perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / fs / xfs / xfs_trans_buf.c
blob629f1479c9d234492d3a7d431dd21bb30f4db393
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_error.h"
18 #include "xfs_trace.h"
21 * Check to see if a buffer matching the given parameters is already
22 * a part of the given transaction.
24 STATIC struct xfs_buf *
25 xfs_trans_buf_item_match(
26 struct xfs_trans *tp,
27 struct xfs_buftarg *target,
28 struct xfs_buf_map *map,
29 int nmaps)
31 struct xfs_log_item *lip;
32 struct xfs_buf_log_item *blip;
33 int len = 0;
34 int i;
36 for (i = 0; i < nmaps; i++)
37 len += map[i].bm_len;
39 list_for_each_entry(lip, &tp->t_items, li_trans) {
40 blip = (struct xfs_buf_log_item *)lip;
41 if (blip->bli_item.li_type == XFS_LI_BUF &&
42 blip->bli_buf->b_target == target &&
43 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
44 blip->bli_buf->b_length == len) {
45 ASSERT(blip->bli_buf->b_map_count == nmaps);
46 return blip->bli_buf;
50 return NULL;
54 * Add the locked buffer to the transaction.
56 * The buffer must be locked, and it cannot be associated with any
57 * transaction.
59 * If the buffer does not yet have a buf log item associated with it,
60 * then allocate one for it. Then add the buf item to the transaction.
62 STATIC void
63 _xfs_trans_bjoin(
64 struct xfs_trans *tp,
65 struct xfs_buf *bp,
66 int reset_recur)
68 struct xfs_buf_log_item *bip;
70 ASSERT(bp->b_transp == NULL);
73 * The xfs_buf_log_item pointer is stored in b_log_item. If
74 * it doesn't have one yet, then allocate one and initialize it.
75 * The checks to see if one is there are in xfs_buf_item_init().
77 xfs_buf_item_init(bp, tp->t_mountp);
78 bip = bp->b_log_item;
79 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
80 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
81 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
82 if (reset_recur)
83 bip->bli_recur = 0;
86 * Take a reference for this transaction on the buf item.
88 atomic_inc(&bip->bli_refcount);
91 * Attach the item to the transaction so we can find it in
92 * xfs_trans_get_buf() and friends.
94 xfs_trans_add_item(tp, &bip->bli_item);
95 bp->b_transp = tp;
99 void
100 xfs_trans_bjoin(
101 struct xfs_trans *tp,
102 struct xfs_buf *bp)
104 _xfs_trans_bjoin(tp, bp, 0);
105 trace_xfs_trans_bjoin(bp->b_log_item);
109 * Get and lock the buffer for the caller if it is not already
110 * locked within the given transaction. If it is already locked
111 * within the transaction, just increment its lock recursion count
112 * and return a pointer to it.
114 * If the transaction pointer is NULL, make this just a normal
115 * get_buf() call.
117 struct xfs_buf *
118 xfs_trans_get_buf_map(
119 struct xfs_trans *tp,
120 struct xfs_buftarg *target,
121 struct xfs_buf_map *map,
122 int nmaps,
123 xfs_buf_flags_t flags)
125 xfs_buf_t *bp;
126 struct xfs_buf_log_item *bip;
128 if (!tp)
129 return xfs_buf_get_map(target, map, nmaps, flags);
132 * If we find the buffer in the cache with this transaction
133 * pointer in its b_fsprivate2 field, then we know we already
134 * have it locked. In this case we just increment the lock
135 * recursion count and return the buffer to the caller.
137 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
138 if (bp != NULL) {
139 ASSERT(xfs_buf_islocked(bp));
140 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
141 xfs_buf_stale(bp);
142 bp->b_flags |= XBF_DONE;
145 ASSERT(bp->b_transp == tp);
146 bip = bp->b_log_item;
147 ASSERT(bip != NULL);
148 ASSERT(atomic_read(&bip->bli_refcount) > 0);
149 bip->bli_recur++;
150 trace_xfs_trans_get_buf_recur(bip);
151 return bp;
154 bp = xfs_buf_get_map(target, map, nmaps, flags);
155 if (bp == NULL) {
156 return NULL;
159 ASSERT(!bp->b_error);
161 _xfs_trans_bjoin(tp, bp, 1);
162 trace_xfs_trans_get_buf(bp->b_log_item);
163 return bp;
167 * Get and lock the superblock buffer of this file system for the
168 * given transaction.
170 * We don't need to use incore_match() here, because the superblock
171 * buffer is a private buffer which we keep a pointer to in the
172 * mount structure.
174 xfs_buf_t *
175 xfs_trans_getsb(
176 xfs_trans_t *tp,
177 struct xfs_mount *mp,
178 int flags)
180 xfs_buf_t *bp;
181 struct xfs_buf_log_item *bip;
184 * Default to just trying to lock the superblock buffer
185 * if tp is NULL.
187 if (tp == NULL)
188 return xfs_getsb(mp, flags);
191 * If the superblock buffer already has this transaction
192 * pointer in its b_fsprivate2 field, then we know we already
193 * have it locked. In this case we just increment the lock
194 * recursion count and return the buffer to the caller.
196 bp = mp->m_sb_bp;
197 if (bp->b_transp == tp) {
198 bip = bp->b_log_item;
199 ASSERT(bip != NULL);
200 ASSERT(atomic_read(&bip->bli_refcount) > 0);
201 bip->bli_recur++;
202 trace_xfs_trans_getsb_recur(bip);
203 return bp;
206 bp = xfs_getsb(mp, flags);
207 if (bp == NULL)
208 return NULL;
210 _xfs_trans_bjoin(tp, bp, 1);
211 trace_xfs_trans_getsb(bp->b_log_item);
212 return bp;
216 * Get and lock the buffer for the caller if it is not already
217 * locked within the given transaction. If it has not yet been
218 * read in, read it from disk. If it is already locked
219 * within the transaction and already read in, just increment its
220 * lock recursion count and return a pointer to it.
222 * If the transaction pointer is NULL, make this just a normal
223 * read_buf() call.
226 xfs_trans_read_buf_map(
227 struct xfs_mount *mp,
228 struct xfs_trans *tp,
229 struct xfs_buftarg *target,
230 struct xfs_buf_map *map,
231 int nmaps,
232 xfs_buf_flags_t flags,
233 struct xfs_buf **bpp,
234 const struct xfs_buf_ops *ops)
236 struct xfs_buf *bp = NULL;
237 struct xfs_buf_log_item *bip;
238 int error;
240 *bpp = NULL;
242 * If we find the buffer in the cache with this transaction
243 * pointer in its b_fsprivate2 field, then we know we already
244 * have it locked. If it is already read in we just increment
245 * the lock recursion count and return the buffer to the caller.
246 * If the buffer is not yet read in, then we read it in, increment
247 * the lock recursion count, and return it to the caller.
249 if (tp)
250 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
251 if (bp) {
252 ASSERT(xfs_buf_islocked(bp));
253 ASSERT(bp->b_transp == tp);
254 ASSERT(bp->b_log_item != NULL);
255 ASSERT(!bp->b_error);
256 ASSERT(bp->b_flags & XBF_DONE);
259 * We never locked this buf ourselves, so we shouldn't
260 * brelse it either. Just get out.
262 if (XFS_FORCED_SHUTDOWN(mp)) {
263 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
264 return -EIO;
268 * Check if the caller is trying to read a buffer that is
269 * already attached to the transaction yet has no buffer ops
270 * assigned. Ops are usually attached when the buffer is
271 * attached to the transaction, or by the read caller if
272 * special circumstances. That didn't happen, which is not
273 * how this is supposed to go.
275 * If the buffer passes verification we'll let this go, but if
276 * not we have to shut down. Let the transaction cleanup code
277 * release this buffer when it kills the tranaction.
279 ASSERT(bp->b_ops != NULL);
280 error = xfs_buf_ensure_ops(bp, ops);
281 if (error) {
282 xfs_buf_ioerror_alert(bp, __func__);
284 if (tp->t_flags & XFS_TRANS_DIRTY)
285 xfs_force_shutdown(tp->t_mountp,
286 SHUTDOWN_META_IO_ERROR);
288 /* bad CRC means corrupted metadata */
289 if (error == -EFSBADCRC)
290 error = -EFSCORRUPTED;
291 return error;
294 bip = bp->b_log_item;
295 bip->bli_recur++;
297 ASSERT(atomic_read(&bip->bli_refcount) > 0);
298 trace_xfs_trans_read_buf_recur(bip);
299 ASSERT(bp->b_ops != NULL || ops == NULL);
300 *bpp = bp;
301 return 0;
304 bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
305 if (!bp) {
306 if (!(flags & XBF_TRYLOCK))
307 return -ENOMEM;
308 return tp ? 0 : -EAGAIN;
312 * If we've had a read error, then the contents of the buffer are
313 * invalid and should not be used. To ensure that a followup read tries
314 * to pull the buffer from disk again, we clear the XBF_DONE flag and
315 * mark the buffer stale. This ensures that anyone who has a current
316 * reference to the buffer will interpret it's contents correctly and
317 * future cache lookups will also treat it as an empty, uninitialised
318 * buffer.
320 if (bp->b_error) {
321 error = bp->b_error;
322 if (!XFS_FORCED_SHUTDOWN(mp))
323 xfs_buf_ioerror_alert(bp, __func__);
324 bp->b_flags &= ~XBF_DONE;
325 xfs_buf_stale(bp);
327 if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
328 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
329 xfs_buf_relse(bp);
331 /* bad CRC means corrupted metadata */
332 if (error == -EFSBADCRC)
333 error = -EFSCORRUPTED;
334 return error;
337 if (XFS_FORCED_SHUTDOWN(mp)) {
338 xfs_buf_relse(bp);
339 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
340 return -EIO;
343 if (tp) {
344 _xfs_trans_bjoin(tp, bp, 1);
345 trace_xfs_trans_read_buf(bp->b_log_item);
347 ASSERT(bp->b_ops != NULL || ops == NULL);
348 *bpp = bp;
349 return 0;
353 /* Has this buffer been dirtied by anyone? */
354 bool
355 xfs_trans_buf_is_dirty(
356 struct xfs_buf *bp)
358 struct xfs_buf_log_item *bip = bp->b_log_item;
360 if (!bip)
361 return false;
362 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
363 return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
367 * Release a buffer previously joined to the transaction. If the buffer is
368 * modified within this transaction, decrement the recursion count but do not
369 * release the buffer even if the count goes to 0. If the buffer is not modified
370 * within the transaction, decrement the recursion count and release the buffer
371 * if the recursion count goes to 0.
373 * If the buffer is to be released and it was not already dirty before this
374 * transaction began, then also free the buf_log_item associated with it.
376 * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
378 void
379 xfs_trans_brelse(
380 struct xfs_trans *tp,
381 struct xfs_buf *bp)
383 struct xfs_buf_log_item *bip = bp->b_log_item;
385 ASSERT(bp->b_transp == tp);
387 if (!tp) {
388 xfs_buf_relse(bp);
389 return;
392 trace_xfs_trans_brelse(bip);
393 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
394 ASSERT(atomic_read(&bip->bli_refcount) > 0);
397 * If the release is for a recursive lookup, then decrement the count
398 * and return.
400 if (bip->bli_recur > 0) {
401 bip->bli_recur--;
402 return;
406 * If the buffer is invalidated or dirty in this transaction, we can't
407 * release it until we commit.
409 if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
410 return;
411 if (bip->bli_flags & XFS_BLI_STALE)
412 return;
415 * Unlink the log item from the transaction and clear the hold flag, if
416 * set. We wouldn't want the next user of the buffer to get confused.
418 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
419 xfs_trans_del_item(&bip->bli_item);
420 bip->bli_flags &= ~XFS_BLI_HOLD;
422 /* drop the reference to the bli */
423 xfs_buf_item_put(bip);
425 bp->b_transp = NULL;
426 xfs_buf_relse(bp);
430 * Mark the buffer as not needing to be unlocked when the buf item's
431 * iop_unlock() routine is called. The buffer must already be locked
432 * and associated with the given transaction.
434 /* ARGSUSED */
435 void
436 xfs_trans_bhold(
437 xfs_trans_t *tp,
438 xfs_buf_t *bp)
440 struct xfs_buf_log_item *bip = bp->b_log_item;
442 ASSERT(bp->b_transp == tp);
443 ASSERT(bip != NULL);
444 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
445 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
446 ASSERT(atomic_read(&bip->bli_refcount) > 0);
448 bip->bli_flags |= XFS_BLI_HOLD;
449 trace_xfs_trans_bhold(bip);
453 * Cancel the previous buffer hold request made on this buffer
454 * for this transaction.
456 void
457 xfs_trans_bhold_release(
458 xfs_trans_t *tp,
459 xfs_buf_t *bp)
461 struct xfs_buf_log_item *bip = bp->b_log_item;
463 ASSERT(bp->b_transp == tp);
464 ASSERT(bip != NULL);
465 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
466 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
467 ASSERT(atomic_read(&bip->bli_refcount) > 0);
468 ASSERT(bip->bli_flags & XFS_BLI_HOLD);
470 bip->bli_flags &= ~XFS_BLI_HOLD;
471 trace_xfs_trans_bhold_release(bip);
475 * Mark a buffer dirty in the transaction.
477 void
478 xfs_trans_dirty_buf(
479 struct xfs_trans *tp,
480 struct xfs_buf *bp)
482 struct xfs_buf_log_item *bip = bp->b_log_item;
484 ASSERT(bp->b_transp == tp);
485 ASSERT(bip != NULL);
486 ASSERT(bp->b_iodone == NULL ||
487 bp->b_iodone == xfs_buf_iodone_callbacks);
490 * Mark the buffer as needing to be written out eventually,
491 * and set its iodone function to remove the buffer's buf log
492 * item from the AIL and free it when the buffer is flushed
493 * to disk. See xfs_buf_attach_iodone() for more details
494 * on li_cb and xfs_buf_iodone_callbacks().
495 * If we end up aborting this transaction, we trap this buffer
496 * inside the b_bdstrat callback so that this won't get written to
497 * disk.
499 bp->b_flags |= XBF_DONE;
501 ASSERT(atomic_read(&bip->bli_refcount) > 0);
502 bp->b_iodone = xfs_buf_iodone_callbacks;
503 bip->bli_item.li_cb = xfs_buf_iodone;
506 * If we invalidated the buffer within this transaction, then
507 * cancel the invalidation now that we're dirtying the buffer
508 * again. There are no races with the code in xfs_buf_item_unpin(),
509 * because we have a reference to the buffer this entire time.
511 if (bip->bli_flags & XFS_BLI_STALE) {
512 bip->bli_flags &= ~XFS_BLI_STALE;
513 ASSERT(bp->b_flags & XBF_STALE);
514 bp->b_flags &= ~XBF_STALE;
515 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
517 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
519 tp->t_flags |= XFS_TRANS_DIRTY;
520 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
524 * This is called to mark bytes first through last inclusive of the given
525 * buffer as needing to be logged when the transaction is committed.
526 * The buffer must already be associated with the given transaction.
528 * First and last are numbers relative to the beginning of this buffer,
529 * so the first byte in the buffer is numbered 0 regardless of the
530 * value of b_blkno.
532 void
533 xfs_trans_log_buf(
534 struct xfs_trans *tp,
535 struct xfs_buf *bp,
536 uint first,
537 uint last)
539 struct xfs_buf_log_item *bip = bp->b_log_item;
541 ASSERT(first <= last && last < BBTOB(bp->b_length));
542 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
544 xfs_trans_dirty_buf(tp, bp);
546 trace_xfs_trans_log_buf(bip);
547 xfs_buf_item_log(bip, first, last);
552 * Invalidate a buffer that is being used within a transaction.
554 * Typically this is because the blocks in the buffer are being freed, so we
555 * need to prevent it from being written out when we're done. Allowing it
556 * to be written again might overwrite data in the free blocks if they are
557 * reallocated to a file.
559 * We prevent the buffer from being written out by marking it stale. We can't
560 * get rid of the buf log item at this point because the buffer may still be
561 * pinned by another transaction. If that is the case, then we'll wait until
562 * the buffer is committed to disk for the last time (we can tell by the ref
563 * count) and free it in xfs_buf_item_unpin(). Until that happens we will
564 * keep the buffer locked so that the buffer and buf log item are not reused.
566 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
567 * the buf item. This will be used at recovery time to determine that copies
568 * of the buffer in the log before this should not be replayed.
570 * We mark the item descriptor and the transaction dirty so that we'll hold
571 * the buffer until after the commit.
573 * Since we're invalidating the buffer, we also clear the state about which
574 * parts of the buffer have been logged. We also clear the flag indicating
575 * that this is an inode buffer since the data in the buffer will no longer
576 * be valid.
578 * We set the stale bit in the buffer as well since we're getting rid of it.
580 void
581 xfs_trans_binval(
582 xfs_trans_t *tp,
583 xfs_buf_t *bp)
585 struct xfs_buf_log_item *bip = bp->b_log_item;
586 int i;
588 ASSERT(bp->b_transp == tp);
589 ASSERT(bip != NULL);
590 ASSERT(atomic_read(&bip->bli_refcount) > 0);
592 trace_xfs_trans_binval(bip);
594 if (bip->bli_flags & XFS_BLI_STALE) {
596 * If the buffer is already invalidated, then
597 * just return.
599 ASSERT(bp->b_flags & XBF_STALE);
600 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
601 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
602 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
603 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
604 ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
605 ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
606 return;
609 xfs_buf_stale(bp);
611 bip->bli_flags |= XFS_BLI_STALE;
612 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
613 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
614 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
615 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
616 for (i = 0; i < bip->bli_format_count; i++) {
617 memset(bip->bli_formats[i].blf_data_map, 0,
618 (bip->bli_formats[i].blf_map_size * sizeof(uint)));
620 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
621 tp->t_flags |= XFS_TRANS_DIRTY;
625 * This call is used to indicate that the buffer contains on-disk inodes which
626 * must be handled specially during recovery. They require special handling
627 * because only the di_next_unlinked from the inodes in the buffer should be
628 * recovered. The rest of the data in the buffer is logged via the inodes
629 * themselves.
631 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
632 * transferred to the buffer's log format structure so that we'll know what to
633 * do at recovery time.
635 void
636 xfs_trans_inode_buf(
637 xfs_trans_t *tp,
638 xfs_buf_t *bp)
640 struct xfs_buf_log_item *bip = bp->b_log_item;
642 ASSERT(bp->b_transp == tp);
643 ASSERT(bip != NULL);
644 ASSERT(atomic_read(&bip->bli_refcount) > 0);
646 bip->bli_flags |= XFS_BLI_INODE_BUF;
647 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
651 * This call is used to indicate that the buffer is going to
652 * be staled and was an inode buffer. This means it gets
653 * special processing during unpin - where any inodes
654 * associated with the buffer should be removed from ail.
655 * There is also special processing during recovery,
656 * any replay of the inodes in the buffer needs to be
657 * prevented as the buffer may have been reused.
659 void
660 xfs_trans_stale_inode_buf(
661 xfs_trans_t *tp,
662 xfs_buf_t *bp)
664 struct xfs_buf_log_item *bip = bp->b_log_item;
666 ASSERT(bp->b_transp == tp);
667 ASSERT(bip != NULL);
668 ASSERT(atomic_read(&bip->bli_refcount) > 0);
670 bip->bli_flags |= XFS_BLI_STALE_INODE;
671 bip->bli_item.li_cb = xfs_buf_iodone;
672 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
676 * Mark the buffer as being one which contains newly allocated
677 * inodes. We need to make sure that even if this buffer is
678 * relogged as an 'inode buf' we still recover all of the inode
679 * images in the face of a crash. This works in coordination with
680 * xfs_buf_item_committed() to ensure that the buffer remains in the
681 * AIL at its original location even after it has been relogged.
683 /* ARGSUSED */
684 void
685 xfs_trans_inode_alloc_buf(
686 xfs_trans_t *tp,
687 xfs_buf_t *bp)
689 struct xfs_buf_log_item *bip = bp->b_log_item;
691 ASSERT(bp->b_transp == tp);
692 ASSERT(bip != NULL);
693 ASSERT(atomic_read(&bip->bli_refcount) > 0);
695 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
696 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
700 * Mark the buffer as ordered for this transaction. This means that the contents
701 * of the buffer are not recorded in the transaction but it is tracked in the
702 * AIL as though it was. This allows us to record logical changes in
703 * transactions rather than the physical changes we make to the buffer without
704 * changing writeback ordering constraints of metadata buffers.
706 bool
707 xfs_trans_ordered_buf(
708 struct xfs_trans *tp,
709 struct xfs_buf *bp)
711 struct xfs_buf_log_item *bip = bp->b_log_item;
713 ASSERT(bp->b_transp == tp);
714 ASSERT(bip != NULL);
715 ASSERT(atomic_read(&bip->bli_refcount) > 0);
717 if (xfs_buf_item_dirty_format(bip))
718 return false;
720 bip->bli_flags |= XFS_BLI_ORDERED;
721 trace_xfs_buf_item_ordered(bip);
724 * We don't log a dirty range of an ordered buffer but it still needs
725 * to be marked dirty and that it has been logged.
727 xfs_trans_dirty_buf(tp, bp);
728 return true;
732 * Set the type of the buffer for log recovery so that it can correctly identify
733 * and hence attach the correct buffer ops to the buffer after replay.
735 void
736 xfs_trans_buf_set_type(
737 struct xfs_trans *tp,
738 struct xfs_buf *bp,
739 enum xfs_blft type)
741 struct xfs_buf_log_item *bip = bp->b_log_item;
743 if (!tp)
744 return;
746 ASSERT(bp->b_transp == tp);
747 ASSERT(bip != NULL);
748 ASSERT(atomic_read(&bip->bli_refcount) > 0);
750 xfs_blft_to_flags(&bip->__bli_format, type);
753 void
754 xfs_trans_buf_copy_type(
755 struct xfs_buf *dst_bp,
756 struct xfs_buf *src_bp)
758 struct xfs_buf_log_item *sbip = src_bp->b_log_item;
759 struct xfs_buf_log_item *dbip = dst_bp->b_log_item;
760 enum xfs_blft type;
762 type = xfs_blft_from_flags(&sbip->__bli_format);
763 xfs_blft_to_flags(&dbip->__bli_format, type);
767 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
768 * dquots. However, unlike in inode buffer recovery, dquot buffers get
769 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
770 * The only thing that makes dquot buffers different from regular
771 * buffers is that we must not replay dquot bufs when recovering
772 * if a _corresponding_ quotaoff has happened. We also have to distinguish
773 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
774 * can be turned off independently.
776 /* ARGSUSED */
777 void
778 xfs_trans_dquot_buf(
779 xfs_trans_t *tp,
780 xfs_buf_t *bp,
781 uint type)
783 struct xfs_buf_log_item *bip = bp->b_log_item;
785 ASSERT(type == XFS_BLF_UDQUOT_BUF ||
786 type == XFS_BLF_PDQUOT_BUF ||
787 type == XFS_BLF_GDQUOT_BUF);
789 bip->__bli_format.blf_flags |= type;
791 switch (type) {
792 case XFS_BLF_UDQUOT_BUF:
793 type = XFS_BLFT_UDQUOT_BUF;
794 break;
795 case XFS_BLF_PDQUOT_BUF:
796 type = XFS_BLFT_PDQUOT_BUF;
797 break;
798 case XFS_BLF_GDQUOT_BUF:
799 type = XFS_BLFT_GDQUOT_BUF;
800 break;
801 default:
802 type = XFS_BLFT_UNKNOWN_BUF;
803 break;
806 xfs_trans_buf_set_type(tp, bp, type);