2 * User-space Probes (UProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2008-2012
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/coredump.h>
32 #include <linux/export.h>
33 #include <linux/rmap.h> /* anon_vma_prepare */
34 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
35 #include <linux/swap.h> /* try_to_free_swap */
36 #include <linux/ptrace.h> /* user_enable_single_step */
37 #include <linux/kdebug.h> /* notifier mechanism */
38 #include "../../mm/internal.h" /* munlock_vma_page */
39 #include <linux/percpu-rwsem.h>
40 #include <linux/task_work.h>
41 #include <linux/shmem_fs.h>
43 #include <linux/uprobes.h>
45 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
46 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
48 static struct rb_root uprobes_tree
= RB_ROOT
;
50 * allows us to skip the uprobe_mmap if there are no uprobe events active
51 * at this time. Probably a fine grained per inode count is better?
53 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
55 static DEFINE_SPINLOCK(uprobes_treelock
); /* serialize rbtree access */
57 #define UPROBES_HASH_SZ 13
58 /* serialize uprobe->pending_list */
59 static struct mutex uprobes_mmap_mutex
[UPROBES_HASH_SZ
];
60 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
62 static struct percpu_rw_semaphore dup_mmap_sem
;
64 /* Have a copy of original instruction */
65 #define UPROBE_COPY_INSN 0
68 struct rb_node rb_node
; /* node in the rb tree */
70 struct rw_semaphore register_rwsem
;
71 struct rw_semaphore consumer_rwsem
;
72 struct list_head pending_list
;
73 struct uprobe_consumer
*consumers
;
74 struct inode
*inode
; /* Also hold a ref to inode */
79 * The generic code assumes that it has two members of unknown type
80 * owned by the arch-specific code:
82 * insn - copy_insn() saves the original instruction here for
83 * arch_uprobe_analyze_insn().
85 * ixol - potentially modified instruction to execute out of
86 * line, copied to xol_area by xol_get_insn_slot().
88 struct arch_uprobe arch
;
92 * Execute out of line area: anonymous executable mapping installed
93 * by the probed task to execute the copy of the original instruction
94 * mangled by set_swbp().
96 * On a breakpoint hit, thread contests for a slot. It frees the
97 * slot after singlestep. Currently a fixed number of slots are
101 wait_queue_head_t wq
; /* if all slots are busy */
102 atomic_t slot_count
; /* number of in-use slots */
103 unsigned long *bitmap
; /* 0 = free slot */
105 struct vm_special_mapping xol_mapping
;
106 struct page
*pages
[2];
108 * We keep the vma's vm_start rather than a pointer to the vma
109 * itself. The probed process or a naughty kernel module could make
110 * the vma go away, and we must handle that reasonably gracefully.
112 unsigned long vaddr
; /* Page(s) of instruction slots */
116 * valid_vma: Verify if the specified vma is an executable vma
117 * Relax restrictions while unregistering: vm_flags might have
118 * changed after breakpoint was inserted.
119 * - is_register: indicates if we are in register context.
120 * - Return 1 if the specified virtual address is in an
123 static bool valid_vma(struct vm_area_struct
*vma
, bool is_register
)
125 vm_flags_t flags
= VM_HUGETLB
| VM_MAYEXEC
| VM_MAYSHARE
;
130 return vma
->vm_file
&& (vma
->vm_flags
& flags
) == VM_MAYEXEC
;
133 static unsigned long offset_to_vaddr(struct vm_area_struct
*vma
, loff_t offset
)
135 return vma
->vm_start
+ offset
- ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
138 static loff_t
vaddr_to_offset(struct vm_area_struct
*vma
, unsigned long vaddr
)
140 return ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
) + (vaddr
- vma
->vm_start
);
144 * __replace_page - replace page in vma by new page.
145 * based on replace_page in mm/ksm.c
147 * @vma: vma that holds the pte pointing to page
148 * @addr: address the old @page is mapped at
149 * @page: the cowed page we are replacing by kpage
150 * @kpage: the modified page we replace page by
152 * Returns 0 on success, -EFAULT on failure.
154 static int __replace_page(struct vm_area_struct
*vma
, unsigned long addr
,
155 struct page
*old_page
, struct page
*new_page
)
157 struct mm_struct
*mm
= vma
->vm_mm
;
158 struct page_vma_mapped_walk pvmw
= {
164 /* For mmu_notifiers */
165 const unsigned long mmun_start
= addr
;
166 const unsigned long mmun_end
= addr
+ PAGE_SIZE
;
167 struct mem_cgroup
*memcg
;
169 VM_BUG_ON_PAGE(PageTransHuge(old_page
), old_page
);
171 err
= mem_cgroup_try_charge(new_page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
,
176 /* For try_to_free_swap() and munlock_vma_page() below */
179 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
181 if (!page_vma_mapped_walk(&pvmw
)) {
182 mem_cgroup_cancel_charge(new_page
, memcg
, false);
185 VM_BUG_ON_PAGE(addr
!= pvmw
.address
, old_page
);
188 page_add_new_anon_rmap(new_page
, vma
, addr
, false);
189 mem_cgroup_commit_charge(new_page
, memcg
, false, false);
190 lru_cache_add_active_or_unevictable(new_page
, vma
);
192 if (!PageAnon(old_page
)) {
193 dec_mm_counter(mm
, mm_counter_file(old_page
));
194 inc_mm_counter(mm
, MM_ANONPAGES
);
197 flush_cache_page(vma
, addr
, pte_pfn(*pvmw
.pte
));
198 ptep_clear_flush_notify(vma
, addr
, pvmw
.pte
);
199 set_pte_at_notify(mm
, addr
, pvmw
.pte
,
200 mk_pte(new_page
, vma
->vm_page_prot
));
202 page_remove_rmap(old_page
, false);
203 if (!page_mapped(old_page
))
204 try_to_free_swap(old_page
);
205 page_vma_mapped_walk_done(&pvmw
);
207 if (vma
->vm_flags
& VM_LOCKED
)
208 munlock_vma_page(old_page
);
213 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
214 unlock_page(old_page
);
219 * is_swbp_insn - check if instruction is breakpoint instruction.
220 * @insn: instruction to be checked.
221 * Default implementation of is_swbp_insn
222 * Returns true if @insn is a breakpoint instruction.
224 bool __weak
is_swbp_insn(uprobe_opcode_t
*insn
)
226 return *insn
== UPROBE_SWBP_INSN
;
230 * is_trap_insn - check if instruction is breakpoint instruction.
231 * @insn: instruction to be checked.
232 * Default implementation of is_trap_insn
233 * Returns true if @insn is a breakpoint instruction.
235 * This function is needed for the case where an architecture has multiple
236 * trap instructions (like powerpc).
238 bool __weak
is_trap_insn(uprobe_opcode_t
*insn
)
240 return is_swbp_insn(insn
);
243 static void copy_from_page(struct page
*page
, unsigned long vaddr
, void *dst
, int len
)
245 void *kaddr
= kmap_atomic(page
);
246 memcpy(dst
, kaddr
+ (vaddr
& ~PAGE_MASK
), len
);
247 kunmap_atomic(kaddr
);
250 static void copy_to_page(struct page
*page
, unsigned long vaddr
, const void *src
, int len
)
252 void *kaddr
= kmap_atomic(page
);
253 memcpy(kaddr
+ (vaddr
& ~PAGE_MASK
), src
, len
);
254 kunmap_atomic(kaddr
);
257 static int verify_opcode(struct page
*page
, unsigned long vaddr
, uprobe_opcode_t
*new_opcode
)
259 uprobe_opcode_t old_opcode
;
263 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
264 * We do not check if it is any other 'trap variant' which could
265 * be conditional trap instruction such as the one powerpc supports.
267 * The logic is that we do not care if the underlying instruction
268 * is a trap variant; uprobes always wins over any other (gdb)
271 copy_from_page(page
, vaddr
, &old_opcode
, UPROBE_SWBP_INSN_SIZE
);
272 is_swbp
= is_swbp_insn(&old_opcode
);
274 if (is_swbp_insn(new_opcode
)) {
275 if (is_swbp
) /* register: already installed? */
278 if (!is_swbp
) /* unregister: was it changed by us? */
287 * Expect the breakpoint instruction to be the smallest size instruction for
288 * the architecture. If an arch has variable length instruction and the
289 * breakpoint instruction is not of the smallest length instruction
290 * supported by that architecture then we need to modify is_trap_at_addr and
291 * uprobe_write_opcode accordingly. This would never be a problem for archs
292 * that have fixed length instructions.
294 * uprobe_write_opcode - write the opcode at a given virtual address.
295 * @mm: the probed process address space.
296 * @vaddr: the virtual address to store the opcode.
297 * @opcode: opcode to be written at @vaddr.
299 * Called with mm->mmap_sem held for write.
300 * Return 0 (success) or a negative errno.
302 int uprobe_write_opcode(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
,
303 unsigned long vaddr
, uprobe_opcode_t opcode
)
305 struct page
*old_page
, *new_page
;
306 struct vm_area_struct
*vma
;
310 /* Read the page with vaddr into memory */
311 ret
= get_user_pages_remote(NULL
, mm
, vaddr
, 1,
312 FOLL_FORCE
| FOLL_SPLIT
, &old_page
, &vma
, NULL
);
316 ret
= verify_opcode(old_page
, vaddr
, &opcode
);
320 ret
= anon_vma_prepare(vma
);
325 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vaddr
);
329 __SetPageUptodate(new_page
);
330 copy_highpage(new_page
, old_page
);
331 copy_to_page(new_page
, vaddr
, &opcode
, UPROBE_SWBP_INSN_SIZE
);
333 ret
= __replace_page(vma
, vaddr
, old_page
, new_page
);
338 if (unlikely(ret
== -EAGAIN
))
344 * set_swbp - store breakpoint at a given address.
345 * @auprobe: arch specific probepoint information.
346 * @mm: the probed process address space.
347 * @vaddr: the virtual address to insert the opcode.
349 * For mm @mm, store the breakpoint instruction at @vaddr.
350 * Return 0 (success) or a negative errno.
352 int __weak
set_swbp(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
354 return uprobe_write_opcode(auprobe
, mm
, vaddr
, UPROBE_SWBP_INSN
);
358 * set_orig_insn - Restore the original instruction.
359 * @mm: the probed process address space.
360 * @auprobe: arch specific probepoint information.
361 * @vaddr: the virtual address to insert the opcode.
363 * For mm @mm, restore the original opcode (opcode) at @vaddr.
364 * Return 0 (success) or a negative errno.
367 set_orig_insn(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
369 return uprobe_write_opcode(auprobe
, mm
, vaddr
,
370 *(uprobe_opcode_t
*)&auprobe
->insn
);
373 static struct uprobe
*get_uprobe(struct uprobe
*uprobe
)
375 atomic_inc(&uprobe
->ref
);
379 static void put_uprobe(struct uprobe
*uprobe
)
381 if (atomic_dec_and_test(&uprobe
->ref
))
385 static int match_uprobe(struct uprobe
*l
, struct uprobe
*r
)
387 if (l
->inode
< r
->inode
)
390 if (l
->inode
> r
->inode
)
393 if (l
->offset
< r
->offset
)
396 if (l
->offset
> r
->offset
)
402 static struct uprobe
*__find_uprobe(struct inode
*inode
, loff_t offset
)
404 struct uprobe u
= { .inode
= inode
, .offset
= offset
};
405 struct rb_node
*n
= uprobes_tree
.rb_node
;
406 struct uprobe
*uprobe
;
410 uprobe
= rb_entry(n
, struct uprobe
, rb_node
);
411 match
= match_uprobe(&u
, uprobe
);
413 return get_uprobe(uprobe
);
424 * Find a uprobe corresponding to a given inode:offset
425 * Acquires uprobes_treelock
427 static struct uprobe
*find_uprobe(struct inode
*inode
, loff_t offset
)
429 struct uprobe
*uprobe
;
431 spin_lock(&uprobes_treelock
);
432 uprobe
= __find_uprobe(inode
, offset
);
433 spin_unlock(&uprobes_treelock
);
438 static struct uprobe
*__insert_uprobe(struct uprobe
*uprobe
)
440 struct rb_node
**p
= &uprobes_tree
.rb_node
;
441 struct rb_node
*parent
= NULL
;
447 u
= rb_entry(parent
, struct uprobe
, rb_node
);
448 match
= match_uprobe(uprobe
, u
);
450 return get_uprobe(u
);
453 p
= &parent
->rb_left
;
455 p
= &parent
->rb_right
;
460 rb_link_node(&uprobe
->rb_node
, parent
, p
);
461 rb_insert_color(&uprobe
->rb_node
, &uprobes_tree
);
462 /* get access + creation ref */
463 atomic_set(&uprobe
->ref
, 2);
469 * Acquire uprobes_treelock.
470 * Matching uprobe already exists in rbtree;
471 * increment (access refcount) and return the matching uprobe.
473 * No matching uprobe; insert the uprobe in rb_tree;
474 * get a double refcount (access + creation) and return NULL.
476 static struct uprobe
*insert_uprobe(struct uprobe
*uprobe
)
480 spin_lock(&uprobes_treelock
);
481 u
= __insert_uprobe(uprobe
);
482 spin_unlock(&uprobes_treelock
);
487 static struct uprobe
*alloc_uprobe(struct inode
*inode
, loff_t offset
)
489 struct uprobe
*uprobe
, *cur_uprobe
;
491 uprobe
= kzalloc(sizeof(struct uprobe
), GFP_KERNEL
);
495 uprobe
->inode
= inode
;
496 uprobe
->offset
= offset
;
497 init_rwsem(&uprobe
->register_rwsem
);
498 init_rwsem(&uprobe
->consumer_rwsem
);
500 /* add to uprobes_tree, sorted on inode:offset */
501 cur_uprobe
= insert_uprobe(uprobe
);
502 /* a uprobe exists for this inode:offset combination */
511 static void consumer_add(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
513 down_write(&uprobe
->consumer_rwsem
);
514 uc
->next
= uprobe
->consumers
;
515 uprobe
->consumers
= uc
;
516 up_write(&uprobe
->consumer_rwsem
);
520 * For uprobe @uprobe, delete the consumer @uc.
521 * Return true if the @uc is deleted successfully
524 static bool consumer_del(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
526 struct uprobe_consumer
**con
;
529 down_write(&uprobe
->consumer_rwsem
);
530 for (con
= &uprobe
->consumers
; *con
; con
= &(*con
)->next
) {
537 up_write(&uprobe
->consumer_rwsem
);
542 static int __copy_insn(struct address_space
*mapping
, struct file
*filp
,
543 void *insn
, int nbytes
, loff_t offset
)
547 * Ensure that the page that has the original instruction is populated
548 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
549 * see uprobe_register().
551 if (mapping
->a_ops
->readpage
)
552 page
= read_mapping_page(mapping
, offset
>> PAGE_SHIFT
, filp
);
554 page
= shmem_read_mapping_page(mapping
, offset
>> PAGE_SHIFT
);
556 return PTR_ERR(page
);
558 copy_from_page(page
, offset
, insn
, nbytes
);
564 static int copy_insn(struct uprobe
*uprobe
, struct file
*filp
)
566 struct address_space
*mapping
= uprobe
->inode
->i_mapping
;
567 loff_t offs
= uprobe
->offset
;
568 void *insn
= &uprobe
->arch
.insn
;
569 int size
= sizeof(uprobe
->arch
.insn
);
572 /* Copy only available bytes, -EIO if nothing was read */
574 if (offs
>= i_size_read(uprobe
->inode
))
577 len
= min_t(int, size
, PAGE_SIZE
- (offs
& ~PAGE_MASK
));
578 err
= __copy_insn(mapping
, filp
, insn
, len
, offs
);
590 static int prepare_uprobe(struct uprobe
*uprobe
, struct file
*file
,
591 struct mm_struct
*mm
, unsigned long vaddr
)
595 if (test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
))
598 /* TODO: move this into _register, until then we abuse this sem. */
599 down_write(&uprobe
->consumer_rwsem
);
600 if (test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
))
603 ret
= copy_insn(uprobe
, file
);
608 if (is_trap_insn((uprobe_opcode_t
*)&uprobe
->arch
.insn
))
611 ret
= arch_uprobe_analyze_insn(&uprobe
->arch
, mm
, vaddr
);
615 /* uprobe_write_opcode() assumes we don't cross page boundary */
616 BUG_ON((uprobe
->offset
& ~PAGE_MASK
) +
617 UPROBE_SWBP_INSN_SIZE
> PAGE_SIZE
);
619 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
620 set_bit(UPROBE_COPY_INSN
, &uprobe
->flags
);
623 up_write(&uprobe
->consumer_rwsem
);
628 static inline bool consumer_filter(struct uprobe_consumer
*uc
,
629 enum uprobe_filter_ctx ctx
, struct mm_struct
*mm
)
631 return !uc
->filter
|| uc
->filter(uc
, ctx
, mm
);
634 static bool filter_chain(struct uprobe
*uprobe
,
635 enum uprobe_filter_ctx ctx
, struct mm_struct
*mm
)
637 struct uprobe_consumer
*uc
;
640 down_read(&uprobe
->consumer_rwsem
);
641 for (uc
= uprobe
->consumers
; uc
; uc
= uc
->next
) {
642 ret
= consumer_filter(uc
, ctx
, mm
);
646 up_read(&uprobe
->consumer_rwsem
);
652 install_breakpoint(struct uprobe
*uprobe
, struct mm_struct
*mm
,
653 struct vm_area_struct
*vma
, unsigned long vaddr
)
658 ret
= prepare_uprobe(uprobe
, vma
->vm_file
, mm
, vaddr
);
663 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
664 * the task can hit this breakpoint right after __replace_page().
666 first_uprobe
= !test_bit(MMF_HAS_UPROBES
, &mm
->flags
);
668 set_bit(MMF_HAS_UPROBES
, &mm
->flags
);
670 ret
= set_swbp(&uprobe
->arch
, mm
, vaddr
);
672 clear_bit(MMF_RECALC_UPROBES
, &mm
->flags
);
673 else if (first_uprobe
)
674 clear_bit(MMF_HAS_UPROBES
, &mm
->flags
);
680 remove_breakpoint(struct uprobe
*uprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
682 set_bit(MMF_RECALC_UPROBES
, &mm
->flags
);
683 return set_orig_insn(&uprobe
->arch
, mm
, vaddr
);
686 static inline bool uprobe_is_active(struct uprobe
*uprobe
)
688 return !RB_EMPTY_NODE(&uprobe
->rb_node
);
691 * There could be threads that have already hit the breakpoint. They
692 * will recheck the current insn and restart if find_uprobe() fails.
693 * See find_active_uprobe().
695 static void delete_uprobe(struct uprobe
*uprobe
)
697 if (WARN_ON(!uprobe_is_active(uprobe
)))
700 spin_lock(&uprobes_treelock
);
701 rb_erase(&uprobe
->rb_node
, &uprobes_tree
);
702 spin_unlock(&uprobes_treelock
);
703 RB_CLEAR_NODE(&uprobe
->rb_node
); /* for uprobe_is_active() */
708 struct map_info
*next
;
709 struct mm_struct
*mm
;
713 static inline struct map_info
*free_map_info(struct map_info
*info
)
715 struct map_info
*next
= info
->next
;
720 static struct map_info
*
721 build_map_info(struct address_space
*mapping
, loff_t offset
, bool is_register
)
723 unsigned long pgoff
= offset
>> PAGE_SHIFT
;
724 struct vm_area_struct
*vma
;
725 struct map_info
*curr
= NULL
;
726 struct map_info
*prev
= NULL
;
727 struct map_info
*info
;
731 i_mmap_lock_read(mapping
);
732 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
733 if (!valid_vma(vma
, is_register
))
736 if (!prev
&& !more
) {
738 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
739 * reclaim. This is optimistic, no harm done if it fails.
741 prev
= kmalloc(sizeof(struct map_info
),
742 GFP_NOWAIT
| __GFP_NOMEMALLOC
| __GFP_NOWARN
);
751 if (!mmget_not_zero(vma
->vm_mm
))
759 info
->mm
= vma
->vm_mm
;
760 info
->vaddr
= offset_to_vaddr(vma
, offset
);
762 i_mmap_unlock_read(mapping
);
774 info
= kmalloc(sizeof(struct map_info
), GFP_KERNEL
);
776 curr
= ERR_PTR(-ENOMEM
);
786 prev
= free_map_info(prev
);
791 register_for_each_vma(struct uprobe
*uprobe
, struct uprobe_consumer
*new)
793 bool is_register
= !!new;
794 struct map_info
*info
;
797 percpu_down_write(&dup_mmap_sem
);
798 info
= build_map_info(uprobe
->inode
->i_mapping
,
799 uprobe
->offset
, is_register
);
806 struct mm_struct
*mm
= info
->mm
;
807 struct vm_area_struct
*vma
;
809 if (err
&& is_register
)
812 down_write(&mm
->mmap_sem
);
813 vma
= find_vma(mm
, info
->vaddr
);
814 if (!vma
|| !valid_vma(vma
, is_register
) ||
815 file_inode(vma
->vm_file
) != uprobe
->inode
)
818 if (vma
->vm_start
> info
->vaddr
||
819 vaddr_to_offset(vma
, info
->vaddr
) != uprobe
->offset
)
823 /* consult only the "caller", new consumer. */
824 if (consumer_filter(new,
825 UPROBE_FILTER_REGISTER
, mm
))
826 err
= install_breakpoint(uprobe
, mm
, vma
, info
->vaddr
);
827 } else if (test_bit(MMF_HAS_UPROBES
, &mm
->flags
)) {
828 if (!filter_chain(uprobe
,
829 UPROBE_FILTER_UNREGISTER
, mm
))
830 err
|= remove_breakpoint(uprobe
, mm
, info
->vaddr
);
834 up_write(&mm
->mmap_sem
);
837 info
= free_map_info(info
);
840 percpu_up_write(&dup_mmap_sem
);
845 __uprobe_unregister(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
849 if (WARN_ON(!consumer_del(uprobe
, uc
)))
852 err
= register_for_each_vma(uprobe
, NULL
);
853 /* TODO : cant unregister? schedule a worker thread */
854 if (!uprobe
->consumers
&& !err
)
855 delete_uprobe(uprobe
);
859 * uprobe_unregister - unregister an already registered probe.
860 * @inode: the file in which the probe has to be removed.
861 * @offset: offset from the start of the file.
862 * @uc: identify which probe if multiple probes are colocated.
864 void uprobe_unregister(struct inode
*inode
, loff_t offset
, struct uprobe_consumer
*uc
)
866 struct uprobe
*uprobe
;
868 uprobe
= find_uprobe(inode
, offset
);
869 if (WARN_ON(!uprobe
))
872 down_write(&uprobe
->register_rwsem
);
873 __uprobe_unregister(uprobe
, uc
);
874 up_write(&uprobe
->register_rwsem
);
877 EXPORT_SYMBOL_GPL(uprobe_unregister
);
880 * __uprobe_register - register a probe
881 * @inode: the file in which the probe has to be placed.
882 * @offset: offset from the start of the file.
883 * @uc: information on howto handle the probe..
885 * Apart from the access refcount, __uprobe_register() takes a creation
886 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
887 * inserted into the rbtree (i.e first consumer for a @inode:@offset
888 * tuple). Creation refcount stops uprobe_unregister from freeing the
889 * @uprobe even before the register operation is complete. Creation
890 * refcount is released when the last @uc for the @uprobe
891 * unregisters. Caller of __uprobe_register() is required to keep @inode
892 * (and the containing mount) referenced.
894 * Return errno if it cannot successully install probes
895 * else return 0 (success)
897 static int __uprobe_register(struct inode
*inode
, loff_t offset
,
898 struct uprobe_consumer
*uc
)
900 struct uprobe
*uprobe
;
903 /* Uprobe must have at least one set consumer */
904 if (!uc
->handler
&& !uc
->ret_handler
)
907 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
908 if (!inode
->i_mapping
->a_ops
->readpage
&& !shmem_mapping(inode
->i_mapping
))
910 /* Racy, just to catch the obvious mistakes */
911 if (offset
> i_size_read(inode
))
915 uprobe
= alloc_uprobe(inode
, offset
);
919 * We can race with uprobe_unregister()->delete_uprobe().
920 * Check uprobe_is_active() and retry if it is false.
922 down_write(&uprobe
->register_rwsem
);
924 if (likely(uprobe_is_active(uprobe
))) {
925 consumer_add(uprobe
, uc
);
926 ret
= register_for_each_vma(uprobe
, uc
);
928 __uprobe_unregister(uprobe
, uc
);
930 up_write(&uprobe
->register_rwsem
);
933 if (unlikely(ret
== -EAGAIN
))
938 int uprobe_register(struct inode
*inode
, loff_t offset
,
939 struct uprobe_consumer
*uc
)
941 return __uprobe_register(inode
, offset
, uc
);
943 EXPORT_SYMBOL_GPL(uprobe_register
);
946 * uprobe_apply - unregister an already registered probe.
947 * @inode: the file in which the probe has to be removed.
948 * @offset: offset from the start of the file.
949 * @uc: consumer which wants to add more or remove some breakpoints
950 * @add: add or remove the breakpoints
952 int uprobe_apply(struct inode
*inode
, loff_t offset
,
953 struct uprobe_consumer
*uc
, bool add
)
955 struct uprobe
*uprobe
;
956 struct uprobe_consumer
*con
;
959 uprobe
= find_uprobe(inode
, offset
);
960 if (WARN_ON(!uprobe
))
963 down_write(&uprobe
->register_rwsem
);
964 for (con
= uprobe
->consumers
; con
&& con
!= uc
; con
= con
->next
)
967 ret
= register_for_each_vma(uprobe
, add
? uc
: NULL
);
968 up_write(&uprobe
->register_rwsem
);
974 static int unapply_uprobe(struct uprobe
*uprobe
, struct mm_struct
*mm
)
976 struct vm_area_struct
*vma
;
979 down_read(&mm
->mmap_sem
);
980 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
984 if (!valid_vma(vma
, false) ||
985 file_inode(vma
->vm_file
) != uprobe
->inode
)
988 offset
= (loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
;
989 if (uprobe
->offset
< offset
||
990 uprobe
->offset
>= offset
+ vma
->vm_end
- vma
->vm_start
)
993 vaddr
= offset_to_vaddr(vma
, uprobe
->offset
);
994 err
|= remove_breakpoint(uprobe
, mm
, vaddr
);
996 up_read(&mm
->mmap_sem
);
1001 static struct rb_node
*
1002 find_node_in_range(struct inode
*inode
, loff_t min
, loff_t max
)
1004 struct rb_node
*n
= uprobes_tree
.rb_node
;
1007 struct uprobe
*u
= rb_entry(n
, struct uprobe
, rb_node
);
1009 if (inode
< u
->inode
) {
1011 } else if (inode
> u
->inode
) {
1014 if (max
< u
->offset
)
1016 else if (min
> u
->offset
)
1027 * For a given range in vma, build a list of probes that need to be inserted.
1029 static void build_probe_list(struct inode
*inode
,
1030 struct vm_area_struct
*vma
,
1031 unsigned long start
, unsigned long end
,
1032 struct list_head
*head
)
1035 struct rb_node
*n
, *t
;
1038 INIT_LIST_HEAD(head
);
1039 min
= vaddr_to_offset(vma
, start
);
1040 max
= min
+ (end
- start
) - 1;
1042 spin_lock(&uprobes_treelock
);
1043 n
= find_node_in_range(inode
, min
, max
);
1045 for (t
= n
; t
; t
= rb_prev(t
)) {
1046 u
= rb_entry(t
, struct uprobe
, rb_node
);
1047 if (u
->inode
!= inode
|| u
->offset
< min
)
1049 list_add(&u
->pending_list
, head
);
1052 for (t
= n
; (t
= rb_next(t
)); ) {
1053 u
= rb_entry(t
, struct uprobe
, rb_node
);
1054 if (u
->inode
!= inode
|| u
->offset
> max
)
1056 list_add(&u
->pending_list
, head
);
1060 spin_unlock(&uprobes_treelock
);
1064 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1066 * Currently we ignore all errors and always return 0, the callers
1067 * can't handle the failure anyway.
1069 int uprobe_mmap(struct vm_area_struct
*vma
)
1071 struct list_head tmp_list
;
1072 struct uprobe
*uprobe
, *u
;
1073 struct inode
*inode
;
1075 if (no_uprobe_events() || !valid_vma(vma
, true))
1078 inode
= file_inode(vma
->vm_file
);
1082 mutex_lock(uprobes_mmap_hash(inode
));
1083 build_probe_list(inode
, vma
, vma
->vm_start
, vma
->vm_end
, &tmp_list
);
1085 * We can race with uprobe_unregister(), this uprobe can be already
1086 * removed. But in this case filter_chain() must return false, all
1087 * consumers have gone away.
1089 list_for_each_entry_safe(uprobe
, u
, &tmp_list
, pending_list
) {
1090 if (!fatal_signal_pending(current
) &&
1091 filter_chain(uprobe
, UPROBE_FILTER_MMAP
, vma
->vm_mm
)) {
1092 unsigned long vaddr
= offset_to_vaddr(vma
, uprobe
->offset
);
1093 install_breakpoint(uprobe
, vma
->vm_mm
, vma
, vaddr
);
1097 mutex_unlock(uprobes_mmap_hash(inode
));
1103 vma_has_uprobes(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1106 struct inode
*inode
;
1109 inode
= file_inode(vma
->vm_file
);
1111 min
= vaddr_to_offset(vma
, start
);
1112 max
= min
+ (end
- start
) - 1;
1114 spin_lock(&uprobes_treelock
);
1115 n
= find_node_in_range(inode
, min
, max
);
1116 spin_unlock(&uprobes_treelock
);
1122 * Called in context of a munmap of a vma.
1124 void uprobe_munmap(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1126 if (no_uprobe_events() || !valid_vma(vma
, false))
1129 if (!atomic_read(&vma
->vm_mm
->mm_users
)) /* called by mmput() ? */
1132 if (!test_bit(MMF_HAS_UPROBES
, &vma
->vm_mm
->flags
) ||
1133 test_bit(MMF_RECALC_UPROBES
, &vma
->vm_mm
->flags
))
1136 if (vma_has_uprobes(vma
, start
, end
))
1137 set_bit(MMF_RECALC_UPROBES
, &vma
->vm_mm
->flags
);
1140 /* Slot allocation for XOL */
1141 static int xol_add_vma(struct mm_struct
*mm
, struct xol_area
*area
)
1143 struct vm_area_struct
*vma
;
1146 if (down_write_killable(&mm
->mmap_sem
))
1149 if (mm
->uprobes_state
.xol_area
) {
1155 /* Try to map as high as possible, this is only a hint. */
1156 area
->vaddr
= get_unmapped_area(NULL
, TASK_SIZE
- PAGE_SIZE
,
1158 if (area
->vaddr
& ~PAGE_MASK
) {
1164 vma
= _install_special_mapping(mm
, area
->vaddr
, PAGE_SIZE
,
1165 VM_EXEC
|VM_MAYEXEC
|VM_DONTCOPY
|VM_IO
,
1166 &area
->xol_mapping
);
1173 /* pairs with get_xol_area() */
1174 smp_store_release(&mm
->uprobes_state
.xol_area
, area
); /* ^^^ */
1176 up_write(&mm
->mmap_sem
);
1181 static struct xol_area
*__create_xol_area(unsigned long vaddr
)
1183 struct mm_struct
*mm
= current
->mm
;
1184 uprobe_opcode_t insn
= UPROBE_SWBP_INSN
;
1185 struct xol_area
*area
;
1187 area
= kmalloc(sizeof(*area
), GFP_KERNEL
);
1188 if (unlikely(!area
))
1191 area
->bitmap
= kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE
), sizeof(long),
1196 area
->xol_mapping
.name
= "[uprobes]";
1197 area
->xol_mapping
.fault
= NULL
;
1198 area
->xol_mapping
.pages
= area
->pages
;
1199 area
->pages
[0] = alloc_page(GFP_HIGHUSER
);
1200 if (!area
->pages
[0])
1202 area
->pages
[1] = NULL
;
1204 area
->vaddr
= vaddr
;
1205 init_waitqueue_head(&area
->wq
);
1206 /* Reserve the 1st slot for get_trampoline_vaddr() */
1207 set_bit(0, area
->bitmap
);
1208 atomic_set(&area
->slot_count
, 1);
1209 arch_uprobe_copy_ixol(area
->pages
[0], 0, &insn
, UPROBE_SWBP_INSN_SIZE
);
1211 if (!xol_add_vma(mm
, area
))
1214 __free_page(area
->pages
[0]);
1216 kfree(area
->bitmap
);
1224 * get_xol_area - Allocate process's xol_area if necessary.
1225 * This area will be used for storing instructions for execution out of line.
1227 * Returns the allocated area or NULL.
1229 static struct xol_area
*get_xol_area(void)
1231 struct mm_struct
*mm
= current
->mm
;
1232 struct xol_area
*area
;
1234 if (!mm
->uprobes_state
.xol_area
)
1235 __create_xol_area(0);
1237 /* Pairs with xol_add_vma() smp_store_release() */
1238 area
= READ_ONCE(mm
->uprobes_state
.xol_area
); /* ^^^ */
1243 * uprobe_clear_state - Free the area allocated for slots.
1245 void uprobe_clear_state(struct mm_struct
*mm
)
1247 struct xol_area
*area
= mm
->uprobes_state
.xol_area
;
1252 put_page(area
->pages
[0]);
1253 kfree(area
->bitmap
);
1257 void uprobe_start_dup_mmap(void)
1259 percpu_down_read(&dup_mmap_sem
);
1262 void uprobe_end_dup_mmap(void)
1264 percpu_up_read(&dup_mmap_sem
);
1267 void uprobe_dup_mmap(struct mm_struct
*oldmm
, struct mm_struct
*newmm
)
1269 if (test_bit(MMF_HAS_UPROBES
, &oldmm
->flags
)) {
1270 set_bit(MMF_HAS_UPROBES
, &newmm
->flags
);
1271 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1272 set_bit(MMF_RECALC_UPROBES
, &newmm
->flags
);
1277 * - search for a free slot.
1279 static unsigned long xol_take_insn_slot(struct xol_area
*area
)
1281 unsigned long slot_addr
;
1285 slot_nr
= find_first_zero_bit(area
->bitmap
, UINSNS_PER_PAGE
);
1286 if (slot_nr
< UINSNS_PER_PAGE
) {
1287 if (!test_and_set_bit(slot_nr
, area
->bitmap
))
1290 slot_nr
= UINSNS_PER_PAGE
;
1293 wait_event(area
->wq
, (atomic_read(&area
->slot_count
) < UINSNS_PER_PAGE
));
1294 } while (slot_nr
>= UINSNS_PER_PAGE
);
1296 slot_addr
= area
->vaddr
+ (slot_nr
* UPROBE_XOL_SLOT_BYTES
);
1297 atomic_inc(&area
->slot_count
);
1303 * xol_get_insn_slot - allocate a slot for xol.
1304 * Returns the allocated slot address or 0.
1306 static unsigned long xol_get_insn_slot(struct uprobe
*uprobe
)
1308 struct xol_area
*area
;
1309 unsigned long xol_vaddr
;
1311 area
= get_xol_area();
1315 xol_vaddr
= xol_take_insn_slot(area
);
1316 if (unlikely(!xol_vaddr
))
1319 arch_uprobe_copy_ixol(area
->pages
[0], xol_vaddr
,
1320 &uprobe
->arch
.ixol
, sizeof(uprobe
->arch
.ixol
));
1326 * xol_free_insn_slot - If slot was earlier allocated by
1327 * @xol_get_insn_slot(), make the slot available for
1328 * subsequent requests.
1330 static void xol_free_insn_slot(struct task_struct
*tsk
)
1332 struct xol_area
*area
;
1333 unsigned long vma_end
;
1334 unsigned long slot_addr
;
1336 if (!tsk
->mm
|| !tsk
->mm
->uprobes_state
.xol_area
|| !tsk
->utask
)
1339 slot_addr
= tsk
->utask
->xol_vaddr
;
1340 if (unlikely(!slot_addr
))
1343 area
= tsk
->mm
->uprobes_state
.xol_area
;
1344 vma_end
= area
->vaddr
+ PAGE_SIZE
;
1345 if (area
->vaddr
<= slot_addr
&& slot_addr
< vma_end
) {
1346 unsigned long offset
;
1349 offset
= slot_addr
- area
->vaddr
;
1350 slot_nr
= offset
/ UPROBE_XOL_SLOT_BYTES
;
1351 if (slot_nr
>= UINSNS_PER_PAGE
)
1354 clear_bit(slot_nr
, area
->bitmap
);
1355 atomic_dec(&area
->slot_count
);
1356 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1357 if (waitqueue_active(&area
->wq
))
1360 tsk
->utask
->xol_vaddr
= 0;
1364 void __weak
arch_uprobe_copy_ixol(struct page
*page
, unsigned long vaddr
,
1365 void *src
, unsigned long len
)
1367 /* Initialize the slot */
1368 copy_to_page(page
, vaddr
, src
, len
);
1371 * We probably need flush_icache_user_range() but it needs vma.
1372 * This should work on most of architectures by default. If
1373 * architecture needs to do something different it can define
1374 * its own version of the function.
1376 flush_dcache_page(page
);
1380 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1381 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1383 * Return the address of the breakpoint instruction.
1385 unsigned long __weak
uprobe_get_swbp_addr(struct pt_regs
*regs
)
1387 return instruction_pointer(regs
) - UPROBE_SWBP_INSN_SIZE
;
1390 unsigned long uprobe_get_trap_addr(struct pt_regs
*regs
)
1392 struct uprobe_task
*utask
= current
->utask
;
1394 if (unlikely(utask
&& utask
->active_uprobe
))
1395 return utask
->vaddr
;
1397 return instruction_pointer(regs
);
1400 static struct return_instance
*free_ret_instance(struct return_instance
*ri
)
1402 struct return_instance
*next
= ri
->next
;
1403 put_uprobe(ri
->uprobe
);
1409 * Called with no locks held.
1410 * Called in context of an exiting or an exec-ing thread.
1412 void uprobe_free_utask(struct task_struct
*t
)
1414 struct uprobe_task
*utask
= t
->utask
;
1415 struct return_instance
*ri
;
1420 if (utask
->active_uprobe
)
1421 put_uprobe(utask
->active_uprobe
);
1423 ri
= utask
->return_instances
;
1425 ri
= free_ret_instance(ri
);
1427 xol_free_insn_slot(t
);
1433 * Allocate a uprobe_task object for the task if if necessary.
1434 * Called when the thread hits a breakpoint.
1437 * - pointer to new uprobe_task on success
1440 static struct uprobe_task
*get_utask(void)
1442 if (!current
->utask
)
1443 current
->utask
= kzalloc(sizeof(struct uprobe_task
), GFP_KERNEL
);
1444 return current
->utask
;
1447 static int dup_utask(struct task_struct
*t
, struct uprobe_task
*o_utask
)
1449 struct uprobe_task
*n_utask
;
1450 struct return_instance
**p
, *o
, *n
;
1452 n_utask
= kzalloc(sizeof(struct uprobe_task
), GFP_KERNEL
);
1457 p
= &n_utask
->return_instances
;
1458 for (o
= o_utask
->return_instances
; o
; o
= o
->next
) {
1459 n
= kmalloc(sizeof(struct return_instance
), GFP_KERNEL
);
1464 get_uprobe(n
->uprobe
);
1475 static void uprobe_warn(struct task_struct
*t
, const char *msg
)
1477 pr_warn("uprobe: %s:%d failed to %s\n",
1478 current
->comm
, current
->pid
, msg
);
1481 static void dup_xol_work(struct callback_head
*work
)
1483 if (current
->flags
& PF_EXITING
)
1486 if (!__create_xol_area(current
->utask
->dup_xol_addr
) &&
1487 !fatal_signal_pending(current
))
1488 uprobe_warn(current
, "dup xol area");
1492 * Called in context of a new clone/fork from copy_process.
1494 void uprobe_copy_process(struct task_struct
*t
, unsigned long flags
)
1496 struct uprobe_task
*utask
= current
->utask
;
1497 struct mm_struct
*mm
= current
->mm
;
1498 struct xol_area
*area
;
1502 if (!utask
|| !utask
->return_instances
)
1505 if (mm
== t
->mm
&& !(flags
& CLONE_VFORK
))
1508 if (dup_utask(t
, utask
))
1509 return uprobe_warn(t
, "dup ret instances");
1511 /* The task can fork() after dup_xol_work() fails */
1512 area
= mm
->uprobes_state
.xol_area
;
1514 return uprobe_warn(t
, "dup xol area");
1519 t
->utask
->dup_xol_addr
= area
->vaddr
;
1520 init_task_work(&t
->utask
->dup_xol_work
, dup_xol_work
);
1521 task_work_add(t
, &t
->utask
->dup_xol_work
, true);
1525 * Current area->vaddr notion assume the trampoline address is always
1526 * equal area->vaddr.
1528 * Returns -1 in case the xol_area is not allocated.
1530 static unsigned long get_trampoline_vaddr(void)
1532 struct xol_area
*area
;
1533 unsigned long trampoline_vaddr
= -1;
1535 /* Pairs with xol_add_vma() smp_store_release() */
1536 area
= READ_ONCE(current
->mm
->uprobes_state
.xol_area
); /* ^^^ */
1538 trampoline_vaddr
= area
->vaddr
;
1540 return trampoline_vaddr
;
1543 static void cleanup_return_instances(struct uprobe_task
*utask
, bool chained
,
1544 struct pt_regs
*regs
)
1546 struct return_instance
*ri
= utask
->return_instances
;
1547 enum rp_check ctx
= chained
? RP_CHECK_CHAIN_CALL
: RP_CHECK_CALL
;
1549 while (ri
&& !arch_uretprobe_is_alive(ri
, ctx
, regs
)) {
1550 ri
= free_ret_instance(ri
);
1553 utask
->return_instances
= ri
;
1556 static void prepare_uretprobe(struct uprobe
*uprobe
, struct pt_regs
*regs
)
1558 struct return_instance
*ri
;
1559 struct uprobe_task
*utask
;
1560 unsigned long orig_ret_vaddr
, trampoline_vaddr
;
1563 if (!get_xol_area())
1566 utask
= get_utask();
1570 if (utask
->depth
>= MAX_URETPROBE_DEPTH
) {
1571 printk_ratelimited(KERN_INFO
"uprobe: omit uretprobe due to"
1572 " nestedness limit pid/tgid=%d/%d\n",
1573 current
->pid
, current
->tgid
);
1577 ri
= kmalloc(sizeof(struct return_instance
), GFP_KERNEL
);
1581 trampoline_vaddr
= get_trampoline_vaddr();
1582 orig_ret_vaddr
= arch_uretprobe_hijack_return_addr(trampoline_vaddr
, regs
);
1583 if (orig_ret_vaddr
== -1)
1586 /* drop the entries invalidated by longjmp() */
1587 chained
= (orig_ret_vaddr
== trampoline_vaddr
);
1588 cleanup_return_instances(utask
, chained
, regs
);
1591 * We don't want to keep trampoline address in stack, rather keep the
1592 * original return address of first caller thru all the consequent
1593 * instances. This also makes breakpoint unwrapping easier.
1596 if (!utask
->return_instances
) {
1598 * This situation is not possible. Likely we have an
1599 * attack from user-space.
1601 uprobe_warn(current
, "handle tail call");
1604 orig_ret_vaddr
= utask
->return_instances
->orig_ret_vaddr
;
1607 ri
->uprobe
= get_uprobe(uprobe
);
1608 ri
->func
= instruction_pointer(regs
);
1609 ri
->stack
= user_stack_pointer(regs
);
1610 ri
->orig_ret_vaddr
= orig_ret_vaddr
;
1611 ri
->chained
= chained
;
1614 ri
->next
= utask
->return_instances
;
1615 utask
->return_instances
= ri
;
1622 /* Prepare to single-step probed instruction out of line. */
1624 pre_ssout(struct uprobe
*uprobe
, struct pt_regs
*regs
, unsigned long bp_vaddr
)
1626 struct uprobe_task
*utask
;
1627 unsigned long xol_vaddr
;
1630 utask
= get_utask();
1634 xol_vaddr
= xol_get_insn_slot(uprobe
);
1638 utask
->xol_vaddr
= xol_vaddr
;
1639 utask
->vaddr
= bp_vaddr
;
1641 err
= arch_uprobe_pre_xol(&uprobe
->arch
, regs
);
1642 if (unlikely(err
)) {
1643 xol_free_insn_slot(current
);
1647 utask
->active_uprobe
= uprobe
;
1648 utask
->state
= UTASK_SSTEP
;
1653 * If we are singlestepping, then ensure this thread is not connected to
1654 * non-fatal signals until completion of singlestep. When xol insn itself
1655 * triggers the signal, restart the original insn even if the task is
1656 * already SIGKILL'ed (since coredump should report the correct ip). This
1657 * is even more important if the task has a handler for SIGSEGV/etc, The
1658 * _same_ instruction should be repeated again after return from the signal
1659 * handler, and SSTEP can never finish in this case.
1661 bool uprobe_deny_signal(void)
1663 struct task_struct
*t
= current
;
1664 struct uprobe_task
*utask
= t
->utask
;
1666 if (likely(!utask
|| !utask
->active_uprobe
))
1669 WARN_ON_ONCE(utask
->state
!= UTASK_SSTEP
);
1671 if (signal_pending(t
)) {
1672 spin_lock_irq(&t
->sighand
->siglock
);
1673 clear_tsk_thread_flag(t
, TIF_SIGPENDING
);
1674 spin_unlock_irq(&t
->sighand
->siglock
);
1676 if (__fatal_signal_pending(t
) || arch_uprobe_xol_was_trapped(t
)) {
1677 utask
->state
= UTASK_SSTEP_TRAPPED
;
1678 set_tsk_thread_flag(t
, TIF_UPROBE
);
1685 static void mmf_recalc_uprobes(struct mm_struct
*mm
)
1687 struct vm_area_struct
*vma
;
1689 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1690 if (!valid_vma(vma
, false))
1693 * This is not strictly accurate, we can race with
1694 * uprobe_unregister() and see the already removed
1695 * uprobe if delete_uprobe() was not yet called.
1696 * Or this uprobe can be filtered out.
1698 if (vma_has_uprobes(vma
, vma
->vm_start
, vma
->vm_end
))
1702 clear_bit(MMF_HAS_UPROBES
, &mm
->flags
);
1705 static int is_trap_at_addr(struct mm_struct
*mm
, unsigned long vaddr
)
1708 uprobe_opcode_t opcode
;
1711 pagefault_disable();
1712 result
= __get_user(opcode
, (uprobe_opcode_t __user
*)vaddr
);
1715 if (likely(result
== 0))
1719 * The NULL 'tsk' here ensures that any faults that occur here
1720 * will not be accounted to the task. 'mm' *is* current->mm,
1721 * but we treat this as a 'remote' access since it is
1722 * essentially a kernel access to the memory.
1724 result
= get_user_pages_remote(NULL
, mm
, vaddr
, 1, FOLL_FORCE
, &page
,
1729 copy_from_page(page
, vaddr
, &opcode
, UPROBE_SWBP_INSN_SIZE
);
1732 /* This needs to return true for any variant of the trap insn */
1733 return is_trap_insn(&opcode
);
1736 static struct uprobe
*find_active_uprobe(unsigned long bp_vaddr
, int *is_swbp
)
1738 struct mm_struct
*mm
= current
->mm
;
1739 struct uprobe
*uprobe
= NULL
;
1740 struct vm_area_struct
*vma
;
1742 down_read(&mm
->mmap_sem
);
1743 vma
= find_vma(mm
, bp_vaddr
);
1744 if (vma
&& vma
->vm_start
<= bp_vaddr
) {
1745 if (valid_vma(vma
, false)) {
1746 struct inode
*inode
= file_inode(vma
->vm_file
);
1747 loff_t offset
= vaddr_to_offset(vma
, bp_vaddr
);
1749 uprobe
= find_uprobe(inode
, offset
);
1753 *is_swbp
= is_trap_at_addr(mm
, bp_vaddr
);
1758 if (!uprobe
&& test_and_clear_bit(MMF_RECALC_UPROBES
, &mm
->flags
))
1759 mmf_recalc_uprobes(mm
);
1760 up_read(&mm
->mmap_sem
);
1765 static void handler_chain(struct uprobe
*uprobe
, struct pt_regs
*regs
)
1767 struct uprobe_consumer
*uc
;
1768 int remove
= UPROBE_HANDLER_REMOVE
;
1769 bool need_prep
= false; /* prepare return uprobe, when needed */
1771 down_read(&uprobe
->register_rwsem
);
1772 for (uc
= uprobe
->consumers
; uc
; uc
= uc
->next
) {
1776 rc
= uc
->handler(uc
, regs
);
1777 WARN(rc
& ~UPROBE_HANDLER_MASK
,
1778 "bad rc=0x%x from %pf()\n", rc
, uc
->handler
);
1781 if (uc
->ret_handler
)
1787 if (need_prep
&& !remove
)
1788 prepare_uretprobe(uprobe
, regs
); /* put bp at return */
1790 if (remove
&& uprobe
->consumers
) {
1791 WARN_ON(!uprobe_is_active(uprobe
));
1792 unapply_uprobe(uprobe
, current
->mm
);
1794 up_read(&uprobe
->register_rwsem
);
1798 handle_uretprobe_chain(struct return_instance
*ri
, struct pt_regs
*regs
)
1800 struct uprobe
*uprobe
= ri
->uprobe
;
1801 struct uprobe_consumer
*uc
;
1803 down_read(&uprobe
->register_rwsem
);
1804 for (uc
= uprobe
->consumers
; uc
; uc
= uc
->next
) {
1805 if (uc
->ret_handler
)
1806 uc
->ret_handler(uc
, ri
->func
, regs
);
1808 up_read(&uprobe
->register_rwsem
);
1811 static struct return_instance
*find_next_ret_chain(struct return_instance
*ri
)
1816 chained
= ri
->chained
;
1817 ri
= ri
->next
; /* can't be NULL if chained */
1823 static void handle_trampoline(struct pt_regs
*regs
)
1825 struct uprobe_task
*utask
;
1826 struct return_instance
*ri
, *next
;
1829 utask
= current
->utask
;
1833 ri
= utask
->return_instances
;
1839 * We should throw out the frames invalidated by longjmp().
1840 * If this chain is valid, then the next one should be alive
1841 * or NULL; the latter case means that nobody but ri->func
1842 * could hit this trampoline on return. TODO: sigaltstack().
1844 next
= find_next_ret_chain(ri
);
1845 valid
= !next
|| arch_uretprobe_is_alive(next
, RP_CHECK_RET
, regs
);
1847 instruction_pointer_set(regs
, ri
->orig_ret_vaddr
);
1850 handle_uretprobe_chain(ri
, regs
);
1851 ri
= free_ret_instance(ri
);
1853 } while (ri
!= next
);
1856 utask
->return_instances
= ri
;
1860 uprobe_warn(current
, "handle uretprobe, sending SIGILL.");
1861 force_sig(SIGILL
, current
);
1865 bool __weak
arch_uprobe_ignore(struct arch_uprobe
*aup
, struct pt_regs
*regs
)
1870 bool __weak
arch_uretprobe_is_alive(struct return_instance
*ret
, enum rp_check ctx
,
1871 struct pt_regs
*regs
)
1877 * Run handler and ask thread to singlestep.
1878 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1880 static void handle_swbp(struct pt_regs
*regs
)
1882 struct uprobe
*uprobe
;
1883 unsigned long bp_vaddr
;
1884 int uninitialized_var(is_swbp
);
1886 bp_vaddr
= uprobe_get_swbp_addr(regs
);
1887 if (bp_vaddr
== get_trampoline_vaddr())
1888 return handle_trampoline(regs
);
1890 uprobe
= find_active_uprobe(bp_vaddr
, &is_swbp
);
1893 /* No matching uprobe; signal SIGTRAP. */
1894 send_sig(SIGTRAP
, current
, 0);
1897 * Either we raced with uprobe_unregister() or we can't
1898 * access this memory. The latter is only possible if
1899 * another thread plays with our ->mm. In both cases
1900 * we can simply restart. If this vma was unmapped we
1901 * can pretend this insn was not executed yet and get
1902 * the (correct) SIGSEGV after restart.
1904 instruction_pointer_set(regs
, bp_vaddr
);
1909 /* change it in advance for ->handler() and restart */
1910 instruction_pointer_set(regs
, bp_vaddr
);
1913 * TODO: move copy_insn/etc into _register and remove this hack.
1914 * After we hit the bp, _unregister + _register can install the
1915 * new and not-yet-analyzed uprobe at the same address, restart.
1917 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1918 if (unlikely(!test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
)))
1921 /* Tracing handlers use ->utask to communicate with fetch methods */
1925 if (arch_uprobe_ignore(&uprobe
->arch
, regs
))
1928 handler_chain(uprobe
, regs
);
1930 if (arch_uprobe_skip_sstep(&uprobe
->arch
, regs
))
1933 if (!pre_ssout(uprobe
, regs
, bp_vaddr
))
1936 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1942 * Perform required fix-ups and disable singlestep.
1943 * Allow pending signals to take effect.
1945 static void handle_singlestep(struct uprobe_task
*utask
, struct pt_regs
*regs
)
1947 struct uprobe
*uprobe
;
1950 uprobe
= utask
->active_uprobe
;
1951 if (utask
->state
== UTASK_SSTEP_ACK
)
1952 err
= arch_uprobe_post_xol(&uprobe
->arch
, regs
);
1953 else if (utask
->state
== UTASK_SSTEP_TRAPPED
)
1954 arch_uprobe_abort_xol(&uprobe
->arch
, regs
);
1959 utask
->active_uprobe
= NULL
;
1960 utask
->state
= UTASK_RUNNING
;
1961 xol_free_insn_slot(current
);
1963 spin_lock_irq(¤t
->sighand
->siglock
);
1964 recalc_sigpending(); /* see uprobe_deny_signal() */
1965 spin_unlock_irq(¤t
->sighand
->siglock
);
1967 if (unlikely(err
)) {
1968 uprobe_warn(current
, "execute the probed insn, sending SIGILL.");
1969 force_sig(SIGILL
, current
);
1974 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1975 * allows the thread to return from interrupt. After that handle_swbp()
1976 * sets utask->active_uprobe.
1978 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1979 * and allows the thread to return from interrupt.
1981 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1982 * uprobe_notify_resume().
1984 void uprobe_notify_resume(struct pt_regs
*regs
)
1986 struct uprobe_task
*utask
;
1988 clear_thread_flag(TIF_UPROBE
);
1990 utask
= current
->utask
;
1991 if (utask
&& utask
->active_uprobe
)
1992 handle_singlestep(utask
, regs
);
1998 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1999 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2001 int uprobe_pre_sstep_notifier(struct pt_regs
*regs
)
2006 if (!test_bit(MMF_HAS_UPROBES
, ¤t
->mm
->flags
) &&
2007 (!current
->utask
|| !current
->utask
->return_instances
))
2010 set_thread_flag(TIF_UPROBE
);
2015 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2016 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2018 int uprobe_post_sstep_notifier(struct pt_regs
*regs
)
2020 struct uprobe_task
*utask
= current
->utask
;
2022 if (!current
->mm
|| !utask
|| !utask
->active_uprobe
)
2023 /* task is currently not uprobed */
2026 utask
->state
= UTASK_SSTEP_ACK
;
2027 set_thread_flag(TIF_UPROBE
);
2031 static struct notifier_block uprobe_exception_nb
= {
2032 .notifier_call
= arch_uprobe_exception_notify
,
2033 .priority
= INT_MAX
-1, /* notified after kprobes, kgdb */
2036 static int __init
init_uprobes(void)
2040 for (i
= 0; i
< UPROBES_HASH_SZ
; i
++)
2041 mutex_init(&uprobes_mmap_mutex
[i
]);
2043 if (percpu_init_rwsem(&dup_mmap_sem
))
2046 return register_die_notifier(&uprobe_exception_nb
);
2048 __initcall(init_uprobes
);