perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / fs / xfs / libxfs / xfs_alloc_btree.c
blob4e59cc8a280221973279f262e2ee613ba61a5b3d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_sb.h"
13 #include "xfs_mount.h"
14 #include "xfs_btree.h"
15 #include "xfs_alloc_btree.h"
16 #include "xfs_alloc.h"
17 #include "xfs_extent_busy.h"
18 #include "xfs_error.h"
19 #include "xfs_trace.h"
20 #include "xfs_cksum.h"
21 #include "xfs_trans.h"
24 STATIC struct xfs_btree_cur *
25 xfs_allocbt_dup_cursor(
26 struct xfs_btree_cur *cur)
28 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
29 cur->bc_private.a.agbp, cur->bc_private.a.agno,
30 cur->bc_btnum);
33 STATIC void
34 xfs_allocbt_set_root(
35 struct xfs_btree_cur *cur,
36 union xfs_btree_ptr *ptr,
37 int inc)
39 struct xfs_buf *agbp = cur->bc_private.a.agbp;
40 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
41 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
42 int btnum = cur->bc_btnum;
43 struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno);
45 ASSERT(ptr->s != 0);
47 agf->agf_roots[btnum] = ptr->s;
48 be32_add_cpu(&agf->agf_levels[btnum], inc);
49 pag->pagf_levels[btnum] += inc;
50 xfs_perag_put(pag);
52 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
55 STATIC int
56 xfs_allocbt_alloc_block(
57 struct xfs_btree_cur *cur,
58 union xfs_btree_ptr *start,
59 union xfs_btree_ptr *new,
60 int *stat)
62 int error;
63 xfs_agblock_t bno;
65 /* Allocate the new block from the freelist. If we can't, give up. */
66 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
67 &bno, 1);
68 if (error)
69 return error;
71 if (bno == NULLAGBLOCK) {
72 *stat = 0;
73 return 0;
76 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1, false);
78 xfs_trans_agbtree_delta(cur->bc_tp, 1);
79 new->s = cpu_to_be32(bno);
81 *stat = 1;
82 return 0;
85 STATIC int
86 xfs_allocbt_free_block(
87 struct xfs_btree_cur *cur,
88 struct xfs_buf *bp)
90 struct xfs_buf *agbp = cur->bc_private.a.agbp;
91 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
92 xfs_agblock_t bno;
93 int error;
95 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
96 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
97 if (error)
98 return error;
100 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
101 XFS_EXTENT_BUSY_SKIP_DISCARD);
102 xfs_trans_agbtree_delta(cur->bc_tp, -1);
103 return 0;
107 * Update the longest extent in the AGF
109 STATIC void
110 xfs_allocbt_update_lastrec(
111 struct xfs_btree_cur *cur,
112 struct xfs_btree_block *block,
113 union xfs_btree_rec *rec,
114 int ptr,
115 int reason)
117 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
118 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
119 struct xfs_perag *pag;
120 __be32 len;
121 int numrecs;
123 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
125 switch (reason) {
126 case LASTREC_UPDATE:
128 * If this is the last leaf block and it's the last record,
129 * then update the size of the longest extent in the AG.
131 if (ptr != xfs_btree_get_numrecs(block))
132 return;
133 len = rec->alloc.ar_blockcount;
134 break;
135 case LASTREC_INSREC:
136 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
137 be32_to_cpu(agf->agf_longest))
138 return;
139 len = rec->alloc.ar_blockcount;
140 break;
141 case LASTREC_DELREC:
142 numrecs = xfs_btree_get_numrecs(block);
143 if (ptr <= numrecs)
144 return;
145 ASSERT(ptr == numrecs + 1);
147 if (numrecs) {
148 xfs_alloc_rec_t *rrp;
150 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
151 len = rrp->ar_blockcount;
152 } else {
153 len = 0;
156 break;
157 default:
158 ASSERT(0);
159 return;
162 agf->agf_longest = len;
163 pag = xfs_perag_get(cur->bc_mp, seqno);
164 pag->pagf_longest = be32_to_cpu(len);
165 xfs_perag_put(pag);
166 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST);
169 STATIC int
170 xfs_allocbt_get_minrecs(
171 struct xfs_btree_cur *cur,
172 int level)
174 return cur->bc_mp->m_alloc_mnr[level != 0];
177 STATIC int
178 xfs_allocbt_get_maxrecs(
179 struct xfs_btree_cur *cur,
180 int level)
182 return cur->bc_mp->m_alloc_mxr[level != 0];
185 STATIC void
186 xfs_allocbt_init_key_from_rec(
187 union xfs_btree_key *key,
188 union xfs_btree_rec *rec)
190 key->alloc.ar_startblock = rec->alloc.ar_startblock;
191 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
194 STATIC void
195 xfs_bnobt_init_high_key_from_rec(
196 union xfs_btree_key *key,
197 union xfs_btree_rec *rec)
199 __u32 x;
201 x = be32_to_cpu(rec->alloc.ar_startblock);
202 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
203 key->alloc.ar_startblock = cpu_to_be32(x);
204 key->alloc.ar_blockcount = 0;
207 STATIC void
208 xfs_cntbt_init_high_key_from_rec(
209 union xfs_btree_key *key,
210 union xfs_btree_rec *rec)
212 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
213 key->alloc.ar_startblock = 0;
216 STATIC void
217 xfs_allocbt_init_rec_from_cur(
218 struct xfs_btree_cur *cur,
219 union xfs_btree_rec *rec)
221 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
222 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
225 STATIC void
226 xfs_allocbt_init_ptr_from_cur(
227 struct xfs_btree_cur *cur,
228 union xfs_btree_ptr *ptr)
230 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
232 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
234 ptr->s = agf->agf_roots[cur->bc_btnum];
237 STATIC int64_t
238 xfs_bnobt_key_diff(
239 struct xfs_btree_cur *cur,
240 union xfs_btree_key *key)
242 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
243 xfs_alloc_key_t *kp = &key->alloc;
245 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
248 STATIC int64_t
249 xfs_cntbt_key_diff(
250 struct xfs_btree_cur *cur,
251 union xfs_btree_key *key)
253 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
254 xfs_alloc_key_t *kp = &key->alloc;
255 int64_t diff;
257 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
258 if (diff)
259 return diff;
261 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
264 STATIC int64_t
265 xfs_bnobt_diff_two_keys(
266 struct xfs_btree_cur *cur,
267 union xfs_btree_key *k1,
268 union xfs_btree_key *k2)
270 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
271 be32_to_cpu(k2->alloc.ar_startblock);
274 STATIC int64_t
275 xfs_cntbt_diff_two_keys(
276 struct xfs_btree_cur *cur,
277 union xfs_btree_key *k1,
278 union xfs_btree_key *k2)
280 int64_t diff;
282 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
283 be32_to_cpu(k2->alloc.ar_blockcount);
284 if (diff)
285 return diff;
287 return be32_to_cpu(k1->alloc.ar_startblock) -
288 be32_to_cpu(k2->alloc.ar_startblock);
291 static xfs_failaddr_t
292 xfs_allocbt_verify(
293 struct xfs_buf *bp)
295 struct xfs_mount *mp = bp->b_target->bt_mount;
296 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
297 struct xfs_perag *pag = bp->b_pag;
298 xfs_failaddr_t fa;
299 unsigned int level;
302 * magic number and level verification
304 * During growfs operations, we can't verify the exact level or owner as
305 * the perag is not fully initialised and hence not attached to the
306 * buffer. In this case, check against the maximum tree depth.
308 * Similarly, during log recovery we will have a perag structure
309 * attached, but the agf information will not yet have been initialised
310 * from the on disk AGF. Again, we can only check against maximum limits
311 * in this case.
313 level = be16_to_cpu(block->bb_level);
314 switch (block->bb_magic) {
315 case cpu_to_be32(XFS_ABTB_CRC_MAGIC):
316 fa = xfs_btree_sblock_v5hdr_verify(bp);
317 if (fa)
318 return fa;
319 /* fall through */
320 case cpu_to_be32(XFS_ABTB_MAGIC):
321 if (pag && pag->pagf_init) {
322 if (level >= pag->pagf_levels[XFS_BTNUM_BNOi])
323 return __this_address;
324 } else if (level >= mp->m_ag_maxlevels)
325 return __this_address;
326 break;
327 case cpu_to_be32(XFS_ABTC_CRC_MAGIC):
328 fa = xfs_btree_sblock_v5hdr_verify(bp);
329 if (fa)
330 return fa;
331 /* fall through */
332 case cpu_to_be32(XFS_ABTC_MAGIC):
333 if (pag && pag->pagf_init) {
334 if (level >= pag->pagf_levels[XFS_BTNUM_CNTi])
335 return __this_address;
336 } else if (level >= mp->m_ag_maxlevels)
337 return __this_address;
338 break;
339 default:
340 return __this_address;
343 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
346 static void
347 xfs_allocbt_read_verify(
348 struct xfs_buf *bp)
350 xfs_failaddr_t fa;
352 if (!xfs_btree_sblock_verify_crc(bp))
353 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
354 else {
355 fa = xfs_allocbt_verify(bp);
356 if (fa)
357 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
360 if (bp->b_error)
361 trace_xfs_btree_corrupt(bp, _RET_IP_);
364 static void
365 xfs_allocbt_write_verify(
366 struct xfs_buf *bp)
368 xfs_failaddr_t fa;
370 fa = xfs_allocbt_verify(bp);
371 if (fa) {
372 trace_xfs_btree_corrupt(bp, _RET_IP_);
373 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
374 return;
376 xfs_btree_sblock_calc_crc(bp);
380 const struct xfs_buf_ops xfs_allocbt_buf_ops = {
381 .name = "xfs_allocbt",
382 .verify_read = xfs_allocbt_read_verify,
383 .verify_write = xfs_allocbt_write_verify,
384 .verify_struct = xfs_allocbt_verify,
388 STATIC int
389 xfs_bnobt_keys_inorder(
390 struct xfs_btree_cur *cur,
391 union xfs_btree_key *k1,
392 union xfs_btree_key *k2)
394 return be32_to_cpu(k1->alloc.ar_startblock) <
395 be32_to_cpu(k2->alloc.ar_startblock);
398 STATIC int
399 xfs_bnobt_recs_inorder(
400 struct xfs_btree_cur *cur,
401 union xfs_btree_rec *r1,
402 union xfs_btree_rec *r2)
404 return be32_to_cpu(r1->alloc.ar_startblock) +
405 be32_to_cpu(r1->alloc.ar_blockcount) <=
406 be32_to_cpu(r2->alloc.ar_startblock);
409 STATIC int
410 xfs_cntbt_keys_inorder(
411 struct xfs_btree_cur *cur,
412 union xfs_btree_key *k1,
413 union xfs_btree_key *k2)
415 return be32_to_cpu(k1->alloc.ar_blockcount) <
416 be32_to_cpu(k2->alloc.ar_blockcount) ||
417 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
418 be32_to_cpu(k1->alloc.ar_startblock) <
419 be32_to_cpu(k2->alloc.ar_startblock));
422 STATIC int
423 xfs_cntbt_recs_inorder(
424 struct xfs_btree_cur *cur,
425 union xfs_btree_rec *r1,
426 union xfs_btree_rec *r2)
428 return be32_to_cpu(r1->alloc.ar_blockcount) <
429 be32_to_cpu(r2->alloc.ar_blockcount) ||
430 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
431 be32_to_cpu(r1->alloc.ar_startblock) <
432 be32_to_cpu(r2->alloc.ar_startblock));
435 static const struct xfs_btree_ops xfs_bnobt_ops = {
436 .rec_len = sizeof(xfs_alloc_rec_t),
437 .key_len = sizeof(xfs_alloc_key_t),
439 .dup_cursor = xfs_allocbt_dup_cursor,
440 .set_root = xfs_allocbt_set_root,
441 .alloc_block = xfs_allocbt_alloc_block,
442 .free_block = xfs_allocbt_free_block,
443 .update_lastrec = xfs_allocbt_update_lastrec,
444 .get_minrecs = xfs_allocbt_get_minrecs,
445 .get_maxrecs = xfs_allocbt_get_maxrecs,
446 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
447 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
448 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
449 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
450 .key_diff = xfs_bnobt_key_diff,
451 .buf_ops = &xfs_allocbt_buf_ops,
452 .diff_two_keys = xfs_bnobt_diff_two_keys,
453 .keys_inorder = xfs_bnobt_keys_inorder,
454 .recs_inorder = xfs_bnobt_recs_inorder,
457 static const struct xfs_btree_ops xfs_cntbt_ops = {
458 .rec_len = sizeof(xfs_alloc_rec_t),
459 .key_len = sizeof(xfs_alloc_key_t),
461 .dup_cursor = xfs_allocbt_dup_cursor,
462 .set_root = xfs_allocbt_set_root,
463 .alloc_block = xfs_allocbt_alloc_block,
464 .free_block = xfs_allocbt_free_block,
465 .update_lastrec = xfs_allocbt_update_lastrec,
466 .get_minrecs = xfs_allocbt_get_minrecs,
467 .get_maxrecs = xfs_allocbt_get_maxrecs,
468 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
469 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
470 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
471 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
472 .key_diff = xfs_cntbt_key_diff,
473 .buf_ops = &xfs_allocbt_buf_ops,
474 .diff_two_keys = xfs_cntbt_diff_two_keys,
475 .keys_inorder = xfs_cntbt_keys_inorder,
476 .recs_inorder = xfs_cntbt_recs_inorder,
480 * Allocate a new allocation btree cursor.
482 struct xfs_btree_cur * /* new alloc btree cursor */
483 xfs_allocbt_init_cursor(
484 struct xfs_mount *mp, /* file system mount point */
485 struct xfs_trans *tp, /* transaction pointer */
486 struct xfs_buf *agbp, /* buffer for agf structure */
487 xfs_agnumber_t agno, /* allocation group number */
488 xfs_btnum_t btnum) /* btree identifier */
490 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
491 struct xfs_btree_cur *cur;
493 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
495 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
497 cur->bc_tp = tp;
498 cur->bc_mp = mp;
499 cur->bc_btnum = btnum;
500 cur->bc_blocklog = mp->m_sb.sb_blocklog;
502 if (btnum == XFS_BTNUM_CNT) {
503 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
504 cur->bc_ops = &xfs_cntbt_ops;
505 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
506 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
507 } else {
508 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
509 cur->bc_ops = &xfs_bnobt_ops;
510 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
513 cur->bc_private.a.agbp = agbp;
514 cur->bc_private.a.agno = agno;
516 if (xfs_sb_version_hascrc(&mp->m_sb))
517 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
519 return cur;
523 * Calculate number of records in an alloc btree block.
526 xfs_allocbt_maxrecs(
527 struct xfs_mount *mp,
528 int blocklen,
529 int leaf)
531 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
533 if (leaf)
534 return blocklen / sizeof(xfs_alloc_rec_t);
535 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
538 /* Calculate the freespace btree size for some records. */
539 xfs_extlen_t
540 xfs_allocbt_calc_size(
541 struct xfs_mount *mp,
542 unsigned long long len)
544 return xfs_btree_calc_size(mp->m_alloc_mnr, len);