perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / kernel / cgroup / cgroup.c
blob8b79318810ad5c63d9e70cd634f6d6bc928659ef
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include "cgroup-internal.h"
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/sched/cputime.h>
58 #include <linux/psi.h>
59 #include <net/sock.h>
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/cgroup.h>
64 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
65 MAX_CFTYPE_NAME + 2)
66 /* let's not notify more than 100 times per second */
67 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
70 * cgroup_mutex is the master lock. Any modification to cgroup or its
71 * hierarchy must be performed while holding it.
73 * css_set_lock protects task->cgroups pointer, the list of css_set
74 * objects, and the chain of tasks off each css_set.
76 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
77 * cgroup.h can use them for lockdep annotations.
79 DEFINE_MUTEX(cgroup_mutex);
80 DEFINE_SPINLOCK(css_set_lock);
82 #ifdef CONFIG_PROVE_RCU
83 EXPORT_SYMBOL_GPL(cgroup_mutex);
84 EXPORT_SYMBOL_GPL(css_set_lock);
85 #endif
87 DEFINE_SPINLOCK(trace_cgroup_path_lock);
88 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
91 * Protects cgroup_idr and css_idr so that IDs can be released without
92 * grabbing cgroup_mutex.
94 static DEFINE_SPINLOCK(cgroup_idr_lock);
97 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
98 * against file removal/re-creation across css hiding.
100 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
102 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
104 #define cgroup_assert_mutex_or_rcu_locked() \
105 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
106 !lockdep_is_held(&cgroup_mutex), \
107 "cgroup_mutex or RCU read lock required");
110 * cgroup destruction makes heavy use of work items and there can be a lot
111 * of concurrent destructions. Use a separate workqueue so that cgroup
112 * destruction work items don't end up filling up max_active of system_wq
113 * which may lead to deadlock.
115 static struct workqueue_struct *cgroup_destroy_wq;
117 /* generate an array of cgroup subsystem pointers */
118 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
119 struct cgroup_subsys *cgroup_subsys[] = {
120 #include <linux/cgroup_subsys.h>
122 #undef SUBSYS
124 /* array of cgroup subsystem names */
125 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
126 static const char *cgroup_subsys_name[] = {
127 #include <linux/cgroup_subsys.h>
129 #undef SUBSYS
131 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
132 #define SUBSYS(_x) \
133 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
134 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
135 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
136 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
137 #include <linux/cgroup_subsys.h>
138 #undef SUBSYS
140 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
141 static struct static_key_true *cgroup_subsys_enabled_key[] = {
142 #include <linux/cgroup_subsys.h>
144 #undef SUBSYS
146 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
147 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
148 #include <linux/cgroup_subsys.h>
150 #undef SUBSYS
152 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155 * The default hierarchy, reserved for the subsystems that are otherwise
156 * unattached - it never has more than a single cgroup, and all tasks are
157 * part of that cgroup.
159 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
160 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
163 * The default hierarchy always exists but is hidden until mounted for the
164 * first time. This is for backward compatibility.
166 static bool cgrp_dfl_visible;
168 /* some controllers are not supported in the default hierarchy */
169 static u16 cgrp_dfl_inhibit_ss_mask;
171 /* some controllers are implicitly enabled on the default hierarchy */
172 static u16 cgrp_dfl_implicit_ss_mask;
174 /* some controllers can be threaded on the default hierarchy */
175 static u16 cgrp_dfl_threaded_ss_mask;
177 /* The list of hierarchy roots */
178 LIST_HEAD(cgroup_roots);
179 static int cgroup_root_count;
181 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
182 static DEFINE_IDR(cgroup_hierarchy_idr);
185 * Assign a monotonically increasing serial number to csses. It guarantees
186 * cgroups with bigger numbers are newer than those with smaller numbers.
187 * Also, as csses are always appended to the parent's ->children list, it
188 * guarantees that sibling csses are always sorted in the ascending serial
189 * number order on the list. Protected by cgroup_mutex.
191 static u64 css_serial_nr_next = 1;
194 * These bitmasks identify subsystems with specific features to avoid
195 * having to do iterative checks repeatedly.
197 static u16 have_fork_callback __read_mostly;
198 static u16 have_exit_callback __read_mostly;
199 static u16 have_free_callback __read_mostly;
200 static u16 have_canfork_callback __read_mostly;
202 /* cgroup namespace for init task */
203 struct cgroup_namespace init_cgroup_ns = {
204 .count = REFCOUNT_INIT(2),
205 .user_ns = &init_user_ns,
206 .ns.ops = &cgroupns_operations,
207 .ns.inum = PROC_CGROUP_INIT_INO,
208 .root_cset = &init_css_set,
211 static struct file_system_type cgroup2_fs_type;
212 static struct cftype cgroup_base_files[];
214 static int cgroup_apply_control(struct cgroup *cgrp);
215 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
216 static void css_task_iter_advance(struct css_task_iter *it);
217 static int cgroup_destroy_locked(struct cgroup *cgrp);
218 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
219 struct cgroup_subsys *ss);
220 static void css_release(struct percpu_ref *ref);
221 static void kill_css(struct cgroup_subsys_state *css);
222 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
223 struct cgroup *cgrp, struct cftype cfts[],
224 bool is_add);
227 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
228 * @ssid: subsys ID of interest
230 * cgroup_subsys_enabled() can only be used with literal subsys names which
231 * is fine for individual subsystems but unsuitable for cgroup core. This
232 * is slower static_key_enabled() based test indexed by @ssid.
234 bool cgroup_ssid_enabled(int ssid)
236 if (CGROUP_SUBSYS_COUNT == 0)
237 return false;
239 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
243 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
244 * @cgrp: the cgroup of interest
246 * The default hierarchy is the v2 interface of cgroup and this function
247 * can be used to test whether a cgroup is on the default hierarchy for
248 * cases where a subsystem should behave differnetly depending on the
249 * interface version.
251 * The set of behaviors which change on the default hierarchy are still
252 * being determined and the mount option is prefixed with __DEVEL__.
254 * List of changed behaviors:
256 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
257 * and "name" are disallowed.
259 * - When mounting an existing superblock, mount options should match.
261 * - Remount is disallowed.
263 * - rename(2) is disallowed.
265 * - "tasks" is removed. Everything should be at process granularity. Use
266 * "cgroup.procs" instead.
268 * - "cgroup.procs" is not sorted. pids will be unique unless they got
269 * recycled inbetween reads.
271 * - "release_agent" and "notify_on_release" are removed. Replacement
272 * notification mechanism will be implemented.
274 * - "cgroup.clone_children" is removed.
276 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
277 * and its descendants contain no task; otherwise, 1. The file also
278 * generates kernfs notification which can be monitored through poll and
279 * [di]notify when the value of the file changes.
281 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
282 * take masks of ancestors with non-empty cpus/mems, instead of being
283 * moved to an ancestor.
285 * - cpuset: a task can be moved into an empty cpuset, and again it takes
286 * masks of ancestors.
288 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
289 * is not created.
291 * - blkcg: blk-throttle becomes properly hierarchical.
293 * - debug: disallowed on the default hierarchy.
295 bool cgroup_on_dfl(const struct cgroup *cgrp)
297 return cgrp->root == &cgrp_dfl_root;
300 /* IDR wrappers which synchronize using cgroup_idr_lock */
301 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
302 gfp_t gfp_mask)
304 int ret;
306 idr_preload(gfp_mask);
307 spin_lock_bh(&cgroup_idr_lock);
308 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
309 spin_unlock_bh(&cgroup_idr_lock);
310 idr_preload_end();
311 return ret;
314 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
316 void *ret;
318 spin_lock_bh(&cgroup_idr_lock);
319 ret = idr_replace(idr, ptr, id);
320 spin_unlock_bh(&cgroup_idr_lock);
321 return ret;
324 static void cgroup_idr_remove(struct idr *idr, int id)
326 spin_lock_bh(&cgroup_idr_lock);
327 idr_remove(idr, id);
328 spin_unlock_bh(&cgroup_idr_lock);
331 static bool cgroup_has_tasks(struct cgroup *cgrp)
333 return cgrp->nr_populated_csets;
336 bool cgroup_is_threaded(struct cgroup *cgrp)
338 return cgrp->dom_cgrp != cgrp;
341 /* can @cgrp host both domain and threaded children? */
342 static bool cgroup_is_mixable(struct cgroup *cgrp)
345 * Root isn't under domain level resource control exempting it from
346 * the no-internal-process constraint, so it can serve as a thread
347 * root and a parent of resource domains at the same time.
349 return !cgroup_parent(cgrp);
352 /* can @cgrp become a thread root? should always be true for a thread root */
353 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
355 /* mixables don't care */
356 if (cgroup_is_mixable(cgrp))
357 return true;
359 /* domain roots can't be nested under threaded */
360 if (cgroup_is_threaded(cgrp))
361 return false;
363 /* can only have either domain or threaded children */
364 if (cgrp->nr_populated_domain_children)
365 return false;
367 /* and no domain controllers can be enabled */
368 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
369 return false;
371 return true;
374 /* is @cgrp root of a threaded subtree? */
375 bool cgroup_is_thread_root(struct cgroup *cgrp)
377 /* thread root should be a domain */
378 if (cgroup_is_threaded(cgrp))
379 return false;
381 /* a domain w/ threaded children is a thread root */
382 if (cgrp->nr_threaded_children)
383 return true;
386 * A domain which has tasks and explicit threaded controllers
387 * enabled is a thread root.
389 if (cgroup_has_tasks(cgrp) &&
390 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
391 return true;
393 return false;
396 /* a domain which isn't connected to the root w/o brekage can't be used */
397 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
399 /* the cgroup itself can be a thread root */
400 if (cgroup_is_threaded(cgrp))
401 return false;
403 /* but the ancestors can't be unless mixable */
404 while ((cgrp = cgroup_parent(cgrp))) {
405 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
406 return false;
407 if (cgroup_is_threaded(cgrp))
408 return false;
411 return true;
414 /* subsystems visibly enabled on a cgroup */
415 static u16 cgroup_control(struct cgroup *cgrp)
417 struct cgroup *parent = cgroup_parent(cgrp);
418 u16 root_ss_mask = cgrp->root->subsys_mask;
420 if (parent) {
421 u16 ss_mask = parent->subtree_control;
423 /* threaded cgroups can only have threaded controllers */
424 if (cgroup_is_threaded(cgrp))
425 ss_mask &= cgrp_dfl_threaded_ss_mask;
426 return ss_mask;
429 if (cgroup_on_dfl(cgrp))
430 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
431 cgrp_dfl_implicit_ss_mask);
432 return root_ss_mask;
435 /* subsystems enabled on a cgroup */
436 static u16 cgroup_ss_mask(struct cgroup *cgrp)
438 struct cgroup *parent = cgroup_parent(cgrp);
440 if (parent) {
441 u16 ss_mask = parent->subtree_ss_mask;
443 /* threaded cgroups can only have threaded controllers */
444 if (cgroup_is_threaded(cgrp))
445 ss_mask &= cgrp_dfl_threaded_ss_mask;
446 return ss_mask;
449 return cgrp->root->subsys_mask;
453 * cgroup_css - obtain a cgroup's css for the specified subsystem
454 * @cgrp: the cgroup of interest
455 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
457 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
458 * function must be called either under cgroup_mutex or rcu_read_lock() and
459 * the caller is responsible for pinning the returned css if it wants to
460 * keep accessing it outside the said locks. This function may return
461 * %NULL if @cgrp doesn't have @subsys_id enabled.
463 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
464 struct cgroup_subsys *ss)
466 if (ss)
467 return rcu_dereference_check(cgrp->subsys[ss->id],
468 lockdep_is_held(&cgroup_mutex));
469 else
470 return &cgrp->self;
474 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
475 * @cgrp: the cgroup of interest
476 * @ss: the subsystem of interest
478 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
479 * or is offline, %NULL is returned.
481 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
482 struct cgroup_subsys *ss)
484 struct cgroup_subsys_state *css;
486 rcu_read_lock();
487 css = cgroup_css(cgrp, ss);
488 if (!css || !css_tryget_online(css))
489 css = NULL;
490 rcu_read_unlock();
492 return css;
496 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
497 * @cgrp: the cgroup of interest
498 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
500 * Similar to cgroup_css() but returns the effective css, which is defined
501 * as the matching css of the nearest ancestor including self which has @ss
502 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
503 * function is guaranteed to return non-NULL css.
505 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
506 struct cgroup_subsys *ss)
508 lockdep_assert_held(&cgroup_mutex);
510 if (!ss)
511 return &cgrp->self;
514 * This function is used while updating css associations and thus
515 * can't test the csses directly. Test ss_mask.
517 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
518 cgrp = cgroup_parent(cgrp);
519 if (!cgrp)
520 return NULL;
523 return cgroup_css(cgrp, ss);
527 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
528 * @cgrp: the cgroup of interest
529 * @ss: the subsystem of interest
531 * Find and get the effective css of @cgrp for @ss. The effective css is
532 * defined as the matching css of the nearest ancestor including self which
533 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
534 * the root css is returned, so this function always returns a valid css.
536 * The returned css is not guaranteed to be online, and therefore it is the
537 * callers responsiblity to tryget a reference for it.
539 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
540 struct cgroup_subsys *ss)
542 struct cgroup_subsys_state *css;
544 do {
545 css = cgroup_css(cgrp, ss);
547 if (css)
548 return css;
549 cgrp = cgroup_parent(cgrp);
550 } while (cgrp);
552 return init_css_set.subsys[ss->id];
556 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
557 * @cgrp: the cgroup of interest
558 * @ss: the subsystem of interest
560 * Find and get the effective css of @cgrp for @ss. The effective css is
561 * defined as the matching css of the nearest ancestor including self which
562 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
563 * the root css is returned, so this function always returns a valid css.
564 * The returned css must be put using css_put().
566 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
567 struct cgroup_subsys *ss)
569 struct cgroup_subsys_state *css;
571 rcu_read_lock();
573 do {
574 css = cgroup_css(cgrp, ss);
576 if (css && css_tryget_online(css))
577 goto out_unlock;
578 cgrp = cgroup_parent(cgrp);
579 } while (cgrp);
581 css = init_css_set.subsys[ss->id];
582 css_get(css);
583 out_unlock:
584 rcu_read_unlock();
585 return css;
588 static void cgroup_get_live(struct cgroup *cgrp)
590 WARN_ON_ONCE(cgroup_is_dead(cgrp));
591 css_get(&cgrp->self);
594 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
596 struct cgroup *cgrp = of->kn->parent->priv;
597 struct cftype *cft = of_cft(of);
600 * This is open and unprotected implementation of cgroup_css().
601 * seq_css() is only called from a kernfs file operation which has
602 * an active reference on the file. Because all the subsystem
603 * files are drained before a css is disassociated with a cgroup,
604 * the matching css from the cgroup's subsys table is guaranteed to
605 * be and stay valid until the enclosing operation is complete.
607 if (cft->ss)
608 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
609 else
610 return &cgrp->self;
612 EXPORT_SYMBOL_GPL(of_css);
615 * for_each_css - iterate all css's of a cgroup
616 * @css: the iteration cursor
617 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
618 * @cgrp: the target cgroup to iterate css's of
620 * Should be called under cgroup_[tree_]mutex.
622 #define for_each_css(css, ssid, cgrp) \
623 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
624 if (!((css) = rcu_dereference_check( \
625 (cgrp)->subsys[(ssid)], \
626 lockdep_is_held(&cgroup_mutex)))) { } \
627 else
630 * for_each_e_css - iterate all effective css's of a cgroup
631 * @css: the iteration cursor
632 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
633 * @cgrp: the target cgroup to iterate css's of
635 * Should be called under cgroup_[tree_]mutex.
637 #define for_each_e_css(css, ssid, cgrp) \
638 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
639 if (!((css) = cgroup_e_css_by_mask(cgrp, \
640 cgroup_subsys[(ssid)]))) \
642 else
645 * do_each_subsys_mask - filter for_each_subsys with a bitmask
646 * @ss: the iteration cursor
647 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
648 * @ss_mask: the bitmask
650 * The block will only run for cases where the ssid-th bit (1 << ssid) of
651 * @ss_mask is set.
653 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
654 unsigned long __ss_mask = (ss_mask); \
655 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
656 (ssid) = 0; \
657 break; \
659 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
660 (ss) = cgroup_subsys[ssid]; \
663 #define while_each_subsys_mask() \
666 } while (false)
668 /* iterate over child cgrps, lock should be held throughout iteration */
669 #define cgroup_for_each_live_child(child, cgrp) \
670 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
671 if (({ lockdep_assert_held(&cgroup_mutex); \
672 cgroup_is_dead(child); })) \
674 else
676 /* walk live descendants in preorder */
677 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
678 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
679 if (({ lockdep_assert_held(&cgroup_mutex); \
680 (dsct) = (d_css)->cgroup; \
681 cgroup_is_dead(dsct); })) \
683 else
685 /* walk live descendants in postorder */
686 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
687 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
688 if (({ lockdep_assert_held(&cgroup_mutex); \
689 (dsct) = (d_css)->cgroup; \
690 cgroup_is_dead(dsct); })) \
692 else
695 * The default css_set - used by init and its children prior to any
696 * hierarchies being mounted. It contains a pointer to the root state
697 * for each subsystem. Also used to anchor the list of css_sets. Not
698 * reference-counted, to improve performance when child cgroups
699 * haven't been created.
701 struct css_set init_css_set = {
702 .refcount = REFCOUNT_INIT(1),
703 .dom_cset = &init_css_set,
704 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
705 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
706 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
707 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
708 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
709 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
710 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
713 * The following field is re-initialized when this cset gets linked
714 * in cgroup_init(). However, let's initialize the field
715 * statically too so that the default cgroup can be accessed safely
716 * early during boot.
718 .dfl_cgrp = &cgrp_dfl_root.cgrp,
721 static int css_set_count = 1; /* 1 for init_css_set */
723 static bool css_set_threaded(struct css_set *cset)
725 return cset->dom_cset != cset;
729 * css_set_populated - does a css_set contain any tasks?
730 * @cset: target css_set
732 * css_set_populated() should be the same as !!cset->nr_tasks at steady
733 * state. However, css_set_populated() can be called while a task is being
734 * added to or removed from the linked list before the nr_tasks is
735 * properly updated. Hence, we can't just look at ->nr_tasks here.
737 static bool css_set_populated(struct css_set *cset)
739 lockdep_assert_held(&css_set_lock);
741 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
745 * cgroup_update_populated - update the populated count of a cgroup
746 * @cgrp: the target cgroup
747 * @populated: inc or dec populated count
749 * One of the css_sets associated with @cgrp is either getting its first
750 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
751 * count is propagated towards root so that a given cgroup's
752 * nr_populated_children is zero iff none of its descendants contain any
753 * tasks.
755 * @cgrp's interface file "cgroup.populated" is zero if both
756 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
757 * 1 otherwise. When the sum changes from or to zero, userland is notified
758 * that the content of the interface file has changed. This can be used to
759 * detect when @cgrp and its descendants become populated or empty.
761 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
763 struct cgroup *child = NULL;
764 int adj = populated ? 1 : -1;
766 lockdep_assert_held(&css_set_lock);
768 do {
769 bool was_populated = cgroup_is_populated(cgrp);
771 if (!child) {
772 cgrp->nr_populated_csets += adj;
773 } else {
774 if (cgroup_is_threaded(child))
775 cgrp->nr_populated_threaded_children += adj;
776 else
777 cgrp->nr_populated_domain_children += adj;
780 if (was_populated == cgroup_is_populated(cgrp))
781 break;
783 cgroup1_check_for_release(cgrp);
784 cgroup_file_notify(&cgrp->events_file);
786 child = cgrp;
787 cgrp = cgroup_parent(cgrp);
788 } while (cgrp);
792 * css_set_update_populated - update populated state of a css_set
793 * @cset: target css_set
794 * @populated: whether @cset is populated or depopulated
796 * @cset is either getting the first task or losing the last. Update the
797 * populated counters of all associated cgroups accordingly.
799 static void css_set_update_populated(struct css_set *cset, bool populated)
801 struct cgrp_cset_link *link;
803 lockdep_assert_held(&css_set_lock);
805 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
806 cgroup_update_populated(link->cgrp, populated);
810 * css_set_move_task - move a task from one css_set to another
811 * @task: task being moved
812 * @from_cset: css_set @task currently belongs to (may be NULL)
813 * @to_cset: new css_set @task is being moved to (may be NULL)
814 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
816 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
817 * css_set, @from_cset can be NULL. If @task is being disassociated
818 * instead of moved, @to_cset can be NULL.
820 * This function automatically handles populated counter updates and
821 * css_task_iter adjustments but the caller is responsible for managing
822 * @from_cset and @to_cset's reference counts.
824 static void css_set_move_task(struct task_struct *task,
825 struct css_set *from_cset, struct css_set *to_cset,
826 bool use_mg_tasks)
828 lockdep_assert_held(&css_set_lock);
830 if (to_cset && !css_set_populated(to_cset))
831 css_set_update_populated(to_cset, true);
833 if (from_cset) {
834 struct css_task_iter *it, *pos;
836 WARN_ON_ONCE(list_empty(&task->cg_list));
839 * @task is leaving, advance task iterators which are
840 * pointing to it so that they can resume at the next
841 * position. Advancing an iterator might remove it from
842 * the list, use safe walk. See css_task_iter_advance*()
843 * for details.
845 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
846 iters_node)
847 if (it->task_pos == &task->cg_list)
848 css_task_iter_advance(it);
850 list_del_init(&task->cg_list);
851 if (!css_set_populated(from_cset))
852 css_set_update_populated(from_cset, false);
853 } else {
854 WARN_ON_ONCE(!list_empty(&task->cg_list));
857 if (to_cset) {
859 * We are synchronized through cgroup_threadgroup_rwsem
860 * against PF_EXITING setting such that we can't race
861 * against cgroup_exit() changing the css_set to
862 * init_css_set and dropping the old one.
864 WARN_ON_ONCE(task->flags & PF_EXITING);
866 cgroup_move_task(task, to_cset);
867 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
868 &to_cset->tasks);
873 * hash table for cgroup groups. This improves the performance to find
874 * an existing css_set. This hash doesn't (currently) take into
875 * account cgroups in empty hierarchies.
877 #define CSS_SET_HASH_BITS 7
878 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
880 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
882 unsigned long key = 0UL;
883 struct cgroup_subsys *ss;
884 int i;
886 for_each_subsys(ss, i)
887 key += (unsigned long)css[i];
888 key = (key >> 16) ^ key;
890 return key;
893 void put_css_set_locked(struct css_set *cset)
895 struct cgrp_cset_link *link, *tmp_link;
896 struct cgroup_subsys *ss;
897 int ssid;
899 lockdep_assert_held(&css_set_lock);
901 if (!refcount_dec_and_test(&cset->refcount))
902 return;
904 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
906 /* This css_set is dead. unlink it and release cgroup and css refs */
907 for_each_subsys(ss, ssid) {
908 list_del(&cset->e_cset_node[ssid]);
909 css_put(cset->subsys[ssid]);
911 hash_del(&cset->hlist);
912 css_set_count--;
914 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
915 list_del(&link->cset_link);
916 list_del(&link->cgrp_link);
917 if (cgroup_parent(link->cgrp))
918 cgroup_put(link->cgrp);
919 kfree(link);
922 if (css_set_threaded(cset)) {
923 list_del(&cset->threaded_csets_node);
924 put_css_set_locked(cset->dom_cset);
927 kfree_rcu(cset, rcu_head);
931 * compare_css_sets - helper function for find_existing_css_set().
932 * @cset: candidate css_set being tested
933 * @old_cset: existing css_set for a task
934 * @new_cgrp: cgroup that's being entered by the task
935 * @template: desired set of css pointers in css_set (pre-calculated)
937 * Returns true if "cset" matches "old_cset" except for the hierarchy
938 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
940 static bool compare_css_sets(struct css_set *cset,
941 struct css_set *old_cset,
942 struct cgroup *new_cgrp,
943 struct cgroup_subsys_state *template[])
945 struct cgroup *new_dfl_cgrp;
946 struct list_head *l1, *l2;
949 * On the default hierarchy, there can be csets which are
950 * associated with the same set of cgroups but different csses.
951 * Let's first ensure that csses match.
953 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
954 return false;
957 /* @cset's domain should match the default cgroup's */
958 if (cgroup_on_dfl(new_cgrp))
959 new_dfl_cgrp = new_cgrp;
960 else
961 new_dfl_cgrp = old_cset->dfl_cgrp;
963 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
964 return false;
967 * Compare cgroup pointers in order to distinguish between
968 * different cgroups in hierarchies. As different cgroups may
969 * share the same effective css, this comparison is always
970 * necessary.
972 l1 = &cset->cgrp_links;
973 l2 = &old_cset->cgrp_links;
974 while (1) {
975 struct cgrp_cset_link *link1, *link2;
976 struct cgroup *cgrp1, *cgrp2;
978 l1 = l1->next;
979 l2 = l2->next;
980 /* See if we reached the end - both lists are equal length. */
981 if (l1 == &cset->cgrp_links) {
982 BUG_ON(l2 != &old_cset->cgrp_links);
983 break;
984 } else {
985 BUG_ON(l2 == &old_cset->cgrp_links);
987 /* Locate the cgroups associated with these links. */
988 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
989 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
990 cgrp1 = link1->cgrp;
991 cgrp2 = link2->cgrp;
992 /* Hierarchies should be linked in the same order. */
993 BUG_ON(cgrp1->root != cgrp2->root);
996 * If this hierarchy is the hierarchy of the cgroup
997 * that's changing, then we need to check that this
998 * css_set points to the new cgroup; if it's any other
999 * hierarchy, then this css_set should point to the
1000 * same cgroup as the old css_set.
1002 if (cgrp1->root == new_cgrp->root) {
1003 if (cgrp1 != new_cgrp)
1004 return false;
1005 } else {
1006 if (cgrp1 != cgrp2)
1007 return false;
1010 return true;
1014 * find_existing_css_set - init css array and find the matching css_set
1015 * @old_cset: the css_set that we're using before the cgroup transition
1016 * @cgrp: the cgroup that we're moving into
1017 * @template: out param for the new set of csses, should be clear on entry
1019 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1020 struct cgroup *cgrp,
1021 struct cgroup_subsys_state *template[])
1023 struct cgroup_root *root = cgrp->root;
1024 struct cgroup_subsys *ss;
1025 struct css_set *cset;
1026 unsigned long key;
1027 int i;
1030 * Build the set of subsystem state objects that we want to see in the
1031 * new css_set. while subsystems can change globally, the entries here
1032 * won't change, so no need for locking.
1034 for_each_subsys(ss, i) {
1035 if (root->subsys_mask & (1UL << i)) {
1037 * @ss is in this hierarchy, so we want the
1038 * effective css from @cgrp.
1040 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1041 } else {
1043 * @ss is not in this hierarchy, so we don't want
1044 * to change the css.
1046 template[i] = old_cset->subsys[i];
1050 key = css_set_hash(template);
1051 hash_for_each_possible(css_set_table, cset, hlist, key) {
1052 if (!compare_css_sets(cset, old_cset, cgrp, template))
1053 continue;
1055 /* This css_set matches what we need */
1056 return cset;
1059 /* No existing cgroup group matched */
1060 return NULL;
1063 static void free_cgrp_cset_links(struct list_head *links_to_free)
1065 struct cgrp_cset_link *link, *tmp_link;
1067 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1068 list_del(&link->cset_link);
1069 kfree(link);
1074 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1075 * @count: the number of links to allocate
1076 * @tmp_links: list_head the allocated links are put on
1078 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1079 * through ->cset_link. Returns 0 on success or -errno.
1081 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1083 struct cgrp_cset_link *link;
1084 int i;
1086 INIT_LIST_HEAD(tmp_links);
1088 for (i = 0; i < count; i++) {
1089 link = kzalloc(sizeof(*link), GFP_KERNEL);
1090 if (!link) {
1091 free_cgrp_cset_links(tmp_links);
1092 return -ENOMEM;
1094 list_add(&link->cset_link, tmp_links);
1096 return 0;
1100 * link_css_set - a helper function to link a css_set to a cgroup
1101 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1102 * @cset: the css_set to be linked
1103 * @cgrp: the destination cgroup
1105 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1106 struct cgroup *cgrp)
1108 struct cgrp_cset_link *link;
1110 BUG_ON(list_empty(tmp_links));
1112 if (cgroup_on_dfl(cgrp))
1113 cset->dfl_cgrp = cgrp;
1115 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1116 link->cset = cset;
1117 link->cgrp = cgrp;
1120 * Always add links to the tail of the lists so that the lists are
1121 * in choronological order.
1123 list_move_tail(&link->cset_link, &cgrp->cset_links);
1124 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1126 if (cgroup_parent(cgrp))
1127 cgroup_get_live(cgrp);
1131 * find_css_set - return a new css_set with one cgroup updated
1132 * @old_cset: the baseline css_set
1133 * @cgrp: the cgroup to be updated
1135 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1136 * substituted into the appropriate hierarchy.
1138 static struct css_set *find_css_set(struct css_set *old_cset,
1139 struct cgroup *cgrp)
1141 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1142 struct css_set *cset;
1143 struct list_head tmp_links;
1144 struct cgrp_cset_link *link;
1145 struct cgroup_subsys *ss;
1146 unsigned long key;
1147 int ssid;
1149 lockdep_assert_held(&cgroup_mutex);
1151 /* First see if we already have a cgroup group that matches
1152 * the desired set */
1153 spin_lock_irq(&css_set_lock);
1154 cset = find_existing_css_set(old_cset, cgrp, template);
1155 if (cset)
1156 get_css_set(cset);
1157 spin_unlock_irq(&css_set_lock);
1159 if (cset)
1160 return cset;
1162 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1163 if (!cset)
1164 return NULL;
1166 /* Allocate all the cgrp_cset_link objects that we'll need */
1167 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1168 kfree(cset);
1169 return NULL;
1172 refcount_set(&cset->refcount, 1);
1173 cset->dom_cset = cset;
1174 INIT_LIST_HEAD(&cset->tasks);
1175 INIT_LIST_HEAD(&cset->mg_tasks);
1176 INIT_LIST_HEAD(&cset->task_iters);
1177 INIT_LIST_HEAD(&cset->threaded_csets);
1178 INIT_HLIST_NODE(&cset->hlist);
1179 INIT_LIST_HEAD(&cset->cgrp_links);
1180 INIT_LIST_HEAD(&cset->mg_preload_node);
1181 INIT_LIST_HEAD(&cset->mg_node);
1183 /* Copy the set of subsystem state objects generated in
1184 * find_existing_css_set() */
1185 memcpy(cset->subsys, template, sizeof(cset->subsys));
1187 spin_lock_irq(&css_set_lock);
1188 /* Add reference counts and links from the new css_set. */
1189 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1190 struct cgroup *c = link->cgrp;
1192 if (c->root == cgrp->root)
1193 c = cgrp;
1194 link_css_set(&tmp_links, cset, c);
1197 BUG_ON(!list_empty(&tmp_links));
1199 css_set_count++;
1201 /* Add @cset to the hash table */
1202 key = css_set_hash(cset->subsys);
1203 hash_add(css_set_table, &cset->hlist, key);
1205 for_each_subsys(ss, ssid) {
1206 struct cgroup_subsys_state *css = cset->subsys[ssid];
1208 list_add_tail(&cset->e_cset_node[ssid],
1209 &css->cgroup->e_csets[ssid]);
1210 css_get(css);
1213 spin_unlock_irq(&css_set_lock);
1216 * If @cset should be threaded, look up the matching dom_cset and
1217 * link them up. We first fully initialize @cset then look for the
1218 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1219 * to stay empty until we return.
1221 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1222 struct css_set *dcset;
1224 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1225 if (!dcset) {
1226 put_css_set(cset);
1227 return NULL;
1230 spin_lock_irq(&css_set_lock);
1231 cset->dom_cset = dcset;
1232 list_add_tail(&cset->threaded_csets_node,
1233 &dcset->threaded_csets);
1234 spin_unlock_irq(&css_set_lock);
1237 return cset;
1240 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1242 struct cgroup *root_cgrp = kf_root->kn->priv;
1244 return root_cgrp->root;
1247 static int cgroup_init_root_id(struct cgroup_root *root)
1249 int id;
1251 lockdep_assert_held(&cgroup_mutex);
1253 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1254 if (id < 0)
1255 return id;
1257 root->hierarchy_id = id;
1258 return 0;
1261 static void cgroup_exit_root_id(struct cgroup_root *root)
1263 lockdep_assert_held(&cgroup_mutex);
1265 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1268 void cgroup_free_root(struct cgroup_root *root)
1270 if (root) {
1271 idr_destroy(&root->cgroup_idr);
1272 kfree(root);
1276 static void cgroup_destroy_root(struct cgroup_root *root)
1278 struct cgroup *cgrp = &root->cgrp;
1279 struct cgrp_cset_link *link, *tmp_link;
1281 trace_cgroup_destroy_root(root);
1283 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1285 BUG_ON(atomic_read(&root->nr_cgrps));
1286 BUG_ON(!list_empty(&cgrp->self.children));
1288 /* Rebind all subsystems back to the default hierarchy */
1289 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1292 * Release all the links from cset_links to this hierarchy's
1293 * root cgroup
1295 spin_lock_irq(&css_set_lock);
1297 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1298 list_del(&link->cset_link);
1299 list_del(&link->cgrp_link);
1300 kfree(link);
1303 spin_unlock_irq(&css_set_lock);
1305 if (!list_empty(&root->root_list)) {
1306 list_del(&root->root_list);
1307 cgroup_root_count--;
1310 cgroup_exit_root_id(root);
1312 mutex_unlock(&cgroup_mutex);
1314 kernfs_destroy_root(root->kf_root);
1315 cgroup_free_root(root);
1319 * look up cgroup associated with current task's cgroup namespace on the
1320 * specified hierarchy
1322 static struct cgroup *
1323 current_cgns_cgroup_from_root(struct cgroup_root *root)
1325 struct cgroup *res = NULL;
1326 struct css_set *cset;
1328 lockdep_assert_held(&css_set_lock);
1330 rcu_read_lock();
1332 cset = current->nsproxy->cgroup_ns->root_cset;
1333 if (cset == &init_css_set) {
1334 res = &root->cgrp;
1335 } else {
1336 struct cgrp_cset_link *link;
1338 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1339 struct cgroup *c = link->cgrp;
1341 if (c->root == root) {
1342 res = c;
1343 break;
1347 rcu_read_unlock();
1349 BUG_ON(!res);
1350 return res;
1353 /* look up cgroup associated with given css_set on the specified hierarchy */
1354 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1355 struct cgroup_root *root)
1357 struct cgroup *res = NULL;
1359 lockdep_assert_held(&cgroup_mutex);
1360 lockdep_assert_held(&css_set_lock);
1362 if (cset == &init_css_set) {
1363 res = &root->cgrp;
1364 } else if (root == &cgrp_dfl_root) {
1365 res = cset->dfl_cgrp;
1366 } else {
1367 struct cgrp_cset_link *link;
1369 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1370 struct cgroup *c = link->cgrp;
1372 if (c->root == root) {
1373 res = c;
1374 break;
1379 BUG_ON(!res);
1380 return res;
1384 * Return the cgroup for "task" from the given hierarchy. Must be
1385 * called with cgroup_mutex and css_set_lock held.
1387 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1388 struct cgroup_root *root)
1391 * No need to lock the task - since we hold cgroup_mutex the
1392 * task can't change groups, so the only thing that can happen
1393 * is that it exits and its css is set back to init_css_set.
1395 return cset_cgroup_from_root(task_css_set(task), root);
1399 * A task must hold cgroup_mutex to modify cgroups.
1401 * Any task can increment and decrement the count field without lock.
1402 * So in general, code holding cgroup_mutex can't rely on the count
1403 * field not changing. However, if the count goes to zero, then only
1404 * cgroup_attach_task() can increment it again. Because a count of zero
1405 * means that no tasks are currently attached, therefore there is no
1406 * way a task attached to that cgroup can fork (the other way to
1407 * increment the count). So code holding cgroup_mutex can safely
1408 * assume that if the count is zero, it will stay zero. Similarly, if
1409 * a task holds cgroup_mutex on a cgroup with zero count, it
1410 * knows that the cgroup won't be removed, as cgroup_rmdir()
1411 * needs that mutex.
1413 * A cgroup can only be deleted if both its 'count' of using tasks
1414 * is zero, and its list of 'children' cgroups is empty. Since all
1415 * tasks in the system use _some_ cgroup, and since there is always at
1416 * least one task in the system (init, pid == 1), therefore, root cgroup
1417 * always has either children cgroups and/or using tasks. So we don't
1418 * need a special hack to ensure that root cgroup cannot be deleted.
1420 * P.S. One more locking exception. RCU is used to guard the
1421 * update of a tasks cgroup pointer by cgroup_attach_task()
1424 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1426 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1427 char *buf)
1429 struct cgroup_subsys *ss = cft->ss;
1431 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1432 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1433 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1434 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1435 cft->name);
1436 else
1437 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1438 return buf;
1442 * cgroup_file_mode - deduce file mode of a control file
1443 * @cft: the control file in question
1445 * S_IRUGO for read, S_IWUSR for write.
1447 static umode_t cgroup_file_mode(const struct cftype *cft)
1449 umode_t mode = 0;
1451 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1452 mode |= S_IRUGO;
1454 if (cft->write_u64 || cft->write_s64 || cft->write) {
1455 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1456 mode |= S_IWUGO;
1457 else
1458 mode |= S_IWUSR;
1461 return mode;
1465 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1466 * @subtree_control: the new subtree_control mask to consider
1467 * @this_ss_mask: available subsystems
1469 * On the default hierarchy, a subsystem may request other subsystems to be
1470 * enabled together through its ->depends_on mask. In such cases, more
1471 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1473 * This function calculates which subsystems need to be enabled if
1474 * @subtree_control is to be applied while restricted to @this_ss_mask.
1476 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1478 u16 cur_ss_mask = subtree_control;
1479 struct cgroup_subsys *ss;
1480 int ssid;
1482 lockdep_assert_held(&cgroup_mutex);
1484 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1486 while (true) {
1487 u16 new_ss_mask = cur_ss_mask;
1489 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1490 new_ss_mask |= ss->depends_on;
1491 } while_each_subsys_mask();
1494 * Mask out subsystems which aren't available. This can
1495 * happen only if some depended-upon subsystems were bound
1496 * to non-default hierarchies.
1498 new_ss_mask &= this_ss_mask;
1500 if (new_ss_mask == cur_ss_mask)
1501 break;
1502 cur_ss_mask = new_ss_mask;
1505 return cur_ss_mask;
1509 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1510 * @kn: the kernfs_node being serviced
1512 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1513 * the method finishes if locking succeeded. Note that once this function
1514 * returns the cgroup returned by cgroup_kn_lock_live() may become
1515 * inaccessible any time. If the caller intends to continue to access the
1516 * cgroup, it should pin it before invoking this function.
1518 void cgroup_kn_unlock(struct kernfs_node *kn)
1520 struct cgroup *cgrp;
1522 if (kernfs_type(kn) == KERNFS_DIR)
1523 cgrp = kn->priv;
1524 else
1525 cgrp = kn->parent->priv;
1527 mutex_unlock(&cgroup_mutex);
1529 kernfs_unbreak_active_protection(kn);
1530 cgroup_put(cgrp);
1534 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1535 * @kn: the kernfs_node being serviced
1536 * @drain_offline: perform offline draining on the cgroup
1538 * This helper is to be used by a cgroup kernfs method currently servicing
1539 * @kn. It breaks the active protection, performs cgroup locking and
1540 * verifies that the associated cgroup is alive. Returns the cgroup if
1541 * alive; otherwise, %NULL. A successful return should be undone by a
1542 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1543 * cgroup is drained of offlining csses before return.
1545 * Any cgroup kernfs method implementation which requires locking the
1546 * associated cgroup should use this helper. It avoids nesting cgroup
1547 * locking under kernfs active protection and allows all kernfs operations
1548 * including self-removal.
1550 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1552 struct cgroup *cgrp;
1554 if (kernfs_type(kn) == KERNFS_DIR)
1555 cgrp = kn->priv;
1556 else
1557 cgrp = kn->parent->priv;
1560 * We're gonna grab cgroup_mutex which nests outside kernfs
1561 * active_ref. cgroup liveliness check alone provides enough
1562 * protection against removal. Ensure @cgrp stays accessible and
1563 * break the active_ref protection.
1565 if (!cgroup_tryget(cgrp))
1566 return NULL;
1567 kernfs_break_active_protection(kn);
1569 if (drain_offline)
1570 cgroup_lock_and_drain_offline(cgrp);
1571 else
1572 mutex_lock(&cgroup_mutex);
1574 if (!cgroup_is_dead(cgrp))
1575 return cgrp;
1577 cgroup_kn_unlock(kn);
1578 return NULL;
1581 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1583 char name[CGROUP_FILE_NAME_MAX];
1585 lockdep_assert_held(&cgroup_mutex);
1587 if (cft->file_offset) {
1588 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1589 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1591 spin_lock_irq(&cgroup_file_kn_lock);
1592 cfile->kn = NULL;
1593 spin_unlock_irq(&cgroup_file_kn_lock);
1595 del_timer_sync(&cfile->notify_timer);
1598 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1602 * css_clear_dir - remove subsys files in a cgroup directory
1603 * @css: taget css
1605 static void css_clear_dir(struct cgroup_subsys_state *css)
1607 struct cgroup *cgrp = css->cgroup;
1608 struct cftype *cfts;
1610 if (!(css->flags & CSS_VISIBLE))
1611 return;
1613 css->flags &= ~CSS_VISIBLE;
1615 if (!css->ss) {
1616 if (cgroup_on_dfl(cgrp))
1617 cfts = cgroup_base_files;
1618 else
1619 cfts = cgroup1_base_files;
1621 cgroup_addrm_files(css, cgrp, cfts, false);
1622 } else {
1623 list_for_each_entry(cfts, &css->ss->cfts, node)
1624 cgroup_addrm_files(css, cgrp, cfts, false);
1629 * css_populate_dir - create subsys files in a cgroup directory
1630 * @css: target css
1632 * On failure, no file is added.
1634 static int css_populate_dir(struct cgroup_subsys_state *css)
1636 struct cgroup *cgrp = css->cgroup;
1637 struct cftype *cfts, *failed_cfts;
1638 int ret;
1640 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1641 return 0;
1643 if (!css->ss) {
1644 if (cgroup_on_dfl(cgrp))
1645 cfts = cgroup_base_files;
1646 else
1647 cfts = cgroup1_base_files;
1649 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1650 if (ret < 0)
1651 return ret;
1652 } else {
1653 list_for_each_entry(cfts, &css->ss->cfts, node) {
1654 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1655 if (ret < 0) {
1656 failed_cfts = cfts;
1657 goto err;
1662 css->flags |= CSS_VISIBLE;
1664 return 0;
1665 err:
1666 list_for_each_entry(cfts, &css->ss->cfts, node) {
1667 if (cfts == failed_cfts)
1668 break;
1669 cgroup_addrm_files(css, cgrp, cfts, false);
1671 return ret;
1674 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1676 struct cgroup *dcgrp = &dst_root->cgrp;
1677 struct cgroup_subsys *ss;
1678 int ssid, i, ret;
1680 lockdep_assert_held(&cgroup_mutex);
1682 do_each_subsys_mask(ss, ssid, ss_mask) {
1684 * If @ss has non-root csses attached to it, can't move.
1685 * If @ss is an implicit controller, it is exempt from this
1686 * rule and can be stolen.
1688 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1689 !ss->implicit_on_dfl)
1690 return -EBUSY;
1692 /* can't move between two non-dummy roots either */
1693 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1694 return -EBUSY;
1695 } while_each_subsys_mask();
1697 do_each_subsys_mask(ss, ssid, ss_mask) {
1698 struct cgroup_root *src_root = ss->root;
1699 struct cgroup *scgrp = &src_root->cgrp;
1700 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1701 struct css_set *cset;
1703 WARN_ON(!css || cgroup_css(dcgrp, ss));
1705 /* disable from the source */
1706 src_root->subsys_mask &= ~(1 << ssid);
1707 WARN_ON(cgroup_apply_control(scgrp));
1708 cgroup_finalize_control(scgrp, 0);
1710 /* rebind */
1711 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1712 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1713 ss->root = dst_root;
1714 css->cgroup = dcgrp;
1716 spin_lock_irq(&css_set_lock);
1717 hash_for_each(css_set_table, i, cset, hlist)
1718 list_move_tail(&cset->e_cset_node[ss->id],
1719 &dcgrp->e_csets[ss->id]);
1720 spin_unlock_irq(&css_set_lock);
1722 /* default hierarchy doesn't enable controllers by default */
1723 dst_root->subsys_mask |= 1 << ssid;
1724 if (dst_root == &cgrp_dfl_root) {
1725 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1726 } else {
1727 dcgrp->subtree_control |= 1 << ssid;
1728 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1731 ret = cgroup_apply_control(dcgrp);
1732 if (ret)
1733 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1734 ss->name, ret);
1736 if (ss->bind)
1737 ss->bind(css);
1738 } while_each_subsys_mask();
1740 kernfs_activate(dcgrp->kn);
1741 return 0;
1744 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1745 struct kernfs_root *kf_root)
1747 int len = 0;
1748 char *buf = NULL;
1749 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1750 struct cgroup *ns_cgroup;
1752 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1753 if (!buf)
1754 return -ENOMEM;
1756 spin_lock_irq(&css_set_lock);
1757 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1758 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1759 spin_unlock_irq(&css_set_lock);
1761 if (len >= PATH_MAX)
1762 len = -ERANGE;
1763 else if (len > 0) {
1764 seq_escape(sf, buf, " \t\n\\");
1765 len = 0;
1767 kfree(buf);
1768 return len;
1771 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1773 char *token;
1775 *root_flags = 0;
1777 if (!data)
1778 return 0;
1780 while ((token = strsep(&data, ",")) != NULL) {
1781 if (!strcmp(token, "nsdelegate")) {
1782 *root_flags |= CGRP_ROOT_NS_DELEGATE;
1783 continue;
1786 pr_err("cgroup2: unknown option \"%s\"\n", token);
1787 return -EINVAL;
1790 return 0;
1793 static void apply_cgroup_root_flags(unsigned int root_flags)
1795 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1796 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1797 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1798 else
1799 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1803 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1805 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1806 seq_puts(seq, ",nsdelegate");
1807 return 0;
1810 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1812 unsigned int root_flags;
1813 int ret;
1815 ret = parse_cgroup_root_flags(data, &root_flags);
1816 if (ret)
1817 return ret;
1819 apply_cgroup_root_flags(root_flags);
1820 return 0;
1824 * To reduce the fork() overhead for systems that are not actually using
1825 * their cgroups capability, we don't maintain the lists running through
1826 * each css_set to its tasks until we see the list actually used - in other
1827 * words after the first mount.
1829 static bool use_task_css_set_links __read_mostly;
1831 static void cgroup_enable_task_cg_lists(void)
1833 struct task_struct *p, *g;
1836 * We need tasklist_lock because RCU is not safe against
1837 * while_each_thread(). Besides, a forking task that has passed
1838 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1839 * is not guaranteed to have its child immediately visible in the
1840 * tasklist if we walk through it with RCU.
1842 read_lock(&tasklist_lock);
1843 spin_lock_irq(&css_set_lock);
1845 if (use_task_css_set_links)
1846 goto out_unlock;
1848 use_task_css_set_links = true;
1850 do_each_thread(g, p) {
1851 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1852 task_css_set(p) != &init_css_set);
1855 * We should check if the process is exiting, otherwise
1856 * it will race with cgroup_exit() in that the list
1857 * entry won't be deleted though the process has exited.
1858 * Do it while holding siglock so that we don't end up
1859 * racing against cgroup_exit().
1861 * Interrupts were already disabled while acquiring
1862 * the css_set_lock, so we do not need to disable it
1863 * again when acquiring the sighand->siglock here.
1865 spin_lock(&p->sighand->siglock);
1866 if (!(p->flags & PF_EXITING)) {
1867 struct css_set *cset = task_css_set(p);
1869 if (!css_set_populated(cset))
1870 css_set_update_populated(cset, true);
1871 list_add_tail(&p->cg_list, &cset->tasks);
1872 get_css_set(cset);
1873 cset->nr_tasks++;
1875 spin_unlock(&p->sighand->siglock);
1876 } while_each_thread(g, p);
1877 out_unlock:
1878 spin_unlock_irq(&css_set_lock);
1879 read_unlock(&tasklist_lock);
1882 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1884 struct cgroup_subsys *ss;
1885 int ssid;
1887 INIT_LIST_HEAD(&cgrp->self.sibling);
1888 INIT_LIST_HEAD(&cgrp->self.children);
1889 INIT_LIST_HEAD(&cgrp->cset_links);
1890 INIT_LIST_HEAD(&cgrp->pidlists);
1891 mutex_init(&cgrp->pidlist_mutex);
1892 cgrp->self.cgroup = cgrp;
1893 cgrp->self.flags |= CSS_ONLINE;
1894 cgrp->dom_cgrp = cgrp;
1895 cgrp->max_descendants = INT_MAX;
1896 cgrp->max_depth = INT_MAX;
1897 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1898 prev_cputime_init(&cgrp->prev_cputime);
1900 for_each_subsys(ss, ssid)
1901 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1903 init_waitqueue_head(&cgrp->offline_waitq);
1904 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1907 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1909 struct cgroup *cgrp = &root->cgrp;
1911 INIT_LIST_HEAD(&root->root_list);
1912 atomic_set(&root->nr_cgrps, 1);
1913 cgrp->root = root;
1914 init_cgroup_housekeeping(cgrp);
1915 idr_init(&root->cgroup_idr);
1917 root->flags = opts->flags;
1918 if (opts->release_agent)
1919 strscpy(root->release_agent_path, opts->release_agent, PATH_MAX);
1920 if (opts->name)
1921 strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN);
1922 if (opts->cpuset_clone_children)
1923 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1926 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1928 LIST_HEAD(tmp_links);
1929 struct cgroup *root_cgrp = &root->cgrp;
1930 struct kernfs_syscall_ops *kf_sops;
1931 struct css_set *cset;
1932 int i, ret;
1934 lockdep_assert_held(&cgroup_mutex);
1936 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1937 if (ret < 0)
1938 goto out;
1939 root_cgrp->id = ret;
1940 root_cgrp->ancestor_ids[0] = ret;
1942 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1943 ref_flags, GFP_KERNEL);
1944 if (ret)
1945 goto out;
1948 * We're accessing css_set_count without locking css_set_lock here,
1949 * but that's OK - it can only be increased by someone holding
1950 * cgroup_lock, and that's us. Later rebinding may disable
1951 * controllers on the default hierarchy and thus create new csets,
1952 * which can't be more than the existing ones. Allocate 2x.
1954 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1955 if (ret)
1956 goto cancel_ref;
1958 ret = cgroup_init_root_id(root);
1959 if (ret)
1960 goto cancel_ref;
1962 kf_sops = root == &cgrp_dfl_root ?
1963 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1965 root->kf_root = kernfs_create_root(kf_sops,
1966 KERNFS_ROOT_CREATE_DEACTIVATED |
1967 KERNFS_ROOT_SUPPORT_EXPORTOP,
1968 root_cgrp);
1969 if (IS_ERR(root->kf_root)) {
1970 ret = PTR_ERR(root->kf_root);
1971 goto exit_root_id;
1973 root_cgrp->kn = root->kf_root->kn;
1975 ret = css_populate_dir(&root_cgrp->self);
1976 if (ret)
1977 goto destroy_root;
1979 ret = rebind_subsystems(root, ss_mask);
1980 if (ret)
1981 goto destroy_root;
1983 ret = cgroup_bpf_inherit(root_cgrp);
1984 WARN_ON_ONCE(ret);
1986 trace_cgroup_setup_root(root);
1989 * There must be no failure case after here, since rebinding takes
1990 * care of subsystems' refcounts, which are explicitly dropped in
1991 * the failure exit path.
1993 list_add(&root->root_list, &cgroup_roots);
1994 cgroup_root_count++;
1997 * Link the root cgroup in this hierarchy into all the css_set
1998 * objects.
2000 spin_lock_irq(&css_set_lock);
2001 hash_for_each(css_set_table, i, cset, hlist) {
2002 link_css_set(&tmp_links, cset, root_cgrp);
2003 if (css_set_populated(cset))
2004 cgroup_update_populated(root_cgrp, true);
2006 spin_unlock_irq(&css_set_lock);
2008 BUG_ON(!list_empty(&root_cgrp->self.children));
2009 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2011 kernfs_activate(root_cgrp->kn);
2012 ret = 0;
2013 goto out;
2015 destroy_root:
2016 kernfs_destroy_root(root->kf_root);
2017 root->kf_root = NULL;
2018 exit_root_id:
2019 cgroup_exit_root_id(root);
2020 cancel_ref:
2021 percpu_ref_exit(&root_cgrp->self.refcnt);
2022 out:
2023 free_cgrp_cset_links(&tmp_links);
2024 return ret;
2027 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
2028 struct cgroup_root *root, unsigned long magic,
2029 struct cgroup_namespace *ns)
2031 struct dentry *dentry;
2032 bool new_sb;
2034 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
2037 * In non-init cgroup namespace, instead of root cgroup's dentry,
2038 * we return the dentry corresponding to the cgroupns->root_cgrp.
2040 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2041 struct dentry *nsdentry;
2042 struct cgroup *cgrp;
2044 mutex_lock(&cgroup_mutex);
2045 spin_lock_irq(&css_set_lock);
2047 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2049 spin_unlock_irq(&css_set_lock);
2050 mutex_unlock(&cgroup_mutex);
2052 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2053 dput(dentry);
2054 dentry = nsdentry;
2057 if (IS_ERR(dentry) || !new_sb)
2058 cgroup_put(&root->cgrp);
2060 return dentry;
2063 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2064 int flags, const char *unused_dev_name,
2065 void *data)
2067 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2068 struct dentry *dentry;
2069 int ret;
2071 get_cgroup_ns(ns);
2073 /* Check if the caller has permission to mount. */
2074 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2075 put_cgroup_ns(ns);
2076 return ERR_PTR(-EPERM);
2080 * The first time anyone tries to mount a cgroup, enable the list
2081 * linking each css_set to its tasks and fix up all existing tasks.
2083 if (!use_task_css_set_links)
2084 cgroup_enable_task_cg_lists();
2086 if (fs_type == &cgroup2_fs_type) {
2087 unsigned int root_flags;
2089 ret = parse_cgroup_root_flags(data, &root_flags);
2090 if (ret) {
2091 put_cgroup_ns(ns);
2092 return ERR_PTR(ret);
2095 cgrp_dfl_visible = true;
2096 cgroup_get_live(&cgrp_dfl_root.cgrp);
2098 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2099 CGROUP2_SUPER_MAGIC, ns);
2100 if (!IS_ERR(dentry))
2101 apply_cgroup_root_flags(root_flags);
2102 } else {
2103 dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2104 CGROUP_SUPER_MAGIC, ns);
2107 put_cgroup_ns(ns);
2108 return dentry;
2111 static void cgroup_kill_sb(struct super_block *sb)
2113 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2114 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2117 * If @root doesn't have any mounts or children, start killing it.
2118 * This prevents new mounts by disabling percpu_ref_tryget_live().
2119 * cgroup_mount() may wait for @root's release.
2121 * And don't kill the default root.
2123 if (!list_empty(&root->cgrp.self.children) ||
2124 root == &cgrp_dfl_root)
2125 cgroup_put(&root->cgrp);
2126 else
2127 percpu_ref_kill(&root->cgrp.self.refcnt);
2129 kernfs_kill_sb(sb);
2132 struct file_system_type cgroup_fs_type = {
2133 .name = "cgroup",
2134 .mount = cgroup_mount,
2135 .kill_sb = cgroup_kill_sb,
2136 .fs_flags = FS_USERNS_MOUNT,
2139 static struct file_system_type cgroup2_fs_type = {
2140 .name = "cgroup2",
2141 .mount = cgroup_mount,
2142 .kill_sb = cgroup_kill_sb,
2143 .fs_flags = FS_USERNS_MOUNT,
2146 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2147 struct cgroup_namespace *ns)
2149 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2151 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2154 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2155 struct cgroup_namespace *ns)
2157 int ret;
2159 mutex_lock(&cgroup_mutex);
2160 spin_lock_irq(&css_set_lock);
2162 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2164 spin_unlock_irq(&css_set_lock);
2165 mutex_unlock(&cgroup_mutex);
2167 return ret;
2169 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2172 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2173 * @task: target task
2174 * @buf: the buffer to write the path into
2175 * @buflen: the length of the buffer
2177 * Determine @task's cgroup on the first (the one with the lowest non-zero
2178 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2179 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2180 * cgroup controller callbacks.
2182 * Return value is the same as kernfs_path().
2184 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2186 struct cgroup_root *root;
2187 struct cgroup *cgrp;
2188 int hierarchy_id = 1;
2189 int ret;
2191 mutex_lock(&cgroup_mutex);
2192 spin_lock_irq(&css_set_lock);
2194 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2196 if (root) {
2197 cgrp = task_cgroup_from_root(task, root);
2198 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2199 } else {
2200 /* if no hierarchy exists, everyone is in "/" */
2201 ret = strlcpy(buf, "/", buflen);
2204 spin_unlock_irq(&css_set_lock);
2205 mutex_unlock(&cgroup_mutex);
2206 return ret;
2208 EXPORT_SYMBOL_GPL(task_cgroup_path);
2211 * cgroup_migrate_add_task - add a migration target task to a migration context
2212 * @task: target task
2213 * @mgctx: target migration context
2215 * Add @task, which is a migration target, to @mgctx->tset. This function
2216 * becomes noop if @task doesn't need to be migrated. @task's css_set
2217 * should have been added as a migration source and @task->cg_list will be
2218 * moved from the css_set's tasks list to mg_tasks one.
2220 static void cgroup_migrate_add_task(struct task_struct *task,
2221 struct cgroup_mgctx *mgctx)
2223 struct css_set *cset;
2225 lockdep_assert_held(&css_set_lock);
2227 /* @task either already exited or can't exit until the end */
2228 if (task->flags & PF_EXITING)
2229 return;
2231 /* leave @task alone if post_fork() hasn't linked it yet */
2232 if (list_empty(&task->cg_list))
2233 return;
2235 cset = task_css_set(task);
2236 if (!cset->mg_src_cgrp)
2237 return;
2239 mgctx->tset.nr_tasks++;
2241 list_move_tail(&task->cg_list, &cset->mg_tasks);
2242 if (list_empty(&cset->mg_node))
2243 list_add_tail(&cset->mg_node,
2244 &mgctx->tset.src_csets);
2245 if (list_empty(&cset->mg_dst_cset->mg_node))
2246 list_add_tail(&cset->mg_dst_cset->mg_node,
2247 &mgctx->tset.dst_csets);
2251 * cgroup_taskset_first - reset taskset and return the first task
2252 * @tset: taskset of interest
2253 * @dst_cssp: output variable for the destination css
2255 * @tset iteration is initialized and the first task is returned.
2257 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2258 struct cgroup_subsys_state **dst_cssp)
2260 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2261 tset->cur_task = NULL;
2263 return cgroup_taskset_next(tset, dst_cssp);
2267 * cgroup_taskset_next - iterate to the next task in taskset
2268 * @tset: taskset of interest
2269 * @dst_cssp: output variable for the destination css
2271 * Return the next task in @tset. Iteration must have been initialized
2272 * with cgroup_taskset_first().
2274 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2275 struct cgroup_subsys_state **dst_cssp)
2277 struct css_set *cset = tset->cur_cset;
2278 struct task_struct *task = tset->cur_task;
2280 while (&cset->mg_node != tset->csets) {
2281 if (!task)
2282 task = list_first_entry(&cset->mg_tasks,
2283 struct task_struct, cg_list);
2284 else
2285 task = list_next_entry(task, cg_list);
2287 if (&task->cg_list != &cset->mg_tasks) {
2288 tset->cur_cset = cset;
2289 tset->cur_task = task;
2292 * This function may be called both before and
2293 * after cgroup_taskset_migrate(). The two cases
2294 * can be distinguished by looking at whether @cset
2295 * has its ->mg_dst_cset set.
2297 if (cset->mg_dst_cset)
2298 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2299 else
2300 *dst_cssp = cset->subsys[tset->ssid];
2302 return task;
2305 cset = list_next_entry(cset, mg_node);
2306 task = NULL;
2309 return NULL;
2313 * cgroup_taskset_migrate - migrate a taskset
2314 * @mgctx: migration context
2316 * Migrate tasks in @mgctx as setup by migration preparation functions.
2317 * This function fails iff one of the ->can_attach callbacks fails and
2318 * guarantees that either all or none of the tasks in @mgctx are migrated.
2319 * @mgctx is consumed regardless of success.
2321 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2323 struct cgroup_taskset *tset = &mgctx->tset;
2324 struct cgroup_subsys *ss;
2325 struct task_struct *task, *tmp_task;
2326 struct css_set *cset, *tmp_cset;
2327 int ssid, failed_ssid, ret;
2329 /* check that we can legitimately attach to the cgroup */
2330 if (tset->nr_tasks) {
2331 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2332 if (ss->can_attach) {
2333 tset->ssid = ssid;
2334 ret = ss->can_attach(tset);
2335 if (ret) {
2336 failed_ssid = ssid;
2337 goto out_cancel_attach;
2340 } while_each_subsys_mask();
2344 * Now that we're guaranteed success, proceed to move all tasks to
2345 * the new cgroup. There are no failure cases after here, so this
2346 * is the commit point.
2348 spin_lock_irq(&css_set_lock);
2349 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2350 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2351 struct css_set *from_cset = task_css_set(task);
2352 struct css_set *to_cset = cset->mg_dst_cset;
2354 get_css_set(to_cset);
2355 to_cset->nr_tasks++;
2356 css_set_move_task(task, from_cset, to_cset, true);
2357 put_css_set_locked(from_cset);
2358 from_cset->nr_tasks--;
2361 spin_unlock_irq(&css_set_lock);
2364 * Migration is committed, all target tasks are now on dst_csets.
2365 * Nothing is sensitive to fork() after this point. Notify
2366 * controllers that migration is complete.
2368 tset->csets = &tset->dst_csets;
2370 if (tset->nr_tasks) {
2371 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2372 if (ss->attach) {
2373 tset->ssid = ssid;
2374 ss->attach(tset);
2376 } while_each_subsys_mask();
2379 ret = 0;
2380 goto out_release_tset;
2382 out_cancel_attach:
2383 if (tset->nr_tasks) {
2384 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2385 if (ssid == failed_ssid)
2386 break;
2387 if (ss->cancel_attach) {
2388 tset->ssid = ssid;
2389 ss->cancel_attach(tset);
2391 } while_each_subsys_mask();
2393 out_release_tset:
2394 spin_lock_irq(&css_set_lock);
2395 list_splice_init(&tset->dst_csets, &tset->src_csets);
2396 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2397 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2398 list_del_init(&cset->mg_node);
2400 spin_unlock_irq(&css_set_lock);
2403 * Re-initialize the cgroup_taskset structure in case it is reused
2404 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2405 * iteration.
2407 tset->nr_tasks = 0;
2408 tset->csets = &tset->src_csets;
2409 return ret;
2413 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2414 * @dst_cgrp: destination cgroup to test
2416 * On the default hierarchy, except for the mixable, (possible) thread root
2417 * and threaded cgroups, subtree_control must be zero for migration
2418 * destination cgroups with tasks so that child cgroups don't compete
2419 * against tasks.
2421 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2423 /* v1 doesn't have any restriction */
2424 if (!cgroup_on_dfl(dst_cgrp))
2425 return 0;
2427 /* verify @dst_cgrp can host resources */
2428 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2429 return -EOPNOTSUPP;
2431 /* mixables don't care */
2432 if (cgroup_is_mixable(dst_cgrp))
2433 return 0;
2436 * If @dst_cgrp is already or can become a thread root or is
2437 * threaded, it doesn't matter.
2439 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2440 return 0;
2442 /* apply no-internal-process constraint */
2443 if (dst_cgrp->subtree_control)
2444 return -EBUSY;
2446 return 0;
2450 * cgroup_migrate_finish - cleanup after attach
2451 * @mgctx: migration context
2453 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2454 * those functions for details.
2456 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2458 LIST_HEAD(preloaded);
2459 struct css_set *cset, *tmp_cset;
2461 lockdep_assert_held(&cgroup_mutex);
2463 spin_lock_irq(&css_set_lock);
2465 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2466 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2468 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2469 cset->mg_src_cgrp = NULL;
2470 cset->mg_dst_cgrp = NULL;
2471 cset->mg_dst_cset = NULL;
2472 list_del_init(&cset->mg_preload_node);
2473 put_css_set_locked(cset);
2476 spin_unlock_irq(&css_set_lock);
2480 * cgroup_migrate_add_src - add a migration source css_set
2481 * @src_cset: the source css_set to add
2482 * @dst_cgrp: the destination cgroup
2483 * @mgctx: migration context
2485 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2486 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2487 * up by cgroup_migrate_finish().
2489 * This function may be called without holding cgroup_threadgroup_rwsem
2490 * even if the target is a process. Threads may be created and destroyed
2491 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2492 * into play and the preloaded css_sets are guaranteed to cover all
2493 * migrations.
2495 void cgroup_migrate_add_src(struct css_set *src_cset,
2496 struct cgroup *dst_cgrp,
2497 struct cgroup_mgctx *mgctx)
2499 struct cgroup *src_cgrp;
2501 lockdep_assert_held(&cgroup_mutex);
2502 lockdep_assert_held(&css_set_lock);
2505 * If ->dead, @src_set is associated with one or more dead cgroups
2506 * and doesn't contain any migratable tasks. Ignore it early so
2507 * that the rest of migration path doesn't get confused by it.
2509 if (src_cset->dead)
2510 return;
2512 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2514 if (!list_empty(&src_cset->mg_preload_node))
2515 return;
2517 WARN_ON(src_cset->mg_src_cgrp);
2518 WARN_ON(src_cset->mg_dst_cgrp);
2519 WARN_ON(!list_empty(&src_cset->mg_tasks));
2520 WARN_ON(!list_empty(&src_cset->mg_node));
2522 src_cset->mg_src_cgrp = src_cgrp;
2523 src_cset->mg_dst_cgrp = dst_cgrp;
2524 get_css_set(src_cset);
2525 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2529 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2530 * @mgctx: migration context
2532 * Tasks are about to be moved and all the source css_sets have been
2533 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2534 * pins all destination css_sets, links each to its source, and append them
2535 * to @mgctx->preloaded_dst_csets.
2537 * This function must be called after cgroup_migrate_add_src() has been
2538 * called on each migration source css_set. After migration is performed
2539 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2540 * @mgctx.
2542 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2544 struct css_set *src_cset, *tmp_cset;
2546 lockdep_assert_held(&cgroup_mutex);
2548 /* look up the dst cset for each src cset and link it to src */
2549 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2550 mg_preload_node) {
2551 struct css_set *dst_cset;
2552 struct cgroup_subsys *ss;
2553 int ssid;
2555 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2556 if (!dst_cset)
2557 goto err;
2559 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2562 * If src cset equals dst, it's noop. Drop the src.
2563 * cgroup_migrate() will skip the cset too. Note that we
2564 * can't handle src == dst as some nodes are used by both.
2566 if (src_cset == dst_cset) {
2567 src_cset->mg_src_cgrp = NULL;
2568 src_cset->mg_dst_cgrp = NULL;
2569 list_del_init(&src_cset->mg_preload_node);
2570 put_css_set(src_cset);
2571 put_css_set(dst_cset);
2572 continue;
2575 src_cset->mg_dst_cset = dst_cset;
2577 if (list_empty(&dst_cset->mg_preload_node))
2578 list_add_tail(&dst_cset->mg_preload_node,
2579 &mgctx->preloaded_dst_csets);
2580 else
2581 put_css_set(dst_cset);
2583 for_each_subsys(ss, ssid)
2584 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2585 mgctx->ss_mask |= 1 << ssid;
2588 return 0;
2589 err:
2590 cgroup_migrate_finish(mgctx);
2591 return -ENOMEM;
2595 * cgroup_migrate - migrate a process or task to a cgroup
2596 * @leader: the leader of the process or the task to migrate
2597 * @threadgroup: whether @leader points to the whole process or a single task
2598 * @mgctx: migration context
2600 * Migrate a process or task denoted by @leader. If migrating a process,
2601 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2602 * responsible for invoking cgroup_migrate_add_src() and
2603 * cgroup_migrate_prepare_dst() on the targets before invoking this
2604 * function and following up with cgroup_migrate_finish().
2606 * As long as a controller's ->can_attach() doesn't fail, this function is
2607 * guaranteed to succeed. This means that, excluding ->can_attach()
2608 * failure, when migrating multiple targets, the success or failure can be
2609 * decided for all targets by invoking group_migrate_prepare_dst() before
2610 * actually starting migrating.
2612 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2613 struct cgroup_mgctx *mgctx)
2615 struct task_struct *task;
2618 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2619 * already PF_EXITING could be freed from underneath us unless we
2620 * take an rcu_read_lock.
2622 spin_lock_irq(&css_set_lock);
2623 rcu_read_lock();
2624 task = leader;
2625 do {
2626 cgroup_migrate_add_task(task, mgctx);
2627 if (!threadgroup)
2628 break;
2629 } while_each_thread(leader, task);
2630 rcu_read_unlock();
2631 spin_unlock_irq(&css_set_lock);
2633 return cgroup_migrate_execute(mgctx);
2637 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2638 * @dst_cgrp: the cgroup to attach to
2639 * @leader: the task or the leader of the threadgroup to be attached
2640 * @threadgroup: attach the whole threadgroup?
2642 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2644 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2645 bool threadgroup)
2647 DEFINE_CGROUP_MGCTX(mgctx);
2648 struct task_struct *task;
2649 int ret;
2651 ret = cgroup_migrate_vet_dst(dst_cgrp);
2652 if (ret)
2653 return ret;
2655 /* look up all src csets */
2656 spin_lock_irq(&css_set_lock);
2657 rcu_read_lock();
2658 task = leader;
2659 do {
2660 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2661 if (!threadgroup)
2662 break;
2663 } while_each_thread(leader, task);
2664 rcu_read_unlock();
2665 spin_unlock_irq(&css_set_lock);
2667 /* prepare dst csets and commit */
2668 ret = cgroup_migrate_prepare_dst(&mgctx);
2669 if (!ret)
2670 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2672 cgroup_migrate_finish(&mgctx);
2674 if (!ret)
2675 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2677 return ret;
2680 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2681 __acquires(&cgroup_threadgroup_rwsem)
2683 struct task_struct *tsk;
2684 pid_t pid;
2686 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2687 return ERR_PTR(-EINVAL);
2689 percpu_down_write(&cgroup_threadgroup_rwsem);
2691 rcu_read_lock();
2692 if (pid) {
2693 tsk = find_task_by_vpid(pid);
2694 if (!tsk) {
2695 tsk = ERR_PTR(-ESRCH);
2696 goto out_unlock_threadgroup;
2698 } else {
2699 tsk = current;
2702 if (threadgroup)
2703 tsk = tsk->group_leader;
2706 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2707 * If userland migrates such a kthread to a non-root cgroup, it can
2708 * become trapped in a cpuset, or RT kthread may be born in a
2709 * cgroup with no rt_runtime allocated. Just say no.
2711 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2712 tsk = ERR_PTR(-EINVAL);
2713 goto out_unlock_threadgroup;
2716 get_task_struct(tsk);
2717 goto out_unlock_rcu;
2719 out_unlock_threadgroup:
2720 percpu_up_write(&cgroup_threadgroup_rwsem);
2721 out_unlock_rcu:
2722 rcu_read_unlock();
2723 return tsk;
2726 void cgroup_procs_write_finish(struct task_struct *task)
2727 __releases(&cgroup_threadgroup_rwsem)
2729 struct cgroup_subsys *ss;
2730 int ssid;
2732 /* release reference from cgroup_procs_write_start() */
2733 put_task_struct(task);
2735 percpu_up_write(&cgroup_threadgroup_rwsem);
2736 for_each_subsys(ss, ssid)
2737 if (ss->post_attach)
2738 ss->post_attach();
2741 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2743 struct cgroup_subsys *ss;
2744 bool printed = false;
2745 int ssid;
2747 do_each_subsys_mask(ss, ssid, ss_mask) {
2748 if (printed)
2749 seq_putc(seq, ' ');
2750 seq_printf(seq, "%s", ss->name);
2751 printed = true;
2752 } while_each_subsys_mask();
2753 if (printed)
2754 seq_putc(seq, '\n');
2757 /* show controllers which are enabled from the parent */
2758 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2760 struct cgroup *cgrp = seq_css(seq)->cgroup;
2762 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2763 return 0;
2766 /* show controllers which are enabled for a given cgroup's children */
2767 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2769 struct cgroup *cgrp = seq_css(seq)->cgroup;
2771 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2772 return 0;
2776 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2777 * @cgrp: root of the subtree to update csses for
2779 * @cgrp's control masks have changed and its subtree's css associations
2780 * need to be updated accordingly. This function looks up all css_sets
2781 * which are attached to the subtree, creates the matching updated css_sets
2782 * and migrates the tasks to the new ones.
2784 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2786 DEFINE_CGROUP_MGCTX(mgctx);
2787 struct cgroup_subsys_state *d_css;
2788 struct cgroup *dsct;
2789 struct css_set *src_cset;
2790 int ret;
2792 lockdep_assert_held(&cgroup_mutex);
2794 percpu_down_write(&cgroup_threadgroup_rwsem);
2796 /* look up all csses currently attached to @cgrp's subtree */
2797 spin_lock_irq(&css_set_lock);
2798 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2799 struct cgrp_cset_link *link;
2801 list_for_each_entry(link, &dsct->cset_links, cset_link)
2802 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2804 spin_unlock_irq(&css_set_lock);
2806 /* NULL dst indicates self on default hierarchy */
2807 ret = cgroup_migrate_prepare_dst(&mgctx);
2808 if (ret)
2809 goto out_finish;
2811 spin_lock_irq(&css_set_lock);
2812 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2813 struct task_struct *task, *ntask;
2815 /* all tasks in src_csets need to be migrated */
2816 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2817 cgroup_migrate_add_task(task, &mgctx);
2819 spin_unlock_irq(&css_set_lock);
2821 ret = cgroup_migrate_execute(&mgctx);
2822 out_finish:
2823 cgroup_migrate_finish(&mgctx);
2824 percpu_up_write(&cgroup_threadgroup_rwsem);
2825 return ret;
2829 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2830 * @cgrp: root of the target subtree
2832 * Because css offlining is asynchronous, userland may try to re-enable a
2833 * controller while the previous css is still around. This function grabs
2834 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2836 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2837 __acquires(&cgroup_mutex)
2839 struct cgroup *dsct;
2840 struct cgroup_subsys_state *d_css;
2841 struct cgroup_subsys *ss;
2842 int ssid;
2844 restart:
2845 mutex_lock(&cgroup_mutex);
2847 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2848 for_each_subsys(ss, ssid) {
2849 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2850 DEFINE_WAIT(wait);
2852 if (!css || !percpu_ref_is_dying(&css->refcnt))
2853 continue;
2855 cgroup_get_live(dsct);
2856 prepare_to_wait(&dsct->offline_waitq, &wait,
2857 TASK_UNINTERRUPTIBLE);
2859 mutex_unlock(&cgroup_mutex);
2860 schedule();
2861 finish_wait(&dsct->offline_waitq, &wait);
2863 cgroup_put(dsct);
2864 goto restart;
2870 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2871 * @cgrp: root of the target subtree
2873 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2874 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2875 * itself.
2877 static void cgroup_save_control(struct cgroup *cgrp)
2879 struct cgroup *dsct;
2880 struct cgroup_subsys_state *d_css;
2882 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2883 dsct->old_subtree_control = dsct->subtree_control;
2884 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2885 dsct->old_dom_cgrp = dsct->dom_cgrp;
2890 * cgroup_propagate_control - refresh control masks of a subtree
2891 * @cgrp: root of the target subtree
2893 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2894 * ->subtree_control and propagate controller availability through the
2895 * subtree so that descendants don't have unavailable controllers enabled.
2897 static void cgroup_propagate_control(struct cgroup *cgrp)
2899 struct cgroup *dsct;
2900 struct cgroup_subsys_state *d_css;
2902 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2903 dsct->subtree_control &= cgroup_control(dsct);
2904 dsct->subtree_ss_mask =
2905 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2906 cgroup_ss_mask(dsct));
2911 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
2912 * @cgrp: root of the target subtree
2914 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
2915 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2916 * itself.
2918 static void cgroup_restore_control(struct cgroup *cgrp)
2920 struct cgroup *dsct;
2921 struct cgroup_subsys_state *d_css;
2923 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2924 dsct->subtree_control = dsct->old_subtree_control;
2925 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2926 dsct->dom_cgrp = dsct->old_dom_cgrp;
2930 static bool css_visible(struct cgroup_subsys_state *css)
2932 struct cgroup_subsys *ss = css->ss;
2933 struct cgroup *cgrp = css->cgroup;
2935 if (cgroup_control(cgrp) & (1 << ss->id))
2936 return true;
2937 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2938 return false;
2939 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2943 * cgroup_apply_control_enable - enable or show csses according to control
2944 * @cgrp: root of the target subtree
2946 * Walk @cgrp's subtree and create new csses or make the existing ones
2947 * visible. A css is created invisible if it's being implicitly enabled
2948 * through dependency. An invisible css is made visible when the userland
2949 * explicitly enables it.
2951 * Returns 0 on success, -errno on failure. On failure, csses which have
2952 * been processed already aren't cleaned up. The caller is responsible for
2953 * cleaning up with cgroup_apply_control_disable().
2955 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2957 struct cgroup *dsct;
2958 struct cgroup_subsys_state *d_css;
2959 struct cgroup_subsys *ss;
2960 int ssid, ret;
2962 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2963 for_each_subsys(ss, ssid) {
2964 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2966 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2968 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2969 continue;
2971 if (!css) {
2972 css = css_create(dsct, ss);
2973 if (IS_ERR(css))
2974 return PTR_ERR(css);
2977 if (css_visible(css)) {
2978 ret = css_populate_dir(css);
2979 if (ret)
2980 return ret;
2985 return 0;
2989 * cgroup_apply_control_disable - kill or hide csses according to control
2990 * @cgrp: root of the target subtree
2992 * Walk @cgrp's subtree and kill and hide csses so that they match
2993 * cgroup_ss_mask() and cgroup_visible_mask().
2995 * A css is hidden when the userland requests it to be disabled while other
2996 * subsystems are still depending on it. The css must not actively control
2997 * resources and be in the vanilla state if it's made visible again later.
2998 * Controllers which may be depended upon should provide ->css_reset() for
2999 * this purpose.
3001 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3003 struct cgroup *dsct;
3004 struct cgroup_subsys_state *d_css;
3005 struct cgroup_subsys *ss;
3006 int ssid;
3008 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3009 for_each_subsys(ss, ssid) {
3010 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3012 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3014 if (!css)
3015 continue;
3017 if (css->parent &&
3018 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3019 kill_css(css);
3020 } else if (!css_visible(css)) {
3021 css_clear_dir(css);
3022 if (ss->css_reset)
3023 ss->css_reset(css);
3030 * cgroup_apply_control - apply control mask updates to the subtree
3031 * @cgrp: root of the target subtree
3033 * subsystems can be enabled and disabled in a subtree using the following
3034 * steps.
3036 * 1. Call cgroup_save_control() to stash the current state.
3037 * 2. Update ->subtree_control masks in the subtree as desired.
3038 * 3. Call cgroup_apply_control() to apply the changes.
3039 * 4. Optionally perform other related operations.
3040 * 5. Call cgroup_finalize_control() to finish up.
3042 * This function implements step 3 and propagates the mask changes
3043 * throughout @cgrp's subtree, updates csses accordingly and perform
3044 * process migrations.
3046 static int cgroup_apply_control(struct cgroup *cgrp)
3048 int ret;
3050 cgroup_propagate_control(cgrp);
3052 ret = cgroup_apply_control_enable(cgrp);
3053 if (ret)
3054 return ret;
3057 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3058 * making the following cgroup_update_dfl_csses() properly update
3059 * css associations of all tasks in the subtree.
3061 ret = cgroup_update_dfl_csses(cgrp);
3062 if (ret)
3063 return ret;
3065 return 0;
3069 * cgroup_finalize_control - finalize control mask update
3070 * @cgrp: root of the target subtree
3071 * @ret: the result of the update
3073 * Finalize control mask update. See cgroup_apply_control() for more info.
3075 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3077 if (ret) {
3078 cgroup_restore_control(cgrp);
3079 cgroup_propagate_control(cgrp);
3082 cgroup_apply_control_disable(cgrp);
3085 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3087 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3089 /* if nothing is getting enabled, nothing to worry about */
3090 if (!enable)
3091 return 0;
3093 /* can @cgrp host any resources? */
3094 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3095 return -EOPNOTSUPP;
3097 /* mixables don't care */
3098 if (cgroup_is_mixable(cgrp))
3099 return 0;
3101 if (domain_enable) {
3102 /* can't enable domain controllers inside a thread subtree */
3103 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3104 return -EOPNOTSUPP;
3105 } else {
3107 * Threaded controllers can handle internal competitions
3108 * and are always allowed inside a (prospective) thread
3109 * subtree.
3111 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3112 return 0;
3116 * Controllers can't be enabled for a cgroup with tasks to avoid
3117 * child cgroups competing against tasks.
3119 if (cgroup_has_tasks(cgrp))
3120 return -EBUSY;
3122 return 0;
3125 /* change the enabled child controllers for a cgroup in the default hierarchy */
3126 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3127 char *buf, size_t nbytes,
3128 loff_t off)
3130 u16 enable = 0, disable = 0;
3131 struct cgroup *cgrp, *child;
3132 struct cgroup_subsys *ss;
3133 char *tok;
3134 int ssid, ret;
3137 * Parse input - space separated list of subsystem names prefixed
3138 * with either + or -.
3140 buf = strstrip(buf);
3141 while ((tok = strsep(&buf, " "))) {
3142 if (tok[0] == '\0')
3143 continue;
3144 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3145 if (!cgroup_ssid_enabled(ssid) ||
3146 strcmp(tok + 1, ss->name))
3147 continue;
3149 if (*tok == '+') {
3150 enable |= 1 << ssid;
3151 disable &= ~(1 << ssid);
3152 } else if (*tok == '-') {
3153 disable |= 1 << ssid;
3154 enable &= ~(1 << ssid);
3155 } else {
3156 return -EINVAL;
3158 break;
3159 } while_each_subsys_mask();
3160 if (ssid == CGROUP_SUBSYS_COUNT)
3161 return -EINVAL;
3164 cgrp = cgroup_kn_lock_live(of->kn, true);
3165 if (!cgrp)
3166 return -ENODEV;
3168 for_each_subsys(ss, ssid) {
3169 if (enable & (1 << ssid)) {
3170 if (cgrp->subtree_control & (1 << ssid)) {
3171 enable &= ~(1 << ssid);
3172 continue;
3175 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3176 ret = -ENOENT;
3177 goto out_unlock;
3179 } else if (disable & (1 << ssid)) {
3180 if (!(cgrp->subtree_control & (1 << ssid))) {
3181 disable &= ~(1 << ssid);
3182 continue;
3185 /* a child has it enabled? */
3186 cgroup_for_each_live_child(child, cgrp) {
3187 if (child->subtree_control & (1 << ssid)) {
3188 ret = -EBUSY;
3189 goto out_unlock;
3195 if (!enable && !disable) {
3196 ret = 0;
3197 goto out_unlock;
3200 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3201 if (ret)
3202 goto out_unlock;
3204 /* save and update control masks and prepare csses */
3205 cgroup_save_control(cgrp);
3207 cgrp->subtree_control |= enable;
3208 cgrp->subtree_control &= ~disable;
3210 ret = cgroup_apply_control(cgrp);
3211 cgroup_finalize_control(cgrp, ret);
3212 if (ret)
3213 goto out_unlock;
3215 kernfs_activate(cgrp->kn);
3216 out_unlock:
3217 cgroup_kn_unlock(of->kn);
3218 return ret ?: nbytes;
3222 * cgroup_enable_threaded - make @cgrp threaded
3223 * @cgrp: the target cgroup
3225 * Called when "threaded" is written to the cgroup.type interface file and
3226 * tries to make @cgrp threaded and join the parent's resource domain.
3227 * This function is never called on the root cgroup as cgroup.type doesn't
3228 * exist on it.
3230 static int cgroup_enable_threaded(struct cgroup *cgrp)
3232 struct cgroup *parent = cgroup_parent(cgrp);
3233 struct cgroup *dom_cgrp = parent->dom_cgrp;
3234 struct cgroup *dsct;
3235 struct cgroup_subsys_state *d_css;
3236 int ret;
3238 lockdep_assert_held(&cgroup_mutex);
3240 /* noop if already threaded */
3241 if (cgroup_is_threaded(cgrp))
3242 return 0;
3245 * If @cgroup is populated or has domain controllers enabled, it
3246 * can't be switched. While the below cgroup_can_be_thread_root()
3247 * test can catch the same conditions, that's only when @parent is
3248 * not mixable, so let's check it explicitly.
3250 if (cgroup_is_populated(cgrp) ||
3251 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3252 return -EOPNOTSUPP;
3254 /* we're joining the parent's domain, ensure its validity */
3255 if (!cgroup_is_valid_domain(dom_cgrp) ||
3256 !cgroup_can_be_thread_root(dom_cgrp))
3257 return -EOPNOTSUPP;
3260 * The following shouldn't cause actual migrations and should
3261 * always succeed.
3263 cgroup_save_control(cgrp);
3265 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3266 if (dsct == cgrp || cgroup_is_threaded(dsct))
3267 dsct->dom_cgrp = dom_cgrp;
3269 ret = cgroup_apply_control(cgrp);
3270 if (!ret)
3271 parent->nr_threaded_children++;
3273 cgroup_finalize_control(cgrp, ret);
3274 return ret;
3277 static int cgroup_type_show(struct seq_file *seq, void *v)
3279 struct cgroup *cgrp = seq_css(seq)->cgroup;
3281 if (cgroup_is_threaded(cgrp))
3282 seq_puts(seq, "threaded\n");
3283 else if (!cgroup_is_valid_domain(cgrp))
3284 seq_puts(seq, "domain invalid\n");
3285 else if (cgroup_is_thread_root(cgrp))
3286 seq_puts(seq, "domain threaded\n");
3287 else
3288 seq_puts(seq, "domain\n");
3290 return 0;
3293 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3294 size_t nbytes, loff_t off)
3296 struct cgroup *cgrp;
3297 int ret;
3299 /* only switching to threaded mode is supported */
3300 if (strcmp(strstrip(buf), "threaded"))
3301 return -EINVAL;
3303 cgrp = cgroup_kn_lock_live(of->kn, false);
3304 if (!cgrp)
3305 return -ENOENT;
3307 /* threaded can only be enabled */
3308 ret = cgroup_enable_threaded(cgrp);
3310 cgroup_kn_unlock(of->kn);
3311 return ret ?: nbytes;
3314 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3316 struct cgroup *cgrp = seq_css(seq)->cgroup;
3317 int descendants = READ_ONCE(cgrp->max_descendants);
3319 if (descendants == INT_MAX)
3320 seq_puts(seq, "max\n");
3321 else
3322 seq_printf(seq, "%d\n", descendants);
3324 return 0;
3327 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3328 char *buf, size_t nbytes, loff_t off)
3330 struct cgroup *cgrp;
3331 int descendants;
3332 ssize_t ret;
3334 buf = strstrip(buf);
3335 if (!strcmp(buf, "max")) {
3336 descendants = INT_MAX;
3337 } else {
3338 ret = kstrtoint(buf, 0, &descendants);
3339 if (ret)
3340 return ret;
3343 if (descendants < 0)
3344 return -ERANGE;
3346 cgrp = cgroup_kn_lock_live(of->kn, false);
3347 if (!cgrp)
3348 return -ENOENT;
3350 cgrp->max_descendants = descendants;
3352 cgroup_kn_unlock(of->kn);
3354 return nbytes;
3357 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3359 struct cgroup *cgrp = seq_css(seq)->cgroup;
3360 int depth = READ_ONCE(cgrp->max_depth);
3362 if (depth == INT_MAX)
3363 seq_puts(seq, "max\n");
3364 else
3365 seq_printf(seq, "%d\n", depth);
3367 return 0;
3370 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3371 char *buf, size_t nbytes, loff_t off)
3373 struct cgroup *cgrp;
3374 ssize_t ret;
3375 int depth;
3377 buf = strstrip(buf);
3378 if (!strcmp(buf, "max")) {
3379 depth = INT_MAX;
3380 } else {
3381 ret = kstrtoint(buf, 0, &depth);
3382 if (ret)
3383 return ret;
3386 if (depth < 0)
3387 return -ERANGE;
3389 cgrp = cgroup_kn_lock_live(of->kn, false);
3390 if (!cgrp)
3391 return -ENOENT;
3393 cgrp->max_depth = depth;
3395 cgroup_kn_unlock(of->kn);
3397 return nbytes;
3400 static int cgroup_events_show(struct seq_file *seq, void *v)
3402 seq_printf(seq, "populated %d\n",
3403 cgroup_is_populated(seq_css(seq)->cgroup));
3404 return 0;
3407 static int cgroup_stat_show(struct seq_file *seq, void *v)
3409 struct cgroup *cgroup = seq_css(seq)->cgroup;
3411 seq_printf(seq, "nr_descendants %d\n",
3412 cgroup->nr_descendants);
3413 seq_printf(seq, "nr_dying_descendants %d\n",
3414 cgroup->nr_dying_descendants);
3416 return 0;
3419 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3420 struct cgroup *cgrp, int ssid)
3422 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3423 struct cgroup_subsys_state *css;
3424 int ret;
3426 if (!ss->css_extra_stat_show)
3427 return 0;
3429 css = cgroup_tryget_css(cgrp, ss);
3430 if (!css)
3431 return 0;
3433 ret = ss->css_extra_stat_show(seq, css);
3434 css_put(css);
3435 return ret;
3438 static int cpu_stat_show(struct seq_file *seq, void *v)
3440 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3441 int ret = 0;
3443 cgroup_base_stat_cputime_show(seq);
3444 #ifdef CONFIG_CGROUP_SCHED
3445 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3446 #endif
3447 return ret;
3450 #ifdef CONFIG_PSI
3451 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3453 return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_IO);
3455 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3457 return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_MEM);
3459 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3461 return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_CPU);
3463 #endif
3465 static int cgroup_file_open(struct kernfs_open_file *of)
3467 struct cftype *cft = of->kn->priv;
3469 if (cft->open)
3470 return cft->open(of);
3471 return 0;
3474 static void cgroup_file_release(struct kernfs_open_file *of)
3476 struct cftype *cft = of->kn->priv;
3478 if (cft->release)
3479 cft->release(of);
3482 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3483 size_t nbytes, loff_t off)
3485 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3486 struct cgroup *cgrp = of->kn->parent->priv;
3487 struct cftype *cft = of->kn->priv;
3488 struct cgroup_subsys_state *css;
3489 int ret;
3492 * If namespaces are delegation boundaries, disallow writes to
3493 * files in an non-init namespace root from inside the namespace
3494 * except for the files explicitly marked delegatable -
3495 * cgroup.procs and cgroup.subtree_control.
3497 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3498 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3499 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3500 return -EPERM;
3502 if (cft->write)
3503 return cft->write(of, buf, nbytes, off);
3506 * kernfs guarantees that a file isn't deleted with operations in
3507 * flight, which means that the matching css is and stays alive and
3508 * doesn't need to be pinned. The RCU locking is not necessary
3509 * either. It's just for the convenience of using cgroup_css().
3511 rcu_read_lock();
3512 css = cgroup_css(cgrp, cft->ss);
3513 rcu_read_unlock();
3515 if (cft->write_u64) {
3516 unsigned long long v;
3517 ret = kstrtoull(buf, 0, &v);
3518 if (!ret)
3519 ret = cft->write_u64(css, cft, v);
3520 } else if (cft->write_s64) {
3521 long long v;
3522 ret = kstrtoll(buf, 0, &v);
3523 if (!ret)
3524 ret = cft->write_s64(css, cft, v);
3525 } else {
3526 ret = -EINVAL;
3529 return ret ?: nbytes;
3532 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3534 return seq_cft(seq)->seq_start(seq, ppos);
3537 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3539 return seq_cft(seq)->seq_next(seq, v, ppos);
3542 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3544 if (seq_cft(seq)->seq_stop)
3545 seq_cft(seq)->seq_stop(seq, v);
3548 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3550 struct cftype *cft = seq_cft(m);
3551 struct cgroup_subsys_state *css = seq_css(m);
3553 if (cft->seq_show)
3554 return cft->seq_show(m, arg);
3556 if (cft->read_u64)
3557 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3558 else if (cft->read_s64)
3559 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3560 else
3561 return -EINVAL;
3562 return 0;
3565 static struct kernfs_ops cgroup_kf_single_ops = {
3566 .atomic_write_len = PAGE_SIZE,
3567 .open = cgroup_file_open,
3568 .release = cgroup_file_release,
3569 .write = cgroup_file_write,
3570 .seq_show = cgroup_seqfile_show,
3573 static struct kernfs_ops cgroup_kf_ops = {
3574 .atomic_write_len = PAGE_SIZE,
3575 .open = cgroup_file_open,
3576 .release = cgroup_file_release,
3577 .write = cgroup_file_write,
3578 .seq_start = cgroup_seqfile_start,
3579 .seq_next = cgroup_seqfile_next,
3580 .seq_stop = cgroup_seqfile_stop,
3581 .seq_show = cgroup_seqfile_show,
3584 /* set uid and gid of cgroup dirs and files to that of the creator */
3585 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3587 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3588 .ia_uid = current_fsuid(),
3589 .ia_gid = current_fsgid(), };
3591 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3592 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3593 return 0;
3595 return kernfs_setattr(kn, &iattr);
3598 static void cgroup_file_notify_timer(struct timer_list *timer)
3600 cgroup_file_notify(container_of(timer, struct cgroup_file,
3601 notify_timer));
3604 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3605 struct cftype *cft)
3607 char name[CGROUP_FILE_NAME_MAX];
3608 struct kernfs_node *kn;
3609 struct lock_class_key *key = NULL;
3610 int ret;
3612 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3613 key = &cft->lockdep_key;
3614 #endif
3615 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3616 cgroup_file_mode(cft),
3617 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3618 0, cft->kf_ops, cft,
3619 NULL, key);
3620 if (IS_ERR(kn))
3621 return PTR_ERR(kn);
3623 ret = cgroup_kn_set_ugid(kn);
3624 if (ret) {
3625 kernfs_remove(kn);
3626 return ret;
3629 if (cft->file_offset) {
3630 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3632 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3634 spin_lock_irq(&cgroup_file_kn_lock);
3635 cfile->kn = kn;
3636 spin_unlock_irq(&cgroup_file_kn_lock);
3639 return 0;
3643 * cgroup_addrm_files - add or remove files to a cgroup directory
3644 * @css: the target css
3645 * @cgrp: the target cgroup (usually css->cgroup)
3646 * @cfts: array of cftypes to be added
3647 * @is_add: whether to add or remove
3649 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3650 * For removals, this function never fails.
3652 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3653 struct cgroup *cgrp, struct cftype cfts[],
3654 bool is_add)
3656 struct cftype *cft, *cft_end = NULL;
3657 int ret = 0;
3659 lockdep_assert_held(&cgroup_mutex);
3661 restart:
3662 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3663 /* does cft->flags tell us to skip this file on @cgrp? */
3664 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3665 continue;
3666 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3667 continue;
3668 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3669 continue;
3670 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3671 continue;
3673 if (is_add) {
3674 ret = cgroup_add_file(css, cgrp, cft);
3675 if (ret) {
3676 pr_warn("%s: failed to add %s, err=%d\n",
3677 __func__, cft->name, ret);
3678 cft_end = cft;
3679 is_add = false;
3680 goto restart;
3682 } else {
3683 cgroup_rm_file(cgrp, cft);
3686 return ret;
3689 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3691 struct cgroup_subsys *ss = cfts[0].ss;
3692 struct cgroup *root = &ss->root->cgrp;
3693 struct cgroup_subsys_state *css;
3694 int ret = 0;
3696 lockdep_assert_held(&cgroup_mutex);
3698 /* add/rm files for all cgroups created before */
3699 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3700 struct cgroup *cgrp = css->cgroup;
3702 if (!(css->flags & CSS_VISIBLE))
3703 continue;
3705 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3706 if (ret)
3707 break;
3710 if (is_add && !ret)
3711 kernfs_activate(root->kn);
3712 return ret;
3715 static void cgroup_exit_cftypes(struct cftype *cfts)
3717 struct cftype *cft;
3719 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3720 /* free copy for custom atomic_write_len, see init_cftypes() */
3721 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3722 kfree(cft->kf_ops);
3723 cft->kf_ops = NULL;
3724 cft->ss = NULL;
3726 /* revert flags set by cgroup core while adding @cfts */
3727 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3731 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3733 struct cftype *cft;
3735 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3736 struct kernfs_ops *kf_ops;
3738 WARN_ON(cft->ss || cft->kf_ops);
3740 if (cft->seq_start)
3741 kf_ops = &cgroup_kf_ops;
3742 else
3743 kf_ops = &cgroup_kf_single_ops;
3746 * Ugh... if @cft wants a custom max_write_len, we need to
3747 * make a copy of kf_ops to set its atomic_write_len.
3749 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3750 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3751 if (!kf_ops) {
3752 cgroup_exit_cftypes(cfts);
3753 return -ENOMEM;
3755 kf_ops->atomic_write_len = cft->max_write_len;
3758 cft->kf_ops = kf_ops;
3759 cft->ss = ss;
3762 return 0;
3765 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3767 lockdep_assert_held(&cgroup_mutex);
3769 if (!cfts || !cfts[0].ss)
3770 return -ENOENT;
3772 list_del(&cfts->node);
3773 cgroup_apply_cftypes(cfts, false);
3774 cgroup_exit_cftypes(cfts);
3775 return 0;
3779 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3780 * @cfts: zero-length name terminated array of cftypes
3782 * Unregister @cfts. Files described by @cfts are removed from all
3783 * existing cgroups and all future cgroups won't have them either. This
3784 * function can be called anytime whether @cfts' subsys is attached or not.
3786 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3787 * registered.
3789 int cgroup_rm_cftypes(struct cftype *cfts)
3791 int ret;
3793 mutex_lock(&cgroup_mutex);
3794 ret = cgroup_rm_cftypes_locked(cfts);
3795 mutex_unlock(&cgroup_mutex);
3796 return ret;
3800 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3801 * @ss: target cgroup subsystem
3802 * @cfts: zero-length name terminated array of cftypes
3804 * Register @cfts to @ss. Files described by @cfts are created for all
3805 * existing cgroups to which @ss is attached and all future cgroups will
3806 * have them too. This function can be called anytime whether @ss is
3807 * attached or not.
3809 * Returns 0 on successful registration, -errno on failure. Note that this
3810 * function currently returns 0 as long as @cfts registration is successful
3811 * even if some file creation attempts on existing cgroups fail.
3813 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3815 int ret;
3817 if (!cgroup_ssid_enabled(ss->id))
3818 return 0;
3820 if (!cfts || cfts[0].name[0] == '\0')
3821 return 0;
3823 ret = cgroup_init_cftypes(ss, cfts);
3824 if (ret)
3825 return ret;
3827 mutex_lock(&cgroup_mutex);
3829 list_add_tail(&cfts->node, &ss->cfts);
3830 ret = cgroup_apply_cftypes(cfts, true);
3831 if (ret)
3832 cgroup_rm_cftypes_locked(cfts);
3834 mutex_unlock(&cgroup_mutex);
3835 return ret;
3839 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3840 * @ss: target cgroup subsystem
3841 * @cfts: zero-length name terminated array of cftypes
3843 * Similar to cgroup_add_cftypes() but the added files are only used for
3844 * the default hierarchy.
3846 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3848 struct cftype *cft;
3850 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3851 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3852 return cgroup_add_cftypes(ss, cfts);
3856 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3857 * @ss: target cgroup subsystem
3858 * @cfts: zero-length name terminated array of cftypes
3860 * Similar to cgroup_add_cftypes() but the added files are only used for
3861 * the legacy hierarchies.
3863 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3865 struct cftype *cft;
3867 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3868 cft->flags |= __CFTYPE_NOT_ON_DFL;
3869 return cgroup_add_cftypes(ss, cfts);
3873 * cgroup_file_notify - generate a file modified event for a cgroup_file
3874 * @cfile: target cgroup_file
3876 * @cfile must have been obtained by setting cftype->file_offset.
3878 void cgroup_file_notify(struct cgroup_file *cfile)
3880 unsigned long flags;
3882 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3883 if (cfile->kn) {
3884 unsigned long last = cfile->notified_at;
3885 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
3887 if (time_in_range(jiffies, last, next)) {
3888 timer_reduce(&cfile->notify_timer, next);
3889 } else {
3890 kernfs_notify(cfile->kn);
3891 cfile->notified_at = jiffies;
3894 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3898 * css_next_child - find the next child of a given css
3899 * @pos: the current position (%NULL to initiate traversal)
3900 * @parent: css whose children to walk
3902 * This function returns the next child of @parent and should be called
3903 * under either cgroup_mutex or RCU read lock. The only requirement is
3904 * that @parent and @pos are accessible. The next sibling is guaranteed to
3905 * be returned regardless of their states.
3907 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3908 * css which finished ->css_online() is guaranteed to be visible in the
3909 * future iterations and will stay visible until the last reference is put.
3910 * A css which hasn't finished ->css_online() or already finished
3911 * ->css_offline() may show up during traversal. It's each subsystem's
3912 * responsibility to synchronize against on/offlining.
3914 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3915 struct cgroup_subsys_state *parent)
3917 struct cgroup_subsys_state *next;
3919 cgroup_assert_mutex_or_rcu_locked();
3922 * @pos could already have been unlinked from the sibling list.
3923 * Once a cgroup is removed, its ->sibling.next is no longer
3924 * updated when its next sibling changes. CSS_RELEASED is set when
3925 * @pos is taken off list, at which time its next pointer is valid,
3926 * and, as releases are serialized, the one pointed to by the next
3927 * pointer is guaranteed to not have started release yet. This
3928 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3929 * critical section, the one pointed to by its next pointer is
3930 * guaranteed to not have finished its RCU grace period even if we
3931 * have dropped rcu_read_lock() inbetween iterations.
3933 * If @pos has CSS_RELEASED set, its next pointer can't be
3934 * dereferenced; however, as each css is given a monotonically
3935 * increasing unique serial number and always appended to the
3936 * sibling list, the next one can be found by walking the parent's
3937 * children until the first css with higher serial number than
3938 * @pos's. While this path can be slower, it happens iff iteration
3939 * races against release and the race window is very small.
3941 if (!pos) {
3942 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3943 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3944 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3945 } else {
3946 list_for_each_entry_rcu(next, &parent->children, sibling)
3947 if (next->serial_nr > pos->serial_nr)
3948 break;
3952 * @next, if not pointing to the head, can be dereferenced and is
3953 * the next sibling.
3955 if (&next->sibling != &parent->children)
3956 return next;
3957 return NULL;
3961 * css_next_descendant_pre - find the next descendant for pre-order walk
3962 * @pos: the current position (%NULL to initiate traversal)
3963 * @root: css whose descendants to walk
3965 * To be used by css_for_each_descendant_pre(). Find the next descendant
3966 * to visit for pre-order traversal of @root's descendants. @root is
3967 * included in the iteration and the first node to be visited.
3969 * While this function requires cgroup_mutex or RCU read locking, it
3970 * doesn't require the whole traversal to be contained in a single critical
3971 * section. This function will return the correct next descendant as long
3972 * as both @pos and @root are accessible and @pos is a descendant of @root.
3974 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3975 * css which finished ->css_online() is guaranteed to be visible in the
3976 * future iterations and will stay visible until the last reference is put.
3977 * A css which hasn't finished ->css_online() or already finished
3978 * ->css_offline() may show up during traversal. It's each subsystem's
3979 * responsibility to synchronize against on/offlining.
3981 struct cgroup_subsys_state *
3982 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3983 struct cgroup_subsys_state *root)
3985 struct cgroup_subsys_state *next;
3987 cgroup_assert_mutex_or_rcu_locked();
3989 /* if first iteration, visit @root */
3990 if (!pos)
3991 return root;
3993 /* visit the first child if exists */
3994 next = css_next_child(NULL, pos);
3995 if (next)
3996 return next;
3998 /* no child, visit my or the closest ancestor's next sibling */
3999 while (pos != root) {
4000 next = css_next_child(pos, pos->parent);
4001 if (next)
4002 return next;
4003 pos = pos->parent;
4006 return NULL;
4010 * css_rightmost_descendant - return the rightmost descendant of a css
4011 * @pos: css of interest
4013 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4014 * is returned. This can be used during pre-order traversal to skip
4015 * subtree of @pos.
4017 * While this function requires cgroup_mutex or RCU read locking, it
4018 * doesn't require the whole traversal to be contained in a single critical
4019 * section. This function will return the correct rightmost descendant as
4020 * long as @pos is accessible.
4022 struct cgroup_subsys_state *
4023 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4025 struct cgroup_subsys_state *last, *tmp;
4027 cgroup_assert_mutex_or_rcu_locked();
4029 do {
4030 last = pos;
4031 /* ->prev isn't RCU safe, walk ->next till the end */
4032 pos = NULL;
4033 css_for_each_child(tmp, last)
4034 pos = tmp;
4035 } while (pos);
4037 return last;
4040 static struct cgroup_subsys_state *
4041 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4043 struct cgroup_subsys_state *last;
4045 do {
4046 last = pos;
4047 pos = css_next_child(NULL, pos);
4048 } while (pos);
4050 return last;
4054 * css_next_descendant_post - find the next descendant for post-order walk
4055 * @pos: the current position (%NULL to initiate traversal)
4056 * @root: css whose descendants to walk
4058 * To be used by css_for_each_descendant_post(). Find the next descendant
4059 * to visit for post-order traversal of @root's descendants. @root is
4060 * included in the iteration and the last node to be visited.
4062 * While this function requires cgroup_mutex or RCU read locking, it
4063 * doesn't require the whole traversal to be contained in a single critical
4064 * section. This function will return the correct next descendant as long
4065 * as both @pos and @cgroup are accessible and @pos is a descendant of
4066 * @cgroup.
4068 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4069 * css which finished ->css_online() is guaranteed to be visible in the
4070 * future iterations and will stay visible until the last reference is put.
4071 * A css which hasn't finished ->css_online() or already finished
4072 * ->css_offline() may show up during traversal. It's each subsystem's
4073 * responsibility to synchronize against on/offlining.
4075 struct cgroup_subsys_state *
4076 css_next_descendant_post(struct cgroup_subsys_state *pos,
4077 struct cgroup_subsys_state *root)
4079 struct cgroup_subsys_state *next;
4081 cgroup_assert_mutex_or_rcu_locked();
4083 /* if first iteration, visit leftmost descendant which may be @root */
4084 if (!pos)
4085 return css_leftmost_descendant(root);
4087 /* if we visited @root, we're done */
4088 if (pos == root)
4089 return NULL;
4091 /* if there's an unvisited sibling, visit its leftmost descendant */
4092 next = css_next_child(pos, pos->parent);
4093 if (next)
4094 return css_leftmost_descendant(next);
4096 /* no sibling left, visit parent */
4097 return pos->parent;
4101 * css_has_online_children - does a css have online children
4102 * @css: the target css
4104 * Returns %true if @css has any online children; otherwise, %false. This
4105 * function can be called from any context but the caller is responsible
4106 * for synchronizing against on/offlining as necessary.
4108 bool css_has_online_children(struct cgroup_subsys_state *css)
4110 struct cgroup_subsys_state *child;
4111 bool ret = false;
4113 rcu_read_lock();
4114 css_for_each_child(child, css) {
4115 if (child->flags & CSS_ONLINE) {
4116 ret = true;
4117 break;
4120 rcu_read_unlock();
4121 return ret;
4124 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4126 struct list_head *l;
4127 struct cgrp_cset_link *link;
4128 struct css_set *cset;
4130 lockdep_assert_held(&css_set_lock);
4132 /* find the next threaded cset */
4133 if (it->tcset_pos) {
4134 l = it->tcset_pos->next;
4136 if (l != it->tcset_head) {
4137 it->tcset_pos = l;
4138 return container_of(l, struct css_set,
4139 threaded_csets_node);
4142 it->tcset_pos = NULL;
4145 /* find the next cset */
4146 l = it->cset_pos;
4147 l = l->next;
4148 if (l == it->cset_head) {
4149 it->cset_pos = NULL;
4150 return NULL;
4153 if (it->ss) {
4154 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4155 } else {
4156 link = list_entry(l, struct cgrp_cset_link, cset_link);
4157 cset = link->cset;
4160 it->cset_pos = l;
4162 /* initialize threaded css_set walking */
4163 if (it->flags & CSS_TASK_ITER_THREADED) {
4164 if (it->cur_dcset)
4165 put_css_set_locked(it->cur_dcset);
4166 it->cur_dcset = cset;
4167 get_css_set(cset);
4169 it->tcset_head = &cset->threaded_csets;
4170 it->tcset_pos = &cset->threaded_csets;
4173 return cset;
4177 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4178 * @it: the iterator to advance
4180 * Advance @it to the next css_set to walk.
4182 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4184 struct css_set *cset;
4186 lockdep_assert_held(&css_set_lock);
4188 /* Advance to the next non-empty css_set */
4189 do {
4190 cset = css_task_iter_next_css_set(it);
4191 if (!cset) {
4192 it->task_pos = NULL;
4193 return;
4195 } while (!css_set_populated(cset));
4197 if (!list_empty(&cset->tasks))
4198 it->task_pos = cset->tasks.next;
4199 else
4200 it->task_pos = cset->mg_tasks.next;
4202 it->tasks_head = &cset->tasks;
4203 it->mg_tasks_head = &cset->mg_tasks;
4206 * We don't keep css_sets locked across iteration steps and thus
4207 * need to take steps to ensure that iteration can be resumed after
4208 * the lock is re-acquired. Iteration is performed at two levels -
4209 * css_sets and tasks in them.
4211 * Once created, a css_set never leaves its cgroup lists, so a
4212 * pinned css_set is guaranteed to stay put and we can resume
4213 * iteration afterwards.
4215 * Tasks may leave @cset across iteration steps. This is resolved
4216 * by registering each iterator with the css_set currently being
4217 * walked and making css_set_move_task() advance iterators whose
4218 * next task is leaving.
4220 if (it->cur_cset) {
4221 list_del(&it->iters_node);
4222 put_css_set_locked(it->cur_cset);
4224 get_css_set(cset);
4225 it->cur_cset = cset;
4226 list_add(&it->iters_node, &cset->task_iters);
4229 static void css_task_iter_advance(struct css_task_iter *it)
4231 struct list_head *next;
4233 lockdep_assert_held(&css_set_lock);
4234 repeat:
4236 * Advance iterator to find next entry. cset->tasks is consumed
4237 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4238 * next cset.
4240 next = it->task_pos->next;
4242 if (next == it->tasks_head)
4243 next = it->mg_tasks_head->next;
4245 if (next == it->mg_tasks_head)
4246 css_task_iter_advance_css_set(it);
4247 else
4248 it->task_pos = next;
4250 /* if PROCS, skip over tasks which aren't group leaders */
4251 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4252 !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4253 cg_list)))
4254 goto repeat;
4258 * css_task_iter_start - initiate task iteration
4259 * @css: the css to walk tasks of
4260 * @flags: CSS_TASK_ITER_* flags
4261 * @it: the task iterator to use
4263 * Initiate iteration through the tasks of @css. The caller can call
4264 * css_task_iter_next() to walk through the tasks until the function
4265 * returns NULL. On completion of iteration, css_task_iter_end() must be
4266 * called.
4268 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4269 struct css_task_iter *it)
4271 /* no one should try to iterate before mounting cgroups */
4272 WARN_ON_ONCE(!use_task_css_set_links);
4274 memset(it, 0, sizeof(*it));
4276 spin_lock_irq(&css_set_lock);
4278 it->ss = css->ss;
4279 it->flags = flags;
4281 if (it->ss)
4282 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4283 else
4284 it->cset_pos = &css->cgroup->cset_links;
4286 it->cset_head = it->cset_pos;
4288 css_task_iter_advance_css_set(it);
4290 spin_unlock_irq(&css_set_lock);
4294 * css_task_iter_next - return the next task for the iterator
4295 * @it: the task iterator being iterated
4297 * The "next" function for task iteration. @it should have been
4298 * initialized via css_task_iter_start(). Returns NULL when the iteration
4299 * reaches the end.
4301 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4303 if (it->cur_task) {
4304 put_task_struct(it->cur_task);
4305 it->cur_task = NULL;
4308 spin_lock_irq(&css_set_lock);
4310 if (it->task_pos) {
4311 it->cur_task = list_entry(it->task_pos, struct task_struct,
4312 cg_list);
4313 get_task_struct(it->cur_task);
4314 css_task_iter_advance(it);
4317 spin_unlock_irq(&css_set_lock);
4319 return it->cur_task;
4323 * css_task_iter_end - finish task iteration
4324 * @it: the task iterator to finish
4326 * Finish task iteration started by css_task_iter_start().
4328 void css_task_iter_end(struct css_task_iter *it)
4330 if (it->cur_cset) {
4331 spin_lock_irq(&css_set_lock);
4332 list_del(&it->iters_node);
4333 put_css_set_locked(it->cur_cset);
4334 spin_unlock_irq(&css_set_lock);
4337 if (it->cur_dcset)
4338 put_css_set(it->cur_dcset);
4340 if (it->cur_task)
4341 put_task_struct(it->cur_task);
4344 static void cgroup_procs_release(struct kernfs_open_file *of)
4346 if (of->priv) {
4347 css_task_iter_end(of->priv);
4348 kfree(of->priv);
4352 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4354 struct kernfs_open_file *of = s->private;
4355 struct css_task_iter *it = of->priv;
4357 return css_task_iter_next(it);
4360 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4361 unsigned int iter_flags)
4363 struct kernfs_open_file *of = s->private;
4364 struct cgroup *cgrp = seq_css(s)->cgroup;
4365 struct css_task_iter *it = of->priv;
4368 * When a seq_file is seeked, it's always traversed sequentially
4369 * from position 0, so we can simply keep iterating on !0 *pos.
4371 if (!it) {
4372 if (WARN_ON_ONCE((*pos)++))
4373 return ERR_PTR(-EINVAL);
4375 it = kzalloc(sizeof(*it), GFP_KERNEL);
4376 if (!it)
4377 return ERR_PTR(-ENOMEM);
4378 of->priv = it;
4379 css_task_iter_start(&cgrp->self, iter_flags, it);
4380 } else if (!(*pos)++) {
4381 css_task_iter_end(it);
4382 css_task_iter_start(&cgrp->self, iter_flags, it);
4385 return cgroup_procs_next(s, NULL, NULL);
4388 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4390 struct cgroup *cgrp = seq_css(s)->cgroup;
4393 * All processes of a threaded subtree belong to the domain cgroup
4394 * of the subtree. Only threads can be distributed across the
4395 * subtree. Reject reads on cgroup.procs in the subtree proper.
4396 * They're always empty anyway.
4398 if (cgroup_is_threaded(cgrp))
4399 return ERR_PTR(-EOPNOTSUPP);
4401 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4402 CSS_TASK_ITER_THREADED);
4405 static int cgroup_procs_show(struct seq_file *s, void *v)
4407 seq_printf(s, "%d\n", task_pid_vnr(v));
4408 return 0;
4411 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4412 struct cgroup *dst_cgrp,
4413 struct super_block *sb)
4415 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4416 struct cgroup *com_cgrp = src_cgrp;
4417 struct inode *inode;
4418 int ret;
4420 lockdep_assert_held(&cgroup_mutex);
4422 /* find the common ancestor */
4423 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4424 com_cgrp = cgroup_parent(com_cgrp);
4426 /* %current should be authorized to migrate to the common ancestor */
4427 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4428 if (!inode)
4429 return -ENOMEM;
4431 ret = inode_permission(inode, MAY_WRITE);
4432 iput(inode);
4433 if (ret)
4434 return ret;
4437 * If namespaces are delegation boundaries, %current must be able
4438 * to see both source and destination cgroups from its namespace.
4440 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4441 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4442 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4443 return -ENOENT;
4445 return 0;
4448 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4449 char *buf, size_t nbytes, loff_t off)
4451 struct cgroup *src_cgrp, *dst_cgrp;
4452 struct task_struct *task;
4453 ssize_t ret;
4455 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4456 if (!dst_cgrp)
4457 return -ENODEV;
4459 task = cgroup_procs_write_start(buf, true);
4460 ret = PTR_ERR_OR_ZERO(task);
4461 if (ret)
4462 goto out_unlock;
4464 /* find the source cgroup */
4465 spin_lock_irq(&css_set_lock);
4466 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4467 spin_unlock_irq(&css_set_lock);
4469 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4470 of->file->f_path.dentry->d_sb);
4471 if (ret)
4472 goto out_finish;
4474 ret = cgroup_attach_task(dst_cgrp, task, true);
4476 out_finish:
4477 cgroup_procs_write_finish(task);
4478 out_unlock:
4479 cgroup_kn_unlock(of->kn);
4481 return ret ?: nbytes;
4484 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4486 return __cgroup_procs_start(s, pos, 0);
4489 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4490 char *buf, size_t nbytes, loff_t off)
4492 struct cgroup *src_cgrp, *dst_cgrp;
4493 struct task_struct *task;
4494 ssize_t ret;
4496 buf = strstrip(buf);
4498 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4499 if (!dst_cgrp)
4500 return -ENODEV;
4502 task = cgroup_procs_write_start(buf, false);
4503 ret = PTR_ERR_OR_ZERO(task);
4504 if (ret)
4505 goto out_unlock;
4507 /* find the source cgroup */
4508 spin_lock_irq(&css_set_lock);
4509 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4510 spin_unlock_irq(&css_set_lock);
4512 /* thread migrations follow the cgroup.procs delegation rule */
4513 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4514 of->file->f_path.dentry->d_sb);
4515 if (ret)
4516 goto out_finish;
4518 /* and must be contained in the same domain */
4519 ret = -EOPNOTSUPP;
4520 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4521 goto out_finish;
4523 ret = cgroup_attach_task(dst_cgrp, task, false);
4525 out_finish:
4526 cgroup_procs_write_finish(task);
4527 out_unlock:
4528 cgroup_kn_unlock(of->kn);
4530 return ret ?: nbytes;
4533 /* cgroup core interface files for the default hierarchy */
4534 static struct cftype cgroup_base_files[] = {
4536 .name = "cgroup.type",
4537 .flags = CFTYPE_NOT_ON_ROOT,
4538 .seq_show = cgroup_type_show,
4539 .write = cgroup_type_write,
4542 .name = "cgroup.procs",
4543 .flags = CFTYPE_NS_DELEGATABLE,
4544 .file_offset = offsetof(struct cgroup, procs_file),
4545 .release = cgroup_procs_release,
4546 .seq_start = cgroup_procs_start,
4547 .seq_next = cgroup_procs_next,
4548 .seq_show = cgroup_procs_show,
4549 .write = cgroup_procs_write,
4552 .name = "cgroup.threads",
4553 .flags = CFTYPE_NS_DELEGATABLE,
4554 .release = cgroup_procs_release,
4555 .seq_start = cgroup_threads_start,
4556 .seq_next = cgroup_procs_next,
4557 .seq_show = cgroup_procs_show,
4558 .write = cgroup_threads_write,
4561 .name = "cgroup.controllers",
4562 .seq_show = cgroup_controllers_show,
4565 .name = "cgroup.subtree_control",
4566 .flags = CFTYPE_NS_DELEGATABLE,
4567 .seq_show = cgroup_subtree_control_show,
4568 .write = cgroup_subtree_control_write,
4571 .name = "cgroup.events",
4572 .flags = CFTYPE_NOT_ON_ROOT,
4573 .file_offset = offsetof(struct cgroup, events_file),
4574 .seq_show = cgroup_events_show,
4577 .name = "cgroup.max.descendants",
4578 .seq_show = cgroup_max_descendants_show,
4579 .write = cgroup_max_descendants_write,
4582 .name = "cgroup.max.depth",
4583 .seq_show = cgroup_max_depth_show,
4584 .write = cgroup_max_depth_write,
4587 .name = "cgroup.stat",
4588 .seq_show = cgroup_stat_show,
4591 .name = "cpu.stat",
4592 .flags = CFTYPE_NOT_ON_ROOT,
4593 .seq_show = cpu_stat_show,
4595 #ifdef CONFIG_PSI
4597 .name = "io.pressure",
4598 .flags = CFTYPE_NOT_ON_ROOT,
4599 .seq_show = cgroup_io_pressure_show,
4602 .name = "memory.pressure",
4603 .flags = CFTYPE_NOT_ON_ROOT,
4604 .seq_show = cgroup_memory_pressure_show,
4607 .name = "cpu.pressure",
4608 .flags = CFTYPE_NOT_ON_ROOT,
4609 .seq_show = cgroup_cpu_pressure_show,
4611 #endif
4612 { } /* terminate */
4616 * css destruction is four-stage process.
4618 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4619 * Implemented in kill_css().
4621 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4622 * and thus css_tryget_online() is guaranteed to fail, the css can be
4623 * offlined by invoking offline_css(). After offlining, the base ref is
4624 * put. Implemented in css_killed_work_fn().
4626 * 3. When the percpu_ref reaches zero, the only possible remaining
4627 * accessors are inside RCU read sections. css_release() schedules the
4628 * RCU callback.
4630 * 4. After the grace period, the css can be freed. Implemented in
4631 * css_free_work_fn().
4633 * It is actually hairier because both step 2 and 4 require process context
4634 * and thus involve punting to css->destroy_work adding two additional
4635 * steps to the already complex sequence.
4637 static void css_free_rwork_fn(struct work_struct *work)
4639 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4640 struct cgroup_subsys_state, destroy_rwork);
4641 struct cgroup_subsys *ss = css->ss;
4642 struct cgroup *cgrp = css->cgroup;
4644 percpu_ref_exit(&css->refcnt);
4646 if (ss) {
4647 /* css free path */
4648 struct cgroup_subsys_state *parent = css->parent;
4649 int id = css->id;
4651 ss->css_free(css);
4652 cgroup_idr_remove(&ss->css_idr, id);
4653 cgroup_put(cgrp);
4655 if (parent)
4656 css_put(parent);
4657 } else {
4658 /* cgroup free path */
4659 atomic_dec(&cgrp->root->nr_cgrps);
4660 cgroup1_pidlist_destroy_all(cgrp);
4661 cancel_work_sync(&cgrp->release_agent_work);
4663 if (cgroup_parent(cgrp)) {
4665 * We get a ref to the parent, and put the ref when
4666 * this cgroup is being freed, so it's guaranteed
4667 * that the parent won't be destroyed before its
4668 * children.
4670 cgroup_put(cgroup_parent(cgrp));
4671 kernfs_put(cgrp->kn);
4672 psi_cgroup_free(cgrp);
4673 if (cgroup_on_dfl(cgrp))
4674 cgroup_rstat_exit(cgrp);
4675 kfree(cgrp);
4676 } else {
4678 * This is root cgroup's refcnt reaching zero,
4679 * which indicates that the root should be
4680 * released.
4682 cgroup_destroy_root(cgrp->root);
4687 static void css_release_work_fn(struct work_struct *work)
4689 struct cgroup_subsys_state *css =
4690 container_of(work, struct cgroup_subsys_state, destroy_work);
4691 struct cgroup_subsys *ss = css->ss;
4692 struct cgroup *cgrp = css->cgroup;
4694 mutex_lock(&cgroup_mutex);
4696 css->flags |= CSS_RELEASED;
4697 list_del_rcu(&css->sibling);
4699 if (ss) {
4700 /* css release path */
4701 if (!list_empty(&css->rstat_css_node)) {
4702 cgroup_rstat_flush(cgrp);
4703 list_del_rcu(&css->rstat_css_node);
4706 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4707 if (ss->css_released)
4708 ss->css_released(css);
4709 } else {
4710 struct cgroup *tcgrp;
4712 /* cgroup release path */
4713 TRACE_CGROUP_PATH(release, cgrp);
4715 if (cgroup_on_dfl(cgrp))
4716 cgroup_rstat_flush(cgrp);
4718 for (tcgrp = cgroup_parent(cgrp); tcgrp;
4719 tcgrp = cgroup_parent(tcgrp))
4720 tcgrp->nr_dying_descendants--;
4722 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4723 cgrp->id = -1;
4726 * There are two control paths which try to determine
4727 * cgroup from dentry without going through kernfs -
4728 * cgroupstats_build() and css_tryget_online_from_dir().
4729 * Those are supported by RCU protecting clearing of
4730 * cgrp->kn->priv backpointer.
4732 if (cgrp->kn)
4733 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4734 NULL);
4736 cgroup_bpf_put(cgrp);
4739 mutex_unlock(&cgroup_mutex);
4741 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4742 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4745 static void css_release(struct percpu_ref *ref)
4747 struct cgroup_subsys_state *css =
4748 container_of(ref, struct cgroup_subsys_state, refcnt);
4750 INIT_WORK(&css->destroy_work, css_release_work_fn);
4751 queue_work(cgroup_destroy_wq, &css->destroy_work);
4754 static void init_and_link_css(struct cgroup_subsys_state *css,
4755 struct cgroup_subsys *ss, struct cgroup *cgrp)
4757 lockdep_assert_held(&cgroup_mutex);
4759 cgroup_get_live(cgrp);
4761 memset(css, 0, sizeof(*css));
4762 css->cgroup = cgrp;
4763 css->ss = ss;
4764 css->id = -1;
4765 INIT_LIST_HEAD(&css->sibling);
4766 INIT_LIST_HEAD(&css->children);
4767 INIT_LIST_HEAD(&css->rstat_css_node);
4768 css->serial_nr = css_serial_nr_next++;
4769 atomic_set(&css->online_cnt, 0);
4771 if (cgroup_parent(cgrp)) {
4772 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4773 css_get(css->parent);
4776 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
4777 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
4779 BUG_ON(cgroup_css(cgrp, ss));
4782 /* invoke ->css_online() on a new CSS and mark it online if successful */
4783 static int online_css(struct cgroup_subsys_state *css)
4785 struct cgroup_subsys *ss = css->ss;
4786 int ret = 0;
4788 lockdep_assert_held(&cgroup_mutex);
4790 if (ss->css_online)
4791 ret = ss->css_online(css);
4792 if (!ret) {
4793 css->flags |= CSS_ONLINE;
4794 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4796 atomic_inc(&css->online_cnt);
4797 if (css->parent)
4798 atomic_inc(&css->parent->online_cnt);
4800 return ret;
4803 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4804 static void offline_css(struct cgroup_subsys_state *css)
4806 struct cgroup_subsys *ss = css->ss;
4808 lockdep_assert_held(&cgroup_mutex);
4810 if (!(css->flags & CSS_ONLINE))
4811 return;
4813 if (ss->css_offline)
4814 ss->css_offline(css);
4816 css->flags &= ~CSS_ONLINE;
4817 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4819 wake_up_all(&css->cgroup->offline_waitq);
4823 * css_create - create a cgroup_subsys_state
4824 * @cgrp: the cgroup new css will be associated with
4825 * @ss: the subsys of new css
4827 * Create a new css associated with @cgrp - @ss pair. On success, the new
4828 * css is online and installed in @cgrp. This function doesn't create the
4829 * interface files. Returns 0 on success, -errno on failure.
4831 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4832 struct cgroup_subsys *ss)
4834 struct cgroup *parent = cgroup_parent(cgrp);
4835 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4836 struct cgroup_subsys_state *css;
4837 int err;
4839 lockdep_assert_held(&cgroup_mutex);
4841 css = ss->css_alloc(parent_css);
4842 if (!css)
4843 css = ERR_PTR(-ENOMEM);
4844 if (IS_ERR(css))
4845 return css;
4847 init_and_link_css(css, ss, cgrp);
4849 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4850 if (err)
4851 goto err_free_css;
4853 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4854 if (err < 0)
4855 goto err_free_css;
4856 css->id = err;
4858 /* @css is ready to be brought online now, make it visible */
4859 list_add_tail_rcu(&css->sibling, &parent_css->children);
4860 cgroup_idr_replace(&ss->css_idr, css, css->id);
4862 err = online_css(css);
4863 if (err)
4864 goto err_list_del;
4866 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4867 cgroup_parent(parent)) {
4868 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4869 current->comm, current->pid, ss->name);
4870 if (!strcmp(ss->name, "memory"))
4871 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4872 ss->warned_broken_hierarchy = true;
4875 return css;
4877 err_list_del:
4878 list_del_rcu(&css->sibling);
4879 err_free_css:
4880 list_del_rcu(&css->rstat_css_node);
4881 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4882 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4883 return ERR_PTR(err);
4887 * The returned cgroup is fully initialized including its control mask, but
4888 * it isn't associated with its kernfs_node and doesn't have the control
4889 * mask applied.
4891 static struct cgroup *cgroup_create(struct cgroup *parent)
4893 struct cgroup_root *root = parent->root;
4894 struct cgroup *cgrp, *tcgrp;
4895 int level = parent->level + 1;
4896 int ret;
4898 /* allocate the cgroup and its ID, 0 is reserved for the root */
4899 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
4900 GFP_KERNEL);
4901 if (!cgrp)
4902 return ERR_PTR(-ENOMEM);
4904 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4905 if (ret)
4906 goto out_free_cgrp;
4908 if (cgroup_on_dfl(parent)) {
4909 ret = cgroup_rstat_init(cgrp);
4910 if (ret)
4911 goto out_cancel_ref;
4915 * Temporarily set the pointer to NULL, so idr_find() won't return
4916 * a half-baked cgroup.
4918 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4919 if (cgrp->id < 0) {
4920 ret = -ENOMEM;
4921 goto out_stat_exit;
4924 init_cgroup_housekeeping(cgrp);
4926 cgrp->self.parent = &parent->self;
4927 cgrp->root = root;
4928 cgrp->level = level;
4930 ret = psi_cgroup_alloc(cgrp);
4931 if (ret)
4932 goto out_idr_free;
4934 ret = cgroup_bpf_inherit(cgrp);
4935 if (ret)
4936 goto out_psi_free;
4938 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4939 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4941 if (tcgrp != cgrp)
4942 tcgrp->nr_descendants++;
4945 if (notify_on_release(parent))
4946 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4948 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4949 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4951 cgrp->self.serial_nr = css_serial_nr_next++;
4953 /* allocation complete, commit to creation */
4954 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4955 atomic_inc(&root->nr_cgrps);
4956 cgroup_get_live(parent);
4959 * @cgrp is now fully operational. If something fails after this
4960 * point, it'll be released via the normal destruction path.
4962 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4965 * On the default hierarchy, a child doesn't automatically inherit
4966 * subtree_control from the parent. Each is configured manually.
4968 if (!cgroup_on_dfl(cgrp))
4969 cgrp->subtree_control = cgroup_control(cgrp);
4971 cgroup_propagate_control(cgrp);
4973 return cgrp;
4975 out_psi_free:
4976 psi_cgroup_free(cgrp);
4977 out_idr_free:
4978 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4979 out_stat_exit:
4980 if (cgroup_on_dfl(parent))
4981 cgroup_rstat_exit(cgrp);
4982 out_cancel_ref:
4983 percpu_ref_exit(&cgrp->self.refcnt);
4984 out_free_cgrp:
4985 kfree(cgrp);
4986 return ERR_PTR(ret);
4989 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4991 struct cgroup *cgroup;
4992 int ret = false;
4993 int level = 1;
4995 lockdep_assert_held(&cgroup_mutex);
4997 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4998 if (cgroup->nr_descendants >= cgroup->max_descendants)
4999 goto fail;
5001 if (level > cgroup->max_depth)
5002 goto fail;
5004 level++;
5007 ret = true;
5008 fail:
5009 return ret;
5012 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5014 struct cgroup *parent, *cgrp;
5015 struct kernfs_node *kn;
5016 int ret;
5018 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5019 if (strchr(name, '\n'))
5020 return -EINVAL;
5022 parent = cgroup_kn_lock_live(parent_kn, false);
5023 if (!parent)
5024 return -ENODEV;
5026 if (!cgroup_check_hierarchy_limits(parent)) {
5027 ret = -EAGAIN;
5028 goto out_unlock;
5031 cgrp = cgroup_create(parent);
5032 if (IS_ERR(cgrp)) {
5033 ret = PTR_ERR(cgrp);
5034 goto out_unlock;
5037 /* create the directory */
5038 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5039 if (IS_ERR(kn)) {
5040 ret = PTR_ERR(kn);
5041 goto out_destroy;
5043 cgrp->kn = kn;
5046 * This extra ref will be put in cgroup_free_fn() and guarantees
5047 * that @cgrp->kn is always accessible.
5049 kernfs_get(kn);
5051 ret = cgroup_kn_set_ugid(kn);
5052 if (ret)
5053 goto out_destroy;
5055 ret = css_populate_dir(&cgrp->self);
5056 if (ret)
5057 goto out_destroy;
5059 ret = cgroup_apply_control_enable(cgrp);
5060 if (ret)
5061 goto out_destroy;
5063 TRACE_CGROUP_PATH(mkdir, cgrp);
5065 /* let's create and online css's */
5066 kernfs_activate(kn);
5068 ret = 0;
5069 goto out_unlock;
5071 out_destroy:
5072 cgroup_destroy_locked(cgrp);
5073 out_unlock:
5074 cgroup_kn_unlock(parent_kn);
5075 return ret;
5079 * This is called when the refcnt of a css is confirmed to be killed.
5080 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5081 * initate destruction and put the css ref from kill_css().
5083 static void css_killed_work_fn(struct work_struct *work)
5085 struct cgroup_subsys_state *css =
5086 container_of(work, struct cgroup_subsys_state, destroy_work);
5088 mutex_lock(&cgroup_mutex);
5090 do {
5091 offline_css(css);
5092 css_put(css);
5093 /* @css can't go away while we're holding cgroup_mutex */
5094 css = css->parent;
5095 } while (css && atomic_dec_and_test(&css->online_cnt));
5097 mutex_unlock(&cgroup_mutex);
5100 /* css kill confirmation processing requires process context, bounce */
5101 static void css_killed_ref_fn(struct percpu_ref *ref)
5103 struct cgroup_subsys_state *css =
5104 container_of(ref, struct cgroup_subsys_state, refcnt);
5106 if (atomic_dec_and_test(&css->online_cnt)) {
5107 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5108 queue_work(cgroup_destroy_wq, &css->destroy_work);
5113 * kill_css - destroy a css
5114 * @css: css to destroy
5116 * This function initiates destruction of @css by removing cgroup interface
5117 * files and putting its base reference. ->css_offline() will be invoked
5118 * asynchronously once css_tryget_online() is guaranteed to fail and when
5119 * the reference count reaches zero, @css will be released.
5121 static void kill_css(struct cgroup_subsys_state *css)
5123 lockdep_assert_held(&cgroup_mutex);
5125 if (css->flags & CSS_DYING)
5126 return;
5128 css->flags |= CSS_DYING;
5131 * This must happen before css is disassociated with its cgroup.
5132 * See seq_css() for details.
5134 css_clear_dir(css);
5137 * Killing would put the base ref, but we need to keep it alive
5138 * until after ->css_offline().
5140 css_get(css);
5143 * cgroup core guarantees that, by the time ->css_offline() is
5144 * invoked, no new css reference will be given out via
5145 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5146 * proceed to offlining css's because percpu_ref_kill() doesn't
5147 * guarantee that the ref is seen as killed on all CPUs on return.
5149 * Use percpu_ref_kill_and_confirm() to get notifications as each
5150 * css is confirmed to be seen as killed on all CPUs.
5152 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5156 * cgroup_destroy_locked - the first stage of cgroup destruction
5157 * @cgrp: cgroup to be destroyed
5159 * css's make use of percpu refcnts whose killing latency shouldn't be
5160 * exposed to userland and are RCU protected. Also, cgroup core needs to
5161 * guarantee that css_tryget_online() won't succeed by the time
5162 * ->css_offline() is invoked. To satisfy all the requirements,
5163 * destruction is implemented in the following two steps.
5165 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5166 * userland visible parts and start killing the percpu refcnts of
5167 * css's. Set up so that the next stage will be kicked off once all
5168 * the percpu refcnts are confirmed to be killed.
5170 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5171 * rest of destruction. Once all cgroup references are gone, the
5172 * cgroup is RCU-freed.
5174 * This function implements s1. After this step, @cgrp is gone as far as
5175 * the userland is concerned and a new cgroup with the same name may be
5176 * created. As cgroup doesn't care about the names internally, this
5177 * doesn't cause any problem.
5179 static int cgroup_destroy_locked(struct cgroup *cgrp)
5180 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5182 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5183 struct cgroup_subsys_state *css;
5184 struct cgrp_cset_link *link;
5185 int ssid;
5187 lockdep_assert_held(&cgroup_mutex);
5190 * Only migration can raise populated from zero and we're already
5191 * holding cgroup_mutex.
5193 if (cgroup_is_populated(cgrp))
5194 return -EBUSY;
5197 * Make sure there's no live children. We can't test emptiness of
5198 * ->self.children as dead children linger on it while being
5199 * drained; otherwise, "rmdir parent/child parent" may fail.
5201 if (css_has_online_children(&cgrp->self))
5202 return -EBUSY;
5205 * Mark @cgrp and the associated csets dead. The former prevents
5206 * further task migration and child creation by disabling
5207 * cgroup_lock_live_group(). The latter makes the csets ignored by
5208 * the migration path.
5210 cgrp->self.flags &= ~CSS_ONLINE;
5212 spin_lock_irq(&css_set_lock);
5213 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5214 link->cset->dead = true;
5215 spin_unlock_irq(&css_set_lock);
5217 /* initiate massacre of all css's */
5218 for_each_css(css, ssid, cgrp)
5219 kill_css(css);
5221 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5222 css_clear_dir(&cgrp->self);
5223 kernfs_remove(cgrp->kn);
5225 if (parent && cgroup_is_threaded(cgrp))
5226 parent->nr_threaded_children--;
5228 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5229 tcgrp->nr_descendants--;
5230 tcgrp->nr_dying_descendants++;
5233 cgroup1_check_for_release(parent);
5235 /* put the base reference */
5236 percpu_ref_kill(&cgrp->self.refcnt);
5238 return 0;
5241 int cgroup_rmdir(struct kernfs_node *kn)
5243 struct cgroup *cgrp;
5244 int ret = 0;
5246 cgrp = cgroup_kn_lock_live(kn, false);
5247 if (!cgrp)
5248 return 0;
5250 ret = cgroup_destroy_locked(cgrp);
5251 if (!ret)
5252 TRACE_CGROUP_PATH(rmdir, cgrp);
5254 cgroup_kn_unlock(kn);
5255 return ret;
5258 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5259 .show_options = cgroup_show_options,
5260 .remount_fs = cgroup_remount,
5261 .mkdir = cgroup_mkdir,
5262 .rmdir = cgroup_rmdir,
5263 .show_path = cgroup_show_path,
5266 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5268 struct cgroup_subsys_state *css;
5270 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5272 mutex_lock(&cgroup_mutex);
5274 idr_init(&ss->css_idr);
5275 INIT_LIST_HEAD(&ss->cfts);
5277 /* Create the root cgroup state for this subsystem */
5278 ss->root = &cgrp_dfl_root;
5279 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5280 /* We don't handle early failures gracefully */
5281 BUG_ON(IS_ERR(css));
5282 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5285 * Root csses are never destroyed and we can't initialize
5286 * percpu_ref during early init. Disable refcnting.
5288 css->flags |= CSS_NO_REF;
5290 if (early) {
5291 /* allocation can't be done safely during early init */
5292 css->id = 1;
5293 } else {
5294 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5295 BUG_ON(css->id < 0);
5298 /* Update the init_css_set to contain a subsys
5299 * pointer to this state - since the subsystem is
5300 * newly registered, all tasks and hence the
5301 * init_css_set is in the subsystem's root cgroup. */
5302 init_css_set.subsys[ss->id] = css;
5304 have_fork_callback |= (bool)ss->fork << ss->id;
5305 have_exit_callback |= (bool)ss->exit << ss->id;
5306 have_free_callback |= (bool)ss->free << ss->id;
5307 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5309 /* At system boot, before all subsystems have been
5310 * registered, no tasks have been forked, so we don't
5311 * need to invoke fork callbacks here. */
5312 BUG_ON(!list_empty(&init_task.tasks));
5314 BUG_ON(online_css(css));
5316 mutex_unlock(&cgroup_mutex);
5320 * cgroup_init_early - cgroup initialization at system boot
5322 * Initialize cgroups at system boot, and initialize any
5323 * subsystems that request early init.
5325 int __init cgroup_init_early(void)
5327 static struct cgroup_sb_opts __initdata opts;
5328 struct cgroup_subsys *ss;
5329 int i;
5331 init_cgroup_root(&cgrp_dfl_root, &opts);
5332 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5334 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5336 for_each_subsys(ss, i) {
5337 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5338 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5339 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5340 ss->id, ss->name);
5341 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5342 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5344 ss->id = i;
5345 ss->name = cgroup_subsys_name[i];
5346 if (!ss->legacy_name)
5347 ss->legacy_name = cgroup_subsys_name[i];
5349 if (ss->early_init)
5350 cgroup_init_subsys(ss, true);
5352 return 0;
5355 static u16 cgroup_disable_mask __initdata;
5358 * cgroup_init - cgroup initialization
5360 * Register cgroup filesystem and /proc file, and initialize
5361 * any subsystems that didn't request early init.
5363 int __init cgroup_init(void)
5365 struct cgroup_subsys *ss;
5366 int ssid;
5368 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5369 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5370 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5371 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5373 cgroup_rstat_boot();
5376 * The latency of the synchronize_sched() is too high for cgroups,
5377 * avoid it at the cost of forcing all readers into the slow path.
5379 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5381 get_user_ns(init_cgroup_ns.user_ns);
5383 mutex_lock(&cgroup_mutex);
5386 * Add init_css_set to the hash table so that dfl_root can link to
5387 * it during init.
5389 hash_add(css_set_table, &init_css_set.hlist,
5390 css_set_hash(init_css_set.subsys));
5392 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5394 mutex_unlock(&cgroup_mutex);
5396 for_each_subsys(ss, ssid) {
5397 if (ss->early_init) {
5398 struct cgroup_subsys_state *css =
5399 init_css_set.subsys[ss->id];
5401 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5402 GFP_KERNEL);
5403 BUG_ON(css->id < 0);
5404 } else {
5405 cgroup_init_subsys(ss, false);
5408 list_add_tail(&init_css_set.e_cset_node[ssid],
5409 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5412 * Setting dfl_root subsys_mask needs to consider the
5413 * disabled flag and cftype registration needs kmalloc,
5414 * both of which aren't available during early_init.
5416 if (cgroup_disable_mask & (1 << ssid)) {
5417 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5418 printk(KERN_INFO "Disabling %s control group subsystem\n",
5419 ss->name);
5420 continue;
5423 if (cgroup1_ssid_disabled(ssid))
5424 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5425 ss->name);
5427 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5429 /* implicit controllers must be threaded too */
5430 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5432 if (ss->implicit_on_dfl)
5433 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5434 else if (!ss->dfl_cftypes)
5435 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5437 if (ss->threaded)
5438 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5440 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5441 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5442 } else {
5443 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5444 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5447 if (ss->bind)
5448 ss->bind(init_css_set.subsys[ssid]);
5450 mutex_lock(&cgroup_mutex);
5451 css_populate_dir(init_css_set.subsys[ssid]);
5452 mutex_unlock(&cgroup_mutex);
5455 /* init_css_set.subsys[] has been updated, re-hash */
5456 hash_del(&init_css_set.hlist);
5457 hash_add(css_set_table, &init_css_set.hlist,
5458 css_set_hash(init_css_set.subsys));
5460 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5461 WARN_ON(register_filesystem(&cgroup_fs_type));
5462 WARN_ON(register_filesystem(&cgroup2_fs_type));
5463 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5465 return 0;
5468 static int __init cgroup_wq_init(void)
5471 * There isn't much point in executing destruction path in
5472 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5473 * Use 1 for @max_active.
5475 * We would prefer to do this in cgroup_init() above, but that
5476 * is called before init_workqueues(): so leave this until after.
5478 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5479 BUG_ON(!cgroup_destroy_wq);
5480 return 0;
5482 core_initcall(cgroup_wq_init);
5484 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5485 char *buf, size_t buflen)
5487 struct kernfs_node *kn;
5489 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5490 if (!kn)
5491 return;
5492 kernfs_path(kn, buf, buflen);
5493 kernfs_put(kn);
5497 * proc_cgroup_show()
5498 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5499 * - Used for /proc/<pid>/cgroup.
5501 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5502 struct pid *pid, struct task_struct *tsk)
5504 char *buf;
5505 int retval;
5506 struct cgroup_root *root;
5508 retval = -ENOMEM;
5509 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5510 if (!buf)
5511 goto out;
5513 mutex_lock(&cgroup_mutex);
5514 spin_lock_irq(&css_set_lock);
5516 for_each_root(root) {
5517 struct cgroup_subsys *ss;
5518 struct cgroup *cgrp;
5519 int ssid, count = 0;
5521 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5522 continue;
5524 seq_printf(m, "%d:", root->hierarchy_id);
5525 if (root != &cgrp_dfl_root)
5526 for_each_subsys(ss, ssid)
5527 if (root->subsys_mask & (1 << ssid))
5528 seq_printf(m, "%s%s", count++ ? "," : "",
5529 ss->legacy_name);
5530 if (strlen(root->name))
5531 seq_printf(m, "%sname=%s", count ? "," : "",
5532 root->name);
5533 seq_putc(m, ':');
5535 cgrp = task_cgroup_from_root(tsk, root);
5538 * On traditional hierarchies, all zombie tasks show up as
5539 * belonging to the root cgroup. On the default hierarchy,
5540 * while a zombie doesn't show up in "cgroup.procs" and
5541 * thus can't be migrated, its /proc/PID/cgroup keeps
5542 * reporting the cgroup it belonged to before exiting. If
5543 * the cgroup is removed before the zombie is reaped,
5544 * " (deleted)" is appended to the cgroup path.
5546 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5547 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5548 current->nsproxy->cgroup_ns);
5549 if (retval >= PATH_MAX)
5550 retval = -ENAMETOOLONG;
5551 if (retval < 0)
5552 goto out_unlock;
5554 seq_puts(m, buf);
5555 } else {
5556 seq_puts(m, "/");
5559 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5560 seq_puts(m, " (deleted)\n");
5561 else
5562 seq_putc(m, '\n');
5565 retval = 0;
5566 out_unlock:
5567 spin_unlock_irq(&css_set_lock);
5568 mutex_unlock(&cgroup_mutex);
5569 kfree(buf);
5570 out:
5571 return retval;
5575 * cgroup_fork - initialize cgroup related fields during copy_process()
5576 * @child: pointer to task_struct of forking parent process.
5578 * A task is associated with the init_css_set until cgroup_post_fork()
5579 * attaches it to the parent's css_set. Empty cg_list indicates that
5580 * @child isn't holding reference to its css_set.
5582 void cgroup_fork(struct task_struct *child)
5584 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5585 INIT_LIST_HEAD(&child->cg_list);
5589 * cgroup_can_fork - called on a new task before the process is exposed
5590 * @child: the task in question.
5592 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5593 * returns an error, the fork aborts with that error code. This allows for
5594 * a cgroup subsystem to conditionally allow or deny new forks.
5596 int cgroup_can_fork(struct task_struct *child)
5598 struct cgroup_subsys *ss;
5599 int i, j, ret;
5601 do_each_subsys_mask(ss, i, have_canfork_callback) {
5602 ret = ss->can_fork(child);
5603 if (ret)
5604 goto out_revert;
5605 } while_each_subsys_mask();
5607 return 0;
5609 out_revert:
5610 for_each_subsys(ss, j) {
5611 if (j >= i)
5612 break;
5613 if (ss->cancel_fork)
5614 ss->cancel_fork(child);
5617 return ret;
5621 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5622 * @child: the task in question
5624 * This calls the cancel_fork() callbacks if a fork failed *after*
5625 * cgroup_can_fork() succeded.
5627 void cgroup_cancel_fork(struct task_struct *child)
5629 struct cgroup_subsys *ss;
5630 int i;
5632 for_each_subsys(ss, i)
5633 if (ss->cancel_fork)
5634 ss->cancel_fork(child);
5638 * cgroup_post_fork - called on a new task after adding it to the task list
5639 * @child: the task in question
5641 * Adds the task to the list running through its css_set if necessary and
5642 * call the subsystem fork() callbacks. Has to be after the task is
5643 * visible on the task list in case we race with the first call to
5644 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5645 * list.
5647 void cgroup_post_fork(struct task_struct *child)
5649 struct cgroup_subsys *ss;
5650 int i;
5653 * This may race against cgroup_enable_task_cg_lists(). As that
5654 * function sets use_task_css_set_links before grabbing
5655 * tasklist_lock and we just went through tasklist_lock to add
5656 * @child, it's guaranteed that either we see the set
5657 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5658 * @child during its iteration.
5660 * If we won the race, @child is associated with %current's
5661 * css_set. Grabbing css_set_lock guarantees both that the
5662 * association is stable, and, on completion of the parent's
5663 * migration, @child is visible in the source of migration or
5664 * already in the destination cgroup. This guarantee is necessary
5665 * when implementing operations which need to migrate all tasks of
5666 * a cgroup to another.
5668 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5669 * will remain in init_css_set. This is safe because all tasks are
5670 * in the init_css_set before cg_links is enabled and there's no
5671 * operation which transfers all tasks out of init_css_set.
5673 if (use_task_css_set_links) {
5674 struct css_set *cset;
5676 spin_lock_irq(&css_set_lock);
5677 cset = task_css_set(current);
5678 if (list_empty(&child->cg_list)) {
5679 get_css_set(cset);
5680 cset->nr_tasks++;
5681 css_set_move_task(child, NULL, cset, false);
5683 spin_unlock_irq(&css_set_lock);
5687 * Call ss->fork(). This must happen after @child is linked on
5688 * css_set; otherwise, @child might change state between ->fork()
5689 * and addition to css_set.
5691 do_each_subsys_mask(ss, i, have_fork_callback) {
5692 ss->fork(child);
5693 } while_each_subsys_mask();
5697 * cgroup_exit - detach cgroup from exiting task
5698 * @tsk: pointer to task_struct of exiting process
5700 * Description: Detach cgroup from @tsk and release it.
5702 * Note that cgroups marked notify_on_release force every task in
5703 * them to take the global cgroup_mutex mutex when exiting.
5704 * This could impact scaling on very large systems. Be reluctant to
5705 * use notify_on_release cgroups where very high task exit scaling
5706 * is required on large systems.
5708 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5709 * call cgroup_exit() while the task is still competent to handle
5710 * notify_on_release(), then leave the task attached to the root cgroup in
5711 * each hierarchy for the remainder of its exit. No need to bother with
5712 * init_css_set refcnting. init_css_set never goes away and we can't race
5713 * with migration path - PF_EXITING is visible to migration path.
5715 void cgroup_exit(struct task_struct *tsk)
5717 struct cgroup_subsys *ss;
5718 struct css_set *cset;
5719 int i;
5722 * Unlink from @tsk from its css_set. As migration path can't race
5723 * with us, we can check css_set and cg_list without synchronization.
5725 cset = task_css_set(tsk);
5727 if (!list_empty(&tsk->cg_list)) {
5728 spin_lock_irq(&css_set_lock);
5729 css_set_move_task(tsk, cset, NULL, false);
5730 cset->nr_tasks--;
5731 spin_unlock_irq(&css_set_lock);
5732 } else {
5733 get_css_set(cset);
5736 /* see cgroup_post_fork() for details */
5737 do_each_subsys_mask(ss, i, have_exit_callback) {
5738 ss->exit(tsk);
5739 } while_each_subsys_mask();
5742 void cgroup_free(struct task_struct *task)
5744 struct css_set *cset = task_css_set(task);
5745 struct cgroup_subsys *ss;
5746 int ssid;
5748 do_each_subsys_mask(ss, ssid, have_free_callback) {
5749 ss->free(task);
5750 } while_each_subsys_mask();
5752 put_css_set(cset);
5755 static int __init cgroup_disable(char *str)
5757 struct cgroup_subsys *ss;
5758 char *token;
5759 int i;
5761 while ((token = strsep(&str, ",")) != NULL) {
5762 if (!*token)
5763 continue;
5765 for_each_subsys(ss, i) {
5766 if (strcmp(token, ss->name) &&
5767 strcmp(token, ss->legacy_name))
5768 continue;
5769 cgroup_disable_mask |= 1 << i;
5772 return 1;
5774 __setup("cgroup_disable=", cgroup_disable);
5777 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5778 * @dentry: directory dentry of interest
5779 * @ss: subsystem of interest
5781 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5782 * to get the corresponding css and return it. If such css doesn't exist
5783 * or can't be pinned, an ERR_PTR value is returned.
5785 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5786 struct cgroup_subsys *ss)
5788 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5789 struct file_system_type *s_type = dentry->d_sb->s_type;
5790 struct cgroup_subsys_state *css = NULL;
5791 struct cgroup *cgrp;
5793 /* is @dentry a cgroup dir? */
5794 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5795 !kn || kernfs_type(kn) != KERNFS_DIR)
5796 return ERR_PTR(-EBADF);
5798 rcu_read_lock();
5801 * This path doesn't originate from kernfs and @kn could already
5802 * have been or be removed at any point. @kn->priv is RCU
5803 * protected for this access. See css_release_work_fn() for details.
5805 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5806 if (cgrp)
5807 css = cgroup_css(cgrp, ss);
5809 if (!css || !css_tryget_online(css))
5810 css = ERR_PTR(-ENOENT);
5812 rcu_read_unlock();
5813 return css;
5817 * css_from_id - lookup css by id
5818 * @id: the cgroup id
5819 * @ss: cgroup subsys to be looked into
5821 * Returns the css if there's valid one with @id, otherwise returns NULL.
5822 * Should be called under rcu_read_lock().
5824 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5826 WARN_ON_ONCE(!rcu_read_lock_held());
5827 return idr_find(&ss->css_idr, id);
5831 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5832 * @path: path on the default hierarchy
5834 * Find the cgroup at @path on the default hierarchy, increment its
5835 * reference count and return it. Returns pointer to the found cgroup on
5836 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5837 * if @path points to a non-directory.
5839 struct cgroup *cgroup_get_from_path(const char *path)
5841 struct kernfs_node *kn;
5842 struct cgroup *cgrp;
5844 mutex_lock(&cgroup_mutex);
5846 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5847 if (kn) {
5848 if (kernfs_type(kn) == KERNFS_DIR) {
5849 cgrp = kn->priv;
5850 cgroup_get_live(cgrp);
5851 } else {
5852 cgrp = ERR_PTR(-ENOTDIR);
5854 kernfs_put(kn);
5855 } else {
5856 cgrp = ERR_PTR(-ENOENT);
5859 mutex_unlock(&cgroup_mutex);
5860 return cgrp;
5862 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5865 * cgroup_get_from_fd - get a cgroup pointer from a fd
5866 * @fd: fd obtained by open(cgroup2_dir)
5868 * Find the cgroup from a fd which should be obtained
5869 * by opening a cgroup directory. Returns a pointer to the
5870 * cgroup on success. ERR_PTR is returned if the cgroup
5871 * cannot be found.
5873 struct cgroup *cgroup_get_from_fd(int fd)
5875 struct cgroup_subsys_state *css;
5876 struct cgroup *cgrp;
5877 struct file *f;
5879 f = fget_raw(fd);
5880 if (!f)
5881 return ERR_PTR(-EBADF);
5883 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5884 fput(f);
5885 if (IS_ERR(css))
5886 return ERR_CAST(css);
5888 cgrp = css->cgroup;
5889 if (!cgroup_on_dfl(cgrp)) {
5890 cgroup_put(cgrp);
5891 return ERR_PTR(-EBADF);
5894 return cgrp;
5896 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5899 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5900 * definition in cgroup-defs.h.
5902 #ifdef CONFIG_SOCK_CGROUP_DATA
5904 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5906 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5907 static bool cgroup_sk_alloc_disabled __read_mostly;
5909 void cgroup_sk_alloc_disable(void)
5911 if (cgroup_sk_alloc_disabled)
5912 return;
5913 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5914 cgroup_sk_alloc_disabled = true;
5917 #else
5919 #define cgroup_sk_alloc_disabled false
5921 #endif
5923 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5925 if (cgroup_sk_alloc_disabled)
5926 return;
5928 /* Socket clone path */
5929 if (skcd->val) {
5931 * We might be cloning a socket which is left in an empty
5932 * cgroup and the cgroup might have already been rmdir'd.
5933 * Don't use cgroup_get_live().
5935 cgroup_get(sock_cgroup_ptr(skcd));
5936 return;
5939 rcu_read_lock();
5941 while (true) {
5942 struct css_set *cset;
5944 cset = task_css_set(current);
5945 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5946 skcd->val = (unsigned long)cset->dfl_cgrp;
5947 break;
5949 cpu_relax();
5952 rcu_read_unlock();
5955 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5957 cgroup_put(sock_cgroup_ptr(skcd));
5960 #endif /* CONFIG_SOCK_CGROUP_DATA */
5962 #ifdef CONFIG_CGROUP_BPF
5963 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5964 enum bpf_attach_type type, u32 flags)
5966 int ret;
5968 mutex_lock(&cgroup_mutex);
5969 ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
5970 mutex_unlock(&cgroup_mutex);
5971 return ret;
5973 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
5974 enum bpf_attach_type type, u32 flags)
5976 int ret;
5978 mutex_lock(&cgroup_mutex);
5979 ret = __cgroup_bpf_detach(cgrp, prog, type, flags);
5980 mutex_unlock(&cgroup_mutex);
5981 return ret;
5983 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
5984 union bpf_attr __user *uattr)
5986 int ret;
5988 mutex_lock(&cgroup_mutex);
5989 ret = __cgroup_bpf_query(cgrp, attr, uattr);
5990 mutex_unlock(&cgroup_mutex);
5991 return ret;
5993 #endif /* CONFIG_CGROUP_BPF */
5995 #ifdef CONFIG_SYSFS
5996 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
5997 ssize_t size, const char *prefix)
5999 struct cftype *cft;
6000 ssize_t ret = 0;
6002 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6003 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6004 continue;
6006 if (prefix)
6007 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6009 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6011 if (unlikely(ret >= size)) {
6012 WARN_ON(1);
6013 break;
6017 return ret;
6020 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6021 char *buf)
6023 struct cgroup_subsys *ss;
6024 int ssid;
6025 ssize_t ret = 0;
6027 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6028 NULL);
6030 for_each_subsys(ss, ssid)
6031 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6032 PAGE_SIZE - ret,
6033 cgroup_subsys_name[ssid]);
6035 return ret;
6037 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6039 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6040 char *buf)
6042 return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
6044 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6046 static struct attribute *cgroup_sysfs_attrs[] = {
6047 &cgroup_delegate_attr.attr,
6048 &cgroup_features_attr.attr,
6049 NULL,
6052 static const struct attribute_group cgroup_sysfs_attr_group = {
6053 .attrs = cgroup_sysfs_attrs,
6054 .name = "cgroup",
6057 static int __init cgroup_sysfs_init(void)
6059 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6061 subsys_initcall(cgroup_sysfs_init);
6062 #endif /* CONFIG_SYSFS */