perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / kernel / dma / mapping.c
blob58dec7a92b7b51d3c1ec1b14236e120baf1277aa
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch-independent dma-mapping routines
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
9 #include <linux/acpi.h>
10 #include <linux/dma-noncoherent.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/of_device.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
18 * Managed DMA API
20 struct dma_devres {
21 size_t size;
22 void *vaddr;
23 dma_addr_t dma_handle;
24 unsigned long attrs;
27 static void dmam_release(struct device *dev, void *res)
29 struct dma_devres *this = res;
31 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
32 this->attrs);
35 static int dmam_match(struct device *dev, void *res, void *match_data)
37 struct dma_devres *this = res, *match = match_data;
39 if (this->vaddr == match->vaddr) {
40 WARN_ON(this->size != match->size ||
41 this->dma_handle != match->dma_handle);
42 return 1;
44 return 0;
47 /**
48 * dmam_alloc_coherent - Managed dma_alloc_coherent()
49 * @dev: Device to allocate coherent memory for
50 * @size: Size of allocation
51 * @dma_handle: Out argument for allocated DMA handle
52 * @gfp: Allocation flags
54 * Managed dma_alloc_coherent(). Memory allocated using this function
55 * will be automatically released on driver detach.
57 * RETURNS:
58 * Pointer to allocated memory on success, NULL on failure.
60 void *dmam_alloc_coherent(struct device *dev, size_t size,
61 dma_addr_t *dma_handle, gfp_t gfp)
63 struct dma_devres *dr;
64 void *vaddr;
66 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
67 if (!dr)
68 return NULL;
70 vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
71 if (!vaddr) {
72 devres_free(dr);
73 return NULL;
76 dr->vaddr = vaddr;
77 dr->dma_handle = *dma_handle;
78 dr->size = size;
80 devres_add(dev, dr);
82 return vaddr;
84 EXPORT_SYMBOL(dmam_alloc_coherent);
86 /**
87 * dmam_free_coherent - Managed dma_free_coherent()
88 * @dev: Device to free coherent memory for
89 * @size: Size of allocation
90 * @vaddr: Virtual address of the memory to free
91 * @dma_handle: DMA handle of the memory to free
93 * Managed dma_free_coherent().
95 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
96 dma_addr_t dma_handle)
98 struct dma_devres match_data = { size, vaddr, dma_handle };
100 dma_free_coherent(dev, size, vaddr, dma_handle);
101 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
103 EXPORT_SYMBOL(dmam_free_coherent);
106 * dmam_alloc_attrs - Managed dma_alloc_attrs()
107 * @dev: Device to allocate non_coherent memory for
108 * @size: Size of allocation
109 * @dma_handle: Out argument for allocated DMA handle
110 * @gfp: Allocation flags
111 * @attrs: Flags in the DMA_ATTR_* namespace.
113 * Managed dma_alloc_attrs(). Memory allocated using this function will be
114 * automatically released on driver detach.
116 * RETURNS:
117 * Pointer to allocated memory on success, NULL on failure.
119 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
120 gfp_t gfp, unsigned long attrs)
122 struct dma_devres *dr;
123 void *vaddr;
125 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
126 if (!dr)
127 return NULL;
129 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
130 if (!vaddr) {
131 devres_free(dr);
132 return NULL;
135 dr->vaddr = vaddr;
136 dr->dma_handle = *dma_handle;
137 dr->size = size;
138 dr->attrs = attrs;
140 devres_add(dev, dr);
142 return vaddr;
144 EXPORT_SYMBOL(dmam_alloc_attrs);
146 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
148 static void dmam_coherent_decl_release(struct device *dev, void *res)
150 dma_release_declared_memory(dev);
154 * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
155 * @dev: Device to declare coherent memory for
156 * @phys_addr: Physical address of coherent memory to be declared
157 * @device_addr: Device address of coherent memory to be declared
158 * @size: Size of coherent memory to be declared
159 * @flags: Flags
161 * Managed dma_declare_coherent_memory().
163 * RETURNS:
164 * 0 on success, -errno on failure.
166 int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
167 dma_addr_t device_addr, size_t size, int flags)
169 void *res;
170 int rc;
172 res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
173 if (!res)
174 return -ENOMEM;
176 rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size,
177 flags);
178 if (!rc)
179 devres_add(dev, res);
180 else
181 devres_free(res);
183 return rc;
185 EXPORT_SYMBOL(dmam_declare_coherent_memory);
188 * dmam_release_declared_memory - Managed dma_release_declared_memory().
189 * @dev: Device to release declared coherent memory for
191 * Managed dmam_release_declared_memory().
193 void dmam_release_declared_memory(struct device *dev)
195 WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
197 EXPORT_SYMBOL(dmam_release_declared_memory);
199 #endif
202 * Create scatter-list for the already allocated DMA buffer.
204 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
205 void *cpu_addr, dma_addr_t dma_addr, size_t size,
206 unsigned long attrs)
208 struct page *page;
209 int ret;
211 if (!dev_is_dma_coherent(dev)) {
212 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
213 return -ENXIO;
215 page = pfn_to_page(arch_dma_coherent_to_pfn(dev, cpu_addr,
216 dma_addr));
217 } else {
218 page = virt_to_page(cpu_addr);
221 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
222 if (!ret)
223 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
224 return ret;
226 EXPORT_SYMBOL(dma_common_get_sgtable);
229 * Create userspace mapping for the DMA-coherent memory.
231 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
232 void *cpu_addr, dma_addr_t dma_addr, size_t size,
233 unsigned long attrs)
235 #ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP
236 unsigned long user_count = vma_pages(vma);
237 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
238 unsigned long off = vma->vm_pgoff;
239 unsigned long pfn;
240 int ret = -ENXIO;
242 vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs);
244 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
245 return ret;
247 if (off >= count || user_count > count - off)
248 return -ENXIO;
250 if (!dev_is_dma_coherent(dev)) {
251 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
252 return -ENXIO;
253 pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
254 } else {
255 pfn = page_to_pfn(virt_to_page(cpu_addr));
258 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
259 user_count << PAGE_SHIFT, vma->vm_page_prot);
260 #else
261 return -ENXIO;
262 #endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
264 EXPORT_SYMBOL(dma_common_mmap);
266 #ifdef CONFIG_MMU
267 static struct vm_struct *__dma_common_pages_remap(struct page **pages,
268 size_t size, unsigned long vm_flags, pgprot_t prot,
269 const void *caller)
271 struct vm_struct *area;
273 area = get_vm_area_caller(size, vm_flags, caller);
274 if (!area)
275 return NULL;
277 if (map_vm_area(area, prot, pages)) {
278 vunmap(area->addr);
279 return NULL;
282 return area;
286 * remaps an array of PAGE_SIZE pages into another vm_area
287 * Cannot be used in non-sleeping contexts
289 void *dma_common_pages_remap(struct page **pages, size_t size,
290 unsigned long vm_flags, pgprot_t prot,
291 const void *caller)
293 struct vm_struct *area;
295 area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
296 if (!area)
297 return NULL;
299 area->pages = pages;
301 return area->addr;
305 * remaps an allocated contiguous region into another vm_area.
306 * Cannot be used in non-sleeping contexts
309 void *dma_common_contiguous_remap(struct page *page, size_t size,
310 unsigned long vm_flags,
311 pgprot_t prot, const void *caller)
313 int i;
314 struct page **pages;
315 struct vm_struct *area;
317 pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL);
318 if (!pages)
319 return NULL;
321 for (i = 0; i < (size >> PAGE_SHIFT); i++)
322 pages[i] = nth_page(page, i);
324 area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
326 kfree(pages);
328 if (!area)
329 return NULL;
330 return area->addr;
334 * unmaps a range previously mapped by dma_common_*_remap
336 void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags)
338 struct vm_struct *area = find_vm_area(cpu_addr);
340 if (!area || (area->flags & vm_flags) != vm_flags) {
341 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
342 return;
345 unmap_kernel_range((unsigned long)cpu_addr, PAGE_ALIGN(size));
346 vunmap(cpu_addr);
348 #endif