2 * hugetlbpage-backed filesystem. Based on ramfs.
4 * Nadia Yvette Chambers, 2002
6 * Copyright (C) 2002 Linus Torvalds.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h> /* remove ASAP */
15 #include <linux/falloc.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
40 #include <linux/uaccess.h>
42 static const struct super_operations hugetlbfs_ops
;
43 static const struct address_space_operations hugetlbfs_aops
;
44 const struct file_operations hugetlbfs_file_operations
;
45 static const struct inode_operations hugetlbfs_dir_inode_operations
;
46 static const struct inode_operations hugetlbfs_inode_operations
;
48 struct hugetlbfs_config
{
49 struct hstate
*hstate
;
58 int sysctl_hugetlb_shm_group
;
61 Opt_size
, Opt_nr_inodes
,
62 Opt_mode
, Opt_uid
, Opt_gid
,
63 Opt_pagesize
, Opt_min_size
,
67 static const match_table_t tokens
= {
68 {Opt_size
, "size=%s"},
69 {Opt_nr_inodes
, "nr_inodes=%s"},
70 {Opt_mode
, "mode=%o"},
73 {Opt_pagesize
, "pagesize=%s"},
74 {Opt_min_size
, "min_size=%s"},
79 static inline void hugetlb_set_vma_policy(struct vm_area_struct
*vma
,
80 struct inode
*inode
, pgoff_t index
)
82 vma
->vm_policy
= mpol_shared_policy_lookup(&HUGETLBFS_I(inode
)->policy
,
86 static inline void hugetlb_drop_vma_policy(struct vm_area_struct
*vma
)
88 mpol_cond_put(vma
->vm_policy
);
91 static inline void hugetlb_set_vma_policy(struct vm_area_struct
*vma
,
92 struct inode
*inode
, pgoff_t index
)
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct
*vma
)
101 static void huge_pagevec_release(struct pagevec
*pvec
)
105 for (i
= 0; i
< pagevec_count(pvec
); ++i
)
106 put_page(pvec
->pages
[i
]);
108 pagevec_reinit(pvec
);
112 * Mask used when checking the page offset value passed in via system
113 * calls. This value will be converted to a loff_t which is signed.
114 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
115 * value. The extra bit (- 1 in the shift value) is to take the sign
118 #define PGOFF_LOFFT_MAX \
119 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
121 static int hugetlbfs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
123 struct inode
*inode
= file_inode(file
);
126 struct hstate
*h
= hstate_file(file
);
129 * vma address alignment (but not the pgoff alignment) has
130 * already been checked by prepare_hugepage_range. If you add
131 * any error returns here, do so after setting VM_HUGETLB, so
132 * is_vm_hugetlb_page tests below unmap_region go the right
133 * way when do_mmap_pgoff unwinds (may be important on powerpc
136 vma
->vm_flags
|= VM_HUGETLB
| VM_DONTEXPAND
;
137 vma
->vm_ops
= &hugetlb_vm_ops
;
140 * page based offset in vm_pgoff could be sufficiently large to
141 * overflow a loff_t when converted to byte offset. This can
142 * only happen on architectures where sizeof(loff_t) ==
143 * sizeof(unsigned long). So, only check in those instances.
145 if (sizeof(unsigned long) == sizeof(loff_t
)) {
146 if (vma
->vm_pgoff
& PGOFF_LOFFT_MAX
)
150 /* must be huge page aligned */
151 if (vma
->vm_pgoff
& (~huge_page_mask(h
) >> PAGE_SHIFT
))
154 vma_len
= (loff_t
)(vma
->vm_end
- vma
->vm_start
);
155 len
= vma_len
+ ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
156 /* check for overflow */
164 if (hugetlb_reserve_pages(inode
,
165 vma
->vm_pgoff
>> huge_page_order(h
),
166 len
>> huge_page_shift(h
), vma
,
171 if (vma
->vm_flags
& VM_WRITE
&& inode
->i_size
< len
)
172 i_size_write(inode
, len
);
180 * Called under down_write(mmap_sem).
183 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
185 hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
186 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
188 struct mm_struct
*mm
= current
->mm
;
189 struct vm_area_struct
*vma
;
190 struct hstate
*h
= hstate_file(file
);
191 struct vm_unmapped_area_info info
;
193 if (len
& ~huge_page_mask(h
))
198 if (flags
& MAP_FIXED
) {
199 if (prepare_hugepage_range(file
, addr
, len
))
205 addr
= ALIGN(addr
, huge_page_size(h
));
206 vma
= find_vma(mm
, addr
);
207 if (TASK_SIZE
- len
>= addr
&&
208 (!vma
|| addr
+ len
<= vm_start_gap(vma
)))
214 info
.low_limit
= TASK_UNMAPPED_BASE
;
215 info
.high_limit
= TASK_SIZE
;
216 info
.align_mask
= PAGE_MASK
& ~huge_page_mask(h
);
217 info
.align_offset
= 0;
218 return vm_unmapped_area(&info
);
223 hugetlbfs_read_actor(struct page
*page
, unsigned long offset
,
224 struct iov_iter
*to
, unsigned long size
)
229 /* Find which 4k chunk and offset with in that chunk */
230 i
= offset
>> PAGE_SHIFT
;
231 offset
= offset
& ~PAGE_MASK
;
235 chunksize
= PAGE_SIZE
;
238 if (chunksize
> size
)
240 n
= copy_page_to_iter(&page
[i
], offset
, chunksize
, to
);
252 * Support for read() - Find the page attached to f_mapping and copy out the
253 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
254 * since it has PAGE_SIZE assumptions.
256 static ssize_t
hugetlbfs_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
258 struct file
*file
= iocb
->ki_filp
;
259 struct hstate
*h
= hstate_file(file
);
260 struct address_space
*mapping
= file
->f_mapping
;
261 struct inode
*inode
= mapping
->host
;
262 unsigned long index
= iocb
->ki_pos
>> huge_page_shift(h
);
263 unsigned long offset
= iocb
->ki_pos
& ~huge_page_mask(h
);
264 unsigned long end_index
;
268 while (iov_iter_count(to
)) {
272 /* nr is the maximum number of bytes to copy from this page */
273 nr
= huge_page_size(h
);
274 isize
= i_size_read(inode
);
277 end_index
= (isize
- 1) >> huge_page_shift(h
);
278 if (index
> end_index
)
280 if (index
== end_index
) {
281 nr
= ((isize
- 1) & ~huge_page_mask(h
)) + 1;
288 page
= find_lock_page(mapping
, index
);
289 if (unlikely(page
== NULL
)) {
291 * We have a HOLE, zero out the user-buffer for the
292 * length of the hole or request.
294 copied
= iov_iter_zero(nr
, to
);
299 * We have the page, copy it to user space buffer.
301 copied
= hugetlbfs_read_actor(page
, offset
, to
, nr
);
306 if (copied
!= nr
&& iov_iter_count(to
)) {
311 index
+= offset
>> huge_page_shift(h
);
312 offset
&= ~huge_page_mask(h
);
314 iocb
->ki_pos
= ((loff_t
)index
<< huge_page_shift(h
)) + offset
;
318 static int hugetlbfs_write_begin(struct file
*file
,
319 struct address_space
*mapping
,
320 loff_t pos
, unsigned len
, unsigned flags
,
321 struct page
**pagep
, void **fsdata
)
326 static int hugetlbfs_write_end(struct file
*file
, struct address_space
*mapping
,
327 loff_t pos
, unsigned len
, unsigned copied
,
328 struct page
*page
, void *fsdata
)
334 static void remove_huge_page(struct page
*page
)
336 ClearPageDirty(page
);
337 ClearPageUptodate(page
);
338 delete_from_page_cache(page
);
342 hugetlb_vmdelete_list(struct rb_root_cached
*root
, pgoff_t start
, pgoff_t end
)
344 struct vm_area_struct
*vma
;
347 * end == 0 indicates that the entire range after
348 * start should be unmapped.
350 vma_interval_tree_foreach(vma
, root
, start
, end
? end
: ULONG_MAX
) {
351 unsigned long v_offset
;
355 * Can the expression below overflow on 32-bit arches?
356 * No, because the interval tree returns us only those vmas
357 * which overlap the truncated area starting at pgoff,
358 * and no vma on a 32-bit arch can span beyond the 4GB.
360 if (vma
->vm_pgoff
< start
)
361 v_offset
= (start
- vma
->vm_pgoff
) << PAGE_SHIFT
;
368 v_end
= ((end
- vma
->vm_pgoff
) << PAGE_SHIFT
)
370 if (v_end
> vma
->vm_end
)
374 unmap_hugepage_range(vma
, vma
->vm_start
+ v_offset
, v_end
,
380 * remove_inode_hugepages handles two distinct cases: truncation and hole
381 * punch. There are subtle differences in operation for each case.
383 * truncation is indicated by end of range being LLONG_MAX
384 * In this case, we first scan the range and release found pages.
385 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
386 * maps and global counts. Page faults can not race with truncation
387 * in this routine. hugetlb_no_page() prevents page faults in the
388 * truncated range. It checks i_size before allocation, and again after
389 * with the page table lock for the page held. The same lock must be
390 * acquired to unmap a page.
391 * hole punch is indicated if end is not LLONG_MAX
392 * In the hole punch case we scan the range and release found pages.
393 * Only when releasing a page is the associated region/reserv map
394 * deleted. The region/reserv map for ranges without associated
395 * pages are not modified. Page faults can race with hole punch.
396 * This is indicated if we find a mapped page.
397 * Note: If the passed end of range value is beyond the end of file, but
398 * not LLONG_MAX this routine still performs a hole punch operation.
400 static void remove_inode_hugepages(struct inode
*inode
, loff_t lstart
,
403 struct hstate
*h
= hstate_inode(inode
);
404 struct address_space
*mapping
= &inode
->i_data
;
405 const pgoff_t start
= lstart
>> huge_page_shift(h
);
406 const pgoff_t end
= lend
>> huge_page_shift(h
);
407 struct vm_area_struct pseudo_vma
;
411 bool truncate_op
= (lend
== LLONG_MAX
);
413 vma_init(&pseudo_vma
, current
->mm
);
414 pseudo_vma
.vm_flags
= (VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
419 * When no more pages are found, we are done.
421 if (!pagevec_lookup_range(&pvec
, mapping
, &next
, end
- 1))
424 for (i
= 0; i
< pagevec_count(&pvec
); ++i
) {
425 struct page
*page
= pvec
.pages
[i
];
429 hash
= hugetlb_fault_mutex_hash(h
, current
->mm
,
432 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
435 * If page is mapped, it was faulted in after being
436 * unmapped in caller. Unmap (again) now after taking
437 * the fault mutex. The mutex will prevent faults
438 * until we finish removing the page.
440 * This race can only happen in the hole punch case.
441 * Getting here in a truncate operation is a bug.
443 if (unlikely(page_mapped(page
))) {
446 i_mmap_lock_write(mapping
);
447 hugetlb_vmdelete_list(&mapping
->i_mmap
,
448 index
* pages_per_huge_page(h
),
449 (index
+ 1) * pages_per_huge_page(h
));
450 i_mmap_unlock_write(mapping
);
455 * We must free the huge page and remove from page
456 * cache (remove_huge_page) BEFORE removing the
457 * region/reserve map (hugetlb_unreserve_pages). In
458 * rare out of memory conditions, removal of the
459 * region/reserve map could fail. Correspondingly,
460 * the subpool and global reserve usage count can need
463 VM_BUG_ON(PagePrivate(page
));
464 remove_huge_page(page
);
467 if (unlikely(hugetlb_unreserve_pages(inode
,
468 index
, index
+ 1, 1)))
469 hugetlb_fix_reserve_counts(inode
);
473 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
475 huge_pagevec_release(&pvec
);
480 (void)hugetlb_unreserve_pages(inode
, start
, LONG_MAX
, freed
);
483 static void hugetlbfs_evict_inode(struct inode
*inode
)
485 struct resv_map
*resv_map
;
487 remove_inode_hugepages(inode
, 0, LLONG_MAX
);
488 resv_map
= (struct resv_map
*)inode
->i_mapping
->private_data
;
489 /* root inode doesn't have the resv_map, so we should check it */
491 resv_map_release(&resv_map
->refs
);
495 static int hugetlb_vmtruncate(struct inode
*inode
, loff_t offset
)
498 struct address_space
*mapping
= inode
->i_mapping
;
499 struct hstate
*h
= hstate_inode(inode
);
501 BUG_ON(offset
& ~huge_page_mask(h
));
502 pgoff
= offset
>> PAGE_SHIFT
;
504 i_size_write(inode
, offset
);
505 i_mmap_lock_write(mapping
);
506 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
))
507 hugetlb_vmdelete_list(&mapping
->i_mmap
, pgoff
, 0);
508 i_mmap_unlock_write(mapping
);
509 remove_inode_hugepages(inode
, offset
, LLONG_MAX
);
513 static long hugetlbfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
515 struct hstate
*h
= hstate_inode(inode
);
516 loff_t hpage_size
= huge_page_size(h
);
517 loff_t hole_start
, hole_end
;
520 * For hole punch round up the beginning offset of the hole and
521 * round down the end.
523 hole_start
= round_up(offset
, hpage_size
);
524 hole_end
= round_down(offset
+ len
, hpage_size
);
526 if (hole_end
> hole_start
) {
527 struct address_space
*mapping
= inode
->i_mapping
;
528 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
532 /* protected by i_mutex */
533 if (info
->seals
& F_SEAL_WRITE
) {
538 i_mmap_lock_write(mapping
);
539 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
))
540 hugetlb_vmdelete_list(&mapping
->i_mmap
,
541 hole_start
>> PAGE_SHIFT
,
542 hole_end
>> PAGE_SHIFT
);
543 i_mmap_unlock_write(mapping
);
544 remove_inode_hugepages(inode
, hole_start
, hole_end
);
551 static long hugetlbfs_fallocate(struct file
*file
, int mode
, loff_t offset
,
554 struct inode
*inode
= file_inode(file
);
555 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
556 struct address_space
*mapping
= inode
->i_mapping
;
557 struct hstate
*h
= hstate_inode(inode
);
558 struct vm_area_struct pseudo_vma
;
559 struct mm_struct
*mm
= current
->mm
;
560 loff_t hpage_size
= huge_page_size(h
);
561 unsigned long hpage_shift
= huge_page_shift(h
);
562 pgoff_t start
, index
, end
;
566 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
569 if (mode
& FALLOC_FL_PUNCH_HOLE
)
570 return hugetlbfs_punch_hole(inode
, offset
, len
);
573 * Default preallocate case.
574 * For this range, start is rounded down and end is rounded up
575 * as well as being converted to page offsets.
577 start
= offset
>> hpage_shift
;
578 end
= (offset
+ len
+ hpage_size
- 1) >> hpage_shift
;
582 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
583 error
= inode_newsize_ok(inode
, offset
+ len
);
587 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
593 * Initialize a pseudo vma as this is required by the huge page
594 * allocation routines. If NUMA is configured, use page index
595 * as input to create an allocation policy.
597 vma_init(&pseudo_vma
, mm
);
598 pseudo_vma
.vm_flags
= (VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
599 pseudo_vma
.vm_file
= file
;
601 for (index
= start
; index
< end
; index
++) {
603 * This is supposed to be the vaddr where the page is being
604 * faulted in, but we have no vaddr here.
608 int avoid_reserve
= 0;
613 * fallocate(2) manpage permits EINTR; we may have been
614 * interrupted because we are using up too much memory.
616 if (signal_pending(current
)) {
621 /* Set numa allocation policy based on index */
622 hugetlb_set_vma_policy(&pseudo_vma
, inode
, index
);
624 /* addr is the offset within the file (zero based) */
625 addr
= index
* hpage_size
;
627 /* mutex taken here, fault path and hole punch */
628 hash
= hugetlb_fault_mutex_hash(h
, mm
, &pseudo_vma
, mapping
,
630 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
632 /* See if already present in mapping to avoid alloc/free */
633 page
= find_get_page(mapping
, index
);
636 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
637 hugetlb_drop_vma_policy(&pseudo_vma
);
641 /* Allocate page and add to page cache */
642 page
= alloc_huge_page(&pseudo_vma
, addr
, avoid_reserve
);
643 hugetlb_drop_vma_policy(&pseudo_vma
);
645 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
646 error
= PTR_ERR(page
);
649 clear_huge_page(page
, addr
, pages_per_huge_page(h
));
650 __SetPageUptodate(page
);
651 error
= huge_add_to_page_cache(page
, mapping
, index
);
652 if (unlikely(error
)) {
654 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
658 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
661 * unlock_page because locked by add_to_page_cache()
662 * page_put due to reference from alloc_huge_page()
668 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
669 i_size_write(inode
, offset
+ len
);
670 inode
->i_ctime
= current_time(inode
);
676 static int hugetlbfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
678 struct inode
*inode
= d_inode(dentry
);
679 struct hstate
*h
= hstate_inode(inode
);
681 unsigned int ia_valid
= attr
->ia_valid
;
682 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
686 error
= setattr_prepare(dentry
, attr
);
690 if (ia_valid
& ATTR_SIZE
) {
691 loff_t oldsize
= inode
->i_size
;
692 loff_t newsize
= attr
->ia_size
;
694 if (newsize
& ~huge_page_mask(h
))
696 /* protected by i_mutex */
697 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
698 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
700 error
= hugetlb_vmtruncate(inode
, newsize
);
705 setattr_copy(inode
, attr
);
706 mark_inode_dirty(inode
);
710 static struct inode
*hugetlbfs_get_root(struct super_block
*sb
,
711 struct hugetlbfs_config
*config
)
715 inode
= new_inode(sb
);
717 inode
->i_ino
= get_next_ino();
718 inode
->i_mode
= S_IFDIR
| config
->mode
;
719 inode
->i_uid
= config
->uid
;
720 inode
->i_gid
= config
->gid
;
721 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
722 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
723 inode
->i_fop
= &simple_dir_operations
;
724 /* directory inodes start off with i_nlink == 2 (for "." entry) */
726 lockdep_annotate_inode_mutex_key(inode
);
732 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
733 * be taken from reclaim -- unlike regular filesystems. This needs an
734 * annotation because huge_pmd_share() does an allocation under hugetlb's
737 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key
;
739 static struct inode
*hugetlbfs_get_inode(struct super_block
*sb
,
741 umode_t mode
, dev_t dev
)
744 struct resv_map
*resv_map
;
746 resv_map
= resv_map_alloc();
750 inode
= new_inode(sb
);
752 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
754 inode
->i_ino
= get_next_ino();
755 inode_init_owner(inode
, dir
, mode
);
756 lockdep_set_class(&inode
->i_mapping
->i_mmap_rwsem
,
757 &hugetlbfs_i_mmap_rwsem_key
);
758 inode
->i_mapping
->a_ops
= &hugetlbfs_aops
;
759 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
760 inode
->i_mapping
->private_data
= resv_map
;
761 info
->seals
= F_SEAL_SEAL
;
762 switch (mode
& S_IFMT
) {
764 init_special_inode(inode
, mode
, dev
);
767 inode
->i_op
= &hugetlbfs_inode_operations
;
768 inode
->i_fop
= &hugetlbfs_file_operations
;
771 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
772 inode
->i_fop
= &simple_dir_operations
;
774 /* directory inodes start off with i_nlink == 2 (for "." entry) */
778 inode
->i_op
= &page_symlink_inode_operations
;
779 inode_nohighmem(inode
);
782 lockdep_annotate_inode_mutex_key(inode
);
784 kref_put(&resv_map
->refs
, resv_map_release
);
790 * File creation. Allocate an inode, and we're done..
792 static int hugetlbfs_mknod(struct inode
*dir
,
793 struct dentry
*dentry
, umode_t mode
, dev_t dev
)
798 inode
= hugetlbfs_get_inode(dir
->i_sb
, dir
, mode
, dev
);
800 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
801 d_instantiate(dentry
, inode
);
802 dget(dentry
); /* Extra count - pin the dentry in core */
808 static int hugetlbfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
810 int retval
= hugetlbfs_mknod(dir
, dentry
, mode
| S_IFDIR
, 0);
816 static int hugetlbfs_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, bool excl
)
818 return hugetlbfs_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
821 static int hugetlbfs_symlink(struct inode
*dir
,
822 struct dentry
*dentry
, const char *symname
)
827 inode
= hugetlbfs_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0);
829 int l
= strlen(symname
)+1;
830 error
= page_symlink(inode
, symname
, l
);
832 d_instantiate(dentry
, inode
);
837 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
843 * mark the head page dirty
845 static int hugetlbfs_set_page_dirty(struct page
*page
)
847 struct page
*head
= compound_head(page
);
853 static int hugetlbfs_migrate_page(struct address_space
*mapping
,
854 struct page
*newpage
, struct page
*page
,
855 enum migrate_mode mode
)
859 rc
= migrate_huge_page_move_mapping(mapping
, newpage
, page
);
860 if (rc
!= MIGRATEPAGE_SUCCESS
)
862 if (mode
!= MIGRATE_SYNC_NO_COPY
)
863 migrate_page_copy(newpage
, page
);
865 migrate_page_states(newpage
, page
);
867 return MIGRATEPAGE_SUCCESS
;
870 static int hugetlbfs_error_remove_page(struct address_space
*mapping
,
873 struct inode
*inode
= mapping
->host
;
874 pgoff_t index
= page
->index
;
876 remove_huge_page(page
);
877 if (unlikely(hugetlb_unreserve_pages(inode
, index
, index
+ 1, 1)))
878 hugetlb_fix_reserve_counts(inode
);
884 * Display the mount options in /proc/mounts.
886 static int hugetlbfs_show_options(struct seq_file
*m
, struct dentry
*root
)
888 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(root
->d_sb
);
889 struct hugepage_subpool
*spool
= sbinfo
->spool
;
890 unsigned long hpage_size
= huge_page_size(sbinfo
->hstate
);
891 unsigned hpage_shift
= huge_page_shift(sbinfo
->hstate
);
894 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
895 seq_printf(m
, ",uid=%u",
896 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
897 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
898 seq_printf(m
, ",gid=%u",
899 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
900 if (sbinfo
->mode
!= 0755)
901 seq_printf(m
, ",mode=%o", sbinfo
->mode
);
902 if (sbinfo
->max_inodes
!= -1)
903 seq_printf(m
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
907 if (hpage_size
>= 1024) {
911 seq_printf(m
, ",pagesize=%lu%c", hpage_size
, mod
);
913 if (spool
->max_hpages
!= -1)
914 seq_printf(m
, ",size=%llu",
915 (unsigned long long)spool
->max_hpages
<< hpage_shift
);
916 if (spool
->min_hpages
!= -1)
917 seq_printf(m
, ",min_size=%llu",
918 (unsigned long long)spool
->min_hpages
<< hpage_shift
);
923 static int hugetlbfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
925 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(dentry
->d_sb
);
926 struct hstate
*h
= hstate_inode(d_inode(dentry
));
928 buf
->f_type
= HUGETLBFS_MAGIC
;
929 buf
->f_bsize
= huge_page_size(h
);
931 spin_lock(&sbinfo
->stat_lock
);
932 /* If no limits set, just report 0 for max/free/used
933 * blocks, like simple_statfs() */
937 spin_lock(&sbinfo
->spool
->lock
);
938 buf
->f_blocks
= sbinfo
->spool
->max_hpages
;
939 free_pages
= sbinfo
->spool
->max_hpages
940 - sbinfo
->spool
->used_hpages
;
941 buf
->f_bavail
= buf
->f_bfree
= free_pages
;
942 spin_unlock(&sbinfo
->spool
->lock
);
943 buf
->f_files
= sbinfo
->max_inodes
;
944 buf
->f_ffree
= sbinfo
->free_inodes
;
946 spin_unlock(&sbinfo
->stat_lock
);
948 buf
->f_namelen
= NAME_MAX
;
952 static void hugetlbfs_put_super(struct super_block
*sb
)
954 struct hugetlbfs_sb_info
*sbi
= HUGETLBFS_SB(sb
);
957 sb
->s_fs_info
= NULL
;
960 hugepage_put_subpool(sbi
->spool
);
966 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
968 if (sbinfo
->free_inodes
>= 0) {
969 spin_lock(&sbinfo
->stat_lock
);
970 if (unlikely(!sbinfo
->free_inodes
)) {
971 spin_unlock(&sbinfo
->stat_lock
);
974 sbinfo
->free_inodes
--;
975 spin_unlock(&sbinfo
->stat_lock
);
981 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
983 if (sbinfo
->free_inodes
>= 0) {
984 spin_lock(&sbinfo
->stat_lock
);
985 sbinfo
->free_inodes
++;
986 spin_unlock(&sbinfo
->stat_lock
);
991 static struct kmem_cache
*hugetlbfs_inode_cachep
;
993 static struct inode
*hugetlbfs_alloc_inode(struct super_block
*sb
)
995 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(sb
);
996 struct hugetlbfs_inode_info
*p
;
998 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo
)))
1000 p
= kmem_cache_alloc(hugetlbfs_inode_cachep
, GFP_KERNEL
);
1002 hugetlbfs_inc_free_inodes(sbinfo
);
1007 * Any time after allocation, hugetlbfs_destroy_inode can be called
1008 * for the inode. mpol_free_shared_policy is unconditionally called
1009 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1010 * in case of a quick call to destroy.
1012 * Note that the policy is initialized even if we are creating a
1013 * private inode. This simplifies hugetlbfs_destroy_inode.
1015 mpol_shared_policy_init(&p
->policy
, NULL
);
1017 return &p
->vfs_inode
;
1020 static void hugetlbfs_i_callback(struct rcu_head
*head
)
1022 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
1023 kmem_cache_free(hugetlbfs_inode_cachep
, HUGETLBFS_I(inode
));
1026 static void hugetlbfs_destroy_inode(struct inode
*inode
)
1028 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode
->i_sb
));
1029 mpol_free_shared_policy(&HUGETLBFS_I(inode
)->policy
);
1030 call_rcu(&inode
->i_rcu
, hugetlbfs_i_callback
);
1033 static const struct address_space_operations hugetlbfs_aops
= {
1034 .write_begin
= hugetlbfs_write_begin
,
1035 .write_end
= hugetlbfs_write_end
,
1036 .set_page_dirty
= hugetlbfs_set_page_dirty
,
1037 .migratepage
= hugetlbfs_migrate_page
,
1038 .error_remove_page
= hugetlbfs_error_remove_page
,
1042 static void init_once(void *foo
)
1044 struct hugetlbfs_inode_info
*ei
= (struct hugetlbfs_inode_info
*)foo
;
1046 inode_init_once(&ei
->vfs_inode
);
1049 const struct file_operations hugetlbfs_file_operations
= {
1050 .read_iter
= hugetlbfs_read_iter
,
1051 .mmap
= hugetlbfs_file_mmap
,
1052 .fsync
= noop_fsync
,
1053 .get_unmapped_area
= hugetlb_get_unmapped_area
,
1054 .llseek
= default_llseek
,
1055 .fallocate
= hugetlbfs_fallocate
,
1058 static const struct inode_operations hugetlbfs_dir_inode_operations
= {
1059 .create
= hugetlbfs_create
,
1060 .lookup
= simple_lookup
,
1061 .link
= simple_link
,
1062 .unlink
= simple_unlink
,
1063 .symlink
= hugetlbfs_symlink
,
1064 .mkdir
= hugetlbfs_mkdir
,
1065 .rmdir
= simple_rmdir
,
1066 .mknod
= hugetlbfs_mknod
,
1067 .rename
= simple_rename
,
1068 .setattr
= hugetlbfs_setattr
,
1071 static const struct inode_operations hugetlbfs_inode_operations
= {
1072 .setattr
= hugetlbfs_setattr
,
1075 static const struct super_operations hugetlbfs_ops
= {
1076 .alloc_inode
= hugetlbfs_alloc_inode
,
1077 .destroy_inode
= hugetlbfs_destroy_inode
,
1078 .evict_inode
= hugetlbfs_evict_inode
,
1079 .statfs
= hugetlbfs_statfs
,
1080 .put_super
= hugetlbfs_put_super
,
1081 .show_options
= hugetlbfs_show_options
,
1084 enum hugetlbfs_size_type
{ NO_SIZE
, SIZE_STD
, SIZE_PERCENT
};
1087 * Convert size option passed from command line to number of huge pages
1088 * in the pool specified by hstate. Size option could be in bytes
1089 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1092 hugetlbfs_size_to_hpages(struct hstate
*h
, unsigned long long size_opt
,
1093 enum hugetlbfs_size_type val_type
)
1095 if (val_type
== NO_SIZE
)
1098 if (val_type
== SIZE_PERCENT
) {
1099 size_opt
<<= huge_page_shift(h
);
1100 size_opt
*= h
->max_huge_pages
;
1101 do_div(size_opt
, 100);
1104 size_opt
>>= huge_page_shift(h
);
1109 hugetlbfs_parse_options(char *options
, struct hugetlbfs_config
*pconfig
)
1112 substring_t args
[MAX_OPT_ARGS
];
1114 unsigned long long max_size_opt
= 0, min_size_opt
= 0;
1115 enum hugetlbfs_size_type max_val_type
= NO_SIZE
, min_val_type
= NO_SIZE
;
1120 while ((p
= strsep(&options
, ",")) != NULL
) {
1125 token
= match_token(p
, tokens
, args
);
1128 if (match_int(&args
[0], &option
))
1130 pconfig
->uid
= make_kuid(current_user_ns(), option
);
1131 if (!uid_valid(pconfig
->uid
))
1136 if (match_int(&args
[0], &option
))
1138 pconfig
->gid
= make_kgid(current_user_ns(), option
);
1139 if (!gid_valid(pconfig
->gid
))
1144 if (match_octal(&args
[0], &option
))
1146 pconfig
->mode
= option
& 01777U;
1150 /* memparse() will accept a K/M/G without a digit */
1151 if (!isdigit(*args
[0].from
))
1153 max_size_opt
= memparse(args
[0].from
, &rest
);
1154 max_val_type
= SIZE_STD
;
1156 max_val_type
= SIZE_PERCENT
;
1161 /* memparse() will accept a K/M/G without a digit */
1162 if (!isdigit(*args
[0].from
))
1164 pconfig
->nr_inodes
= memparse(args
[0].from
, &rest
);
1167 case Opt_pagesize
: {
1169 ps
= memparse(args
[0].from
, &rest
);
1170 pconfig
->hstate
= size_to_hstate(ps
);
1171 if (!pconfig
->hstate
) {
1172 pr_err("Unsupported page size %lu MB\n",
1179 case Opt_min_size
: {
1180 /* memparse() will accept a K/M/G without a digit */
1181 if (!isdigit(*args
[0].from
))
1183 min_size_opt
= memparse(args
[0].from
, &rest
);
1184 min_val_type
= SIZE_STD
;
1186 min_val_type
= SIZE_PERCENT
;
1191 pr_err("Bad mount option: \"%s\"\n", p
);
1198 * Use huge page pool size (in hstate) to convert the size
1199 * options to number of huge pages. If NO_SIZE, -1 is returned.
1201 pconfig
->max_hpages
= hugetlbfs_size_to_hpages(pconfig
->hstate
,
1202 max_size_opt
, max_val_type
);
1203 pconfig
->min_hpages
= hugetlbfs_size_to_hpages(pconfig
->hstate
,
1204 min_size_opt
, min_val_type
);
1207 * If max_size was specified, then min_size must be smaller
1209 if (max_val_type
> NO_SIZE
&&
1210 pconfig
->min_hpages
> pconfig
->max_hpages
) {
1211 pr_err("minimum size can not be greater than maximum size\n");
1218 pr_err("Bad value '%s' for mount option '%s'\n", args
[0].from
, p
);
1223 hugetlbfs_fill_super(struct super_block
*sb
, void *data
, int silent
)
1226 struct hugetlbfs_config config
;
1227 struct hugetlbfs_sb_info
*sbinfo
;
1229 config
.max_hpages
= -1; /* No limit on size by default */
1230 config
.nr_inodes
= -1; /* No limit on number of inodes by default */
1231 config
.uid
= current_fsuid();
1232 config
.gid
= current_fsgid();
1234 config
.hstate
= &default_hstate
;
1235 config
.min_hpages
= -1; /* No default minimum size */
1236 ret
= hugetlbfs_parse_options(data
, &config
);
1240 sbinfo
= kmalloc(sizeof(struct hugetlbfs_sb_info
), GFP_KERNEL
);
1243 sb
->s_fs_info
= sbinfo
;
1244 sbinfo
->hstate
= config
.hstate
;
1245 spin_lock_init(&sbinfo
->stat_lock
);
1246 sbinfo
->max_inodes
= config
.nr_inodes
;
1247 sbinfo
->free_inodes
= config
.nr_inodes
;
1248 sbinfo
->spool
= NULL
;
1249 sbinfo
->uid
= config
.uid
;
1250 sbinfo
->gid
= config
.gid
;
1251 sbinfo
->mode
= config
.mode
;
1254 * Allocate and initialize subpool if maximum or minimum size is
1255 * specified. Any needed reservations (for minimim size) are taken
1256 * taken when the subpool is created.
1258 if (config
.max_hpages
!= -1 || config
.min_hpages
!= -1) {
1259 sbinfo
->spool
= hugepage_new_subpool(config
.hstate
,
1265 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
1266 sb
->s_blocksize
= huge_page_size(config
.hstate
);
1267 sb
->s_blocksize_bits
= huge_page_shift(config
.hstate
);
1268 sb
->s_magic
= HUGETLBFS_MAGIC
;
1269 sb
->s_op
= &hugetlbfs_ops
;
1270 sb
->s_time_gran
= 1;
1271 sb
->s_root
= d_make_root(hugetlbfs_get_root(sb
, &config
));
1276 kfree(sbinfo
->spool
);
1281 static struct dentry
*hugetlbfs_mount(struct file_system_type
*fs_type
,
1282 int flags
, const char *dev_name
, void *data
)
1284 return mount_nodev(fs_type
, flags
, data
, hugetlbfs_fill_super
);
1287 static struct file_system_type hugetlbfs_fs_type
= {
1288 .name
= "hugetlbfs",
1289 .mount
= hugetlbfs_mount
,
1290 .kill_sb
= kill_litter_super
,
1293 static struct vfsmount
*hugetlbfs_vfsmount
[HUGE_MAX_HSTATE
];
1295 static int can_do_hugetlb_shm(void)
1298 shm_group
= make_kgid(&init_user_ns
, sysctl_hugetlb_shm_group
);
1299 return capable(CAP_IPC_LOCK
) || in_group_p(shm_group
);
1302 static int get_hstate_idx(int page_size_log
)
1304 struct hstate
*h
= hstate_sizelog(page_size_log
);
1312 * Note that size should be aligned to proper hugepage size in caller side,
1313 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1315 struct file
*hugetlb_file_setup(const char *name
, size_t size
,
1316 vm_flags_t acctflag
, struct user_struct
**user
,
1317 int creat_flags
, int page_size_log
)
1319 struct inode
*inode
;
1320 struct vfsmount
*mnt
;
1324 hstate_idx
= get_hstate_idx(page_size_log
);
1326 return ERR_PTR(-ENODEV
);
1329 mnt
= hugetlbfs_vfsmount
[hstate_idx
];
1331 return ERR_PTR(-ENOENT
);
1333 if (creat_flags
== HUGETLB_SHMFS_INODE
&& !can_do_hugetlb_shm()) {
1334 *user
= current_user();
1335 if (user_shm_lock(size
, *user
)) {
1337 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1338 current
->comm
, current
->pid
);
1339 task_unlock(current
);
1342 return ERR_PTR(-EPERM
);
1346 file
= ERR_PTR(-ENOSPC
);
1347 inode
= hugetlbfs_get_inode(mnt
->mnt_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0);
1350 if (creat_flags
== HUGETLB_SHMFS_INODE
)
1351 inode
->i_flags
|= S_PRIVATE
;
1353 inode
->i_size
= size
;
1356 if (hugetlb_reserve_pages(inode
, 0,
1357 size
>> huge_page_shift(hstate_inode(inode
)), NULL
,
1359 file
= ERR_PTR(-ENOMEM
);
1361 file
= alloc_file_pseudo(inode
, mnt
, name
, O_RDWR
,
1362 &hugetlbfs_file_operations
);
1369 user_shm_unlock(size
, *user
);
1375 static int __init
init_hugetlbfs_fs(void)
1381 if (!hugepages_supported()) {
1382 pr_info("disabling because there are no supported hugepage sizes\n");
1387 hugetlbfs_inode_cachep
= kmem_cache_create("hugetlbfs_inode_cache",
1388 sizeof(struct hugetlbfs_inode_info
),
1389 0, SLAB_ACCOUNT
, init_once
);
1390 if (hugetlbfs_inode_cachep
== NULL
)
1393 error
= register_filesystem(&hugetlbfs_fs_type
);
1398 for_each_hstate(h
) {
1400 unsigned ps_kb
= 1U << (h
->order
+ PAGE_SHIFT
- 10);
1402 snprintf(buf
, sizeof(buf
), "pagesize=%uK", ps_kb
);
1403 hugetlbfs_vfsmount
[i
] = kern_mount_data(&hugetlbfs_fs_type
,
1406 if (IS_ERR(hugetlbfs_vfsmount
[i
])) {
1407 pr_err("Cannot mount internal hugetlbfs for "
1408 "page size %uK", ps_kb
);
1409 error
= PTR_ERR(hugetlbfs_vfsmount
[i
]);
1410 hugetlbfs_vfsmount
[i
] = NULL
;
1414 /* Non default hstates are optional */
1415 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount
[default_hstate_idx
]))
1419 kmem_cache_destroy(hugetlbfs_inode_cachep
);
1423 fs_initcall(init_hugetlbfs_fs
)