perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / fs / xfs / xfs_aops.c
blob338b9d9984e04a62d790ae72638017c9ac3329d5
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_alloc.h"
17 #include "xfs_error.h"
18 #include "xfs_iomap.h"
19 #include "xfs_trace.h"
20 #include "xfs_bmap.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_bmap_btree.h"
23 #include "xfs_reflink.h"
24 #include <linux/writeback.h>
27 * structure owned by writepages passed to individual writepage calls
29 struct xfs_writepage_ctx {
30 struct xfs_bmbt_irec imap;
31 unsigned int io_type;
32 unsigned int cow_seq;
33 struct xfs_ioend *ioend;
36 struct block_device *
37 xfs_find_bdev_for_inode(
38 struct inode *inode)
40 struct xfs_inode *ip = XFS_I(inode);
41 struct xfs_mount *mp = ip->i_mount;
43 if (XFS_IS_REALTIME_INODE(ip))
44 return mp->m_rtdev_targp->bt_bdev;
45 else
46 return mp->m_ddev_targp->bt_bdev;
49 struct dax_device *
50 xfs_find_daxdev_for_inode(
51 struct inode *inode)
53 struct xfs_inode *ip = XFS_I(inode);
54 struct xfs_mount *mp = ip->i_mount;
56 if (XFS_IS_REALTIME_INODE(ip))
57 return mp->m_rtdev_targp->bt_daxdev;
58 else
59 return mp->m_ddev_targp->bt_daxdev;
62 static void
63 xfs_finish_page_writeback(
64 struct inode *inode,
65 struct bio_vec *bvec,
66 int error)
68 struct iomap_page *iop = to_iomap_page(bvec->bv_page);
70 if (error) {
71 SetPageError(bvec->bv_page);
72 mapping_set_error(inode->i_mapping, -EIO);
75 ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
76 ASSERT(!iop || atomic_read(&iop->write_count) > 0);
78 if (!iop || atomic_dec_and_test(&iop->write_count))
79 end_page_writeback(bvec->bv_page);
83 * We're now finished for good with this ioend structure. Update the page
84 * state, release holds on bios, and finally free up memory. Do not use the
85 * ioend after this.
87 STATIC void
88 xfs_destroy_ioend(
89 struct xfs_ioend *ioend,
90 int error)
92 struct inode *inode = ioend->io_inode;
93 struct bio *bio = &ioend->io_inline_bio;
94 struct bio *last = ioend->io_bio, *next;
95 u64 start = bio->bi_iter.bi_sector;
96 bool quiet = bio_flagged(bio, BIO_QUIET);
98 for (bio = &ioend->io_inline_bio; bio; bio = next) {
99 struct bio_vec *bvec;
100 int i;
103 * For the last bio, bi_private points to the ioend, so we
104 * need to explicitly end the iteration here.
106 if (bio == last)
107 next = NULL;
108 else
109 next = bio->bi_private;
111 /* walk each page on bio, ending page IO on them */
112 bio_for_each_segment_all(bvec, bio, i)
113 xfs_finish_page_writeback(inode, bvec, error);
114 bio_put(bio);
117 if (unlikely(error && !quiet)) {
118 xfs_err_ratelimited(XFS_I(inode)->i_mount,
119 "writeback error on sector %llu", start);
124 * Fast and loose check if this write could update the on-disk inode size.
126 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
128 return ioend->io_offset + ioend->io_size >
129 XFS_I(ioend->io_inode)->i_d.di_size;
132 STATIC int
133 xfs_setfilesize_trans_alloc(
134 struct xfs_ioend *ioend)
136 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
137 struct xfs_trans *tp;
138 int error;
140 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
141 XFS_TRANS_NOFS, &tp);
142 if (error)
143 return error;
145 ioend->io_append_trans = tp;
148 * We may pass freeze protection with a transaction. So tell lockdep
149 * we released it.
151 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
153 * We hand off the transaction to the completion thread now, so
154 * clear the flag here.
156 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
157 return 0;
161 * Update on-disk file size now that data has been written to disk.
163 STATIC int
164 __xfs_setfilesize(
165 struct xfs_inode *ip,
166 struct xfs_trans *tp,
167 xfs_off_t offset,
168 size_t size)
170 xfs_fsize_t isize;
172 xfs_ilock(ip, XFS_ILOCK_EXCL);
173 isize = xfs_new_eof(ip, offset + size);
174 if (!isize) {
175 xfs_iunlock(ip, XFS_ILOCK_EXCL);
176 xfs_trans_cancel(tp);
177 return 0;
180 trace_xfs_setfilesize(ip, offset, size);
182 ip->i_d.di_size = isize;
183 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
184 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
186 return xfs_trans_commit(tp);
190 xfs_setfilesize(
191 struct xfs_inode *ip,
192 xfs_off_t offset,
193 size_t size)
195 struct xfs_mount *mp = ip->i_mount;
196 struct xfs_trans *tp;
197 int error;
199 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
200 if (error)
201 return error;
203 return __xfs_setfilesize(ip, tp, offset, size);
206 STATIC int
207 xfs_setfilesize_ioend(
208 struct xfs_ioend *ioend,
209 int error)
211 struct xfs_inode *ip = XFS_I(ioend->io_inode);
212 struct xfs_trans *tp = ioend->io_append_trans;
215 * The transaction may have been allocated in the I/O submission thread,
216 * thus we need to mark ourselves as being in a transaction manually.
217 * Similarly for freeze protection.
219 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
220 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
222 /* we abort the update if there was an IO error */
223 if (error) {
224 xfs_trans_cancel(tp);
225 return error;
228 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
232 * IO write completion.
234 STATIC void
235 xfs_end_io(
236 struct work_struct *work)
238 struct xfs_ioend *ioend =
239 container_of(work, struct xfs_ioend, io_work);
240 struct xfs_inode *ip = XFS_I(ioend->io_inode);
241 xfs_off_t offset = ioend->io_offset;
242 size_t size = ioend->io_size;
243 int error;
246 * Just clean up the in-memory strutures if the fs has been shut down.
248 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
249 error = -EIO;
250 goto done;
254 * Clean up any COW blocks on an I/O error.
256 error = blk_status_to_errno(ioend->io_bio->bi_status);
257 if (unlikely(error)) {
258 switch (ioend->io_type) {
259 case XFS_IO_COW:
260 xfs_reflink_cancel_cow_range(ip, offset, size, true);
261 break;
264 goto done;
268 * Success: commit the COW or unwritten blocks if needed.
270 switch (ioend->io_type) {
271 case XFS_IO_COW:
272 error = xfs_reflink_end_cow(ip, offset, size);
273 break;
274 case XFS_IO_UNWRITTEN:
275 /* writeback should never update isize */
276 error = xfs_iomap_write_unwritten(ip, offset, size, false);
277 break;
278 default:
279 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
280 break;
283 done:
284 if (ioend->io_append_trans)
285 error = xfs_setfilesize_ioend(ioend, error);
286 xfs_destroy_ioend(ioend, error);
289 STATIC void
290 xfs_end_bio(
291 struct bio *bio)
293 struct xfs_ioend *ioend = bio->bi_private;
294 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
296 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
297 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
298 else if (ioend->io_append_trans)
299 queue_work(mp->m_data_workqueue, &ioend->io_work);
300 else
301 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
304 STATIC int
305 xfs_map_blocks(
306 struct xfs_writepage_ctx *wpc,
307 struct inode *inode,
308 loff_t offset)
310 struct xfs_inode *ip = XFS_I(inode);
311 struct xfs_mount *mp = ip->i_mount;
312 ssize_t count = i_blocksize(inode);
313 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset), end_fsb;
314 xfs_fileoff_t cow_fsb = NULLFILEOFF;
315 struct xfs_bmbt_irec imap;
316 int whichfork = XFS_DATA_FORK;
317 struct xfs_iext_cursor icur;
318 bool imap_valid;
319 int error = 0;
322 * We have to make sure the cached mapping is within EOF to protect
323 * against eofblocks trimming on file release leaving us with a stale
324 * mapping. Otherwise, a page for a subsequent file extending buffered
325 * write could get picked up by this writeback cycle and written to the
326 * wrong blocks.
328 * Note that what we really want here is a generic mapping invalidation
329 * mechanism to protect us from arbitrary extent modifying contexts, not
330 * just eofblocks.
332 xfs_trim_extent_eof(&wpc->imap, ip);
335 * COW fork blocks can overlap data fork blocks even if the blocks
336 * aren't shared. COW I/O always takes precedent, so we must always
337 * check for overlap on reflink inodes unless the mapping is already a
338 * COW one, or the COW fork hasn't changed from the last time we looked
339 * at it.
341 * It's safe to check the COW fork if_seq here without the ILOCK because
342 * we've indirectly protected against concurrent updates: writeback has
343 * the page locked, which prevents concurrent invalidations by reflink
344 * and directio and prevents concurrent buffered writes to the same
345 * page. Changes to if_seq always happen under i_lock, which protects
346 * against concurrent updates and provides a memory barrier on the way
347 * out that ensures that we always see the current value.
349 imap_valid = offset_fsb >= wpc->imap.br_startoff &&
350 offset_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount;
351 if (imap_valid &&
352 (!xfs_inode_has_cow_data(ip) ||
353 wpc->io_type == XFS_IO_COW ||
354 wpc->cow_seq == READ_ONCE(ip->i_cowfp->if_seq)))
355 return 0;
357 if (XFS_FORCED_SHUTDOWN(mp))
358 return -EIO;
361 * If we don't have a valid map, now it's time to get a new one for this
362 * offset. This will convert delayed allocations (including COW ones)
363 * into real extents. If we return without a valid map, it means we
364 * landed in a hole and we skip the block.
366 xfs_ilock(ip, XFS_ILOCK_SHARED);
367 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
368 (ip->i_df.if_flags & XFS_IFEXTENTS));
369 ASSERT(offset <= mp->m_super->s_maxbytes);
371 if (offset > mp->m_super->s_maxbytes - count)
372 count = mp->m_super->s_maxbytes - offset;
373 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
376 * Check if this is offset is covered by a COW extents, and if yes use
377 * it directly instead of looking up anything in the data fork.
379 if (xfs_inode_has_cow_data(ip) &&
380 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
381 cow_fsb = imap.br_startoff;
382 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
383 wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
384 xfs_iunlock(ip, XFS_ILOCK_SHARED);
386 * Truncate can race with writeback since writeback doesn't
387 * take the iolock and truncate decreases the file size before
388 * it starts truncating the pages between new_size and old_size.
389 * Therefore, we can end up in the situation where writeback
390 * gets a CoW fork mapping but the truncate makes the mapping
391 * invalid and we end up in here trying to get a new mapping.
392 * bail out here so that we simply never get a valid mapping
393 * and so we drop the write altogether. The page truncation
394 * will kill the contents anyway.
396 if (offset > i_size_read(inode)) {
397 wpc->io_type = XFS_IO_HOLE;
398 return 0;
400 whichfork = XFS_COW_FORK;
401 wpc->io_type = XFS_IO_COW;
402 goto allocate_blocks;
406 * Map valid and no COW extent in the way? We're done.
408 if (imap_valid) {
409 xfs_iunlock(ip, XFS_ILOCK_SHARED);
410 return 0;
414 * If we don't have a valid map, now it's time to get a new one for this
415 * offset. This will convert delayed allocations (including COW ones)
416 * into real extents.
418 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
419 imap.br_startoff = end_fsb; /* fake a hole past EOF */
420 xfs_iunlock(ip, XFS_ILOCK_SHARED);
422 if (imap.br_startoff > offset_fsb) {
423 /* landed in a hole or beyond EOF */
424 imap.br_blockcount = imap.br_startoff - offset_fsb;
425 imap.br_startoff = offset_fsb;
426 imap.br_startblock = HOLESTARTBLOCK;
427 wpc->io_type = XFS_IO_HOLE;
428 } else {
430 * Truncate to the next COW extent if there is one. This is the
431 * only opportunity to do this because we can skip COW fork
432 * lookups for the subsequent blocks in the mapping; however,
433 * the requirement to treat the COW range separately remains.
435 if (cow_fsb != NULLFILEOFF &&
436 cow_fsb < imap.br_startoff + imap.br_blockcount)
437 imap.br_blockcount = cow_fsb - imap.br_startoff;
439 if (isnullstartblock(imap.br_startblock)) {
440 /* got a delalloc extent */
441 wpc->io_type = XFS_IO_DELALLOC;
442 goto allocate_blocks;
445 if (imap.br_state == XFS_EXT_UNWRITTEN)
446 wpc->io_type = XFS_IO_UNWRITTEN;
447 else
448 wpc->io_type = XFS_IO_OVERWRITE;
451 wpc->imap = imap;
452 trace_xfs_map_blocks_found(ip, offset, count, wpc->io_type, &imap);
453 return 0;
454 allocate_blocks:
455 error = xfs_iomap_write_allocate(ip, whichfork, offset, &imap,
456 &wpc->cow_seq);
457 if (error)
458 return error;
459 ASSERT(whichfork == XFS_COW_FORK || cow_fsb == NULLFILEOFF ||
460 imap.br_startoff + imap.br_blockcount <= cow_fsb);
461 wpc->imap = imap;
462 trace_xfs_map_blocks_alloc(ip, offset, count, wpc->io_type, &imap);
463 return 0;
467 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
468 * it, and we submit that bio. The ioend may be used for multiple bio
469 * submissions, so we only want to allocate an append transaction for the ioend
470 * once. In the case of multiple bio submission, each bio will take an IO
471 * reference to the ioend to ensure that the ioend completion is only done once
472 * all bios have been submitted and the ioend is really done.
474 * If @fail is non-zero, it means that we have a situation where some part of
475 * the submission process has failed after we have marked paged for writeback
476 * and unlocked them. In this situation, we need to fail the bio and ioend
477 * rather than submit it to IO. This typically only happens on a filesystem
478 * shutdown.
480 STATIC int
481 xfs_submit_ioend(
482 struct writeback_control *wbc,
483 struct xfs_ioend *ioend,
484 int status)
486 /* Convert CoW extents to regular */
487 if (!status && ioend->io_type == XFS_IO_COW) {
489 * Yuk. This can do memory allocation, but is not a
490 * transactional operation so everything is done in GFP_KERNEL
491 * context. That can deadlock, because we hold pages in
492 * writeback state and GFP_KERNEL allocations can block on them.
493 * Hence we must operate in nofs conditions here.
495 unsigned nofs_flag;
497 nofs_flag = memalloc_nofs_save();
498 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
499 ioend->io_offset, ioend->io_size);
500 memalloc_nofs_restore(nofs_flag);
503 /* Reserve log space if we might write beyond the on-disk inode size. */
504 if (!status &&
505 ioend->io_type != XFS_IO_UNWRITTEN &&
506 xfs_ioend_is_append(ioend) &&
507 !ioend->io_append_trans)
508 status = xfs_setfilesize_trans_alloc(ioend);
510 ioend->io_bio->bi_private = ioend;
511 ioend->io_bio->bi_end_io = xfs_end_bio;
512 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
515 * If we are failing the IO now, just mark the ioend with an
516 * error and finish it. This will run IO completion immediately
517 * as there is only one reference to the ioend at this point in
518 * time.
520 if (status) {
521 ioend->io_bio->bi_status = errno_to_blk_status(status);
522 bio_endio(ioend->io_bio);
523 return status;
526 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
527 submit_bio(ioend->io_bio);
528 return 0;
531 static struct xfs_ioend *
532 xfs_alloc_ioend(
533 struct inode *inode,
534 unsigned int type,
535 xfs_off_t offset,
536 struct block_device *bdev,
537 sector_t sector)
539 struct xfs_ioend *ioend;
540 struct bio *bio;
542 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
543 bio_set_dev(bio, bdev);
544 bio->bi_iter.bi_sector = sector;
546 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
547 INIT_LIST_HEAD(&ioend->io_list);
548 ioend->io_type = type;
549 ioend->io_inode = inode;
550 ioend->io_size = 0;
551 ioend->io_offset = offset;
552 INIT_WORK(&ioend->io_work, xfs_end_io);
553 ioend->io_append_trans = NULL;
554 ioend->io_bio = bio;
555 return ioend;
559 * Allocate a new bio, and chain the old bio to the new one.
561 * Note that we have to do perform the chaining in this unintuitive order
562 * so that the bi_private linkage is set up in the right direction for the
563 * traversal in xfs_destroy_ioend().
565 static void
566 xfs_chain_bio(
567 struct xfs_ioend *ioend,
568 struct writeback_control *wbc,
569 struct block_device *bdev,
570 sector_t sector)
572 struct bio *new;
574 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
575 bio_set_dev(new, bdev);
576 new->bi_iter.bi_sector = sector;
577 bio_chain(ioend->io_bio, new);
578 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
579 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
580 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
581 submit_bio(ioend->io_bio);
582 ioend->io_bio = new;
586 * Test to see if we have an existing ioend structure that we could append to
587 * first, otherwise finish off the current ioend and start another.
589 STATIC void
590 xfs_add_to_ioend(
591 struct inode *inode,
592 xfs_off_t offset,
593 struct page *page,
594 struct iomap_page *iop,
595 struct xfs_writepage_ctx *wpc,
596 struct writeback_control *wbc,
597 struct list_head *iolist)
599 struct xfs_inode *ip = XFS_I(inode);
600 struct xfs_mount *mp = ip->i_mount;
601 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
602 unsigned len = i_blocksize(inode);
603 unsigned poff = offset & (PAGE_SIZE - 1);
604 sector_t sector;
606 sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) +
607 ((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9);
609 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
610 sector != bio_end_sector(wpc->ioend->io_bio) ||
611 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
612 if (wpc->ioend)
613 list_add(&wpc->ioend->io_list, iolist);
614 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset,
615 bdev, sector);
618 if (!__bio_try_merge_page(wpc->ioend->io_bio, page, len, poff)) {
619 if (iop)
620 atomic_inc(&iop->write_count);
621 if (bio_full(wpc->ioend->io_bio))
622 xfs_chain_bio(wpc->ioend, wbc, bdev, sector);
623 __bio_add_page(wpc->ioend->io_bio, page, len, poff);
626 wpc->ioend->io_size += len;
629 STATIC void
630 xfs_vm_invalidatepage(
631 struct page *page,
632 unsigned int offset,
633 unsigned int length)
635 trace_xfs_invalidatepage(page->mapping->host, page, offset, length);
636 iomap_invalidatepage(page, offset, length);
640 * If the page has delalloc blocks on it, we need to punch them out before we
641 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
642 * inode that can trip up a later direct I/O read operation on the same region.
644 * We prevent this by truncating away the delalloc regions on the page. Because
645 * they are delalloc, we can do this without needing a transaction. Indeed - if
646 * we get ENOSPC errors, we have to be able to do this truncation without a
647 * transaction as there is no space left for block reservation (typically why we
648 * see a ENOSPC in writeback).
650 STATIC void
651 xfs_aops_discard_page(
652 struct page *page)
654 struct inode *inode = page->mapping->host;
655 struct xfs_inode *ip = XFS_I(inode);
656 struct xfs_mount *mp = ip->i_mount;
657 loff_t offset = page_offset(page);
658 xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, offset);
659 int error;
661 if (XFS_FORCED_SHUTDOWN(mp))
662 goto out_invalidate;
664 xfs_alert(mp,
665 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
666 page, ip->i_ino, offset);
668 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
669 PAGE_SIZE / i_blocksize(inode));
670 if (error && !XFS_FORCED_SHUTDOWN(mp))
671 xfs_alert(mp, "page discard unable to remove delalloc mapping.");
672 out_invalidate:
673 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
677 * We implement an immediate ioend submission policy here to avoid needing to
678 * chain multiple ioends and hence nest mempool allocations which can violate
679 * forward progress guarantees we need to provide. The current ioend we are
680 * adding blocks to is cached on the writepage context, and if the new block
681 * does not append to the cached ioend it will create a new ioend and cache that
682 * instead.
684 * If a new ioend is created and cached, the old ioend is returned and queued
685 * locally for submission once the entire page is processed or an error has been
686 * detected. While ioends are submitted immediately after they are completed,
687 * batching optimisations are provided by higher level block plugging.
689 * At the end of a writeback pass, there will be a cached ioend remaining on the
690 * writepage context that the caller will need to submit.
692 static int
693 xfs_writepage_map(
694 struct xfs_writepage_ctx *wpc,
695 struct writeback_control *wbc,
696 struct inode *inode,
697 struct page *page,
698 uint64_t end_offset)
700 LIST_HEAD(submit_list);
701 struct iomap_page *iop = to_iomap_page(page);
702 unsigned len = i_blocksize(inode);
703 struct xfs_ioend *ioend, *next;
704 uint64_t file_offset; /* file offset of page */
705 int error = 0, count = 0, i;
707 ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
708 ASSERT(!iop || atomic_read(&iop->write_count) == 0);
711 * Walk through the page to find areas to write back. If we run off the
712 * end of the current map or find the current map invalid, grab a new
713 * one.
715 for (i = 0, file_offset = page_offset(page);
716 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
717 i++, file_offset += len) {
718 if (iop && !test_bit(i, iop->uptodate))
719 continue;
721 error = xfs_map_blocks(wpc, inode, file_offset);
722 if (error)
723 break;
724 if (wpc->io_type == XFS_IO_HOLE)
725 continue;
726 xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
727 &submit_list);
728 count++;
731 ASSERT(wpc->ioend || list_empty(&submit_list));
732 ASSERT(PageLocked(page));
733 ASSERT(!PageWriteback(page));
736 * On error, we have to fail the ioend here because we may have set
737 * pages under writeback, we have to make sure we run IO completion to
738 * mark the error state of the IO appropriately, so we can't cancel the
739 * ioend directly here. That means we have to mark this page as under
740 * writeback if we included any blocks from it in the ioend chain so
741 * that completion treats it correctly.
743 * If we didn't include the page in the ioend, the on error we can
744 * simply discard and unlock it as there are no other users of the page
745 * now. The caller will still need to trigger submission of outstanding
746 * ioends on the writepage context so they are treated correctly on
747 * error.
749 if (unlikely(error)) {
750 if (!count) {
751 xfs_aops_discard_page(page);
752 ClearPageUptodate(page);
753 unlock_page(page);
754 goto done;
758 * If the page was not fully cleaned, we need to ensure that the
759 * higher layers come back to it correctly. That means we need
760 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
761 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
762 * so another attempt to write this page in this writeback sweep
763 * will be made.
765 set_page_writeback_keepwrite(page);
766 } else {
767 clear_page_dirty_for_io(page);
768 set_page_writeback(page);
771 unlock_page(page);
774 * Preserve the original error if there was one, otherwise catch
775 * submission errors here and propagate into subsequent ioend
776 * submissions.
778 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
779 int error2;
781 list_del_init(&ioend->io_list);
782 error2 = xfs_submit_ioend(wbc, ioend, error);
783 if (error2 && !error)
784 error = error2;
788 * We can end up here with no error and nothing to write only if we race
789 * with a partial page truncate on a sub-page block sized filesystem.
791 if (!count)
792 end_page_writeback(page);
793 done:
794 mapping_set_error(page->mapping, error);
795 return error;
799 * Write out a dirty page.
801 * For delalloc space on the page we need to allocate space and flush it.
802 * For unwritten space on the page we need to start the conversion to
803 * regular allocated space.
805 STATIC int
806 xfs_do_writepage(
807 struct page *page,
808 struct writeback_control *wbc,
809 void *data)
811 struct xfs_writepage_ctx *wpc = data;
812 struct inode *inode = page->mapping->host;
813 loff_t offset;
814 uint64_t end_offset;
815 pgoff_t end_index;
817 trace_xfs_writepage(inode, page, 0, 0);
820 * Refuse to write the page out if we are called from reclaim context.
822 * This avoids stack overflows when called from deeply used stacks in
823 * random callers for direct reclaim or memcg reclaim. We explicitly
824 * allow reclaim from kswapd as the stack usage there is relatively low.
826 * This should never happen except in the case of a VM regression so
827 * warn about it.
829 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
830 PF_MEMALLOC))
831 goto redirty;
834 * Given that we do not allow direct reclaim to call us, we should
835 * never be called while in a filesystem transaction.
837 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
838 goto redirty;
841 * Is this page beyond the end of the file?
843 * The page index is less than the end_index, adjust the end_offset
844 * to the highest offset that this page should represent.
845 * -----------------------------------------------------
846 * | file mapping | <EOF> |
847 * -----------------------------------------------------
848 * | Page ... | Page N-2 | Page N-1 | Page N | |
849 * ^--------------------------------^----------|--------
850 * | desired writeback range | see else |
851 * ---------------------------------^------------------|
853 offset = i_size_read(inode);
854 end_index = offset >> PAGE_SHIFT;
855 if (page->index < end_index)
856 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
857 else {
859 * Check whether the page to write out is beyond or straddles
860 * i_size or not.
861 * -------------------------------------------------------
862 * | file mapping | <EOF> |
863 * -------------------------------------------------------
864 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
865 * ^--------------------------------^-----------|---------
866 * | | Straddles |
867 * ---------------------------------^-----------|--------|
869 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
872 * Skip the page if it is fully outside i_size, e.g. due to a
873 * truncate operation that is in progress. We must redirty the
874 * page so that reclaim stops reclaiming it. Otherwise
875 * xfs_vm_releasepage() is called on it and gets confused.
877 * Note that the end_index is unsigned long, it would overflow
878 * if the given offset is greater than 16TB on 32-bit system
879 * and if we do check the page is fully outside i_size or not
880 * via "if (page->index >= end_index + 1)" as "end_index + 1"
881 * will be evaluated to 0. Hence this page will be redirtied
882 * and be written out repeatedly which would result in an
883 * infinite loop, the user program that perform this operation
884 * will hang. Instead, we can verify this situation by checking
885 * if the page to write is totally beyond the i_size or if it's
886 * offset is just equal to the EOF.
888 if (page->index > end_index ||
889 (page->index == end_index && offset_into_page == 0))
890 goto redirty;
893 * The page straddles i_size. It must be zeroed out on each
894 * and every writepage invocation because it may be mmapped.
895 * "A file is mapped in multiples of the page size. For a file
896 * that is not a multiple of the page size, the remaining
897 * memory is zeroed when mapped, and writes to that region are
898 * not written out to the file."
900 zero_user_segment(page, offset_into_page, PAGE_SIZE);
902 /* Adjust the end_offset to the end of file */
903 end_offset = offset;
906 return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
908 redirty:
909 redirty_page_for_writepage(wbc, page);
910 unlock_page(page);
911 return 0;
914 STATIC int
915 xfs_vm_writepage(
916 struct page *page,
917 struct writeback_control *wbc)
919 struct xfs_writepage_ctx wpc = {
920 .io_type = XFS_IO_HOLE,
922 int ret;
924 ret = xfs_do_writepage(page, wbc, &wpc);
925 if (wpc.ioend)
926 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
927 return ret;
930 STATIC int
931 xfs_vm_writepages(
932 struct address_space *mapping,
933 struct writeback_control *wbc)
935 struct xfs_writepage_ctx wpc = {
936 .io_type = XFS_IO_HOLE,
938 int ret;
940 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
941 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
942 if (wpc.ioend)
943 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
944 return ret;
947 STATIC int
948 xfs_dax_writepages(
949 struct address_space *mapping,
950 struct writeback_control *wbc)
952 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
953 return dax_writeback_mapping_range(mapping,
954 xfs_find_bdev_for_inode(mapping->host), wbc);
957 STATIC int
958 xfs_vm_releasepage(
959 struct page *page,
960 gfp_t gfp_mask)
962 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
963 return iomap_releasepage(page, gfp_mask);
966 STATIC sector_t
967 xfs_vm_bmap(
968 struct address_space *mapping,
969 sector_t block)
971 struct xfs_inode *ip = XFS_I(mapping->host);
973 trace_xfs_vm_bmap(ip);
976 * The swap code (ab-)uses ->bmap to get a block mapping and then
977 * bypasses the file system for actual I/O. We really can't allow
978 * that on reflinks inodes, so we have to skip out here. And yes,
979 * 0 is the magic code for a bmap error.
981 * Since we don't pass back blockdev info, we can't return bmap
982 * information for rt files either.
984 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
985 return 0;
986 return iomap_bmap(mapping, block, &xfs_iomap_ops);
989 STATIC int
990 xfs_vm_readpage(
991 struct file *unused,
992 struct page *page)
994 trace_xfs_vm_readpage(page->mapping->host, 1);
995 return iomap_readpage(page, &xfs_iomap_ops);
998 STATIC int
999 xfs_vm_readpages(
1000 struct file *unused,
1001 struct address_space *mapping,
1002 struct list_head *pages,
1003 unsigned nr_pages)
1005 trace_xfs_vm_readpages(mapping->host, nr_pages);
1006 return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
1009 static int
1010 xfs_iomap_swapfile_activate(
1011 struct swap_info_struct *sis,
1012 struct file *swap_file,
1013 sector_t *span)
1015 sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
1016 return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
1019 const struct address_space_operations xfs_address_space_operations = {
1020 .readpage = xfs_vm_readpage,
1021 .readpages = xfs_vm_readpages,
1022 .writepage = xfs_vm_writepage,
1023 .writepages = xfs_vm_writepages,
1024 .set_page_dirty = iomap_set_page_dirty,
1025 .releasepage = xfs_vm_releasepage,
1026 .invalidatepage = xfs_vm_invalidatepage,
1027 .bmap = xfs_vm_bmap,
1028 .direct_IO = noop_direct_IO,
1029 .migratepage = iomap_migrate_page,
1030 .is_partially_uptodate = iomap_is_partially_uptodate,
1031 .error_remove_page = generic_error_remove_page,
1032 .swap_activate = xfs_iomap_swapfile_activate,
1035 const struct address_space_operations xfs_dax_aops = {
1036 .writepages = xfs_dax_writepages,
1037 .direct_IO = noop_direct_IO,
1038 .set_page_dirty = noop_set_page_dirty,
1039 .invalidatepage = noop_invalidatepage,
1040 .swap_activate = xfs_iomap_swapfile_activate,