIC
) != rgd
->rd_rgl
->rl_magic
) {
1223 rgd
->rd_rgl
->rl_unlinked
= cpu_to_be32(count_unlinked(rgd
));
1224 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
,
1225 rgd
->rd_bits
[0].bi_bh
->b_data
);
1227 else if (sdp
->sd_args
.ar_rgrplvb
) {
1228 if (!gfs2_rgrp_lvb_valid(rgd
)){
1229 gfs2_consist_rgrpd(rgd
);
1233 if (rgd
->rd_rgl
->rl_unlinked
== 0)
1234 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1240 bi
= rgd
->rd_bits
+ x
;
1243 gfs2_assert_warn(sdp
, !bi
->bi_clone
);
1249 static int update_rgrp_lvb(struct gfs2_rgrpd
*rgd
)
1253 if (rgd
->rd_flags
& GFS2_RDF_UPTODATE
)
1256 if (cpu_to_be32(GFS2_MAGIC
) != rgd
->rd_rgl
->rl_magic
)
1257 return gfs2_rgrp_bh_get(rgd
);
1259 rl_flags
= be32_to_cpu(rgd
->rd_rgl
->rl_flags
);
1260 rl_flags
&= ~GFS2_RDF_MASK
;
1261 rgd
->rd_flags
&= GFS2_RDF_MASK
;
1262 rgd
->rd_flags
|= (rl_flags
| GFS2_RDF_CHECK
);
1263 if (rgd
->rd_rgl
->rl_unlinked
== 0)
1264 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1265 rgd
->rd_free
= be32_to_cpu(rgd
->rd_rgl
->rl_free
);
1266 rgd
->rd_free_clone
= rgd
->rd_free
;
1267 rgd
->rd_dinodes
= be32_to_cpu(rgd
->rd_rgl
->rl_dinodes
);
1268 rgd
->rd_igeneration
= be64_to_cpu(rgd
->rd_rgl
->rl_igeneration
);
1272 int gfs2_rgrp_go_lock(struct gfs2_holder
*gh
)
1274 struct gfs2_rgrpd
*rgd
= gh
->gh_gl
->gl_object
;
1275 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1277 if (gh
->gh_flags
& GL_SKIP
&& sdp
->sd_args
.ar_rgrplvb
)
1279 return gfs2_rgrp_bh_get(rgd
);
1283 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1284 * @rgd: The resource group
1288 void gfs2_rgrp_brelse(struct gfs2_rgrpd
*rgd
)
1290 int x
, length
= rgd
->rd_length
;
1292 for (x
= 0; x
< length
; x
++) {
1293 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
1303 * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1304 * @gh: The glock holder for the resource group
1308 void gfs2_rgrp_go_unlock(struct gfs2_holder
*gh
)
1310 struct gfs2_rgrpd
*rgd
= gh
->gh_gl
->gl_object
;
1311 int demote_requested
= test_bit(GLF_DEMOTE
, &gh
->gh_gl
->gl_flags
) |
1312 test_bit(GLF_PENDING_DEMOTE
, &gh
->gh_gl
->gl_flags
);
1314 if (rgd
&& demote_requested
)
1315 gfs2_rgrp_brelse(rgd
);
1318 int gfs2_rgrp_send_discards(struct gfs2_sbd
*sdp
, u64 offset
,
1319 struct buffer_head
*bh
,
1320 const struct gfs2_bitmap
*bi
, unsigned minlen
, u64
*ptrimmed
)
1322 struct super_block
*sb
= sdp
->sd_vfs
;
1325 sector_t nr_blks
= 0;
1331 for (x
= 0; x
< bi
->bi_bytes
; x
++) {
1332 const u8
*clone
= bi
->bi_clone
? bi
->bi_clone
: bi
->bi_bh
->b_data
;
1333 clone
+= bi
->bi_offset
;
1336 const u8
*orig
= bh
->b_data
+ bi
->bi_offset
+ x
;
1337 diff
= ~(*orig
| (*orig
>> 1)) & (*clone
| (*clone
>> 1));
1339 diff
= ~(*clone
| (*clone
>> 1));
1344 blk
= offset
+ ((bi
->bi_start
+ x
) * GFS2_NBBY
);
1348 goto start_new_extent
;
1349 if ((start
+ nr_blks
) != blk
) {
1350 if (nr_blks
>= minlen
) {
1351 rv
= sb_issue_discard(sb
,
1368 if (nr_blks
>= minlen
) {
1369 rv
= sb_issue_discard(sb
, start
, nr_blks
, GFP_NOFS
, 0);
1375 *ptrimmed
= trimmed
;
1379 if (sdp
->sd_args
.ar_discard
)
1380 fs_warn(sdp
, "error %d on discard request, turning discards off for this filesystem\n", rv
);
1381 sdp
->sd_args
.ar_discard
= 0;
1386 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1387 * @filp: Any file on the filesystem
1388 * @argp: Pointer to the arguments (also used to pass result)
1390 * Returns: 0 on success, otherwise error code
1393 int gfs2_fitrim(struct file
*filp
, void __user
*argp
)
1395 struct inode
*inode
= file_inode(filp
);
1396 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
1397 struct request_queue
*q
= bdev_get_queue(sdp
->sd_vfs
->s_bdev
);
1398 struct buffer_head
*bh
;
1399 struct gfs2_rgrpd
*rgd
;
1400 struct gfs2_rgrpd
*rgd_end
;
1401 struct gfs2_holder gh
;
1402 struct fstrim_range r
;
1406 u64 start
, end
, minlen
;
1408 unsigned bs_shift
= sdp
->sd_sb
.sb_bsize_shift
;
1410 if (!capable(CAP_SYS_ADMIN
))
1413 if (!blk_queue_discard(q
))
1416 if (copy_from_user(&r
, argp
, sizeof(r
)))
1419 ret
= gfs2_rindex_update(sdp
);
1423 start
= r
.start
>> bs_shift
;
1424 end
= start
+ (r
.len
>> bs_shift
);
1425 minlen
= max_t(u64
, r
.minlen
,
1426 q
->limits
.discard_granularity
) >> bs_shift
;
1428 if (end
<= start
|| minlen
> sdp
->sd_max_rg_data
)
1431 rgd
= gfs2_blk2rgrpd(sdp
, start
, 0);
1432 rgd_end
= gfs2_blk2rgrpd(sdp
, end
, 0);
1434 if ((gfs2_rgrpd_get_first(sdp
) == gfs2_rgrpd_get_next(rgd_end
))
1435 && (start
> rgd_end
->rd_data0
+ rgd_end
->rd_data
))
1436 return -EINVAL
; /* start is beyond the end of the fs */
1440 ret
= gfs2_glock_nq_init(rgd
->rd_gl
, LM_ST_EXCLUSIVE
, 0, &gh
);
1444 if (!(rgd
->rd_flags
& GFS2_RGF_TRIMMED
)) {
1445 /* Trim each bitmap in the rgrp */
1446 for (x
= 0; x
< rgd
->rd_length
; x
++) {
1447 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
1448 ret
= gfs2_rgrp_send_discards(sdp
,
1449 rgd
->rd_data0
, NULL
, bi
, minlen
,
1452 gfs2_glock_dq_uninit(&gh
);
1458 /* Mark rgrp as having been trimmed */
1459 ret
= gfs2_trans_begin(sdp
, RES_RG_HDR
, 0);
1461 bh
= rgd
->rd_bits
[0].bi_bh
;
1462 rgd
->rd_flags
|= GFS2_RGF_TRIMMED
;
1463 gfs2_trans_add_meta(rgd
->rd_gl
, bh
);
1464 gfs2_rgrp_out(rgd
, bh
->b_data
);
1465 gfs2_trans_end(sdp
);
1468 gfs2_glock_dq_uninit(&gh
);
1473 rgd
= gfs2_rgrpd_get_next(rgd
);
1477 r
.len
= trimmed
<< bs_shift
;
1478 if (copy_to_user(argp
, &r
, sizeof(r
)))
1485 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1486 * @ip: the inode structure
1489 static void rs_insert(struct gfs2_inode
*ip
)
1491 struct rb_node
**newn
, *parent
= NULL
;
1493 struct gfs2_blkreserv
*rs
= &ip
->i_res
;
1494 struct gfs2_rgrpd
*rgd
= rs
->rs_rbm
.rgd
;
1495 u64 fsblock
= gfs2_rbm_to_block(&rs
->rs_rbm
);
1497 BUG_ON(gfs2_rs_active(rs
));
1499 spin_lock(&rgd
->rd_rsspin
);
1500 newn
= &rgd
->rd_rstree
.rb_node
;
1502 struct gfs2_blkreserv
*cur
=
1503 rb_entry(*newn
, struct gfs2_blkreserv
, rs_node
);
1506 rc
= rs_cmp(fsblock
, rs
->rs_free
, cur
);
1508 newn
= &((*newn
)->rb_right
);
1510 newn
= &((*newn
)->rb_left
);
1512 spin_unlock(&rgd
->rd_rsspin
);
1518 rb_link_node(&rs
->rs_node
, parent
, newn
);
1519 rb_insert_color(&rs
->rs_node
, &rgd
->rd_rstree
);
1521 /* Do our rgrp accounting for the reservation */
1522 rgd
->rd_reserved
+= rs
->rs_free
; /* blocks reserved */
1523 spin_unlock(&rgd
->rd_rsspin
);
1524 trace_gfs2_rs(rs
, TRACE_RS_INSERT
);
1528 * rgd_free - return the number of free blocks we can allocate.
1529 * @rgd: the resource group
1531 * This function returns the number of free blocks for an rgrp.
1532 * That's the clone-free blocks (blocks that are free, not including those
1533 * still being used for unlinked files that haven't been deleted.)
1535 * It also subtracts any blocks reserved by someone else, but does not
1536 * include free blocks that are still part of our current reservation,
1537 * because obviously we can (and will) allocate them.
1539 static inline u32
rgd_free(struct gfs2_rgrpd
*rgd
, struct gfs2_blkreserv
*rs
)
1541 u32 tot_reserved
, tot_free
;
1543 if (WARN_ON_ONCE(rgd
->rd_reserved
< rs
->rs_free
))
1545 tot_reserved
= rgd
->rd_reserved
- rs
->rs_free
;
1547 if (rgd
->rd_free_clone
< tot_reserved
)
1550 tot_free
= rgd
->rd_free_clone
- tot_reserved
;
1556 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1557 * @rgd: the resource group descriptor
1558 * @ip: pointer to the inode for which we're reserving blocks
1559 * @ap: the allocation parameters
1563 static void rg_mblk_search(struct gfs2_rgrpd
*rgd
, struct gfs2_inode
*ip
,
1564 const struct gfs2_alloc_parms
*ap
)
1566 struct gfs2_rbm rbm
= { .rgd
= rgd
, };
1568 struct gfs2_blkreserv
*rs
= &ip
->i_res
;
1570 u32 free_blocks
= rgd_free(rgd
, rs
);
1572 struct inode
*inode
= &ip
->i_inode
;
1574 if (S_ISDIR(inode
->i_mode
))
1577 extlen
= max_t(u32
, atomic_read(&ip
->i_sizehint
), ap
->target
);
1578 extlen
= clamp(extlen
, (u32
)RGRP_RSRV_MINBLKS
, free_blocks
);
1580 if ((rgd
->rd_free_clone
< rgd
->rd_reserved
) || (free_blocks
< extlen
))
1583 /* Find bitmap block that contains bits for goal block */
1584 if (rgrp_contains_block(rgd
, ip
->i_goal
))
1587 goal
= rgd
->rd_last_alloc
+ rgd
->rd_data0
;
1589 if (WARN_ON(gfs2_rbm_from_block(&rbm
, goal
)))
1592 ret
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, &extlen
, ip
, true);
1595 rs
->rs_free
= extlen
;
1598 if (goal
== rgd
->rd_last_alloc
+ rgd
->rd_data0
)
1599 rgd
->rd_last_alloc
= 0;
1604 * gfs2_next_unreserved_block - Return next block that is not reserved
1605 * @rgd: The resource group
1606 * @block: The starting block
1607 * @length: The required length
1608 * @ip: Ignore any reservations for this inode
1610 * If the block does not appear in any reservation, then return the
1611 * block number unchanged. If it does appear in the reservation, then
1612 * keep looking through the tree of reservations in order to find the
1613 * first block number which is not reserved.
1616 static u64
gfs2_next_unreserved_block(struct gfs2_rgrpd
*rgd
, u64 block
,
1618 const struct gfs2_inode
*ip
)
1620 struct gfs2_blkreserv
*rs
;
1624 spin_lock(&rgd
->rd_rsspin
);
1625 n
= rgd
->rd_rstree
.rb_node
;
1627 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
1628 rc
= rs_cmp(block
, length
, rs
);
1638 while ((rs_cmp(block
, length
, rs
) == 0) && (&ip
->i_res
!= rs
)) {
1639 block
= gfs2_rbm_to_block(&rs
->rs_rbm
) + rs
->rs_free
;
1643 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
1647 spin_unlock(&rgd
->rd_rsspin
);
1652 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1653 * @rbm: The current position in the resource group
1654 * @ip: The inode for which we are searching for blocks
1655 * @minext: The minimum extent length
1656 * @maxext: A pointer to the maximum extent structure
1658 * This checks the current position in the rgrp to see whether there is
1659 * a reservation covering this block. If not then this function is a
1660 * no-op. If there is, then the position is moved to the end of the
1661 * contiguous reservation(s) so that we are pointing at the first
1662 * non-reserved block.
1664 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1667 static int gfs2_reservation_check_and_update(struct gfs2_rbm
*rbm
,
1668 const struct gfs2_inode
*ip
,
1670 struct gfs2_extent
*maxext
)
1672 u64 block
= gfs2_rbm_to_block(rbm
);
1678 * If we have a minimum extent length, then skip over any extent
1679 * which is less than the min extent length in size.
1682 extlen
= gfs2_free_extlen(rbm
, minext
);
1683 if (extlen
<= maxext
->len
)
1688 * Check the extent which has been found against the reservations
1689 * and skip if parts of it are already reserved
1691 nblock
= gfs2_next_unreserved_block(rbm
->rgd
, block
, extlen
, ip
);
1692 if (nblock
== block
) {
1693 if (!minext
|| extlen
>= minext
)
1696 if (extlen
> maxext
->len
) {
1697 maxext
->len
= extlen
;
1701 nblock
= block
+ extlen
;
1703 ret
= gfs2_rbm_from_block(rbm
, nblock
);
1710 * gfs2_rbm_find - Look for blocks of a particular state
1711 * @rbm: Value/result starting position and final position
1712 * @state: The state which we want to find
1713 * @minext: Pointer to the requested extent length (NULL for a single block)
1714 * This is updated to be the actual reservation size.
1715 * @ip: If set, check for reservations
1716 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1717 * around until we've reached the starting point.
1720 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1721 * has no free blocks in it.
1722 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1723 * has come up short on a free block search.
1725 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1728 static int gfs2_rbm_find(struct gfs2_rbm
*rbm
, u8 state
, u32
*minext
,
1729 const struct gfs2_inode
*ip
, bool nowrap
)
1731 struct buffer_head
*bh
;
1734 int first_bii
= rbm
->bii
;
1735 u32 first_offset
= rbm
->offset
;
1739 int iters
= rbm
->rgd
->rd_length
;
1741 struct gfs2_bitmap
*bi
;
1742 struct gfs2_extent maxext
= { .rbm
.rgd
= rbm
->rgd
, };
1744 /* If we are not starting at the beginning of a bitmap, then we
1745 * need to add one to the bitmap count to ensure that we search
1746 * the starting bitmap twice.
1748 if (rbm
->offset
!= 0)
1753 if ((ip
== NULL
|| !gfs2_rs_active(&ip
->i_res
)) &&
1754 test_bit(GBF_FULL
, &bi
->bi_flags
) &&
1755 (state
== GFS2_BLKST_FREE
))
1759 buffer
= bh
->b_data
+ bi
->bi_offset
;
1760 WARN_ON(!buffer_uptodate(bh
));
1761 if (state
!= GFS2_BLKST_UNLINKED
&& bi
->bi_clone
)
1762 buffer
= bi
->bi_clone
+ bi
->bi_offset
;
1763 initial_offset
= rbm
->offset
;
1764 offset
= gfs2_bitfit(buffer
, bi
->bi_bytes
, rbm
->offset
, state
);
1765 if (offset
== BFITNOENT
)
1767 rbm
->offset
= offset
;
1771 initial_bii
= rbm
->bii
;
1772 ret
= gfs2_reservation_check_and_update(rbm
, ip
,
1773 minext
? *minext
: 0,
1778 n
+= (rbm
->bii
- initial_bii
);
1781 if (ret
== -E2BIG
) {
1784 n
+= (rbm
->bii
- initial_bii
);
1785 goto res_covered_end_of_rgrp
;
1789 bitmap_full
: /* Mark bitmap as full and fall through */
1790 if ((state
== GFS2_BLKST_FREE
) && initial_offset
== 0)
1791 set_bit(GBF_FULL
, &bi
->bi_flags
);
1793 next_bitmap
: /* Find next bitmap in the rgrp */
1796 if (rbm
->bii
== rbm
->rgd
->rd_length
)
1798 res_covered_end_of_rgrp
:
1799 if ((rbm
->bii
== 0) && nowrap
)
1807 if (minext
== NULL
|| state
!= GFS2_BLKST_FREE
)
1810 /* If the extent was too small, and it's smaller than the smallest
1811 to have failed before, remember for future reference that it's
1812 useless to search this rgrp again for this amount or more. */
1813 if ((first_offset
== 0) && (first_bii
== 0) &&
1814 (*minext
< rbm
->rgd
->rd_extfail_pt
))
1815 rbm
->rgd
->rd_extfail_pt
= *minext
;
1817 /* If the maximum extent we found is big enough to fulfill the
1818 minimum requirements, use it anyway. */
1821 *minext
= maxext
.len
;
1829 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1831 * @last_unlinked: block address of the last dinode we unlinked
1832 * @skip: block address we should explicitly not unlink
1834 * Returns: 0 if no error
1835 * The inode, if one has been found, in inode.
1838 static void try_rgrp_unlink(struct gfs2_rgrpd
*rgd
, u64
*last_unlinked
, u64 skip
)
1841 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1842 struct gfs2_glock
*gl
;
1843 struct gfs2_inode
*ip
;
1846 struct gfs2_rbm rbm
= { .rgd
= rgd
, .bii
= 0, .offset
= 0 };
1849 down_write(&sdp
->sd_log_flush_lock
);
1850 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_UNLINKED
, NULL
, NULL
,
1852 up_write(&sdp
->sd_log_flush_lock
);
1853 if (error
== -ENOSPC
)
1855 if (WARN_ON_ONCE(error
))
1858 block
= gfs2_rbm_to_block(&rbm
);
1859 if (gfs2_rbm_from_block(&rbm
, block
+ 1))
1861 if (*last_unlinked
!= NO_BLOCK
&& block
<= *last_unlinked
)
1865 *last_unlinked
= block
;
1867 error
= gfs2_glock_get(sdp
, block
, &gfs2_iopen_glops
, CREATE
, &gl
);
1871 /* If the inode is already in cache, we can ignore it here
1872 * because the existing inode disposal code will deal with
1873 * it when all refs have gone away. Accessing gl_object like
1874 * this is not safe in general. Here it is ok because we do
1875 * not dereference the pointer, and we only need an approx
1876 * answer to whether it is NULL or not.
1880 if (ip
|| queue_work(gfs2_delete_workqueue
, &gl
->gl_delete
) == 0)
1885 /* Limit reclaim to sensible number of tasks */
1886 if (found
> NR_CPUS
)
1890 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1895 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1896 * @rgd: The rgrp in question
1897 * @loops: An indication of how picky we can be (0=very, 1=less so)
1899 * This function uses the recently added glock statistics in order to
1900 * figure out whether a parciular resource group is suffering from
1901 * contention from multiple nodes. This is done purely on the basis
1902 * of timings, since this is the only data we have to work with and
1903 * our aim here is to reject a resource group which is highly contended
1904 * but (very important) not to do this too often in order to ensure that
1905 * we do not land up introducing fragmentation by changing resource
1906 * groups when not actually required.
1908 * The calculation is fairly simple, we want to know whether the SRTTB
1909 * (i.e. smoothed round trip time for blocking operations) to acquire
1910 * the lock for this rgrp's glock is significantly greater than the
1911 * time taken for resource groups on average. We introduce a margin in
1912 * the form of the variable @var which is computed as the sum of the two
1913 * respective variences, and multiplied by a factor depending on @loops
1914 * and whether we have a lot of data to base the decision on. This is
1915 * then tested against the square difference of the means in order to
1916 * decide whether the result is statistically significant or not.
1918 * Returns: A boolean verdict on the congestion status
1921 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd
*rgd
, int loops
)
1923 const struct gfs2_glock
*gl
= rgd
->rd_gl
;
1924 const struct gfs2_sbd
*sdp
= gl
->gl_name
.ln_sbd
;
1925 struct gfs2_lkstats
*st
;
1926 u64 r_dcount
, l_dcount
;
1927 u64 l_srttb
, a_srttb
= 0;
1931 int cpu
, nonzero
= 0;
1934 for_each_present_cpu(cpu
) {
1935 st
= &per_cpu_ptr(sdp
->sd_lkstats
, cpu
)->lkstats
[LM_TYPE_RGRP
];
1936 if (st
->stats
[GFS2_LKS_SRTTB
]) {
1937 a_srttb
+= st
->stats
[GFS2_LKS_SRTTB
];
1941 st
= &this_cpu_ptr(sdp
->sd_lkstats
)->lkstats
[LM_TYPE_RGRP
];
1943 do_div(a_srttb
, nonzero
);
1944 r_dcount
= st
->stats
[GFS2_LKS_DCOUNT
];
1945 var
= st
->stats
[GFS2_LKS_SRTTVARB
] +
1946 gl
->gl_stats
.stats
[GFS2_LKS_SRTTVARB
];
1949 l_srttb
= gl
->gl_stats
.stats
[GFS2_LKS_SRTTB
];
1950 l_dcount
= gl
->gl_stats
.stats
[GFS2_LKS_DCOUNT
];
1952 if ((l_dcount
< 1) || (r_dcount
< 1) || (a_srttb
== 0))
1955 srttb_diff
= a_srttb
- l_srttb
;
1956 sqr_diff
= srttb_diff
* srttb_diff
;
1959 if (l_dcount
< 8 || r_dcount
< 8)
1964 return ((srttb_diff
< 0) && (sqr_diff
> var
));
1968 * gfs2_rgrp_used_recently
1969 * @rs: The block reservation with the rgrp to test
1970 * @msecs: The time limit in milliseconds
1972 * Returns: True if the rgrp glock has been used within the time limit
1974 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv
*rs
,
1979 tdiff
= ktime_to_ns(ktime_sub(ktime_get_real(),
1980 rs
->rs_rbm
.rgd
->rd_gl
->gl_dstamp
));
1982 return tdiff
> (msecs
* 1000 * 1000);
1985 static u32
gfs2_orlov_skip(const struct gfs2_inode
*ip
)
1987 const struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
1990 get_random_bytes(&skip
, sizeof(skip
));
1991 return skip
% sdp
->sd_rgrps
;
1994 static bool gfs2_select_rgrp(struct gfs2_rgrpd
**pos
, const struct gfs2_rgrpd
*begin
)
1996 struct gfs2_rgrpd
*rgd
= *pos
;
1997 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1999 rgd
= gfs2_rgrpd_get_next(rgd
);
2001 rgd
= gfs2_rgrpd_get_first(sdp
);
2003 if (rgd
!= begin
) /* If we didn't wrap */
2009 * fast_to_acquire - determine if a resource group will be fast to acquire
2011 * If this is one of our preferred rgrps, it should be quicker to acquire,
2012 * because we tried to set ourselves up as dlm lock master.
2014 static inline int fast_to_acquire(struct gfs2_rgrpd
*rgd
)
2016 struct gfs2_glock
*gl
= rgd
->rd_gl
;
2018 if (gl
->gl_state
!= LM_ST_UNLOCKED
&& list_empty(&gl
->gl_holders
) &&
2019 !test_bit(GLF_DEMOTE_IN_PROGRESS
, &gl
->gl_flags
) &&
2020 !test_bit(GLF_DEMOTE
, &gl
->gl_flags
))
2022 if (rgd
->rd_flags
& GFS2_RDF_PREFERRED
)
2028 * gfs2_inplace_reserve - Reserve space in the filesystem
2029 * @ip: the inode to reserve space for
2030 * @ap: the allocation parameters
2032 * We try our best to find an rgrp that has at least ap->target blocks
2033 * available. After a couple of passes (loops == 2), the prospects of finding
2034 * such an rgrp diminish. At this stage, we return the first rgrp that has
2035 * at least ap->min_target blocks available. Either way, we set ap->allowed to
2036 * the number of blocks available in the chosen rgrp.
2038 * Returns: 0 on success,
2039 * -ENOMEM if a suitable rgrp can't be found
2043 int gfs2_inplace_reserve(struct gfs2_inode
*ip
, struct gfs2_alloc_parms
*ap
)
2045 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2046 struct gfs2_rgrpd
*begin
= NULL
;
2047 struct gfs2_blkreserv
*rs
= &ip
->i_res
;
2048 int error
= 0, rg_locked
, flags
= 0;
2049 u64 last_unlinked
= NO_BLOCK
;
2051 u32 free_blocks
, skip
= 0;
2053 if (sdp
->sd_args
.ar_rgrplvb
)
2055 if (gfs2_assert_warn(sdp
, ap
->target
))
2057 if (gfs2_rs_active(rs
)) {
2058 begin
= rs
->rs_rbm
.rgd
;
2059 } else if (rs
->rs_rbm
.rgd
&&
2060 rgrp_contains_block(rs
->rs_rbm
.rgd
, ip
->i_goal
)) {
2061 begin
= rs
->rs_rbm
.rgd
;
2063 check_and_update_goal(ip
);
2064 rs
->rs_rbm
.rgd
= begin
= gfs2_blk2rgrpd(sdp
, ip
->i_goal
, 1);
2066 if (S_ISDIR(ip
->i_inode
.i_mode
) && (ap
->aflags
& GFS2_AF_ORLOV
))
2067 skip
= gfs2_orlov_skip(ip
);
2068 if (rs
->rs_rbm
.rgd
== NULL
)
2074 if (!gfs2_glock_is_locked_by_me(rs
->rs_rbm
.rgd
->rd_gl
)) {
2078 if (!gfs2_rs_active(rs
)) {
2080 !fast_to_acquire(rs
->rs_rbm
.rgd
))
2083 gfs2_rgrp_used_recently(rs
, 1000) &&
2084 gfs2_rgrp_congested(rs
->rs_rbm
.rgd
, loops
))
2087 error
= gfs2_glock_nq_init(rs
->rs_rbm
.rgd
->rd_gl
,
2088 LM_ST_EXCLUSIVE
, flags
,
2090 if (unlikely(error
))
2092 if (!gfs2_rs_active(rs
) && (loops
< 2) &&
2093 gfs2_rgrp_congested(rs
->rs_rbm
.rgd
, loops
))
2095 if (sdp
->sd_args
.ar_rgrplvb
) {
2096 error
= update_rgrp_lvb(rs
->rs_rbm
.rgd
);
2097 if (unlikely(error
)) {
2098 gfs2_glock_dq_uninit(&ip
->i_rgd_gh
);
2104 /* Skip unusable resource groups */
2105 if ((rs
->rs_rbm
.rgd
->rd_flags
& (GFS2_RGF_NOALLOC
|
2107 (loops
== 0 && ap
->target
> rs
->rs_rbm
.rgd
->rd_extfail_pt
))
2110 if (sdp
->sd_args
.ar_rgrplvb
)
2111 gfs2_rgrp_bh_get(rs
->rs_rbm
.rgd
);
2113 /* Get a reservation if we don't already have one */
2114 if (!gfs2_rs_active(rs
))
2115 rg_mblk_search(rs
->rs_rbm
.rgd
, ip
, ap
);
2117 /* Skip rgrps when we can't get a reservation on first pass */
2118 if (!gfs2_rs_active(rs
) && (loops
< 1))
2121 /* If rgrp has enough free space, use it */
2122 free_blocks
= rgd_free(rs
->rs_rbm
.rgd
, rs
);
2123 if (free_blocks
>= ap
->target
||
2124 (loops
== 2 && ap
->min_target
&&
2125 free_blocks
>= ap
->min_target
)) {
2126 ap
->allowed
= free_blocks
;
2130 /* Check for unlinked inodes which can be reclaimed */
2131 if (rs
->rs_rbm
.rgd
->rd_flags
& GFS2_RDF_CHECK
)
2132 try_rgrp_unlink(rs
->rs_rbm
.rgd
, &last_unlinked
,
2135 /* Drop reservation, if we couldn't use reserved rgrp */
2136 if (gfs2_rs_active(rs
))
2137 gfs2_rs_deltree(rs
);
2139 /* Unlock rgrp if required */
2141 gfs2_glock_dq_uninit(&ip
->i_rgd_gh
);
2143 /* Find the next rgrp, and continue looking */
2144 if (gfs2_select_rgrp(&rs
->rs_rbm
.rgd
, begin
))
2149 /* If we've scanned all the rgrps, but found no free blocks
2150 * then this checks for some less likely conditions before
2154 /* Check that fs hasn't grown if writing to rindex */
2155 if (ip
== GFS2_I(sdp
->sd_rindex
) && !sdp
->sd_rindex_uptodate
) {
2156 error
= gfs2_ri_update(ip
);
2160 /* Flushing the log may release space */
2162 gfs2_log_flush(sdp
, NULL
, GFS2_LOG_HEAD_FLUSH_NORMAL
|
2163 GFS2_LFC_INPLACE_RESERVE
);
2170 * gfs2_inplace_release - release an inplace reservation
2171 * @ip: the inode the reservation was taken out on
2173 * Release a reservation made by gfs2_inplace_reserve().
2176 void gfs2_inplace_release(struct gfs2_inode
*ip
)
2178 if (gfs2_holder_initialized(&ip
->i_rgd_gh
))
2179 gfs2_glock_dq_uninit(&ip
->i_rgd_gh
);
2183 * gfs2_alloc_extent - allocate an extent from a given bitmap
2184 * @rbm: the resource group information
2185 * @dinode: TRUE if the first block we allocate is for a dinode
2186 * @n: The extent length (value/result)
2188 * Add the bitmap buffer to the transaction.
2189 * Set the found bits to @new_state to change block's allocation state.
2191 static void gfs2_alloc_extent(const struct gfs2_rbm
*rbm
, bool dinode
,
2194 struct gfs2_rbm pos
= { .rgd
= rbm
->rgd
, };
2195 const unsigned int elen
= *n
;
2200 block
= gfs2_rbm_to_block(rbm
);
2201 gfs2_trans_add_meta(rbm
->rgd
->rd_gl
, rbm_bi(rbm
)->bi_bh
);
2202 gfs2_setbit(rbm
, true, dinode
? GFS2_BLKST_DINODE
: GFS2_BLKST_USED
);
2205 ret
= gfs2_rbm_from_block(&pos
, block
);
2206 if (ret
|| gfs2_testbit(&pos
, true) != GFS2_BLKST_FREE
)
2208 gfs2_trans_add_meta(pos
.rgd
->rd_gl
, rbm_bi(&pos
)->bi_bh
);
2209 gfs2_setbit(&pos
, true, GFS2_BLKST_USED
);
2216 * rgblk_free - Change alloc state of given block(s)
2217 * @sdp: the filesystem
2218 * @rgd: the resource group the blocks are in
2219 * @bstart: the start of a run of blocks to free
2220 * @blen: the length of the block run (all must lie within ONE RG!)
2221 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2224 static void rgblk_free(struct gfs2_sbd
*sdp
, struct gfs2_rgrpd
*rgd
,
2225 u64 bstart
, u32 blen
, unsigned char new_state
)
2227 struct gfs2_rbm rbm
;
2228 struct gfs2_bitmap
*bi
, *bi_prev
= NULL
;
2231 if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm
, bstart
)))
2235 if (bi
!= bi_prev
) {
2236 if (!bi
->bi_clone
) {
2237 bi
->bi_clone
= kmalloc(bi
->bi_bh
->b_size
,
2238 GFP_NOFS
| __GFP_NOFAIL
);
2239 memcpy(bi
->bi_clone
+ bi
->bi_offset
,
2240 bi
->bi_bh
->b_data
+ bi
->bi_offset
,
2243 gfs2_trans_add_meta(rbm
.rgd
->rd_gl
, bi
->bi_bh
);
2246 gfs2_setbit(&rbm
, false, new_state
);
2247 gfs2_rbm_incr(&rbm
);
2252 * gfs2_rgrp_dump - print out an rgrp
2253 * @seq: The iterator
2254 * @gl: The glock in question
2258 void gfs2_rgrp_dump(struct seq_file
*seq
, const struct gfs2_glock
*gl
)
2260 struct gfs2_rgrpd
*rgd
= gl
->gl_object
;
2261 struct gfs2_blkreserv
*trs
;
2262 const struct rb_node
*n
;
2266 gfs2_print_dbg(seq
, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2267 (unsigned long long)rgd
->rd_addr
, rgd
->rd_flags
,
2268 rgd
->rd_free
, rgd
->rd_free_clone
, rgd
->rd_dinodes
,
2269 rgd
->rd_reserved
, rgd
->rd_extfail_pt
);
2270 if (rgd
->rd_sbd
->sd_args
.ar_rgrplvb
) {
2271 struct gfs2_rgrp_lvb
*rgl
= rgd
->rd_rgl
;
2273 gfs2_print_dbg(seq
, " L: f:%02x b:%u i:%u\n",
2274 be32_to_cpu(rgl
->rl_flags
),
2275 be32_to_cpu(rgl
->rl_free
),
2276 be32_to_cpu(rgl
->rl_dinodes
));
2278 spin_lock(&rgd
->rd_rsspin
);
2279 for (n
= rb_first(&rgd
->rd_rstree
); n
; n
= rb_next(&trs
->rs_node
)) {
2280 trs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
2283 spin_unlock(&rgd
->rd_rsspin
);
2286 static void gfs2_rgrp_error(struct gfs2_rgrpd
*rgd
)
2288 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
2289 fs_warn(sdp
, "rgrp %llu has an error, marking it readonly until umount\n",
2290 (unsigned long long)rgd
->rd_addr
);
2291 fs_warn(sdp
, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2292 gfs2_rgrp_dump(NULL
, rgd
->rd_gl
);
2293 rgd
->rd_flags
|= GFS2_RDF_ERROR
;
2297 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2298 * @ip: The inode we have just allocated blocks for
2299 * @rbm: The start of the allocated blocks
2300 * @len: The extent length
2302 * Adjusts a reservation after an allocation has taken place. If the
2303 * reservation does not match the allocation, or if it is now empty
2304 * then it is removed.
2307 static void gfs2_adjust_reservation(struct gfs2_inode
*ip
,
2308 const struct gfs2_rbm
*rbm
, unsigned len
)
2310 struct gfs2_blkreserv
*rs
= &ip
->i_res
;
2311 struct gfs2_rgrpd
*rgd
= rbm
->rgd
;
2316 spin_lock(&rgd
->rd_rsspin
);
2317 if (gfs2_rs_active(rs
)) {
2318 if (gfs2_rbm_eq(&rs
->rs_rbm
, rbm
)) {
2319 block
= gfs2_rbm_to_block(rbm
);
2320 ret
= gfs2_rbm_from_block(&rs
->rs_rbm
, block
+ len
);
2321 rlen
= min(rs
->rs_free
, len
);
2322 rs
->rs_free
-= rlen
;
2323 rgd
->rd_reserved
-= rlen
;
2324 trace_gfs2_rs(rs
, TRACE_RS_CLAIM
);
2325 if (rs
->rs_free
&& !ret
)
2327 /* We used up our block reservation, so we should
2328 reserve more blocks next time. */
2329 atomic_add(RGRP_RSRV_ADDBLKS
, &ip
->i_sizehint
);
2334 spin_unlock(&rgd
->rd_rsspin
);
2338 * gfs2_set_alloc_start - Set starting point for block allocation
2339 * @rbm: The rbm which will be set to the required location
2340 * @ip: The gfs2 inode
2341 * @dinode: Flag to say if allocation includes a new inode
2343 * This sets the starting point from the reservation if one is active
2344 * otherwise it falls back to guessing a start point based on the
2345 * inode's goal block or the last allocation point in the rgrp.
2348 static void gfs2_set_alloc_start(struct gfs2_rbm
*rbm
,
2349 const struct gfs2_inode
*ip
, bool dinode
)
2353 if (gfs2_rs_active(&ip
->i_res
)) {
2354 *rbm
= ip
->i_res
.rs_rbm
;
2358 if (!dinode
&& rgrp_contains_block(rbm
->rgd
, ip
->i_goal
))
2361 goal
= rbm
->rgd
->rd_last_alloc
+ rbm
->rgd
->rd_data0
;
2363 if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm
, goal
))) {
2370 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2371 * @ip: the inode to allocate the block for
2372 * @bn: Used to return the starting block number
2373 * @nblocks: requested number of blocks/extent length (value/result)
2374 * @dinode: 1 if we're allocating a dinode block, else 0
2375 * @generation: the generation number of the inode
2377 * Returns: 0 or error
2380 int gfs2_alloc_blocks(struct gfs2_inode
*ip
, u64
*bn
, unsigned int *nblocks
,
2381 bool dinode
, u64
*generation
)
2383 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2384 struct buffer_head
*dibh
;
2385 struct gfs2_rbm rbm
= { .rgd
= ip
->i_res
.rs_rbm
.rgd
, };
2387 u64 block
; /* block, within the file system scope */
2390 gfs2_set_alloc_start(&rbm
, ip
, dinode
);
2391 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, NULL
, ip
, false);
2393 if (error
== -ENOSPC
) {
2394 gfs2_set_alloc_start(&rbm
, ip
, dinode
);
2395 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, NULL
, NULL
, false);
2398 /* Since all blocks are reserved in advance, this shouldn't happen */
2400 fs_warn(sdp
, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2401 (unsigned long long)ip
->i_no_addr
, error
, *nblocks
,
2402 test_bit(GBF_FULL
, &rbm
.rgd
->rd_bits
->bi_flags
),
2403 rbm
.rgd
->rd_extfail_pt
);
2407 gfs2_alloc_extent(&rbm
, dinode
, nblocks
);
2408 block
= gfs2_rbm_to_block(&rbm
);
2409 rbm
.rgd
->rd_last_alloc
= block
- rbm
.rgd
->rd_data0
;
2410 if (gfs2_rs_active(&ip
->i_res
))
2411 gfs2_adjust_reservation(ip
, &rbm
, *nblocks
);
2417 ip
->i_goal
= block
+ ndata
- 1;
2418 error
= gfs2_meta_inode_buffer(ip
, &dibh
);
2420 struct gfs2_dinode
*di
=
2421 (struct gfs2_dinode
*)dibh
->b_data
;
2422 gfs2_trans_add_meta(ip
->i_gl
, dibh
);
2423 di
->di_goal_meta
= di
->di_goal_data
=
2424 cpu_to_be64(ip
->i_goal
);
2428 if (rbm
.rgd
->rd_free
< *nblocks
) {
2429 fs_warn(sdp
, "nblocks=%u\n", *nblocks
);
2433 rbm
.rgd
->rd_free
-= *nblocks
;
2435 rbm
.rgd
->rd_dinodes
++;
2436 *generation
= rbm
.rgd
->rd_igeneration
++;
2437 if (*generation
== 0)
2438 *generation
= rbm
.rgd
->rd_igeneration
++;
2441 gfs2_trans_add_meta(rbm
.rgd
->rd_gl
, rbm
.rgd
->rd_bits
[0].bi_bh
);
2442 gfs2_rgrp_out(rbm
.rgd
, rbm
.rgd
->rd_bits
[0].bi_bh
->b_data
);
2444 gfs2_statfs_change(sdp
, 0, -(s64
)*nblocks
, dinode
? 1 : 0);
2446 gfs2_trans_add_unrevoke(sdp
, block
, *nblocks
);
2448 gfs2_quota_change(ip
, *nblocks
, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2450 rbm
.rgd
->rd_free_clone
-= *nblocks
;
2451 trace_gfs2_block_alloc(ip
, rbm
.rgd
, block
, *nblocks
,
2452 dinode
? GFS2_BLKST_DINODE
: GFS2_BLKST_USED
);
2457 gfs2_rgrp_error(rbm
.rgd
);
2462 * __gfs2_free_blocks - free a contiguous run of block(s)
2463 * @ip: the inode these blocks are being freed from
2464 * @rgd: the resource group the blocks are in
2465 * @bstart: first block of a run of contiguous blocks
2466 * @blen: the length of the block run
2467 * @meta: 1 if the blocks represent metadata
2471 void __gfs2_free_blocks(struct gfs2_inode
*ip
, struct gfs2_rgrpd
*rgd
,
2472 u64 bstart
, u32 blen
, int meta
)
2474 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2476 rgblk_free(sdp
, rgd
, bstart
, blen
, GFS2_BLKST_FREE
);
2477 trace_gfs2_block_alloc(ip
, rgd
, bstart
, blen
, GFS2_BLKST_FREE
);
2478 rgd
->rd_free
+= blen
;
2479 rgd
->rd_flags
&= ~GFS2_RGF_TRIMMED
;
2480 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2481 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2483 /* Directories keep their data in the metadata address space */
2484 if (meta
|| ip
->i_depth
)
2485 gfs2_meta_wipe(ip
, bstart
, blen
);
2489 * gfs2_free_meta - free a contiguous run of data block(s)
2490 * @ip: the inode these blocks are being freed from
2491 * @rgd: the resource group the blocks are in
2492 * @bstart: first block of a run of contiguous blocks
2493 * @blen: the length of the block run
2497 void gfs2_free_meta(struct gfs2_inode
*ip
, struct gfs2_rgrpd
*rgd
,
2498 u64 bstart
, u32 blen
)
2500 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2502 __gfs2_free_blocks(ip
, rgd
, bstart
, blen
, 1);
2503 gfs2_statfs_change(sdp
, 0, +blen
, 0);
2504 gfs2_quota_change(ip
, -(s64
)blen
, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2507 void gfs2_unlink_di(struct inode
*inode
)
2509 struct gfs2_inode
*ip
= GFS2_I(inode
);
2510 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
2511 struct gfs2_rgrpd
*rgd
;
2512 u64 blkno
= ip
->i_no_addr
;
2514 rgd
= gfs2_blk2rgrpd(sdp
, blkno
, true);
2517 rgblk_free(sdp
, rgd
, blkno
, 1, GFS2_BLKST_UNLINKED
);
2518 trace_gfs2_block_alloc(ip
, rgd
, blkno
, 1, GFS2_BLKST_UNLINKED
);
2519 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2520 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2521 be32_add_cpu(&rgd
->rd_rgl
->rl_unlinked
, 1);
2524 void gfs2_free_di(struct gfs2_rgrpd
*rgd
, struct gfs2_inode
*ip
)
2526 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
2528 rgblk_free(sdp
, rgd
, ip
->i_no_addr
, 1, GFS2_BLKST_FREE
);
2529 if (!rgd
->rd_dinodes
)
2530 gfs2_consist_rgrpd(rgd
);
2534 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2535 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2536 be32_add_cpu(&rgd
->rd_rgl
->rl_unlinked
, -1);
2538 gfs2_statfs_change(sdp
, 0, +1, -1);
2539 trace_gfs2_block_alloc(ip
, rgd
, ip
->i_no_addr
, 1, GFS2_BLKST_FREE
);
2540 gfs2_quota_change(ip
, -1, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2541 gfs2_meta_wipe(ip
, ip
->i_no_addr
, 1);
2545 * gfs2_check_blk_type - Check the type of a block
2546 * @sdp: The superblock
2547 * @no_addr: The block number to check
2548 * @type: The block type we are looking for
2550 * Returns: 0 if the block type matches the expected type
2551 * -ESTALE if it doesn't match
2552 * or -ve errno if something went wrong while checking
2555 int gfs2_check_blk_type(struct gfs2_sbd
*sdp
, u64 no_addr
, unsigned int type
)
2557 struct gfs2_rgrpd
*rgd
;
2558 struct gfs2_holder rgd_gh
;
2559 struct gfs2_rbm rbm
;
2560 int error
= -EINVAL
;
2562 rgd
= gfs2_blk2rgrpd(sdp
, no_addr
, 1);
2566 error
= gfs2_glock_nq_init(rgd
->rd_gl
, LM_ST_SHARED
, 0, &rgd_gh
);
2571 error
= gfs2_rbm_from_block(&rbm
, no_addr
);
2572 if (WARN_ON_ONCE(error
))
2575 if (gfs2_testbit(&rbm
, false) != type
)
2578 gfs2_glock_dq_uninit(&rgd_gh
);
2584 * gfs2_rlist_add - add a RG to a list of RGs
2586 * @rlist: the list of resource groups
2589 * Figure out what RG a block belongs to and add that RG to the list
2591 * FIXME: Don't use NOFAIL
2595 void gfs2_rlist_add(struct gfs2_inode
*ip
, struct gfs2_rgrp_list
*rlist
,
2598 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2599 struct gfs2_rgrpd
*rgd
;
2600 struct gfs2_rgrpd
**tmp
;
2601 unsigned int new_space
;
2604 if (gfs2_assert_warn(sdp
, !rlist
->rl_ghs
))
2608 * The resource group last accessed is kept in the last position.
2611 if (rlist
->rl_rgrps
) {
2612 rgd
= rlist
->rl_rgd
[rlist
->rl_rgrps
- 1];
2613 if (rgrp_contains_block(rgd
, block
))
2615 rgd
= gfs2_blk2rgrpd(sdp
, block
, 1);
2617 rgd
= ip
->i_res
.rs_rbm
.rgd
;
2618 if (!rgd
|| !rgrp_contains_block(rgd
, block
))
2619 rgd
= gfs2_blk2rgrpd(sdp
, block
, 1);
2623 fs_err(sdp
, "rlist_add: no rgrp for block %llu\n",
2624 (unsigned long long)block
);
2628 for (x
= 0; x
< rlist
->rl_rgrps
; x
++) {
2629 if (rlist
->rl_rgd
[x
] == rgd
) {
2630 swap(rlist
->rl_rgd
[x
],
2631 rlist
->rl_rgd
[rlist
->rl_rgrps
- 1]);
2636 if (rlist
->rl_rgrps
== rlist
->rl_space
) {
2637 new_space
= rlist
->rl_space
+ 10;
2639 tmp
= kcalloc(new_space
, sizeof(struct gfs2_rgrpd
*),
2640 GFP_NOFS
| __GFP_NOFAIL
);
2642 if (rlist
->rl_rgd
) {
2643 memcpy(tmp
, rlist
->rl_rgd
,
2644 rlist
->rl_space
* sizeof(struct gfs2_rgrpd
*));
2645 kfree(rlist
->rl_rgd
);
2648 rlist
->rl_space
= new_space
;
2649 rlist
->rl_rgd
= tmp
;
2652 rlist
->rl_rgd
[rlist
->rl_rgrps
++] = rgd
;
2656 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2657 * and initialize an array of glock holders for them
2658 * @rlist: the list of resource groups
2660 * FIXME: Don't use NOFAIL
2664 void gfs2_rlist_alloc(struct gfs2_rgrp_list
*rlist
)
2668 rlist
->rl_ghs
= kmalloc_array(rlist
->rl_rgrps
,
2669 sizeof(struct gfs2_holder
),
2670 GFP_NOFS
| __GFP_NOFAIL
);
2671 for (x
= 0; x
< rlist
->rl_rgrps
; x
++)
2672 gfs2_holder_init(rlist
->rl_rgd
[x
]->rd_gl
,
2678 * gfs2_rlist_free - free a resource group list
2679 * @rlist: the list of resource groups
2683 void gfs2_rlist_free(struct gfs2_rgrp_list
*rlist
)
2687 kfree(rlist
->rl_rgd
);
2689 if (rlist
->rl_ghs
) {
2690 for (x
= 0; x
< rlist
->rl_rgrps
; x
++)
2691 gfs2_holder_uninit(&rlist
->rl_ghs
[x
]);
2692 kfree(rlist
->rl_ghs
);
2693 rlist
->rl_ghs
= NULL
;