1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_btree.h"
18 #include "xfs_ialloc.h"
19 #include "xfs_ialloc_btree.h"
20 #include "xfs_alloc.h"
21 #include "xfs_rtalloc.h"
22 #include "xfs_errortag.h"
23 #include "xfs_error.h"
25 #include "xfs_cksum.h"
26 #include "xfs_trans.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_icreate_item.h"
29 #include "xfs_icache.h"
30 #include "xfs_trace.h"
36 * Allocation group level functions.
39 xfs_ialloc_cluster_alignment(
42 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
43 mp
->m_sb
.sb_inoalignmt
>= xfs_icluster_size_fsb(mp
))
44 return mp
->m_sb
.sb_inoalignmt
;
49 * Lookup a record by ino in the btree given by cur.
53 struct xfs_btree_cur
*cur
, /* btree cursor */
54 xfs_agino_t ino
, /* starting inode of chunk */
55 xfs_lookup_t dir
, /* <=, >=, == */
56 int *stat
) /* success/failure */
58 cur
->bc_rec
.i
.ir_startino
= ino
;
59 cur
->bc_rec
.i
.ir_holemask
= 0;
60 cur
->bc_rec
.i
.ir_count
= 0;
61 cur
->bc_rec
.i
.ir_freecount
= 0;
62 cur
->bc_rec
.i
.ir_free
= 0;
63 return xfs_btree_lookup(cur
, dir
, stat
);
67 * Update the record referred to by cur to the value given.
68 * This either works (return 0) or gets an EFSCORRUPTED error.
70 STATIC
int /* error */
72 struct xfs_btree_cur
*cur
, /* btree cursor */
73 xfs_inobt_rec_incore_t
*irec
) /* btree record */
75 union xfs_btree_rec rec
;
77 rec
.inobt
.ir_startino
= cpu_to_be32(irec
->ir_startino
);
78 if (xfs_sb_version_hassparseinodes(&cur
->bc_mp
->m_sb
)) {
79 rec
.inobt
.ir_u
.sp
.ir_holemask
= cpu_to_be16(irec
->ir_holemask
);
80 rec
.inobt
.ir_u
.sp
.ir_count
= irec
->ir_count
;
81 rec
.inobt
.ir_u
.sp
.ir_freecount
= irec
->ir_freecount
;
83 /* ir_holemask/ir_count not supported on-disk */
84 rec
.inobt
.ir_u
.f
.ir_freecount
= cpu_to_be32(irec
->ir_freecount
);
86 rec
.inobt
.ir_free
= cpu_to_be64(irec
->ir_free
);
87 return xfs_btree_update(cur
, &rec
);
90 /* Convert on-disk btree record to incore inobt record. */
92 xfs_inobt_btrec_to_irec(
94 union xfs_btree_rec
*rec
,
95 struct xfs_inobt_rec_incore
*irec
)
97 irec
->ir_startino
= be32_to_cpu(rec
->inobt
.ir_startino
);
98 if (xfs_sb_version_hassparseinodes(&mp
->m_sb
)) {
99 irec
->ir_holemask
= be16_to_cpu(rec
->inobt
.ir_u
.sp
.ir_holemask
);
100 irec
->ir_count
= rec
->inobt
.ir_u
.sp
.ir_count
;
101 irec
->ir_freecount
= rec
->inobt
.ir_u
.sp
.ir_freecount
;
104 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
105 * values for full inode chunks.
107 irec
->ir_holemask
= XFS_INOBT_HOLEMASK_FULL
;
108 irec
->ir_count
= XFS_INODES_PER_CHUNK
;
110 be32_to_cpu(rec
->inobt
.ir_u
.f
.ir_freecount
);
112 irec
->ir_free
= be64_to_cpu(rec
->inobt
.ir_free
);
116 * Get the data from the pointed-to record.
120 struct xfs_btree_cur
*cur
,
121 struct xfs_inobt_rec_incore
*irec
,
124 struct xfs_mount
*mp
= cur
->bc_mp
;
125 xfs_agnumber_t agno
= cur
->bc_private
.a
.agno
;
126 union xfs_btree_rec
*rec
;
130 error
= xfs_btree_get_rec(cur
, &rec
, stat
);
131 if (error
|| *stat
== 0)
134 xfs_inobt_btrec_to_irec(mp
, rec
, irec
);
136 if (!xfs_verify_agino(mp
, agno
, irec
->ir_startino
))
138 if (irec
->ir_count
< XFS_INODES_PER_HOLEMASK_BIT
||
139 irec
->ir_count
> XFS_INODES_PER_CHUNK
)
141 if (irec
->ir_freecount
> XFS_INODES_PER_CHUNK
)
144 /* if there are no holes, return the first available offset */
145 if (!xfs_inobt_issparse(irec
->ir_holemask
))
146 realfree
= irec
->ir_free
;
148 realfree
= irec
->ir_free
& xfs_inobt_irec_to_allocmask(irec
);
149 if (hweight64(realfree
) != irec
->ir_freecount
)
156 "%s Inode BTree record corruption in AG %d detected!",
157 cur
->bc_btnum
== XFS_BTNUM_INO
? "Used" : "Free", agno
);
159 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
160 irec
->ir_startino
, irec
->ir_count
, irec
->ir_freecount
,
161 irec
->ir_free
, irec
->ir_holemask
);
162 return -EFSCORRUPTED
;
166 * Insert a single inobt record. Cursor must already point to desired location.
169 xfs_inobt_insert_rec(
170 struct xfs_btree_cur
*cur
,
177 cur
->bc_rec
.i
.ir_holemask
= holemask
;
178 cur
->bc_rec
.i
.ir_count
= count
;
179 cur
->bc_rec
.i
.ir_freecount
= freecount
;
180 cur
->bc_rec
.i
.ir_free
= free
;
181 return xfs_btree_insert(cur
, stat
);
185 * Insert records describing a newly allocated inode chunk into the inobt.
189 struct xfs_mount
*mp
,
190 struct xfs_trans
*tp
,
191 struct xfs_buf
*agbp
,
196 struct xfs_btree_cur
*cur
;
197 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
198 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
203 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, btnum
);
205 for (thisino
= newino
;
206 thisino
< newino
+ newlen
;
207 thisino
+= XFS_INODES_PER_CHUNK
) {
208 error
= xfs_inobt_lookup(cur
, thisino
, XFS_LOOKUP_EQ
, &i
);
210 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
215 error
= xfs_inobt_insert_rec(cur
, XFS_INOBT_HOLEMASK_FULL
,
216 XFS_INODES_PER_CHUNK
,
217 XFS_INODES_PER_CHUNK
,
218 XFS_INOBT_ALL_FREE
, &i
);
220 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
226 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
232 * Verify that the number of free inodes in the AGI is correct.
236 xfs_check_agi_freecount(
237 struct xfs_btree_cur
*cur
,
240 if (cur
->bc_nlevels
== 1) {
241 xfs_inobt_rec_incore_t rec
;
246 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
251 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
256 freecount
+= rec
.ir_freecount
;
257 error
= xfs_btree_increment(cur
, 0, &i
);
263 if (!XFS_FORCED_SHUTDOWN(cur
->bc_mp
))
264 ASSERT(freecount
== be32_to_cpu(agi
->agi_freecount
));
269 #define xfs_check_agi_freecount(cur, agi) 0
273 * Initialise a new set of inodes. When called without a transaction context
274 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
275 * than logging them (which in a transaction context puts them into the AIL
276 * for writeback rather than the xfsbufd queue).
279 xfs_ialloc_inode_init(
280 struct xfs_mount
*mp
,
281 struct xfs_trans
*tp
,
282 struct list_head
*buffer_list
,
286 xfs_agblock_t length
,
289 struct xfs_buf
*fbuf
;
290 struct xfs_dinode
*free
;
291 int nbufs
, blks_per_cluster
, inodes_per_cluster
;
298 * Loop over the new block(s), filling in the inodes. For small block
299 * sizes, manipulate the inodes in buffers which are multiples of the
302 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
303 inodes_per_cluster
= blks_per_cluster
<< mp
->m_sb
.sb_inopblog
;
304 nbufs
= length
/ blks_per_cluster
;
307 * Figure out what version number to use in the inodes we create. If
308 * the superblock version has caught up to the one that supports the new
309 * inode format, then use the new inode version. Otherwise use the old
310 * version so that old kernels will continue to be able to use the file
313 * For v3 inodes, we also need to write the inode number into the inode,
314 * so calculate the first inode number of the chunk here as
315 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
316 * across multiple filesystem blocks (such as a cluster) and so cannot
317 * be used in the cluster buffer loop below.
319 * Further, because we are writing the inode directly into the buffer
320 * and calculating a CRC on the entire inode, we have ot log the entire
321 * inode so that the entire range the CRC covers is present in the log.
322 * That means for v3 inode we log the entire buffer rather than just the
325 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
327 ino
= XFS_AGINO_TO_INO(mp
, agno
,
328 XFS_OFFBNO_TO_AGINO(mp
, agbno
, 0));
331 * log the initialisation that is about to take place as an
332 * logical operation. This means the transaction does not
333 * need to log the physical changes to the inode buffers as log
334 * recovery will know what initialisation is actually needed.
335 * Hence we only need to log the buffers as "ordered" buffers so
336 * they track in the AIL as if they were physically logged.
339 xfs_icreate_log(tp
, agno
, agbno
, icount
,
340 mp
->m_sb
.sb_inodesize
, length
, gen
);
344 for (j
= 0; j
< nbufs
; j
++) {
348 d
= XFS_AGB_TO_DADDR(mp
, agno
, agbno
+ (j
* blks_per_cluster
));
349 fbuf
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, d
,
350 mp
->m_bsize
* blks_per_cluster
,
355 /* Initialize the inode buffers and log them appropriately. */
356 fbuf
->b_ops
= &xfs_inode_buf_ops
;
357 xfs_buf_zero(fbuf
, 0, BBTOB(fbuf
->b_length
));
358 for (i
= 0; i
< inodes_per_cluster
; i
++) {
359 int ioffset
= i
<< mp
->m_sb
.sb_inodelog
;
360 uint isize
= xfs_dinode_size(version
);
362 free
= xfs_make_iptr(mp
, fbuf
, i
);
363 free
->di_magic
= cpu_to_be16(XFS_DINODE_MAGIC
);
364 free
->di_version
= version
;
365 free
->di_gen
= cpu_to_be32(gen
);
366 free
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
369 free
->di_ino
= cpu_to_be64(ino
);
371 uuid_copy(&free
->di_uuid
,
372 &mp
->m_sb
.sb_meta_uuid
);
373 xfs_dinode_calc_crc(mp
, free
);
375 /* just log the inode core */
376 xfs_trans_log_buf(tp
, fbuf
, ioffset
,
377 ioffset
+ isize
- 1);
383 * Mark the buffer as an inode allocation buffer so it
384 * sticks in AIL at the point of this allocation
385 * transaction. This ensures the they are on disk before
386 * the tail of the log can be moved past this
387 * transaction (i.e. by preventing relogging from moving
388 * it forward in the log).
390 xfs_trans_inode_alloc_buf(tp
, fbuf
);
393 * Mark the buffer as ordered so that they are
394 * not physically logged in the transaction but
395 * still tracked in the AIL as part of the
396 * transaction and pin the log appropriately.
398 xfs_trans_ordered_buf(tp
, fbuf
);
401 fbuf
->b_flags
|= XBF_DONE
;
402 xfs_buf_delwri_queue(fbuf
, buffer_list
);
410 * Align startino and allocmask for a recently allocated sparse chunk such that
411 * they are fit for insertion (or merge) into the on-disk inode btrees.
415 * When enabled, sparse inode support increases the inode alignment from cluster
416 * size to inode chunk size. This means that the minimum range between two
417 * non-adjacent inode records in the inobt is large enough for a full inode
418 * record. This allows for cluster sized, cluster aligned block allocation
419 * without need to worry about whether the resulting inode record overlaps with
420 * another record in the tree. Without this basic rule, we would have to deal
421 * with the consequences of overlap by potentially undoing recent allocations in
422 * the inode allocation codepath.
424 * Because of this alignment rule (which is enforced on mount), there are two
425 * inobt possibilities for newly allocated sparse chunks. One is that the
426 * aligned inode record for the chunk covers a range of inodes not already
427 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
428 * other is that a record already exists at the aligned startino that considers
429 * the newly allocated range as sparse. In the latter case, record content is
430 * merged in hope that sparse inode chunks fill to full chunks over time.
433 xfs_align_sparse_ino(
434 struct xfs_mount
*mp
,
435 xfs_agino_t
*startino
,
442 agbno
= XFS_AGINO_TO_AGBNO(mp
, *startino
);
443 mod
= agbno
% mp
->m_sb
.sb_inoalignmt
;
447 /* calculate the inode offset and align startino */
448 offset
= mod
<< mp
->m_sb
.sb_inopblog
;
452 * Since startino has been aligned down, left shift allocmask such that
453 * it continues to represent the same physical inodes relative to the
456 *allocmask
<<= offset
/ XFS_INODES_PER_HOLEMASK_BIT
;
460 * Determine whether the source inode record can merge into the target. Both
461 * records must be sparse, the inode ranges must match and there must be no
462 * allocation overlap between the records.
465 __xfs_inobt_can_merge(
466 struct xfs_inobt_rec_incore
*trec
, /* tgt record */
467 struct xfs_inobt_rec_incore
*srec
) /* src record */
472 /* records must cover the same inode range */
473 if (trec
->ir_startino
!= srec
->ir_startino
)
476 /* both records must be sparse */
477 if (!xfs_inobt_issparse(trec
->ir_holemask
) ||
478 !xfs_inobt_issparse(srec
->ir_holemask
))
481 /* both records must track some inodes */
482 if (!trec
->ir_count
|| !srec
->ir_count
)
485 /* can't exceed capacity of a full record */
486 if (trec
->ir_count
+ srec
->ir_count
> XFS_INODES_PER_CHUNK
)
489 /* verify there is no allocation overlap */
490 talloc
= xfs_inobt_irec_to_allocmask(trec
);
491 salloc
= xfs_inobt_irec_to_allocmask(srec
);
499 * Merge the source inode record into the target. The caller must call
500 * __xfs_inobt_can_merge() to ensure the merge is valid.
503 __xfs_inobt_rec_merge(
504 struct xfs_inobt_rec_incore
*trec
, /* target */
505 struct xfs_inobt_rec_incore
*srec
) /* src */
507 ASSERT(trec
->ir_startino
== srec
->ir_startino
);
509 /* combine the counts */
510 trec
->ir_count
+= srec
->ir_count
;
511 trec
->ir_freecount
+= srec
->ir_freecount
;
514 * Merge the holemask and free mask. For both fields, 0 bits refer to
515 * allocated inodes. We combine the allocated ranges with bitwise AND.
517 trec
->ir_holemask
&= srec
->ir_holemask
;
518 trec
->ir_free
&= srec
->ir_free
;
522 * Insert a new sparse inode chunk into the associated inode btree. The inode
523 * record for the sparse chunk is pre-aligned to a startino that should match
524 * any pre-existing sparse inode record in the tree. This allows sparse chunks
527 * This function supports two modes of handling preexisting records depending on
528 * the merge flag. If merge is true, the provided record is merged with the
529 * existing record and updated in place. The merged record is returned in nrec.
530 * If merge is false, an existing record is replaced with the provided record.
531 * If no preexisting record exists, the provided record is always inserted.
533 * It is considered corruption if a merge is requested and not possible. Given
534 * the sparse inode alignment constraints, this should never happen.
537 xfs_inobt_insert_sprec(
538 struct xfs_mount
*mp
,
539 struct xfs_trans
*tp
,
540 struct xfs_buf
*agbp
,
542 struct xfs_inobt_rec_incore
*nrec
, /* in/out: new/merged rec. */
543 bool merge
) /* merge or replace */
545 struct xfs_btree_cur
*cur
;
546 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
547 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
550 struct xfs_inobt_rec_incore rec
;
552 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, btnum
);
554 /* the new record is pre-aligned so we know where to look */
555 error
= xfs_inobt_lookup(cur
, nrec
->ir_startino
, XFS_LOOKUP_EQ
, &i
);
558 /* if nothing there, insert a new record and return */
560 error
= xfs_inobt_insert_rec(cur
, nrec
->ir_holemask
,
561 nrec
->ir_count
, nrec
->ir_freecount
,
565 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error
);
571 * A record exists at this startino. Merge or replace the record
572 * depending on what we've been asked to do.
575 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
578 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error
);
579 XFS_WANT_CORRUPTED_GOTO(mp
,
580 rec
.ir_startino
== nrec
->ir_startino
,
584 * This should never fail. If we have coexisting records that
585 * cannot merge, something is seriously wrong.
587 XFS_WANT_CORRUPTED_GOTO(mp
, __xfs_inobt_can_merge(nrec
, &rec
),
590 trace_xfs_irec_merge_pre(mp
, agno
, rec
.ir_startino
,
591 rec
.ir_holemask
, nrec
->ir_startino
,
594 /* merge to nrec to output the updated record */
595 __xfs_inobt_rec_merge(nrec
, &rec
);
597 trace_xfs_irec_merge_post(mp
, agno
, nrec
->ir_startino
,
600 error
= xfs_inobt_rec_check_count(mp
, nrec
);
605 error
= xfs_inobt_update(cur
, nrec
);
610 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
613 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
618 * Allocate new inodes in the allocation group specified by agbp.
619 * Return 0 for success, else error code.
621 STATIC
int /* error code or 0 */
623 xfs_trans_t
*tp
, /* transaction pointer */
624 xfs_buf_t
*agbp
, /* alloc group buffer */
627 xfs_agi_t
*agi
; /* allocation group header */
628 xfs_alloc_arg_t args
; /* allocation argument structure */
631 xfs_agino_t newino
; /* new first inode's number */
632 xfs_agino_t newlen
; /* new number of inodes */
633 int isaligned
= 0; /* inode allocation at stripe unit */
635 uint16_t allocmask
= (uint16_t) -1; /* init. to full chunk */
636 struct xfs_inobt_rec_incore rec
;
637 struct xfs_perag
*pag
;
640 memset(&args
, 0, sizeof(args
));
642 args
.mp
= tp
->t_mountp
;
643 args
.fsbno
= NULLFSBLOCK
;
644 xfs_rmap_ag_owner(&args
.oinfo
, XFS_RMAP_OWN_INODES
);
647 /* randomly do sparse inode allocations */
648 if (xfs_sb_version_hassparseinodes(&tp
->t_mountp
->m_sb
) &&
649 args
.mp
->m_ialloc_min_blks
< args
.mp
->m_ialloc_blks
)
650 do_sparse
= prandom_u32() & 1;
654 * Locking will ensure that we don't have two callers in here
657 newlen
= args
.mp
->m_ialloc_inos
;
658 if (args
.mp
->m_maxicount
&&
659 percpu_counter_read_positive(&args
.mp
->m_icount
) + newlen
>
660 args
.mp
->m_maxicount
)
662 args
.minlen
= args
.maxlen
= args
.mp
->m_ialloc_blks
;
664 * First try to allocate inodes contiguous with the last-allocated
665 * chunk of inodes. If the filesystem is striped, this will fill
666 * an entire stripe unit with inodes.
668 agi
= XFS_BUF_TO_AGI(agbp
);
669 newino
= be32_to_cpu(agi
->agi_newino
);
670 agno
= be32_to_cpu(agi
->agi_seqno
);
671 args
.agbno
= XFS_AGINO_TO_AGBNO(args
.mp
, newino
) +
672 args
.mp
->m_ialloc_blks
;
675 if (likely(newino
!= NULLAGINO
&&
676 (args
.agbno
< be32_to_cpu(agi
->agi_length
)))) {
677 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
678 args
.type
= XFS_ALLOCTYPE_THIS_BNO
;
682 * We need to take into account alignment here to ensure that
683 * we don't modify the free list if we fail to have an exact
684 * block. If we don't have an exact match, and every oher
685 * attempt allocation attempt fails, we'll end up cancelling
686 * a dirty transaction and shutting down.
688 * For an exact allocation, alignment must be 1,
689 * however we need to take cluster alignment into account when
690 * fixing up the freelist. Use the minalignslop field to
691 * indicate that extra blocks might be required for alignment,
692 * but not to use them in the actual exact allocation.
695 args
.minalignslop
= xfs_ialloc_cluster_alignment(args
.mp
) - 1;
697 /* Allow space for the inode btree to split. */
698 args
.minleft
= args
.mp
->m_in_maxlevels
- 1;
699 if ((error
= xfs_alloc_vextent(&args
)))
703 * This request might have dirtied the transaction if the AG can
704 * satisfy the request, but the exact block was not available.
705 * If the allocation did fail, subsequent requests will relax
706 * the exact agbno requirement and increase the alignment
707 * instead. It is critical that the total size of the request
708 * (len + alignment + slop) does not increase from this point
709 * on, so reset minalignslop to ensure it is not included in
710 * subsequent requests.
712 args
.minalignslop
= 0;
715 if (unlikely(args
.fsbno
== NULLFSBLOCK
)) {
717 * Set the alignment for the allocation.
718 * If stripe alignment is turned on then align at stripe unit
720 * If the cluster size is smaller than a filesystem block
721 * then we're doing I/O for inodes in filesystem block size
722 * pieces, so don't need alignment anyway.
725 if (args
.mp
->m_sinoalign
) {
726 ASSERT(!(args
.mp
->m_flags
& XFS_MOUNT_NOALIGN
));
727 args
.alignment
= args
.mp
->m_dalign
;
730 args
.alignment
= xfs_ialloc_cluster_alignment(args
.mp
);
732 * Need to figure out where to allocate the inode blocks.
733 * Ideally they should be spaced out through the a.g.
734 * For now, just allocate blocks up front.
736 args
.agbno
= be32_to_cpu(agi
->agi_root
);
737 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
739 * Allocate a fixed-size extent of inodes.
741 args
.type
= XFS_ALLOCTYPE_NEAR_BNO
;
744 * Allow space for the inode btree to split.
746 args
.minleft
= args
.mp
->m_in_maxlevels
- 1;
747 if ((error
= xfs_alloc_vextent(&args
)))
752 * If stripe alignment is turned on, then try again with cluster
755 if (isaligned
&& args
.fsbno
== NULLFSBLOCK
) {
756 args
.type
= XFS_ALLOCTYPE_NEAR_BNO
;
757 args
.agbno
= be32_to_cpu(agi
->agi_root
);
758 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
759 args
.alignment
= xfs_ialloc_cluster_alignment(args
.mp
);
760 if ((error
= xfs_alloc_vextent(&args
)))
765 * Finally, try a sparse allocation if the filesystem supports it and
766 * the sparse allocation length is smaller than a full chunk.
768 if (xfs_sb_version_hassparseinodes(&args
.mp
->m_sb
) &&
769 args
.mp
->m_ialloc_min_blks
< args
.mp
->m_ialloc_blks
&&
770 args
.fsbno
== NULLFSBLOCK
) {
772 args
.type
= XFS_ALLOCTYPE_NEAR_BNO
;
773 args
.agbno
= be32_to_cpu(agi
->agi_root
);
774 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
775 args
.alignment
= args
.mp
->m_sb
.sb_spino_align
;
778 args
.minlen
= args
.mp
->m_ialloc_min_blks
;
779 args
.maxlen
= args
.minlen
;
782 * The inode record will be aligned to full chunk size. We must
783 * prevent sparse allocation from AG boundaries that result in
784 * invalid inode records, such as records that start at agbno 0
785 * or extend beyond the AG.
787 * Set min agbno to the first aligned, non-zero agbno and max to
788 * the last aligned agbno that is at least one full chunk from
791 args
.min_agbno
= args
.mp
->m_sb
.sb_inoalignmt
;
792 args
.max_agbno
= round_down(args
.mp
->m_sb
.sb_agblocks
,
793 args
.mp
->m_sb
.sb_inoalignmt
) -
794 args
.mp
->m_ialloc_blks
;
796 error
= xfs_alloc_vextent(&args
);
800 newlen
= args
.len
<< args
.mp
->m_sb
.sb_inopblog
;
801 ASSERT(newlen
<= XFS_INODES_PER_CHUNK
);
802 allocmask
= (1 << (newlen
/ XFS_INODES_PER_HOLEMASK_BIT
)) - 1;
805 if (args
.fsbno
== NULLFSBLOCK
) {
809 ASSERT(args
.len
== args
.minlen
);
812 * Stamp and write the inode buffers.
814 * Seed the new inode cluster with a random generation number. This
815 * prevents short-term reuse of generation numbers if a chunk is
816 * freed and then immediately reallocated. We use random numbers
817 * rather than a linear progression to prevent the next generation
818 * number from being easily guessable.
820 error
= xfs_ialloc_inode_init(args
.mp
, tp
, NULL
, newlen
, agno
,
821 args
.agbno
, args
.len
, prandom_u32());
826 * Convert the results.
828 newino
= XFS_OFFBNO_TO_AGINO(args
.mp
, args
.agbno
, 0);
830 if (xfs_inobt_issparse(~allocmask
)) {
832 * We've allocated a sparse chunk. Align the startino and mask.
834 xfs_align_sparse_ino(args
.mp
, &newino
, &allocmask
);
836 rec
.ir_startino
= newino
;
837 rec
.ir_holemask
= ~allocmask
;
838 rec
.ir_count
= newlen
;
839 rec
.ir_freecount
= newlen
;
840 rec
.ir_free
= XFS_INOBT_ALL_FREE
;
843 * Insert the sparse record into the inobt and allow for a merge
844 * if necessary. If a merge does occur, rec is updated to the
847 error
= xfs_inobt_insert_sprec(args
.mp
, tp
, agbp
, XFS_BTNUM_INO
,
849 if (error
== -EFSCORRUPTED
) {
851 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
852 XFS_AGINO_TO_INO(args
.mp
, agno
,
854 rec
.ir_holemask
, rec
.ir_count
);
855 xfs_force_shutdown(args
.mp
, SHUTDOWN_CORRUPT_INCORE
);
861 * We can't merge the part we've just allocated as for the inobt
862 * due to finobt semantics. The original record may or may not
863 * exist independent of whether physical inodes exist in this
866 * We must update the finobt record based on the inobt record.
867 * rec contains the fully merged and up to date inobt record
868 * from the previous call. Set merge false to replace any
869 * existing record with this one.
871 if (xfs_sb_version_hasfinobt(&args
.mp
->m_sb
)) {
872 error
= xfs_inobt_insert_sprec(args
.mp
, tp
, agbp
,
873 XFS_BTNUM_FINO
, &rec
,
879 /* full chunk - insert new records to both btrees */
880 error
= xfs_inobt_insert(args
.mp
, tp
, agbp
, newino
, newlen
,
885 if (xfs_sb_version_hasfinobt(&args
.mp
->m_sb
)) {
886 error
= xfs_inobt_insert(args
.mp
, tp
, agbp
, newino
,
887 newlen
, XFS_BTNUM_FINO
);
894 * Update AGI counts and newino.
896 be32_add_cpu(&agi
->agi_count
, newlen
);
897 be32_add_cpu(&agi
->agi_freecount
, newlen
);
898 pag
= xfs_perag_get(args
.mp
, agno
);
899 pag
->pagi_freecount
+= newlen
;
900 pag
->pagi_count
+= newlen
;
902 agi
->agi_newino
= cpu_to_be32(newino
);
905 * Log allocation group header fields
907 xfs_ialloc_log_agi(tp
, agbp
,
908 XFS_AGI_COUNT
| XFS_AGI_FREECOUNT
| XFS_AGI_NEWINO
);
910 * Modify/log superblock values for inode count and inode free count.
912 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_ICOUNT
, (long)newlen
);
913 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, (long)newlen
);
918 STATIC xfs_agnumber_t
924 spin_lock(&mp
->m_agirotor_lock
);
925 agno
= mp
->m_agirotor
;
926 if (++mp
->m_agirotor
>= mp
->m_maxagi
)
928 spin_unlock(&mp
->m_agirotor_lock
);
934 * Select an allocation group to look for a free inode in, based on the parent
935 * inode and the mode. Return the allocation group buffer.
937 STATIC xfs_agnumber_t
938 xfs_ialloc_ag_select(
939 xfs_trans_t
*tp
, /* transaction pointer */
940 xfs_ino_t parent
, /* parent directory inode number */
941 umode_t mode
) /* bits set to indicate file type */
943 xfs_agnumber_t agcount
; /* number of ag's in the filesystem */
944 xfs_agnumber_t agno
; /* current ag number */
945 int flags
; /* alloc buffer locking flags */
946 xfs_extlen_t ineed
; /* blocks needed for inode allocation */
947 xfs_extlen_t longest
= 0; /* longest extent available */
948 xfs_mount_t
*mp
; /* mount point structure */
949 int needspace
; /* file mode implies space allocated */
950 xfs_perag_t
*pag
; /* per allocation group data */
951 xfs_agnumber_t pagno
; /* parent (starting) ag number */
955 * Files of these types need at least one block if length > 0
956 * (and they won't fit in the inode, but that's hard to figure out).
958 needspace
= S_ISDIR(mode
) || S_ISREG(mode
) || S_ISLNK(mode
);
960 agcount
= mp
->m_maxagi
;
962 pagno
= xfs_ialloc_next_ag(mp
);
964 pagno
= XFS_INO_TO_AGNO(mp
, parent
);
965 if (pagno
>= agcount
)
969 ASSERT(pagno
< agcount
);
972 * Loop through allocation groups, looking for one with a little
973 * free space in it. Note we don't look for free inodes, exactly.
974 * Instead, we include whether there is a need to allocate inodes
975 * to mean that blocks must be allocated for them,
976 * if none are currently free.
979 flags
= XFS_ALLOC_FLAG_TRYLOCK
;
981 pag
= xfs_perag_get(mp
, agno
);
982 if (!pag
->pagi_inodeok
) {
983 xfs_ialloc_next_ag(mp
);
987 if (!pag
->pagi_init
) {
988 error
= xfs_ialloc_pagi_init(mp
, tp
, agno
);
993 if (pag
->pagi_freecount
) {
998 if (!pag
->pagf_init
) {
999 error
= xfs_alloc_pagf_init(mp
, tp
, agno
, flags
);
1005 * Check that there is enough free space for the file plus a
1006 * chunk of inodes if we need to allocate some. If this is the
1007 * first pass across the AGs, take into account the potential
1008 * space needed for alignment of inode chunks when checking the
1009 * longest contiguous free space in the AG - this prevents us
1010 * from getting ENOSPC because we have free space larger than
1011 * m_ialloc_blks but alignment constraints prevent us from using
1014 * If we can't find an AG with space for full alignment slack to
1015 * be taken into account, we must be near ENOSPC in all AGs.
1016 * Hence we don't include alignment for the second pass and so
1017 * if we fail allocation due to alignment issues then it is most
1018 * likely a real ENOSPC condition.
1020 ineed
= mp
->m_ialloc_min_blks
;
1021 if (flags
&& ineed
> 1)
1022 ineed
+= xfs_ialloc_cluster_alignment(mp
);
1023 longest
= pag
->pagf_longest
;
1025 longest
= pag
->pagf_flcount
> 0;
1027 if (pag
->pagf_freeblks
>= needspace
+ ineed
&&
1035 * No point in iterating over the rest, if we're shutting
1038 if (XFS_FORCED_SHUTDOWN(mp
))
1039 return NULLAGNUMBER
;
1041 if (agno
>= agcount
)
1043 if (agno
== pagno
) {
1045 return NULLAGNUMBER
;
1052 * Try to retrieve the next record to the left/right from the current one.
1055 xfs_ialloc_next_rec(
1056 struct xfs_btree_cur
*cur
,
1057 xfs_inobt_rec_incore_t
*rec
,
1065 error
= xfs_btree_decrement(cur
, 0, &i
);
1067 error
= xfs_btree_increment(cur
, 0, &i
);
1073 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1076 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1084 struct xfs_btree_cur
*cur
,
1086 xfs_inobt_rec_incore_t
*rec
,
1092 error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_EQ
, &i
);
1097 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1100 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1107 * Return the offset of the first free inode in the record. If the inode chunk
1108 * is sparsely allocated, we convert the record holemask to inode granularity
1109 * and mask off the unallocated regions from the inode free mask.
1112 xfs_inobt_first_free_inode(
1113 struct xfs_inobt_rec_incore
*rec
)
1115 xfs_inofree_t realfree
;
1117 /* if there are no holes, return the first available offset */
1118 if (!xfs_inobt_issparse(rec
->ir_holemask
))
1119 return xfs_lowbit64(rec
->ir_free
);
1121 realfree
= xfs_inobt_irec_to_allocmask(rec
);
1122 realfree
&= rec
->ir_free
;
1124 return xfs_lowbit64(realfree
);
1128 * Allocate an inode using the inobt-only algorithm.
1131 xfs_dialloc_ag_inobt(
1132 struct xfs_trans
*tp
,
1133 struct xfs_buf
*agbp
,
1137 struct xfs_mount
*mp
= tp
->t_mountp
;
1138 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1139 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1140 xfs_agnumber_t pagno
= XFS_INO_TO_AGNO(mp
, parent
);
1141 xfs_agino_t pagino
= XFS_INO_TO_AGINO(mp
, parent
);
1142 struct xfs_perag
*pag
;
1143 struct xfs_btree_cur
*cur
, *tcur
;
1144 struct xfs_inobt_rec_incore rec
, trec
;
1149 int searchdistance
= 10;
1151 pag
= xfs_perag_get(mp
, agno
);
1153 ASSERT(pag
->pagi_init
);
1154 ASSERT(pag
->pagi_inodeok
);
1155 ASSERT(pag
->pagi_freecount
> 0);
1158 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1160 * If pagino is 0 (this is the root inode allocation) use newino.
1161 * This must work because we've just allocated some.
1164 pagino
= be32_to_cpu(agi
->agi_newino
);
1166 error
= xfs_check_agi_freecount(cur
, agi
);
1171 * If in the same AG as the parent, try to get near the parent.
1173 if (pagno
== agno
) {
1174 int doneleft
; /* done, to the left */
1175 int doneright
; /* done, to the right */
1177 error
= xfs_inobt_lookup(cur
, pagino
, XFS_LOOKUP_LE
, &i
);
1180 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1182 error
= xfs_inobt_get_rec(cur
, &rec
, &j
);
1185 XFS_WANT_CORRUPTED_GOTO(mp
, j
== 1, error0
);
1187 if (rec
.ir_freecount
> 0) {
1189 * Found a free inode in the same chunk
1190 * as the parent, done.
1197 * In the same AG as parent, but parent's chunk is full.
1200 /* duplicate the cursor, search left & right simultaneously */
1201 error
= xfs_btree_dup_cursor(cur
, &tcur
);
1206 * Skip to last blocks looked up if same parent inode.
1208 if (pagino
!= NULLAGINO
&&
1209 pag
->pagl_pagino
== pagino
&&
1210 pag
->pagl_leftrec
!= NULLAGINO
&&
1211 pag
->pagl_rightrec
!= NULLAGINO
) {
1212 error
= xfs_ialloc_get_rec(tcur
, pag
->pagl_leftrec
,
1217 error
= xfs_ialloc_get_rec(cur
, pag
->pagl_rightrec
,
1222 /* search left with tcur, back up 1 record */
1223 error
= xfs_ialloc_next_rec(tcur
, &trec
, &doneleft
, 1);
1227 /* search right with cur, go forward 1 record. */
1228 error
= xfs_ialloc_next_rec(cur
, &rec
, &doneright
, 0);
1234 * Loop until we find an inode chunk with a free inode.
1236 while (--searchdistance
> 0 && (!doneleft
|| !doneright
)) {
1237 int useleft
; /* using left inode chunk this time */
1239 /* figure out the closer block if both are valid. */
1240 if (!doneleft
&& !doneright
) {
1242 (trec
.ir_startino
+ XFS_INODES_PER_CHUNK
- 1) <
1243 rec
.ir_startino
- pagino
;
1245 useleft
= !doneleft
;
1248 /* free inodes to the left? */
1249 if (useleft
&& trec
.ir_freecount
) {
1250 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1253 pag
->pagl_leftrec
= trec
.ir_startino
;
1254 pag
->pagl_rightrec
= rec
.ir_startino
;
1255 pag
->pagl_pagino
= pagino
;
1260 /* free inodes to the right? */
1261 if (!useleft
&& rec
.ir_freecount
) {
1262 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
1264 pag
->pagl_leftrec
= trec
.ir_startino
;
1265 pag
->pagl_rightrec
= rec
.ir_startino
;
1266 pag
->pagl_pagino
= pagino
;
1270 /* get next record to check */
1272 error
= xfs_ialloc_next_rec(tcur
, &trec
,
1275 error
= xfs_ialloc_next_rec(cur
, &rec
,
1282 if (searchdistance
<= 0) {
1284 * Not in range - save last search
1285 * location and allocate a new inode
1287 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
1288 pag
->pagl_leftrec
= trec
.ir_startino
;
1289 pag
->pagl_rightrec
= rec
.ir_startino
;
1290 pag
->pagl_pagino
= pagino
;
1294 * We've reached the end of the btree. because
1295 * we are only searching a small chunk of the
1296 * btree each search, there is obviously free
1297 * inodes closer to the parent inode than we
1298 * are now. restart the search again.
1300 pag
->pagl_pagino
= NULLAGINO
;
1301 pag
->pagl_leftrec
= NULLAGINO
;
1302 pag
->pagl_rightrec
= NULLAGINO
;
1303 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
1304 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1310 * In a different AG from the parent.
1311 * See if the most recently allocated block has any free.
1313 if (agi
->agi_newino
!= cpu_to_be32(NULLAGINO
)) {
1314 error
= xfs_inobt_lookup(cur
, be32_to_cpu(agi
->agi_newino
),
1320 error
= xfs_inobt_get_rec(cur
, &rec
, &j
);
1324 if (j
== 1 && rec
.ir_freecount
> 0) {
1326 * The last chunk allocated in the group
1327 * still has a free inode.
1335 * None left in the last group, search the whole AG
1337 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
1340 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1343 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1346 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1347 if (rec
.ir_freecount
> 0)
1349 error
= xfs_btree_increment(cur
, 0, &i
);
1352 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1356 offset
= xfs_inobt_first_free_inode(&rec
);
1357 ASSERT(offset
>= 0);
1358 ASSERT(offset
< XFS_INODES_PER_CHUNK
);
1359 ASSERT((XFS_AGINO_TO_OFFSET(mp
, rec
.ir_startino
) %
1360 XFS_INODES_PER_CHUNK
) == 0);
1361 ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
+ offset
);
1362 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
1364 error
= xfs_inobt_update(cur
, &rec
);
1367 be32_add_cpu(&agi
->agi_freecount
, -1);
1368 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
1369 pag
->pagi_freecount
--;
1371 error
= xfs_check_agi_freecount(cur
, agi
);
1375 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1376 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -1);
1381 xfs_btree_del_cursor(tcur
, XFS_BTREE_ERROR
);
1383 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
1389 * Use the free inode btree to allocate an inode based on distance from the
1390 * parent. Note that the provided cursor may be deleted and replaced.
1393 xfs_dialloc_ag_finobt_near(
1395 struct xfs_btree_cur
**ocur
,
1396 struct xfs_inobt_rec_incore
*rec
)
1398 struct xfs_btree_cur
*lcur
= *ocur
; /* left search cursor */
1399 struct xfs_btree_cur
*rcur
; /* right search cursor */
1400 struct xfs_inobt_rec_incore rrec
;
1404 error
= xfs_inobt_lookup(lcur
, pagino
, XFS_LOOKUP_LE
, &i
);
1409 error
= xfs_inobt_get_rec(lcur
, rec
, &i
);
1412 XFS_WANT_CORRUPTED_RETURN(lcur
->bc_mp
, i
== 1);
1415 * See if we've landed in the parent inode record. The finobt
1416 * only tracks chunks with at least one free inode, so record
1417 * existence is enough.
1419 if (pagino
>= rec
->ir_startino
&&
1420 pagino
< (rec
->ir_startino
+ XFS_INODES_PER_CHUNK
))
1424 error
= xfs_btree_dup_cursor(lcur
, &rcur
);
1428 error
= xfs_inobt_lookup(rcur
, pagino
, XFS_LOOKUP_GE
, &j
);
1432 error
= xfs_inobt_get_rec(rcur
, &rrec
, &j
);
1435 XFS_WANT_CORRUPTED_GOTO(lcur
->bc_mp
, j
== 1, error_rcur
);
1438 XFS_WANT_CORRUPTED_GOTO(lcur
->bc_mp
, i
== 1 || j
== 1, error_rcur
);
1439 if (i
== 1 && j
== 1) {
1441 * Both the left and right records are valid. Choose the closer
1442 * inode chunk to the target.
1444 if ((pagino
- rec
->ir_startino
+ XFS_INODES_PER_CHUNK
- 1) >
1445 (rrec
.ir_startino
- pagino
)) {
1447 xfs_btree_del_cursor(lcur
, XFS_BTREE_NOERROR
);
1450 xfs_btree_del_cursor(rcur
, XFS_BTREE_NOERROR
);
1452 } else if (j
== 1) {
1453 /* only the right record is valid */
1455 xfs_btree_del_cursor(lcur
, XFS_BTREE_NOERROR
);
1457 } else if (i
== 1) {
1458 /* only the left record is valid */
1459 xfs_btree_del_cursor(rcur
, XFS_BTREE_NOERROR
);
1465 xfs_btree_del_cursor(rcur
, XFS_BTREE_ERROR
);
1470 * Use the free inode btree to find a free inode based on a newino hint. If
1471 * the hint is NULL, find the first free inode in the AG.
1474 xfs_dialloc_ag_finobt_newino(
1475 struct xfs_agi
*agi
,
1476 struct xfs_btree_cur
*cur
,
1477 struct xfs_inobt_rec_incore
*rec
)
1482 if (agi
->agi_newino
!= cpu_to_be32(NULLAGINO
)) {
1483 error
= xfs_inobt_lookup(cur
, be32_to_cpu(agi
->agi_newino
),
1488 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1491 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1497 * Find the first inode available in the AG.
1499 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
1502 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1504 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1507 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1513 * Update the inobt based on a modification made to the finobt. Also ensure that
1514 * the records from both trees are equivalent post-modification.
1517 xfs_dialloc_ag_update_inobt(
1518 struct xfs_btree_cur
*cur
, /* inobt cursor */
1519 struct xfs_inobt_rec_incore
*frec
, /* finobt record */
1520 int offset
) /* inode offset */
1522 struct xfs_inobt_rec_incore rec
;
1526 error
= xfs_inobt_lookup(cur
, frec
->ir_startino
, XFS_LOOKUP_EQ
, &i
);
1529 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1531 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1534 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1535 ASSERT((XFS_AGINO_TO_OFFSET(cur
->bc_mp
, rec
.ir_startino
) %
1536 XFS_INODES_PER_CHUNK
) == 0);
1538 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
1541 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, (rec
.ir_free
== frec
->ir_free
) &&
1542 (rec
.ir_freecount
== frec
->ir_freecount
));
1544 return xfs_inobt_update(cur
, &rec
);
1548 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1549 * back to the inobt search algorithm.
1551 * The caller selected an AG for us, and made sure that free inodes are
1556 struct xfs_trans
*tp
,
1557 struct xfs_buf
*agbp
,
1561 struct xfs_mount
*mp
= tp
->t_mountp
;
1562 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1563 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1564 xfs_agnumber_t pagno
= XFS_INO_TO_AGNO(mp
, parent
);
1565 xfs_agino_t pagino
= XFS_INO_TO_AGINO(mp
, parent
);
1566 struct xfs_perag
*pag
;
1567 struct xfs_btree_cur
*cur
; /* finobt cursor */
1568 struct xfs_btree_cur
*icur
; /* inobt cursor */
1569 struct xfs_inobt_rec_incore rec
;
1575 if (!xfs_sb_version_hasfinobt(&mp
->m_sb
))
1576 return xfs_dialloc_ag_inobt(tp
, agbp
, parent
, inop
);
1578 pag
= xfs_perag_get(mp
, agno
);
1581 * If pagino is 0 (this is the root inode allocation) use newino.
1582 * This must work because we've just allocated some.
1585 pagino
= be32_to_cpu(agi
->agi_newino
);
1587 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_FINO
);
1589 error
= xfs_check_agi_freecount(cur
, agi
);
1594 * The search algorithm depends on whether we're in the same AG as the
1595 * parent. If so, find the closest available inode to the parent. If
1596 * not, consider the agi hint or find the first free inode in the AG.
1599 error
= xfs_dialloc_ag_finobt_near(pagino
, &cur
, &rec
);
1601 error
= xfs_dialloc_ag_finobt_newino(agi
, cur
, &rec
);
1605 offset
= xfs_inobt_first_free_inode(&rec
);
1606 ASSERT(offset
>= 0);
1607 ASSERT(offset
< XFS_INODES_PER_CHUNK
);
1608 ASSERT((XFS_AGINO_TO_OFFSET(mp
, rec
.ir_startino
) %
1609 XFS_INODES_PER_CHUNK
) == 0);
1610 ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
+ offset
);
1613 * Modify or remove the finobt record.
1615 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
1617 if (rec
.ir_freecount
)
1618 error
= xfs_inobt_update(cur
, &rec
);
1620 error
= xfs_btree_delete(cur
, &i
);
1625 * The finobt has now been updated appropriately. We haven't updated the
1626 * agi and superblock yet, so we can create an inobt cursor and validate
1627 * the original freecount. If all is well, make the equivalent update to
1628 * the inobt using the finobt record and offset information.
1630 icur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1632 error
= xfs_check_agi_freecount(icur
, agi
);
1636 error
= xfs_dialloc_ag_update_inobt(icur
, &rec
, offset
);
1641 * Both trees have now been updated. We must update the perag and
1642 * superblock before we can check the freecount for each btree.
1644 be32_add_cpu(&agi
->agi_freecount
, -1);
1645 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
1646 pag
->pagi_freecount
--;
1648 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -1);
1650 error
= xfs_check_agi_freecount(icur
, agi
);
1653 error
= xfs_check_agi_freecount(cur
, agi
);
1657 xfs_btree_del_cursor(icur
, XFS_BTREE_NOERROR
);
1658 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1664 xfs_btree_del_cursor(icur
, XFS_BTREE_ERROR
);
1666 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
1672 * Allocate an inode on disk.
1674 * Mode is used to tell whether the new inode will need space, and whether it
1677 * This function is designed to be called twice if it has to do an allocation
1678 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1679 * If an inode is available without having to performn an allocation, an inode
1680 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1681 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1682 * The caller should then commit the current transaction, allocate a
1683 * new transaction, and call xfs_dialloc() again, passing in the previous value
1684 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1685 * buffer is locked across the two calls, the second call is guaranteed to have
1686 * a free inode available.
1688 * Once we successfully pick an inode its number is returned and the on-disk
1689 * data structures are updated. The inode itself is not read in, since doing so
1690 * would break ordering constraints with xfs_reclaim.
1694 struct xfs_trans
*tp
,
1697 struct xfs_buf
**IO_agbp
,
1700 struct xfs_mount
*mp
= tp
->t_mountp
;
1701 struct xfs_buf
*agbp
;
1702 xfs_agnumber_t agno
;
1706 xfs_agnumber_t start_agno
;
1707 struct xfs_perag
*pag
;
1712 * If the caller passes in a pointer to the AGI buffer,
1713 * continue where we left off before. In this case, we
1714 * know that the allocation group has free inodes.
1721 * We do not have an agbp, so select an initial allocation
1722 * group for inode allocation.
1724 start_agno
= xfs_ialloc_ag_select(tp
, parent
, mode
);
1725 if (start_agno
== NULLAGNUMBER
) {
1731 * If we have already hit the ceiling of inode blocks then clear
1732 * okalloc so we scan all available agi structures for a free
1735 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1736 * which will sacrifice the preciseness but improve the performance.
1738 if (mp
->m_maxicount
&&
1739 percpu_counter_read_positive(&mp
->m_icount
) + mp
->m_ialloc_inos
1740 > mp
->m_maxicount
) {
1746 * Loop until we find an allocation group that either has free inodes
1747 * or in which we can allocate some inodes. Iterate through the
1748 * allocation groups upward, wrapping at the end.
1752 pag
= xfs_perag_get(mp
, agno
);
1753 if (!pag
->pagi_inodeok
) {
1754 xfs_ialloc_next_ag(mp
);
1758 if (!pag
->pagi_init
) {
1759 error
= xfs_ialloc_pagi_init(mp
, tp
, agno
);
1765 * Do a first racy fast path check if this AG is usable.
1767 if (!pag
->pagi_freecount
&& !okalloc
)
1771 * Then read in the AGI buffer and recheck with the AGI buffer
1774 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
1778 if (pag
->pagi_freecount
) {
1784 goto nextag_relse_buffer
;
1787 error
= xfs_ialloc_ag_alloc(tp
, agbp
, &ialloced
);
1789 xfs_trans_brelse(tp
, agbp
);
1791 if (error
!= -ENOSPC
)
1801 * We successfully allocated some inodes, return
1802 * the current context to the caller so that it
1803 * can commit the current transaction and call
1804 * us again where we left off.
1806 ASSERT(pag
->pagi_freecount
> 0);
1814 nextag_relse_buffer
:
1815 xfs_trans_brelse(tp
, agbp
);
1818 if (++agno
== mp
->m_sb
.sb_agcount
)
1820 if (agno
== start_agno
) {
1822 return noroom
? -ENOSPC
: 0;
1828 return xfs_dialloc_ag(tp
, agbp
, parent
, inop
);
1835 * Free the blocks of an inode chunk. We must consider that the inode chunk
1836 * might be sparse and only free the regions that are allocated as part of the
1840 xfs_difree_inode_chunk(
1841 struct xfs_trans
*tp
,
1842 xfs_agnumber_t agno
,
1843 struct xfs_inobt_rec_incore
*rec
)
1845 struct xfs_mount
*mp
= tp
->t_mountp
;
1846 xfs_agblock_t sagbno
= XFS_AGINO_TO_AGBNO(mp
,
1848 int startidx
, endidx
;
1850 xfs_agblock_t agbno
;
1852 struct xfs_owner_info oinfo
;
1853 DECLARE_BITMAP(holemask
, XFS_INOBT_HOLEMASK_BITS
);
1854 xfs_rmap_ag_owner(&oinfo
, XFS_RMAP_OWN_INODES
);
1856 if (!xfs_inobt_issparse(rec
->ir_holemask
)) {
1857 /* not sparse, calculate extent info directly */
1858 xfs_bmap_add_free(tp
, XFS_AGB_TO_FSB(mp
, agno
, sagbno
),
1859 mp
->m_ialloc_blks
, &oinfo
);
1863 /* holemask is only 16-bits (fits in an unsigned long) */
1864 ASSERT(sizeof(rec
->ir_holemask
) <= sizeof(holemask
[0]));
1865 holemask
[0] = rec
->ir_holemask
;
1868 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1869 * holemask and convert the start/end index of each range to an extent.
1870 * We start with the start and end index both pointing at the first 0 in
1873 startidx
= endidx
= find_first_zero_bit(holemask
,
1874 XFS_INOBT_HOLEMASK_BITS
);
1875 nextbit
= startidx
+ 1;
1876 while (startidx
< XFS_INOBT_HOLEMASK_BITS
) {
1877 nextbit
= find_next_zero_bit(holemask
, XFS_INOBT_HOLEMASK_BITS
,
1880 * If the next zero bit is contiguous, update the end index of
1881 * the current range and continue.
1883 if (nextbit
!= XFS_INOBT_HOLEMASK_BITS
&&
1884 nextbit
== endidx
+ 1) {
1890 * nextbit is not contiguous with the current end index. Convert
1891 * the current start/end to an extent and add it to the free
1894 agbno
= sagbno
+ (startidx
* XFS_INODES_PER_HOLEMASK_BIT
) /
1895 mp
->m_sb
.sb_inopblock
;
1896 contigblk
= ((endidx
- startidx
+ 1) *
1897 XFS_INODES_PER_HOLEMASK_BIT
) /
1898 mp
->m_sb
.sb_inopblock
;
1900 ASSERT(agbno
% mp
->m_sb
.sb_spino_align
== 0);
1901 ASSERT(contigblk
% mp
->m_sb
.sb_spino_align
== 0);
1902 xfs_bmap_add_free(tp
, XFS_AGB_TO_FSB(mp
, agno
, agbno
),
1905 /* reset range to current bit and carry on... */
1906 startidx
= endidx
= nextbit
;
1915 struct xfs_mount
*mp
,
1916 struct xfs_trans
*tp
,
1917 struct xfs_buf
*agbp
,
1919 struct xfs_icluster
*xic
,
1920 struct xfs_inobt_rec_incore
*orec
)
1922 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1923 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1924 struct xfs_perag
*pag
;
1925 struct xfs_btree_cur
*cur
;
1926 struct xfs_inobt_rec_incore rec
;
1932 ASSERT(agi
->agi_magicnum
== cpu_to_be32(XFS_AGI_MAGIC
));
1933 ASSERT(XFS_AGINO_TO_AGBNO(mp
, agino
) < be32_to_cpu(agi
->agi_length
));
1936 * Initialize the cursor.
1938 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1940 error
= xfs_check_agi_freecount(cur
, agi
);
1945 * Look for the entry describing this inode.
1947 if ((error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_LE
, &i
))) {
1948 xfs_warn(mp
, "%s: xfs_inobt_lookup() returned error %d.",
1952 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1953 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1955 xfs_warn(mp
, "%s: xfs_inobt_get_rec() returned error %d.",
1959 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1961 * Get the offset in the inode chunk.
1963 off
= agino
- rec
.ir_startino
;
1964 ASSERT(off
>= 0 && off
< XFS_INODES_PER_CHUNK
);
1965 ASSERT(!(rec
.ir_free
& XFS_INOBT_MASK(off
)));
1967 * Mark the inode free & increment the count.
1969 rec
.ir_free
|= XFS_INOBT_MASK(off
);
1973 * When an inode chunk is free, it becomes eligible for removal. Don't
1974 * remove the chunk if the block size is large enough for multiple inode
1975 * chunks (that might not be free).
1977 if (!(mp
->m_flags
& XFS_MOUNT_IKEEP
) &&
1978 rec
.ir_free
== XFS_INOBT_ALL_FREE
&&
1979 mp
->m_sb
.sb_inopblock
<= XFS_INODES_PER_CHUNK
) {
1980 xic
->deleted
= true;
1981 xic
->first_ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
);
1982 xic
->alloc
= xfs_inobt_irec_to_allocmask(&rec
);
1985 * Remove the inode cluster from the AGI B+Tree, adjust the
1986 * AGI and Superblock inode counts, and mark the disk space
1987 * to be freed when the transaction is committed.
1989 ilen
= rec
.ir_freecount
;
1990 be32_add_cpu(&agi
->agi_count
, -ilen
);
1991 be32_add_cpu(&agi
->agi_freecount
, -(ilen
- 1));
1992 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_COUNT
| XFS_AGI_FREECOUNT
);
1993 pag
= xfs_perag_get(mp
, agno
);
1994 pag
->pagi_freecount
-= ilen
- 1;
1995 pag
->pagi_count
-= ilen
;
1997 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_ICOUNT
, -ilen
);
1998 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -(ilen
- 1));
2000 if ((error
= xfs_btree_delete(cur
, &i
))) {
2001 xfs_warn(mp
, "%s: xfs_btree_delete returned error %d.",
2006 xfs_difree_inode_chunk(tp
, agno
, &rec
);
2008 xic
->deleted
= false;
2010 error
= xfs_inobt_update(cur
, &rec
);
2012 xfs_warn(mp
, "%s: xfs_inobt_update returned error %d.",
2018 * Change the inode free counts and log the ag/sb changes.
2020 be32_add_cpu(&agi
->agi_freecount
, 1);
2021 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
2022 pag
= xfs_perag_get(mp
, agno
);
2023 pag
->pagi_freecount
++;
2025 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, 1);
2028 error
= xfs_check_agi_freecount(cur
, agi
);
2033 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
2037 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
2042 * Free an inode in the free inode btree.
2046 struct xfs_mount
*mp
,
2047 struct xfs_trans
*tp
,
2048 struct xfs_buf
*agbp
,
2050 struct xfs_inobt_rec_incore
*ibtrec
) /* inobt record */
2052 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
2053 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
2054 struct xfs_btree_cur
*cur
;
2055 struct xfs_inobt_rec_incore rec
;
2056 int offset
= agino
- ibtrec
->ir_startino
;
2060 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_FINO
);
2062 error
= xfs_inobt_lookup(cur
, ibtrec
->ir_startino
, XFS_LOOKUP_EQ
, &i
);
2067 * If the record does not exist in the finobt, we must have just
2068 * freed an inode in a previously fully allocated chunk. If not,
2069 * something is out of sync.
2071 XFS_WANT_CORRUPTED_GOTO(mp
, ibtrec
->ir_freecount
== 1, error
);
2073 error
= xfs_inobt_insert_rec(cur
, ibtrec
->ir_holemask
,
2075 ibtrec
->ir_freecount
,
2076 ibtrec
->ir_free
, &i
);
2085 * Read and update the existing record. We could just copy the ibtrec
2086 * across here, but that would defeat the purpose of having redundant
2087 * metadata. By making the modifications independently, we can catch
2088 * corruptions that we wouldn't see if we just copied from one record
2091 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
2094 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error
);
2096 rec
.ir_free
|= XFS_INOBT_MASK(offset
);
2099 XFS_WANT_CORRUPTED_GOTO(mp
, (rec
.ir_free
== ibtrec
->ir_free
) &&
2100 (rec
.ir_freecount
== ibtrec
->ir_freecount
),
2104 * The content of inobt records should always match between the inobt
2105 * and finobt. The lifecycle of records in the finobt is different from
2106 * the inobt in that the finobt only tracks records with at least one
2107 * free inode. Hence, if all of the inodes are free and we aren't
2108 * keeping inode chunks permanently on disk, remove the record.
2109 * Otherwise, update the record with the new information.
2111 * Note that we currently can't free chunks when the block size is large
2112 * enough for multiple chunks. Leave the finobt record to remain in sync
2115 if (rec
.ir_free
== XFS_INOBT_ALL_FREE
&&
2116 mp
->m_sb
.sb_inopblock
<= XFS_INODES_PER_CHUNK
&&
2117 !(mp
->m_flags
& XFS_MOUNT_IKEEP
)) {
2118 error
= xfs_btree_delete(cur
, &i
);
2123 error
= xfs_inobt_update(cur
, &rec
);
2129 error
= xfs_check_agi_freecount(cur
, agi
);
2133 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
2137 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
2142 * Free disk inode. Carefully avoids touching the incore inode, all
2143 * manipulations incore are the caller's responsibility.
2144 * The on-disk inode is not changed by this operation, only the
2145 * btree (free inode mask) is changed.
2149 struct xfs_trans
*tp
, /* transaction pointer */
2150 xfs_ino_t inode
, /* inode to be freed */
2151 struct xfs_icluster
*xic
) /* cluster info if deleted */
2154 xfs_agblock_t agbno
; /* block number containing inode */
2155 struct xfs_buf
*agbp
; /* buffer for allocation group header */
2156 xfs_agino_t agino
; /* allocation group inode number */
2157 xfs_agnumber_t agno
; /* allocation group number */
2158 int error
; /* error return value */
2159 struct xfs_mount
*mp
; /* mount structure for filesystem */
2160 struct xfs_inobt_rec_incore rec
;/* btree record */
2165 * Break up inode number into its components.
2167 agno
= XFS_INO_TO_AGNO(mp
, inode
);
2168 if (agno
>= mp
->m_sb
.sb_agcount
) {
2169 xfs_warn(mp
, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2170 __func__
, agno
, mp
->m_sb
.sb_agcount
);
2174 agino
= XFS_INO_TO_AGINO(mp
, inode
);
2175 if (inode
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
2176 xfs_warn(mp
, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2177 __func__
, (unsigned long long)inode
,
2178 (unsigned long long)XFS_AGINO_TO_INO(mp
, agno
, agino
));
2182 agbno
= XFS_AGINO_TO_AGBNO(mp
, agino
);
2183 if (agbno
>= mp
->m_sb
.sb_agblocks
) {
2184 xfs_warn(mp
, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2185 __func__
, agbno
, mp
->m_sb
.sb_agblocks
);
2190 * Get the allocation group header.
2192 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
2194 xfs_warn(mp
, "%s: xfs_ialloc_read_agi() returned error %d.",
2200 * Fix up the inode allocation btree.
2202 error
= xfs_difree_inobt(mp
, tp
, agbp
, agino
, xic
, &rec
);
2207 * Fix up the free inode btree.
2209 if (xfs_sb_version_hasfinobt(&mp
->m_sb
)) {
2210 error
= xfs_difree_finobt(mp
, tp
, agbp
, agino
, &rec
);
2223 struct xfs_mount
*mp
,
2224 struct xfs_trans
*tp
,
2225 xfs_agnumber_t agno
,
2227 xfs_agblock_t agbno
,
2228 xfs_agblock_t
*chunk_agbno
,
2229 xfs_agblock_t
*offset_agbno
,
2232 struct xfs_inobt_rec_incore rec
;
2233 struct xfs_btree_cur
*cur
;
2234 struct xfs_buf
*agbp
;
2238 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
2241 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2242 __func__
, error
, agno
);
2247 * Lookup the inode record for the given agino. If the record cannot be
2248 * found, then it's an invalid inode number and we should abort. Once
2249 * we have a record, we need to ensure it contains the inode number
2250 * we are looking up.
2252 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
2253 error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_LE
, &i
);
2256 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
2257 if (!error
&& i
== 0)
2261 xfs_trans_brelse(tp
, agbp
);
2262 xfs_btree_del_cursor(cur
, error
);
2266 /* check that the returned record contains the required inode */
2267 if (rec
.ir_startino
> agino
||
2268 rec
.ir_startino
+ mp
->m_ialloc_inos
<= agino
)
2271 /* for untrusted inodes check it is allocated first */
2272 if ((flags
& XFS_IGET_UNTRUSTED
) &&
2273 (rec
.ir_free
& XFS_INOBT_MASK(agino
- rec
.ir_startino
)))
2276 *chunk_agbno
= XFS_AGINO_TO_AGBNO(mp
, rec
.ir_startino
);
2277 *offset_agbno
= agbno
- *chunk_agbno
;
2282 * Return the location of the inode in imap, for mapping it into a buffer.
2286 xfs_mount_t
*mp
, /* file system mount structure */
2287 xfs_trans_t
*tp
, /* transaction pointer */
2288 xfs_ino_t ino
, /* inode to locate */
2289 struct xfs_imap
*imap
, /* location map structure */
2290 uint flags
) /* flags for inode btree lookup */
2292 xfs_agblock_t agbno
; /* block number of inode in the alloc group */
2293 xfs_agino_t agino
; /* inode number within alloc group */
2294 xfs_agnumber_t agno
; /* allocation group number */
2295 int blks_per_cluster
; /* num blocks per inode cluster */
2296 xfs_agblock_t chunk_agbno
; /* first block in inode chunk */
2297 xfs_agblock_t cluster_agbno
; /* first block in inode cluster */
2298 int error
; /* error code */
2299 int offset
; /* index of inode in its buffer */
2300 xfs_agblock_t offset_agbno
; /* blks from chunk start to inode */
2302 ASSERT(ino
!= NULLFSINO
);
2305 * Split up the inode number into its parts.
2307 agno
= XFS_INO_TO_AGNO(mp
, ino
);
2308 agino
= XFS_INO_TO_AGINO(mp
, ino
);
2309 agbno
= XFS_AGINO_TO_AGBNO(mp
, agino
);
2310 if (agno
>= mp
->m_sb
.sb_agcount
|| agbno
>= mp
->m_sb
.sb_agblocks
||
2311 ino
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
2314 * Don't output diagnostic information for untrusted inodes
2315 * as they can be invalid without implying corruption.
2317 if (flags
& XFS_IGET_UNTRUSTED
)
2319 if (agno
>= mp
->m_sb
.sb_agcount
) {
2321 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2322 __func__
, agno
, mp
->m_sb
.sb_agcount
);
2324 if (agbno
>= mp
->m_sb
.sb_agblocks
) {
2326 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2327 __func__
, (unsigned long long)agbno
,
2328 (unsigned long)mp
->m_sb
.sb_agblocks
);
2330 if (ino
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
2332 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2334 XFS_AGINO_TO_INO(mp
, agno
, agino
));
2341 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
2344 * For bulkstat and handle lookups, we have an untrusted inode number
2345 * that we have to verify is valid. We cannot do this just by reading
2346 * the inode buffer as it may have been unlinked and removed leaving
2347 * inodes in stale state on disk. Hence we have to do a btree lookup
2348 * in all cases where an untrusted inode number is passed.
2350 if (flags
& XFS_IGET_UNTRUSTED
) {
2351 error
= xfs_imap_lookup(mp
, tp
, agno
, agino
, agbno
,
2352 &chunk_agbno
, &offset_agbno
, flags
);
2359 * If the inode cluster size is the same as the blocksize or
2360 * smaller we get to the buffer by simple arithmetics.
2362 if (blks_per_cluster
== 1) {
2363 offset
= XFS_INO_TO_OFFSET(mp
, ino
);
2364 ASSERT(offset
< mp
->m_sb
.sb_inopblock
);
2366 imap
->im_blkno
= XFS_AGB_TO_DADDR(mp
, agno
, agbno
);
2367 imap
->im_len
= XFS_FSB_TO_BB(mp
, 1);
2368 imap
->im_boffset
= (unsigned short)(offset
<<
2369 mp
->m_sb
.sb_inodelog
);
2374 * If the inode chunks are aligned then use simple maths to
2375 * find the location. Otherwise we have to do a btree
2376 * lookup to find the location.
2378 if (mp
->m_inoalign_mask
) {
2379 offset_agbno
= agbno
& mp
->m_inoalign_mask
;
2380 chunk_agbno
= agbno
- offset_agbno
;
2382 error
= xfs_imap_lookup(mp
, tp
, agno
, agino
, agbno
,
2383 &chunk_agbno
, &offset_agbno
, flags
);
2389 ASSERT(agbno
>= chunk_agbno
);
2390 cluster_agbno
= chunk_agbno
+
2391 ((offset_agbno
/ blks_per_cluster
) * blks_per_cluster
);
2392 offset
= ((agbno
- cluster_agbno
) * mp
->m_sb
.sb_inopblock
) +
2393 XFS_INO_TO_OFFSET(mp
, ino
);
2395 imap
->im_blkno
= XFS_AGB_TO_DADDR(mp
, agno
, cluster_agbno
);
2396 imap
->im_len
= XFS_FSB_TO_BB(mp
, blks_per_cluster
);
2397 imap
->im_boffset
= (unsigned short)(offset
<< mp
->m_sb
.sb_inodelog
);
2400 * If the inode number maps to a block outside the bounds
2401 * of the file system then return NULL rather than calling
2402 * read_buf and panicing when we get an error from the
2405 if ((imap
->im_blkno
+ imap
->im_len
) >
2406 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
2408 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2409 __func__
, (unsigned long long) imap
->im_blkno
,
2410 (unsigned long long) imap
->im_len
,
2411 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
));
2418 * Compute and fill in value of m_in_maxlevels.
2421 xfs_ialloc_compute_maxlevels(
2422 xfs_mount_t
*mp
) /* file system mount structure */
2426 inodes
= (1LL << XFS_INO_AGINO_BITS(mp
)) >> XFS_INODES_PER_CHUNK_LOG
;
2427 mp
->m_in_maxlevels
= xfs_btree_compute_maxlevels(mp
->m_inobt_mnr
,
2432 * Log specified fields for the ag hdr (inode section). The growth of the agi
2433 * structure over time requires that we interpret the buffer as two logical
2434 * regions delineated by the end of the unlinked list. This is due to the size
2435 * of the hash table and its location in the middle of the agi.
2437 * For example, a request to log a field before agi_unlinked and a field after
2438 * agi_unlinked could cause us to log the entire hash table and use an excessive
2439 * amount of log space. To avoid this behavior, log the region up through
2440 * agi_unlinked in one call and the region after agi_unlinked through the end of
2441 * the structure in another.
2445 xfs_trans_t
*tp
, /* transaction pointer */
2446 xfs_buf_t
*bp
, /* allocation group header buffer */
2447 int fields
) /* bitmask of fields to log */
2449 int first
; /* first byte number */
2450 int last
; /* last byte number */
2451 static const short offsets
[] = { /* field starting offsets */
2452 /* keep in sync with bit definitions */
2453 offsetof(xfs_agi_t
, agi_magicnum
),
2454 offsetof(xfs_agi_t
, agi_versionnum
),
2455 offsetof(xfs_agi_t
, agi_seqno
),
2456 offsetof(xfs_agi_t
, agi_length
),
2457 offsetof(xfs_agi_t
, agi_count
),
2458 offsetof(xfs_agi_t
, agi_root
),
2459 offsetof(xfs_agi_t
, agi_level
),
2460 offsetof(xfs_agi_t
, agi_freecount
),
2461 offsetof(xfs_agi_t
, agi_newino
),
2462 offsetof(xfs_agi_t
, agi_dirino
),
2463 offsetof(xfs_agi_t
, agi_unlinked
),
2464 offsetof(xfs_agi_t
, agi_free_root
),
2465 offsetof(xfs_agi_t
, agi_free_level
),
2469 xfs_agi_t
*agi
; /* allocation group header */
2471 agi
= XFS_BUF_TO_AGI(bp
);
2472 ASSERT(agi
->agi_magicnum
== cpu_to_be32(XFS_AGI_MAGIC
));
2476 * Compute byte offsets for the first and last fields in the first
2477 * region and log the agi buffer. This only logs up through
2480 if (fields
& XFS_AGI_ALL_BITS_R1
) {
2481 xfs_btree_offsets(fields
, offsets
, XFS_AGI_NUM_BITS_R1
,
2483 xfs_trans_log_buf(tp
, bp
, first
, last
);
2487 * Mask off the bits in the first region and calculate the first and
2488 * last field offsets for any bits in the second region.
2490 fields
&= ~XFS_AGI_ALL_BITS_R1
;
2492 xfs_btree_offsets(fields
, offsets
, XFS_AGI_NUM_BITS_R2
,
2494 xfs_trans_log_buf(tp
, bp
, first
, last
);
2498 static xfs_failaddr_t
2502 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2503 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(bp
);
2506 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
2507 if (!uuid_equal(&agi
->agi_uuid
, &mp
->m_sb
.sb_meta_uuid
))
2508 return __this_address
;
2509 if (!xfs_log_check_lsn(mp
,
2510 be64_to_cpu(XFS_BUF_TO_AGI(bp
)->agi_lsn
)))
2511 return __this_address
;
2515 * Validate the magic number of the agi block.
2517 if (agi
->agi_magicnum
!= cpu_to_be32(XFS_AGI_MAGIC
))
2518 return __this_address
;
2519 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
)))
2520 return __this_address
;
2522 if (be32_to_cpu(agi
->agi_level
) < 1 ||
2523 be32_to_cpu(agi
->agi_level
) > XFS_BTREE_MAXLEVELS
)
2524 return __this_address
;
2526 if (xfs_sb_version_hasfinobt(&mp
->m_sb
) &&
2527 (be32_to_cpu(agi
->agi_free_level
) < 1 ||
2528 be32_to_cpu(agi
->agi_free_level
) > XFS_BTREE_MAXLEVELS
))
2529 return __this_address
;
2532 * during growfs operations, the perag is not fully initialised,
2533 * so we can't use it for any useful checking. growfs ensures we can't
2534 * use it by using uncached buffers that don't have the perag attached
2535 * so we can detect and avoid this problem.
2537 if (bp
->b_pag
&& be32_to_cpu(agi
->agi_seqno
) != bp
->b_pag
->pag_agno
)
2538 return __this_address
;
2540 for (i
= 0; i
< XFS_AGI_UNLINKED_BUCKETS
; i
++) {
2541 if (agi
->agi_unlinked
[i
] == cpu_to_be32(NULLAGINO
))
2543 if (!xfs_verify_ino(mp
, be32_to_cpu(agi
->agi_unlinked
[i
])))
2544 return __this_address
;
2551 xfs_agi_read_verify(
2554 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2557 if (xfs_sb_version_hascrc(&mp
->m_sb
) &&
2558 !xfs_buf_verify_cksum(bp
, XFS_AGI_CRC_OFF
))
2559 xfs_verifier_error(bp
, -EFSBADCRC
, __this_address
);
2561 fa
= xfs_agi_verify(bp
);
2562 if (XFS_TEST_ERROR(fa
, mp
, XFS_ERRTAG_IALLOC_READ_AGI
))
2563 xfs_verifier_error(bp
, -EFSCORRUPTED
, fa
);
2568 xfs_agi_write_verify(
2571 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2572 struct xfs_buf_log_item
*bip
= bp
->b_log_item
;
2575 fa
= xfs_agi_verify(bp
);
2577 xfs_verifier_error(bp
, -EFSCORRUPTED
, fa
);
2581 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2585 XFS_BUF_TO_AGI(bp
)->agi_lsn
= cpu_to_be64(bip
->bli_item
.li_lsn
);
2586 xfs_buf_update_cksum(bp
, XFS_AGI_CRC_OFF
);
2589 const struct xfs_buf_ops xfs_agi_buf_ops
= {
2591 .verify_read
= xfs_agi_read_verify
,
2592 .verify_write
= xfs_agi_write_verify
,
2593 .verify_struct
= xfs_agi_verify
,
2597 * Read in the allocation group header (inode allocation section)
2601 struct xfs_mount
*mp
, /* file system mount structure */
2602 struct xfs_trans
*tp
, /* transaction pointer */
2603 xfs_agnumber_t agno
, /* allocation group number */
2604 struct xfs_buf
**bpp
) /* allocation group hdr buf */
2608 trace_xfs_read_agi(mp
, agno
);
2610 ASSERT(agno
!= NULLAGNUMBER
);
2611 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
,
2612 XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
)),
2613 XFS_FSS_TO_BB(mp
, 1), 0, bpp
, &xfs_agi_buf_ops
);
2617 xfs_trans_buf_set_type(tp
, *bpp
, XFS_BLFT_AGI_BUF
);
2619 xfs_buf_set_ref(*bpp
, XFS_AGI_REF
);
2624 xfs_ialloc_read_agi(
2625 struct xfs_mount
*mp
, /* file system mount structure */
2626 struct xfs_trans
*tp
, /* transaction pointer */
2627 xfs_agnumber_t agno
, /* allocation group number */
2628 struct xfs_buf
**bpp
) /* allocation group hdr buf */
2630 struct xfs_agi
*agi
; /* allocation group header */
2631 struct xfs_perag
*pag
; /* per allocation group data */
2634 trace_xfs_ialloc_read_agi(mp
, agno
);
2636 error
= xfs_read_agi(mp
, tp
, agno
, bpp
);
2640 agi
= XFS_BUF_TO_AGI(*bpp
);
2641 pag
= xfs_perag_get(mp
, agno
);
2642 if (!pag
->pagi_init
) {
2643 pag
->pagi_freecount
= be32_to_cpu(agi
->agi_freecount
);
2644 pag
->pagi_count
= be32_to_cpu(agi
->agi_count
);
2649 * It's possible for these to be out of sync if
2650 * we are in the middle of a forced shutdown.
2652 ASSERT(pag
->pagi_freecount
== be32_to_cpu(agi
->agi_freecount
) ||
2653 XFS_FORCED_SHUTDOWN(mp
));
2659 * Read in the agi to initialise the per-ag data in the mount structure
2662 xfs_ialloc_pagi_init(
2663 xfs_mount_t
*mp
, /* file system mount structure */
2664 xfs_trans_t
*tp
, /* transaction pointer */
2665 xfs_agnumber_t agno
) /* allocation group number */
2667 xfs_buf_t
*bp
= NULL
;
2670 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &bp
);
2674 xfs_trans_brelse(tp
, bp
);
2678 /* Is there an inode record covering a given range of inode numbers? */
2680 xfs_ialloc_has_inode_record(
2681 struct xfs_btree_cur
*cur
,
2686 struct xfs_inobt_rec_incore irec
;
2694 error
= xfs_inobt_lookup(cur
, low
, XFS_LOOKUP_LE
, &has_record
);
2695 while (error
== 0 && has_record
) {
2696 error
= xfs_inobt_get_rec(cur
, &irec
, &has_record
);
2697 if (error
|| irec
.ir_startino
> high
)
2700 agino
= irec
.ir_startino
;
2701 holemask
= irec
.ir_holemask
;
2702 for (i
= 0; i
< XFS_INOBT_HOLEMASK_BITS
; holemask
>>= 1,
2703 i
++, agino
+= XFS_INODES_PER_HOLEMASK_BIT
) {
2706 if (agino
+ XFS_INODES_PER_HOLEMASK_BIT
> low
&&
2713 error
= xfs_btree_increment(cur
, 0, &has_record
);
2718 /* Is there an inode record covering a given extent? */
2720 xfs_ialloc_has_inodes_at_extent(
2721 struct xfs_btree_cur
*cur
,
2729 low
= XFS_OFFBNO_TO_AGINO(cur
->bc_mp
, bno
, 0);
2730 high
= XFS_OFFBNO_TO_AGINO(cur
->bc_mp
, bno
+ len
, 0) - 1;
2732 return xfs_ialloc_has_inode_record(cur
, low
, high
, exists
);
2735 struct xfs_ialloc_count_inodes
{
2737 xfs_agino_t freecount
;
2740 /* Record inode counts across all inobt records. */
2742 xfs_ialloc_count_inodes_rec(
2743 struct xfs_btree_cur
*cur
,
2744 union xfs_btree_rec
*rec
,
2747 struct xfs_inobt_rec_incore irec
;
2748 struct xfs_ialloc_count_inodes
*ci
= priv
;
2750 xfs_inobt_btrec_to_irec(cur
->bc_mp
, rec
, &irec
);
2751 ci
->count
+= irec
.ir_count
;
2752 ci
->freecount
+= irec
.ir_freecount
;
2757 /* Count allocated and free inodes under an inobt. */
2759 xfs_ialloc_count_inodes(
2760 struct xfs_btree_cur
*cur
,
2762 xfs_agino_t
*freecount
)
2764 struct xfs_ialloc_count_inodes ci
= {0};
2767 ASSERT(cur
->bc_btnum
== XFS_BTNUM_INO
);
2768 error
= xfs_btree_query_all(cur
, xfs_ialloc_count_inodes_rec
, &ci
);
2773 *freecount
= ci
.freecount
;