perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / kernel / fork.c
blob8f82a3bdcb8feff10a8ce4c8d608a406890b6673
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
102 #include <trace/events/sched.h>
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
108 * Minimum number of threads to boot the kernel
110 #define MIN_THREADS 20
113 * Maximum number of threads
115 #define MAX_THREADS FUTEX_TID_MASK
118 * Protected counters by write_lock_irq(&tasklist_lock)
120 unsigned long total_forks; /* Handle normal Linux uptimes. */
121 int nr_threads; /* The idle threads do not count.. */
123 int max_threads; /* tunable limit on nr_threads */
125 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
129 #ifdef CONFIG_PROVE_RCU
130 int lockdep_tasklist_lock_is_held(void)
132 return lockdep_is_held(&tasklist_lock);
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
137 int nr_processes(void)
139 int cpu;
140 int total = 0;
142 for_each_possible_cpu(cpu)
143 total += per_cpu(process_counts, cpu);
145 return total;
148 void __weak arch_release_task_struct(struct task_struct *tsk)
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache *task_struct_cachep;
155 static inline struct task_struct *alloc_task_struct_node(int node)
157 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
160 static inline void free_task_struct(struct task_struct *tsk)
162 kmem_cache_free(task_struct_cachep, tsk);
164 #endif
166 void __weak arch_release_thread_stack(unsigned long *stack)
170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
173 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174 * kmemcache based allocator.
176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
178 #ifdef CONFIG_VMAP_STACK
180 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181 * flush. Try to minimize the number of calls by caching stacks.
183 #define NR_CACHED_STACKS 2
184 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
186 static int free_vm_stack_cache(unsigned int cpu)
188 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
189 int i;
191 for (i = 0; i < NR_CACHED_STACKS; i++) {
192 struct vm_struct *vm_stack = cached_vm_stacks[i];
194 if (!vm_stack)
195 continue;
197 vfree(vm_stack->addr);
198 cached_vm_stacks[i] = NULL;
201 return 0;
203 #endif
205 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
207 #ifdef CONFIG_VMAP_STACK
208 void *stack;
209 int i;
211 for (i = 0; i < NR_CACHED_STACKS; i++) {
212 struct vm_struct *s;
214 s = this_cpu_xchg(cached_stacks[i], NULL);
216 if (!s)
217 continue;
219 /* Clear stale pointers from reused stack. */
220 memset(s->addr, 0, THREAD_SIZE);
222 tsk->stack_vm_area = s;
223 return s->addr;
227 * Allocated stacks are cached and later reused by new threads,
228 * so memcg accounting is performed manually on assigning/releasing
229 * stacks to tasks. Drop __GFP_ACCOUNT.
231 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
232 VMALLOC_START, VMALLOC_END,
233 THREADINFO_GFP & ~__GFP_ACCOUNT,
234 PAGE_KERNEL,
235 0, node, __builtin_return_address(0));
238 * We can't call find_vm_area() in interrupt context, and
239 * free_thread_stack() can be called in interrupt context,
240 * so cache the vm_struct.
242 if (stack)
243 tsk->stack_vm_area = find_vm_area(stack);
244 return stack;
245 #else
246 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
247 THREAD_SIZE_ORDER);
249 return page ? page_address(page) : NULL;
250 #endif
253 static inline void free_thread_stack(struct task_struct *tsk)
255 #ifdef CONFIG_VMAP_STACK
256 struct vm_struct *vm = task_stack_vm_area(tsk);
258 if (vm) {
259 int i;
261 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
262 mod_memcg_page_state(vm->pages[i],
263 MEMCG_KERNEL_STACK_KB,
264 -(int)(PAGE_SIZE / 1024));
266 memcg_kmem_uncharge(vm->pages[i], 0);
269 for (i = 0; i < NR_CACHED_STACKS; i++) {
270 if (this_cpu_cmpxchg(cached_stacks[i],
271 NULL, tsk->stack_vm_area) != NULL)
272 continue;
274 return;
277 vfree_atomic(tsk->stack);
278 return;
280 #endif
282 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
284 # else
285 static struct kmem_cache *thread_stack_cache;
287 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
288 int node)
290 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
293 static void free_thread_stack(struct task_struct *tsk)
295 kmem_cache_free(thread_stack_cache, tsk->stack);
298 void thread_stack_cache_init(void)
300 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
301 THREAD_SIZE, THREAD_SIZE, 0, 0,
302 THREAD_SIZE, NULL);
303 BUG_ON(thread_stack_cache == NULL);
305 # endif
306 #endif
308 /* SLAB cache for signal_struct structures (tsk->signal) */
309 static struct kmem_cache *signal_cachep;
311 /* SLAB cache for sighand_struct structures (tsk->sighand) */
312 struct kmem_cache *sighand_cachep;
314 /* SLAB cache for files_struct structures (tsk->files) */
315 struct kmem_cache *files_cachep;
317 /* SLAB cache for fs_struct structures (tsk->fs) */
318 struct kmem_cache *fs_cachep;
320 /* SLAB cache for vm_area_struct structures */
321 static struct kmem_cache *vm_area_cachep;
323 /* SLAB cache for mm_struct structures (tsk->mm) */
324 static struct kmem_cache *mm_cachep;
326 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
328 struct vm_area_struct *vma;
330 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
331 if (vma)
332 vma_init(vma, mm);
333 return vma;
336 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
338 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
340 if (new) {
341 *new = *orig;
342 INIT_LIST_HEAD(&new->anon_vma_chain);
344 return new;
347 void vm_area_free(struct vm_area_struct *vma)
349 kmem_cache_free(vm_area_cachep, vma);
352 static void account_kernel_stack(struct task_struct *tsk, int account)
354 void *stack = task_stack_page(tsk);
355 struct vm_struct *vm = task_stack_vm_area(tsk);
357 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
359 if (vm) {
360 int i;
362 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
364 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
365 mod_zone_page_state(page_zone(vm->pages[i]),
366 NR_KERNEL_STACK_KB,
367 PAGE_SIZE / 1024 * account);
369 } else {
371 * All stack pages are in the same zone and belong to the
372 * same memcg.
374 struct page *first_page = virt_to_page(stack);
376 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
377 THREAD_SIZE / 1024 * account);
379 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
380 account * (THREAD_SIZE / 1024));
384 static int memcg_charge_kernel_stack(struct task_struct *tsk)
386 #ifdef CONFIG_VMAP_STACK
387 struct vm_struct *vm = task_stack_vm_area(tsk);
388 int ret;
390 if (vm) {
391 int i;
393 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
395 * If memcg_kmem_charge() fails, page->mem_cgroup
396 * pointer is NULL, and both memcg_kmem_uncharge()
397 * and mod_memcg_page_state() in free_thread_stack()
398 * will ignore this page. So it's safe.
400 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
401 if (ret)
402 return ret;
404 mod_memcg_page_state(vm->pages[i],
405 MEMCG_KERNEL_STACK_KB,
406 PAGE_SIZE / 1024);
409 #endif
410 return 0;
413 static void release_task_stack(struct task_struct *tsk)
415 if (WARN_ON(tsk->state != TASK_DEAD))
416 return; /* Better to leak the stack than to free prematurely */
418 account_kernel_stack(tsk, -1);
419 arch_release_thread_stack(tsk->stack);
420 free_thread_stack(tsk);
421 tsk->stack = NULL;
422 #ifdef CONFIG_VMAP_STACK
423 tsk->stack_vm_area = NULL;
424 #endif
427 #ifdef CONFIG_THREAD_INFO_IN_TASK
428 void put_task_stack(struct task_struct *tsk)
430 if (atomic_dec_and_test(&tsk->stack_refcount))
431 release_task_stack(tsk);
433 #endif
435 void free_task(struct task_struct *tsk)
437 #ifndef CONFIG_THREAD_INFO_IN_TASK
439 * The task is finally done with both the stack and thread_info,
440 * so free both.
442 release_task_stack(tsk);
443 #else
445 * If the task had a separate stack allocation, it should be gone
446 * by now.
448 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
449 #endif
450 rt_mutex_debug_task_free(tsk);
451 ftrace_graph_exit_task(tsk);
452 put_seccomp_filter(tsk);
453 arch_release_task_struct(tsk);
454 if (tsk->flags & PF_KTHREAD)
455 free_kthread_struct(tsk);
456 free_task_struct(tsk);
458 EXPORT_SYMBOL(free_task);
460 #ifdef CONFIG_MMU
461 static __latent_entropy int dup_mmap(struct mm_struct *mm,
462 struct mm_struct *oldmm)
464 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
465 struct rb_node **rb_link, *rb_parent;
466 int retval;
467 unsigned long charge;
468 LIST_HEAD(uf);
470 uprobe_start_dup_mmap();
471 if (down_write_killable(&oldmm->mmap_sem)) {
472 retval = -EINTR;
473 goto fail_uprobe_end;
475 flush_cache_dup_mm(oldmm);
476 uprobe_dup_mmap(oldmm, mm);
478 * Not linked in yet - no deadlock potential:
480 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
482 /* No ordering required: file already has been exposed. */
483 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
485 mm->total_vm = oldmm->total_vm;
486 mm->data_vm = oldmm->data_vm;
487 mm->exec_vm = oldmm->exec_vm;
488 mm->stack_vm = oldmm->stack_vm;
490 rb_link = &mm->mm_rb.rb_node;
491 rb_parent = NULL;
492 pprev = &mm->mmap;
493 retval = ksm_fork(mm, oldmm);
494 if (retval)
495 goto out;
496 retval = khugepaged_fork(mm, oldmm);
497 if (retval)
498 goto out;
500 prev = NULL;
501 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
502 struct file *file;
504 if (mpnt->vm_flags & VM_DONTCOPY) {
505 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
506 continue;
508 charge = 0;
510 * Don't duplicate many vmas if we've been oom-killed (for
511 * example)
513 if (fatal_signal_pending(current)) {
514 retval = -EINTR;
515 goto out;
517 if (mpnt->vm_flags & VM_ACCOUNT) {
518 unsigned long len = vma_pages(mpnt);
520 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
521 goto fail_nomem;
522 charge = len;
524 tmp = vm_area_dup(mpnt);
525 if (!tmp)
526 goto fail_nomem;
527 retval = vma_dup_policy(mpnt, tmp);
528 if (retval)
529 goto fail_nomem_policy;
530 tmp->vm_mm = mm;
531 retval = dup_userfaultfd(tmp, &uf);
532 if (retval)
533 goto fail_nomem_anon_vma_fork;
534 if (tmp->vm_flags & VM_WIPEONFORK) {
535 /* VM_WIPEONFORK gets a clean slate in the child. */
536 tmp->anon_vma = NULL;
537 if (anon_vma_prepare(tmp))
538 goto fail_nomem_anon_vma_fork;
539 } else if (anon_vma_fork(tmp, mpnt))
540 goto fail_nomem_anon_vma_fork;
541 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
542 tmp->vm_next = tmp->vm_prev = NULL;
543 file = tmp->vm_file;
544 if (file) {
545 struct inode *inode = file_inode(file);
546 struct address_space *mapping = file->f_mapping;
548 get_file(file);
549 if (tmp->vm_flags & VM_DENYWRITE)
550 atomic_dec(&inode->i_writecount);
551 i_mmap_lock_write(mapping);
552 if (tmp->vm_flags & VM_SHARED)
553 atomic_inc(&mapping->i_mmap_writable);
554 flush_dcache_mmap_lock(mapping);
555 /* insert tmp into the share list, just after mpnt */
556 vma_interval_tree_insert_after(tmp, mpnt,
557 &mapping->i_mmap);
558 flush_dcache_mmap_unlock(mapping);
559 i_mmap_unlock_write(mapping);
563 * Clear hugetlb-related page reserves for children. This only
564 * affects MAP_PRIVATE mappings. Faults generated by the child
565 * are not guaranteed to succeed, even if read-only
567 if (is_vm_hugetlb_page(tmp))
568 reset_vma_resv_huge_pages(tmp);
571 * Link in the new vma and copy the page table entries.
573 *pprev = tmp;
574 pprev = &tmp->vm_next;
575 tmp->vm_prev = prev;
576 prev = tmp;
578 __vma_link_rb(mm, tmp, rb_link, rb_parent);
579 rb_link = &tmp->vm_rb.rb_right;
580 rb_parent = &tmp->vm_rb;
582 mm->map_count++;
583 if (!(tmp->vm_flags & VM_WIPEONFORK))
584 retval = copy_page_range(mm, oldmm, mpnt);
586 if (tmp->vm_ops && tmp->vm_ops->open)
587 tmp->vm_ops->open(tmp);
589 if (retval)
590 goto out;
592 /* a new mm has just been created */
593 retval = arch_dup_mmap(oldmm, mm);
594 out:
595 up_write(&mm->mmap_sem);
596 flush_tlb_mm(oldmm);
597 up_write(&oldmm->mmap_sem);
598 dup_userfaultfd_complete(&uf);
599 fail_uprobe_end:
600 uprobe_end_dup_mmap();
601 return retval;
602 fail_nomem_anon_vma_fork:
603 mpol_put(vma_policy(tmp));
604 fail_nomem_policy:
605 vm_area_free(tmp);
606 fail_nomem:
607 retval = -ENOMEM;
608 vm_unacct_memory(charge);
609 goto out;
612 static inline int mm_alloc_pgd(struct mm_struct *mm)
614 mm->pgd = pgd_alloc(mm);
615 if (unlikely(!mm->pgd))
616 return -ENOMEM;
617 return 0;
620 static inline void mm_free_pgd(struct mm_struct *mm)
622 pgd_free(mm, mm->pgd);
624 #else
625 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
627 down_write(&oldmm->mmap_sem);
628 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
629 up_write(&oldmm->mmap_sem);
630 return 0;
632 #define mm_alloc_pgd(mm) (0)
633 #define mm_free_pgd(mm)
634 #endif /* CONFIG_MMU */
636 static void check_mm(struct mm_struct *mm)
638 int i;
640 for (i = 0; i < NR_MM_COUNTERS; i++) {
641 long x = atomic_long_read(&mm->rss_stat.count[i]);
643 if (unlikely(x))
644 printk(KERN_ALERT "BUG: Bad rss-counter state "
645 "mm:%p idx:%d val:%ld\n", mm, i, x);
648 if (mm_pgtables_bytes(mm))
649 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
650 mm_pgtables_bytes(mm));
652 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
653 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
654 #endif
657 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
658 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
661 * Called when the last reference to the mm
662 * is dropped: either by a lazy thread or by
663 * mmput. Free the page directory and the mm.
665 void __mmdrop(struct mm_struct *mm)
667 BUG_ON(mm == &init_mm);
668 WARN_ON_ONCE(mm == current->mm);
669 WARN_ON_ONCE(mm == current->active_mm);
670 mm_free_pgd(mm);
671 destroy_context(mm);
672 hmm_mm_destroy(mm);
673 mmu_notifier_mm_destroy(mm);
674 check_mm(mm);
675 put_user_ns(mm->user_ns);
676 free_mm(mm);
678 EXPORT_SYMBOL_GPL(__mmdrop);
680 static void mmdrop_async_fn(struct work_struct *work)
682 struct mm_struct *mm;
684 mm = container_of(work, struct mm_struct, async_put_work);
685 __mmdrop(mm);
688 static void mmdrop_async(struct mm_struct *mm)
690 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
691 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
692 schedule_work(&mm->async_put_work);
696 static inline void free_signal_struct(struct signal_struct *sig)
698 taskstats_tgid_free(sig);
699 sched_autogroup_exit(sig);
701 * __mmdrop is not safe to call from softirq context on x86 due to
702 * pgd_dtor so postpone it to the async context
704 if (sig->oom_mm)
705 mmdrop_async(sig->oom_mm);
706 kmem_cache_free(signal_cachep, sig);
709 static inline void put_signal_struct(struct signal_struct *sig)
711 if (atomic_dec_and_test(&sig->sigcnt))
712 free_signal_struct(sig);
715 void __put_task_struct(struct task_struct *tsk)
717 WARN_ON(!tsk->exit_state);
718 WARN_ON(atomic_read(&tsk->usage));
719 WARN_ON(tsk == current);
721 cgroup_free(tsk);
722 task_numa_free(tsk);
723 security_task_free(tsk);
724 exit_creds(tsk);
725 delayacct_tsk_free(tsk);
726 put_signal_struct(tsk->signal);
728 if (!profile_handoff_task(tsk))
729 free_task(tsk);
731 EXPORT_SYMBOL_GPL(__put_task_struct);
733 void __init __weak arch_task_cache_init(void) { }
736 * set_max_threads
738 static void set_max_threads(unsigned int max_threads_suggested)
740 u64 threads;
743 * The number of threads shall be limited such that the thread
744 * structures may only consume a small part of the available memory.
746 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
747 threads = MAX_THREADS;
748 else
749 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
750 (u64) THREAD_SIZE * 8UL);
752 if (threads > max_threads_suggested)
753 threads = max_threads_suggested;
755 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
758 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
759 /* Initialized by the architecture: */
760 int arch_task_struct_size __read_mostly;
761 #endif
763 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
765 /* Fetch thread_struct whitelist for the architecture. */
766 arch_thread_struct_whitelist(offset, size);
769 * Handle zero-sized whitelist or empty thread_struct, otherwise
770 * adjust offset to position of thread_struct in task_struct.
772 if (unlikely(*size == 0))
773 *offset = 0;
774 else
775 *offset += offsetof(struct task_struct, thread);
778 void __init fork_init(void)
780 int i;
781 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
782 #ifndef ARCH_MIN_TASKALIGN
783 #define ARCH_MIN_TASKALIGN 0
784 #endif
785 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
786 unsigned long useroffset, usersize;
788 /* create a slab on which task_structs can be allocated */
789 task_struct_whitelist(&useroffset, &usersize);
790 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
791 arch_task_struct_size, align,
792 SLAB_PANIC|SLAB_ACCOUNT,
793 useroffset, usersize, NULL);
794 #endif
796 /* do the arch specific task caches init */
797 arch_task_cache_init();
799 set_max_threads(MAX_THREADS);
801 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
802 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
803 init_task.signal->rlim[RLIMIT_SIGPENDING] =
804 init_task.signal->rlim[RLIMIT_NPROC];
806 for (i = 0; i < UCOUNT_COUNTS; i++) {
807 init_user_ns.ucount_max[i] = max_threads/2;
810 #ifdef CONFIG_VMAP_STACK
811 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
812 NULL, free_vm_stack_cache);
813 #endif
815 lockdep_init_task(&init_task);
818 int __weak arch_dup_task_struct(struct task_struct *dst,
819 struct task_struct *src)
821 *dst = *src;
822 return 0;
825 void set_task_stack_end_magic(struct task_struct *tsk)
827 unsigned long *stackend;
829 stackend = end_of_stack(tsk);
830 *stackend = STACK_END_MAGIC; /* for overflow detection */
833 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
835 struct task_struct *tsk;
836 unsigned long *stack;
837 struct vm_struct *stack_vm_area;
838 int err;
840 if (node == NUMA_NO_NODE)
841 node = tsk_fork_get_node(orig);
842 tsk = alloc_task_struct_node(node);
843 if (!tsk)
844 return NULL;
846 stack = alloc_thread_stack_node(tsk, node);
847 if (!stack)
848 goto free_tsk;
850 if (memcg_charge_kernel_stack(tsk))
851 goto free_stack;
853 stack_vm_area = task_stack_vm_area(tsk);
855 err = arch_dup_task_struct(tsk, orig);
858 * arch_dup_task_struct() clobbers the stack-related fields. Make
859 * sure they're properly initialized before using any stack-related
860 * functions again.
862 tsk->stack = stack;
863 #ifdef CONFIG_VMAP_STACK
864 tsk->stack_vm_area = stack_vm_area;
865 #endif
866 #ifdef CONFIG_THREAD_INFO_IN_TASK
867 atomic_set(&tsk->stack_refcount, 1);
868 #endif
870 if (err)
871 goto free_stack;
873 #ifdef CONFIG_SECCOMP
875 * We must handle setting up seccomp filters once we're under
876 * the sighand lock in case orig has changed between now and
877 * then. Until then, filter must be NULL to avoid messing up
878 * the usage counts on the error path calling free_task.
880 tsk->seccomp.filter = NULL;
881 #endif
883 setup_thread_stack(tsk, orig);
884 clear_user_return_notifier(tsk);
885 clear_tsk_need_resched(tsk);
886 set_task_stack_end_magic(tsk);
888 #ifdef CONFIG_STACKPROTECTOR
889 tsk->stack_canary = get_random_canary();
890 #endif
893 * One for us, one for whoever does the "release_task()" (usually
894 * parent)
896 atomic_set(&tsk->usage, 2);
897 #ifdef CONFIG_BLK_DEV_IO_TRACE
898 tsk->btrace_seq = 0;
899 #endif
900 tsk->splice_pipe = NULL;
901 tsk->task_frag.page = NULL;
902 tsk->wake_q.next = NULL;
904 account_kernel_stack(tsk, 1);
906 kcov_task_init(tsk);
908 #ifdef CONFIG_FAULT_INJECTION
909 tsk->fail_nth = 0;
910 #endif
912 #ifdef CONFIG_BLK_CGROUP
913 tsk->throttle_queue = NULL;
914 tsk->use_memdelay = 0;
915 #endif
917 #ifdef CONFIG_MEMCG
918 tsk->active_memcg = NULL;
919 #endif
920 return tsk;
922 free_stack:
923 free_thread_stack(tsk);
924 free_tsk:
925 free_task_struct(tsk);
926 return NULL;
929 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
931 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
933 static int __init coredump_filter_setup(char *s)
935 default_dump_filter =
936 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
937 MMF_DUMP_FILTER_MASK;
938 return 1;
941 __setup("coredump_filter=", coredump_filter_setup);
943 #include <linux/init_task.h>
945 static void mm_init_aio(struct mm_struct *mm)
947 #ifdef CONFIG_AIO
948 spin_lock_init(&mm->ioctx_lock);
949 mm->ioctx_table = NULL;
950 #endif
953 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
955 #ifdef CONFIG_MEMCG
956 mm->owner = p;
957 #endif
960 static void mm_init_uprobes_state(struct mm_struct *mm)
962 #ifdef CONFIG_UPROBES
963 mm->uprobes_state.xol_area = NULL;
964 #endif
967 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
968 struct user_namespace *user_ns)
970 mm->mmap = NULL;
971 mm->mm_rb = RB_ROOT;
972 mm->vmacache_seqnum = 0;
973 atomic_set(&mm->mm_users, 1);
974 atomic_set(&mm->mm_count, 1);
975 init_rwsem(&mm->mmap_sem);
976 INIT_LIST_HEAD(&mm->mmlist);
977 mm->core_state = NULL;
978 mm_pgtables_bytes_init(mm);
979 mm->map_count = 0;
980 mm->locked_vm = 0;
981 mm->pinned_vm = 0;
982 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
983 spin_lock_init(&mm->page_table_lock);
984 spin_lock_init(&mm->arg_lock);
985 mm_init_cpumask(mm);
986 mm_init_aio(mm);
987 mm_init_owner(mm, p);
988 RCU_INIT_POINTER(mm->exe_file, NULL);
989 mmu_notifier_mm_init(mm);
990 hmm_mm_init(mm);
991 init_tlb_flush_pending(mm);
992 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
993 mm->pmd_huge_pte = NULL;
994 #endif
995 mm_init_uprobes_state(mm);
997 if (current->mm) {
998 mm->flags = current->mm->flags & MMF_INIT_MASK;
999 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1000 } else {
1001 mm->flags = default_dump_filter;
1002 mm->def_flags = 0;
1005 if (mm_alloc_pgd(mm))
1006 goto fail_nopgd;
1008 if (init_new_context(p, mm))
1009 goto fail_nocontext;
1011 mm->user_ns = get_user_ns(user_ns);
1012 return mm;
1014 fail_nocontext:
1015 mm_free_pgd(mm);
1016 fail_nopgd:
1017 free_mm(mm);
1018 return NULL;
1022 * Allocate and initialize an mm_struct.
1024 struct mm_struct *mm_alloc(void)
1026 struct mm_struct *mm;
1028 mm = allocate_mm();
1029 if (!mm)
1030 return NULL;
1032 memset(mm, 0, sizeof(*mm));
1033 return mm_init(mm, current, current_user_ns());
1036 static inline void __mmput(struct mm_struct *mm)
1038 VM_BUG_ON(atomic_read(&mm->mm_users));
1040 uprobe_clear_state(mm);
1041 exit_aio(mm);
1042 ksm_exit(mm);
1043 khugepaged_exit(mm); /* must run before exit_mmap */
1044 exit_mmap(mm);
1045 mm_put_huge_zero_page(mm);
1046 set_mm_exe_file(mm, NULL);
1047 if (!list_empty(&mm->mmlist)) {
1048 spin_lock(&mmlist_lock);
1049 list_del(&mm->mmlist);
1050 spin_unlock(&mmlist_lock);
1052 if (mm->binfmt)
1053 module_put(mm->binfmt->module);
1054 mmdrop(mm);
1058 * Decrement the use count and release all resources for an mm.
1060 void mmput(struct mm_struct *mm)
1062 might_sleep();
1064 if (atomic_dec_and_test(&mm->mm_users))
1065 __mmput(mm);
1067 EXPORT_SYMBOL_GPL(mmput);
1069 #ifdef CONFIG_MMU
1070 static void mmput_async_fn(struct work_struct *work)
1072 struct mm_struct *mm = container_of(work, struct mm_struct,
1073 async_put_work);
1075 __mmput(mm);
1078 void mmput_async(struct mm_struct *mm)
1080 if (atomic_dec_and_test(&mm->mm_users)) {
1081 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1082 schedule_work(&mm->async_put_work);
1085 #endif
1088 * set_mm_exe_file - change a reference to the mm's executable file
1090 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1092 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1093 * invocations: in mmput() nobody alive left, in execve task is single
1094 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1095 * mm->exe_file, but does so without using set_mm_exe_file() in order
1096 * to do avoid the need for any locks.
1098 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1100 struct file *old_exe_file;
1103 * It is safe to dereference the exe_file without RCU as
1104 * this function is only called if nobody else can access
1105 * this mm -- see comment above for justification.
1107 old_exe_file = rcu_dereference_raw(mm->exe_file);
1109 if (new_exe_file)
1110 get_file(new_exe_file);
1111 rcu_assign_pointer(mm->exe_file, new_exe_file);
1112 if (old_exe_file)
1113 fput(old_exe_file);
1117 * get_mm_exe_file - acquire a reference to the mm's executable file
1119 * Returns %NULL if mm has no associated executable file.
1120 * User must release file via fput().
1122 struct file *get_mm_exe_file(struct mm_struct *mm)
1124 struct file *exe_file;
1126 rcu_read_lock();
1127 exe_file = rcu_dereference(mm->exe_file);
1128 if (exe_file && !get_file_rcu(exe_file))
1129 exe_file = NULL;
1130 rcu_read_unlock();
1131 return exe_file;
1133 EXPORT_SYMBOL(get_mm_exe_file);
1136 * get_task_exe_file - acquire a reference to the task's executable file
1138 * Returns %NULL if task's mm (if any) has no associated executable file or
1139 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1140 * User must release file via fput().
1142 struct file *get_task_exe_file(struct task_struct *task)
1144 struct file *exe_file = NULL;
1145 struct mm_struct *mm;
1147 task_lock(task);
1148 mm = task->mm;
1149 if (mm) {
1150 if (!(task->flags & PF_KTHREAD))
1151 exe_file = get_mm_exe_file(mm);
1153 task_unlock(task);
1154 return exe_file;
1156 EXPORT_SYMBOL(get_task_exe_file);
1159 * get_task_mm - acquire a reference to the task's mm
1161 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1162 * this kernel workthread has transiently adopted a user mm with use_mm,
1163 * to do its AIO) is not set and if so returns a reference to it, after
1164 * bumping up the use count. User must release the mm via mmput()
1165 * after use. Typically used by /proc and ptrace.
1167 struct mm_struct *get_task_mm(struct task_struct *task)
1169 struct mm_struct *mm;
1171 task_lock(task);
1172 mm = task->mm;
1173 if (mm) {
1174 if (task->flags & PF_KTHREAD)
1175 mm = NULL;
1176 else
1177 mmget(mm);
1179 task_unlock(task);
1180 return mm;
1182 EXPORT_SYMBOL_GPL(get_task_mm);
1184 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1186 struct mm_struct *mm;
1187 int err;
1189 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1190 if (err)
1191 return ERR_PTR(err);
1193 mm = get_task_mm(task);
1194 if (mm && mm != current->mm &&
1195 !ptrace_may_access(task, mode)) {
1196 mmput(mm);
1197 mm = ERR_PTR(-EACCES);
1199 mutex_unlock(&task->signal->cred_guard_mutex);
1201 return mm;
1204 static void complete_vfork_done(struct task_struct *tsk)
1206 struct completion *vfork;
1208 task_lock(tsk);
1209 vfork = tsk->vfork_done;
1210 if (likely(vfork)) {
1211 tsk->vfork_done = NULL;
1212 complete(vfork);
1214 task_unlock(tsk);
1217 static int wait_for_vfork_done(struct task_struct *child,
1218 struct completion *vfork)
1220 int killed;
1222 freezer_do_not_count();
1223 killed = wait_for_completion_killable(vfork);
1224 freezer_count();
1226 if (killed) {
1227 task_lock(child);
1228 child->vfork_done = NULL;
1229 task_unlock(child);
1232 put_task_struct(child);
1233 return killed;
1236 /* Please note the differences between mmput and mm_release.
1237 * mmput is called whenever we stop holding onto a mm_struct,
1238 * error success whatever.
1240 * mm_release is called after a mm_struct has been removed
1241 * from the current process.
1243 * This difference is important for error handling, when we
1244 * only half set up a mm_struct for a new process and need to restore
1245 * the old one. Because we mmput the new mm_struct before
1246 * restoring the old one. . .
1247 * Eric Biederman 10 January 1998
1249 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1251 /* Get rid of any futexes when releasing the mm */
1252 #ifdef CONFIG_FUTEX
1253 if (unlikely(tsk->robust_list)) {
1254 exit_robust_list(tsk);
1255 tsk->robust_list = NULL;
1257 #ifdef CONFIG_COMPAT
1258 if (unlikely(tsk->compat_robust_list)) {
1259 compat_exit_robust_list(tsk);
1260 tsk->compat_robust_list = NULL;
1262 #endif
1263 if (unlikely(!list_empty(&tsk->pi_state_list)))
1264 exit_pi_state_list(tsk);
1265 #endif
1267 uprobe_free_utask(tsk);
1269 /* Get rid of any cached register state */
1270 deactivate_mm(tsk, mm);
1273 * Signal userspace if we're not exiting with a core dump
1274 * because we want to leave the value intact for debugging
1275 * purposes.
1277 if (tsk->clear_child_tid) {
1278 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1279 atomic_read(&mm->mm_users) > 1) {
1281 * We don't check the error code - if userspace has
1282 * not set up a proper pointer then tough luck.
1284 put_user(0, tsk->clear_child_tid);
1285 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1286 1, NULL, NULL, 0, 0);
1288 tsk->clear_child_tid = NULL;
1292 * All done, finally we can wake up parent and return this mm to him.
1293 * Also kthread_stop() uses this completion for synchronization.
1295 if (tsk->vfork_done)
1296 complete_vfork_done(tsk);
1300 * Allocate a new mm structure and copy contents from the
1301 * mm structure of the passed in task structure.
1303 static struct mm_struct *dup_mm(struct task_struct *tsk)
1305 struct mm_struct *mm, *oldmm = current->mm;
1306 int err;
1308 mm = allocate_mm();
1309 if (!mm)
1310 goto fail_nomem;
1312 memcpy(mm, oldmm, sizeof(*mm));
1314 if (!mm_init(mm, tsk, mm->user_ns))
1315 goto fail_nomem;
1317 err = dup_mmap(mm, oldmm);
1318 if (err)
1319 goto free_pt;
1321 mm->hiwater_rss = get_mm_rss(mm);
1322 mm->hiwater_vm = mm->total_vm;
1324 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1325 goto free_pt;
1327 return mm;
1329 free_pt:
1330 /* don't put binfmt in mmput, we haven't got module yet */
1331 mm->binfmt = NULL;
1332 mmput(mm);
1334 fail_nomem:
1335 return NULL;
1338 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1340 struct mm_struct *mm, *oldmm;
1341 int retval;
1343 tsk->min_flt = tsk->maj_flt = 0;
1344 tsk->nvcsw = tsk->nivcsw = 0;
1345 #ifdef CONFIG_DETECT_HUNG_TASK
1346 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1347 tsk->last_switch_time = 0;
1348 #endif
1350 tsk->mm = NULL;
1351 tsk->active_mm = NULL;
1354 * Are we cloning a kernel thread?
1356 * We need to steal a active VM for that..
1358 oldmm = current->mm;
1359 if (!oldmm)
1360 return 0;
1362 /* initialize the new vmacache entries */
1363 vmacache_flush(tsk);
1365 if (clone_flags & CLONE_VM) {
1366 mmget(oldmm);
1367 mm = oldmm;
1368 goto good_mm;
1371 retval = -ENOMEM;
1372 mm = dup_mm(tsk);
1373 if (!mm)
1374 goto fail_nomem;
1376 good_mm:
1377 tsk->mm = mm;
1378 tsk->active_mm = mm;
1379 return 0;
1381 fail_nomem:
1382 return retval;
1385 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1387 struct fs_struct *fs = current->fs;
1388 if (clone_flags & CLONE_FS) {
1389 /* tsk->fs is already what we want */
1390 spin_lock(&fs->lock);
1391 if (fs->in_exec) {
1392 spin_unlock(&fs->lock);
1393 return -EAGAIN;
1395 fs->users++;
1396 spin_unlock(&fs->lock);
1397 return 0;
1399 tsk->fs = copy_fs_struct(fs);
1400 if (!tsk->fs)
1401 return -ENOMEM;
1402 return 0;
1405 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1407 struct files_struct *oldf, *newf;
1408 int error = 0;
1411 * A background process may not have any files ...
1413 oldf = current->files;
1414 if (!oldf)
1415 goto out;
1417 if (clone_flags & CLONE_FILES) {
1418 atomic_inc(&oldf->count);
1419 goto out;
1422 newf = dup_fd(oldf, &error);
1423 if (!newf)
1424 goto out;
1426 tsk->files = newf;
1427 error = 0;
1428 out:
1429 return error;
1432 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1434 #ifdef CONFIG_BLOCK
1435 struct io_context *ioc = current->io_context;
1436 struct io_context *new_ioc;
1438 if (!ioc)
1439 return 0;
1441 * Share io context with parent, if CLONE_IO is set
1443 if (clone_flags & CLONE_IO) {
1444 ioc_task_link(ioc);
1445 tsk->io_context = ioc;
1446 } else if (ioprio_valid(ioc->ioprio)) {
1447 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1448 if (unlikely(!new_ioc))
1449 return -ENOMEM;
1451 new_ioc->ioprio = ioc->ioprio;
1452 put_io_context(new_ioc);
1454 #endif
1455 return 0;
1458 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1460 struct sighand_struct *sig;
1462 if (clone_flags & CLONE_SIGHAND) {
1463 atomic_inc(&current->sighand->count);
1464 return 0;
1466 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1467 rcu_assign_pointer(tsk->sighand, sig);
1468 if (!sig)
1469 return -ENOMEM;
1471 atomic_set(&sig->count, 1);
1472 spin_lock_irq(&current->sighand->siglock);
1473 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1474 spin_unlock_irq(&current->sighand->siglock);
1475 return 0;
1478 void __cleanup_sighand(struct sighand_struct *sighand)
1480 if (atomic_dec_and_test(&sighand->count)) {
1481 signalfd_cleanup(sighand);
1483 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1484 * without an RCU grace period, see __lock_task_sighand().
1486 kmem_cache_free(sighand_cachep, sighand);
1490 #ifdef CONFIG_POSIX_TIMERS
1492 * Initialize POSIX timer handling for a thread group.
1494 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1496 unsigned long cpu_limit;
1498 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1499 if (cpu_limit != RLIM_INFINITY) {
1500 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1501 sig->cputimer.running = true;
1504 /* The timer lists. */
1505 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1506 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1507 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1509 #else
1510 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1511 #endif
1513 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1515 struct signal_struct *sig;
1517 if (clone_flags & CLONE_THREAD)
1518 return 0;
1520 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1521 tsk->signal = sig;
1522 if (!sig)
1523 return -ENOMEM;
1525 sig->nr_threads = 1;
1526 atomic_set(&sig->live, 1);
1527 atomic_set(&sig->sigcnt, 1);
1529 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1530 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1531 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1533 init_waitqueue_head(&sig->wait_chldexit);
1534 sig->curr_target = tsk;
1535 init_sigpending(&sig->shared_pending);
1536 INIT_HLIST_HEAD(&sig->multiprocess);
1537 seqlock_init(&sig->stats_lock);
1538 prev_cputime_init(&sig->prev_cputime);
1540 #ifdef CONFIG_POSIX_TIMERS
1541 INIT_LIST_HEAD(&sig->posix_timers);
1542 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1543 sig->real_timer.function = it_real_fn;
1544 #endif
1546 task_lock(current->group_leader);
1547 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1548 task_unlock(current->group_leader);
1550 posix_cpu_timers_init_group(sig);
1552 tty_audit_fork(sig);
1553 sched_autogroup_fork(sig);
1555 sig->oom_score_adj = current->signal->oom_score_adj;
1556 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1558 mutex_init(&sig->cred_guard_mutex);
1560 return 0;
1563 static void copy_seccomp(struct task_struct *p)
1565 #ifdef CONFIG_SECCOMP
1567 * Must be called with sighand->lock held, which is common to
1568 * all threads in the group. Holding cred_guard_mutex is not
1569 * needed because this new task is not yet running and cannot
1570 * be racing exec.
1572 assert_spin_locked(&current->sighand->siglock);
1574 /* Ref-count the new filter user, and assign it. */
1575 get_seccomp_filter(current);
1576 p->seccomp = current->seccomp;
1579 * Explicitly enable no_new_privs here in case it got set
1580 * between the task_struct being duplicated and holding the
1581 * sighand lock. The seccomp state and nnp must be in sync.
1583 if (task_no_new_privs(current))
1584 task_set_no_new_privs(p);
1587 * If the parent gained a seccomp mode after copying thread
1588 * flags and between before we held the sighand lock, we have
1589 * to manually enable the seccomp thread flag here.
1591 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1592 set_tsk_thread_flag(p, TIF_SECCOMP);
1593 #endif
1596 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1598 current->clear_child_tid = tidptr;
1600 return task_pid_vnr(current);
1603 static void rt_mutex_init_task(struct task_struct *p)
1605 raw_spin_lock_init(&p->pi_lock);
1606 #ifdef CONFIG_RT_MUTEXES
1607 p->pi_waiters = RB_ROOT_CACHED;
1608 p->pi_top_task = NULL;
1609 p->pi_blocked_on = NULL;
1610 #endif
1613 #ifdef CONFIG_POSIX_TIMERS
1615 * Initialize POSIX timer handling for a single task.
1617 static void posix_cpu_timers_init(struct task_struct *tsk)
1619 tsk->cputime_expires.prof_exp = 0;
1620 tsk->cputime_expires.virt_exp = 0;
1621 tsk->cputime_expires.sched_exp = 0;
1622 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1623 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1624 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1626 #else
1627 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1628 #endif
1630 static inline void init_task_pid_links(struct task_struct *task)
1632 enum pid_type type;
1634 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1635 INIT_HLIST_NODE(&task->pid_links[type]);
1639 static inline void
1640 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1642 if (type == PIDTYPE_PID)
1643 task->thread_pid = pid;
1644 else
1645 task->signal->pids[type] = pid;
1648 static inline void rcu_copy_process(struct task_struct *p)
1650 #ifdef CONFIG_PREEMPT_RCU
1651 p->rcu_read_lock_nesting = 0;
1652 p->rcu_read_unlock_special.s = 0;
1653 p->rcu_blocked_node = NULL;
1654 INIT_LIST_HEAD(&p->rcu_node_entry);
1655 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1656 #ifdef CONFIG_TASKS_RCU
1657 p->rcu_tasks_holdout = false;
1658 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1659 p->rcu_tasks_idle_cpu = -1;
1660 #endif /* #ifdef CONFIG_TASKS_RCU */
1664 * This creates a new process as a copy of the old one,
1665 * but does not actually start it yet.
1667 * It copies the registers, and all the appropriate
1668 * parts of the process environment (as per the clone
1669 * flags). The actual kick-off is left to the caller.
1671 static __latent_entropy struct task_struct *copy_process(
1672 unsigned long clone_flags,
1673 unsigned long stack_start,
1674 unsigned long stack_size,
1675 int __user *child_tidptr,
1676 struct pid *pid,
1677 int trace,
1678 unsigned long tls,
1679 int node)
1681 int retval;
1682 struct task_struct *p;
1683 struct multiprocess_signals delayed;
1686 * Don't allow sharing the root directory with processes in a different
1687 * namespace
1689 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1690 return ERR_PTR(-EINVAL);
1692 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1693 return ERR_PTR(-EINVAL);
1696 * Thread groups must share signals as well, and detached threads
1697 * can only be started up within the thread group.
1699 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1700 return ERR_PTR(-EINVAL);
1703 * Shared signal handlers imply shared VM. By way of the above,
1704 * thread groups also imply shared VM. Blocking this case allows
1705 * for various simplifications in other code.
1707 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1708 return ERR_PTR(-EINVAL);
1711 * Siblings of global init remain as zombies on exit since they are
1712 * not reaped by their parent (swapper). To solve this and to avoid
1713 * multi-rooted process trees, prevent global and container-inits
1714 * from creating siblings.
1716 if ((clone_flags & CLONE_PARENT) &&
1717 current->signal->flags & SIGNAL_UNKILLABLE)
1718 return ERR_PTR(-EINVAL);
1721 * If the new process will be in a different pid or user namespace
1722 * do not allow it to share a thread group with the forking task.
1724 if (clone_flags & CLONE_THREAD) {
1725 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1726 (task_active_pid_ns(current) !=
1727 current->nsproxy->pid_ns_for_children))
1728 return ERR_PTR(-EINVAL);
1732 * Force any signals received before this point to be delivered
1733 * before the fork happens. Collect up signals sent to multiple
1734 * processes that happen during the fork and delay them so that
1735 * they appear to happen after the fork.
1737 sigemptyset(&delayed.signal);
1738 INIT_HLIST_NODE(&delayed.node);
1740 spin_lock_irq(&current->sighand->siglock);
1741 if (!(clone_flags & CLONE_THREAD))
1742 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1743 recalc_sigpending();
1744 spin_unlock_irq(&current->sighand->siglock);
1745 retval = -ERESTARTNOINTR;
1746 if (signal_pending(current))
1747 goto fork_out;
1749 retval = -ENOMEM;
1750 p = dup_task_struct(current, node);
1751 if (!p)
1752 goto fork_out;
1755 * This _must_ happen before we call free_task(), i.e. before we jump
1756 * to any of the bad_fork_* labels. This is to avoid freeing
1757 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1758 * kernel threads (PF_KTHREAD).
1760 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1762 * Clear TID on mm_release()?
1764 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1766 ftrace_graph_init_task(p);
1768 rt_mutex_init_task(p);
1770 #ifdef CONFIG_PROVE_LOCKING
1771 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1772 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1773 #endif
1774 retval = -EAGAIN;
1775 if (atomic_read(&p->real_cred->user->processes) >=
1776 task_rlimit(p, RLIMIT_NPROC)) {
1777 if (p->real_cred->user != INIT_USER &&
1778 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1779 goto bad_fork_free;
1781 current->flags &= ~PF_NPROC_EXCEEDED;
1783 retval = copy_creds(p, clone_flags);
1784 if (retval < 0)
1785 goto bad_fork_free;
1788 * If multiple threads are within copy_process(), then this check
1789 * triggers too late. This doesn't hurt, the check is only there
1790 * to stop root fork bombs.
1792 retval = -EAGAIN;
1793 if (nr_threads >= max_threads)
1794 goto bad_fork_cleanup_count;
1796 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1797 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1798 p->flags |= PF_FORKNOEXEC;
1799 INIT_LIST_HEAD(&p->children);
1800 INIT_LIST_HEAD(&p->sibling);
1801 rcu_copy_process(p);
1802 p->vfork_done = NULL;
1803 spin_lock_init(&p->alloc_lock);
1805 init_sigpending(&p->pending);
1807 p->utime = p->stime = p->gtime = 0;
1808 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1809 p->utimescaled = p->stimescaled = 0;
1810 #endif
1811 prev_cputime_init(&p->prev_cputime);
1813 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1814 seqcount_init(&p->vtime.seqcount);
1815 p->vtime.starttime = 0;
1816 p->vtime.state = VTIME_INACTIVE;
1817 #endif
1819 #if defined(SPLIT_RSS_COUNTING)
1820 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1821 #endif
1823 p->default_timer_slack_ns = current->timer_slack_ns;
1825 #ifdef CONFIG_PSI
1826 p->psi_flags = 0;
1827 #endif
1829 task_io_accounting_init(&p->ioac);
1830 acct_clear_integrals(p);
1832 posix_cpu_timers_init(p);
1834 p->start_time = ktime_get_ns();
1835 p->real_start_time = ktime_get_boot_ns();
1836 p->io_context = NULL;
1837 audit_set_context(p, NULL);
1838 cgroup_fork(p);
1839 #ifdef CONFIG_NUMA
1840 p->mempolicy = mpol_dup(p->mempolicy);
1841 if (IS_ERR(p->mempolicy)) {
1842 retval = PTR_ERR(p->mempolicy);
1843 p->mempolicy = NULL;
1844 goto bad_fork_cleanup_threadgroup_lock;
1846 #endif
1847 #ifdef CONFIG_CPUSETS
1848 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1849 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1850 seqcount_init(&p->mems_allowed_seq);
1851 #endif
1852 #ifdef CONFIG_TRACE_IRQFLAGS
1853 p->irq_events = 0;
1854 p->hardirqs_enabled = 0;
1855 p->hardirq_enable_ip = 0;
1856 p->hardirq_enable_event = 0;
1857 p->hardirq_disable_ip = _THIS_IP_;
1858 p->hardirq_disable_event = 0;
1859 p->softirqs_enabled = 1;
1860 p->softirq_enable_ip = _THIS_IP_;
1861 p->softirq_enable_event = 0;
1862 p->softirq_disable_ip = 0;
1863 p->softirq_disable_event = 0;
1864 p->hardirq_context = 0;
1865 p->softirq_context = 0;
1866 #endif
1868 p->pagefault_disabled = 0;
1870 #ifdef CONFIG_LOCKDEP
1871 p->lockdep_depth = 0; /* no locks held yet */
1872 p->curr_chain_key = 0;
1873 p->lockdep_recursion = 0;
1874 lockdep_init_task(p);
1875 #endif
1877 #ifdef CONFIG_DEBUG_MUTEXES
1878 p->blocked_on = NULL; /* not blocked yet */
1879 #endif
1880 #ifdef CONFIG_BCACHE
1881 p->sequential_io = 0;
1882 p->sequential_io_avg = 0;
1883 #endif
1885 /* Perform scheduler related setup. Assign this task to a CPU. */
1886 retval = sched_fork(clone_flags, p);
1887 if (retval)
1888 goto bad_fork_cleanup_policy;
1890 retval = perf_event_init_task(p);
1891 if (retval)
1892 goto bad_fork_cleanup_policy;
1893 retval = audit_alloc(p);
1894 if (retval)
1895 goto bad_fork_cleanup_perf;
1896 /* copy all the process information */
1897 shm_init_task(p);
1898 retval = security_task_alloc(p, clone_flags);
1899 if (retval)
1900 goto bad_fork_cleanup_audit;
1901 retval = copy_semundo(clone_flags, p);
1902 if (retval)
1903 goto bad_fork_cleanup_security;
1904 retval = copy_files(clone_flags, p);
1905 if (retval)
1906 goto bad_fork_cleanup_semundo;
1907 retval = copy_fs(clone_flags, p);
1908 if (retval)
1909 goto bad_fork_cleanup_files;
1910 retval = copy_sighand(clone_flags, p);
1911 if (retval)
1912 goto bad_fork_cleanup_fs;
1913 retval = copy_signal(clone_flags, p);
1914 if (retval)
1915 goto bad_fork_cleanup_sighand;
1916 retval = copy_mm(clone_flags, p);
1917 if (retval)
1918 goto bad_fork_cleanup_signal;
1919 retval = copy_namespaces(clone_flags, p);
1920 if (retval)
1921 goto bad_fork_cleanup_mm;
1922 retval = copy_io(clone_flags, p);
1923 if (retval)
1924 goto bad_fork_cleanup_namespaces;
1925 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1926 if (retval)
1927 goto bad_fork_cleanup_io;
1929 if (pid != &init_struct_pid) {
1930 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1931 if (IS_ERR(pid)) {
1932 retval = PTR_ERR(pid);
1933 goto bad_fork_cleanup_thread;
1937 #ifdef CONFIG_BLOCK
1938 p->plug = NULL;
1939 #endif
1940 #ifdef CONFIG_FUTEX
1941 p->robust_list = NULL;
1942 #ifdef CONFIG_COMPAT
1943 p->compat_robust_list = NULL;
1944 #endif
1945 INIT_LIST_HEAD(&p->pi_state_list);
1946 p->pi_state_cache = NULL;
1947 #endif
1949 * sigaltstack should be cleared when sharing the same VM
1951 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1952 sas_ss_reset(p);
1955 * Syscall tracing and stepping should be turned off in the
1956 * child regardless of CLONE_PTRACE.
1958 user_disable_single_step(p);
1959 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1960 #ifdef TIF_SYSCALL_EMU
1961 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1962 #endif
1963 clear_all_latency_tracing(p);
1965 /* ok, now we should be set up.. */
1966 p->pid = pid_nr(pid);
1967 if (clone_flags & CLONE_THREAD) {
1968 p->exit_signal = -1;
1969 p->group_leader = current->group_leader;
1970 p->tgid = current->tgid;
1971 } else {
1972 if (clone_flags & CLONE_PARENT)
1973 p->exit_signal = current->group_leader->exit_signal;
1974 else
1975 p->exit_signal = (clone_flags & CSIGNAL);
1976 p->group_leader = p;
1977 p->tgid = p->pid;
1980 p->nr_dirtied = 0;
1981 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1982 p->dirty_paused_when = 0;
1984 p->pdeath_signal = 0;
1985 INIT_LIST_HEAD(&p->thread_group);
1986 p->task_works = NULL;
1988 cgroup_threadgroup_change_begin(current);
1990 * Ensure that the cgroup subsystem policies allow the new process to be
1991 * forked. It should be noted the the new process's css_set can be changed
1992 * between here and cgroup_post_fork() if an organisation operation is in
1993 * progress.
1995 retval = cgroup_can_fork(p);
1996 if (retval)
1997 goto bad_fork_free_pid;
2000 * Make it visible to the rest of the system, but dont wake it up yet.
2001 * Need tasklist lock for parent etc handling!
2003 write_lock_irq(&tasklist_lock);
2005 /* CLONE_PARENT re-uses the old parent */
2006 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2007 p->real_parent = current->real_parent;
2008 p->parent_exec_id = current->parent_exec_id;
2009 } else {
2010 p->real_parent = current;
2011 p->parent_exec_id = current->self_exec_id;
2014 klp_copy_process(p);
2016 spin_lock(&current->sighand->siglock);
2019 * Copy seccomp details explicitly here, in case they were changed
2020 * before holding sighand lock.
2022 copy_seccomp(p);
2024 rseq_fork(p, clone_flags);
2026 /* Don't start children in a dying pid namespace */
2027 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2028 retval = -ENOMEM;
2029 goto bad_fork_cancel_cgroup;
2032 /* Let kill terminate clone/fork in the middle */
2033 if (fatal_signal_pending(current)) {
2034 retval = -EINTR;
2035 goto bad_fork_cancel_cgroup;
2039 init_task_pid_links(p);
2040 if (likely(p->pid)) {
2041 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2043 init_task_pid(p, PIDTYPE_PID, pid);
2044 if (thread_group_leader(p)) {
2045 init_task_pid(p, PIDTYPE_TGID, pid);
2046 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2047 init_task_pid(p, PIDTYPE_SID, task_session(current));
2049 if (is_child_reaper(pid)) {
2050 ns_of_pid(pid)->child_reaper = p;
2051 p->signal->flags |= SIGNAL_UNKILLABLE;
2053 p->signal->shared_pending.signal = delayed.signal;
2054 p->signal->tty = tty_kref_get(current->signal->tty);
2056 * Inherit has_child_subreaper flag under the same
2057 * tasklist_lock with adding child to the process tree
2058 * for propagate_has_child_subreaper optimization.
2060 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2061 p->real_parent->signal->is_child_subreaper;
2062 list_add_tail(&p->sibling, &p->real_parent->children);
2063 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2064 attach_pid(p, PIDTYPE_TGID);
2065 attach_pid(p, PIDTYPE_PGID);
2066 attach_pid(p, PIDTYPE_SID);
2067 __this_cpu_inc(process_counts);
2068 } else {
2069 current->signal->nr_threads++;
2070 atomic_inc(&current->signal->live);
2071 atomic_inc(&current->signal->sigcnt);
2072 task_join_group_stop(p);
2073 list_add_tail_rcu(&p->thread_group,
2074 &p->group_leader->thread_group);
2075 list_add_tail_rcu(&p->thread_node,
2076 &p->signal->thread_head);
2078 attach_pid(p, PIDTYPE_PID);
2079 nr_threads++;
2081 total_forks++;
2082 hlist_del_init(&delayed.node);
2083 spin_unlock(&current->sighand->siglock);
2084 syscall_tracepoint_update(p);
2085 write_unlock_irq(&tasklist_lock);
2087 proc_fork_connector(p);
2088 cgroup_post_fork(p);
2089 cgroup_threadgroup_change_end(current);
2090 perf_event_fork(p);
2092 trace_task_newtask(p, clone_flags);
2093 uprobe_copy_process(p, clone_flags);
2095 return p;
2097 bad_fork_cancel_cgroup:
2098 spin_unlock(&current->sighand->siglock);
2099 write_unlock_irq(&tasklist_lock);
2100 cgroup_cancel_fork(p);
2101 bad_fork_free_pid:
2102 cgroup_threadgroup_change_end(current);
2103 if (pid != &init_struct_pid)
2104 free_pid(pid);
2105 bad_fork_cleanup_thread:
2106 exit_thread(p);
2107 bad_fork_cleanup_io:
2108 if (p->io_context)
2109 exit_io_context(p);
2110 bad_fork_cleanup_namespaces:
2111 exit_task_namespaces(p);
2112 bad_fork_cleanup_mm:
2113 if (p->mm)
2114 mmput(p->mm);
2115 bad_fork_cleanup_signal:
2116 if (!(clone_flags & CLONE_THREAD))
2117 free_signal_struct(p->signal);
2118 bad_fork_cleanup_sighand:
2119 __cleanup_sighand(p->sighand);
2120 bad_fork_cleanup_fs:
2121 exit_fs(p); /* blocking */
2122 bad_fork_cleanup_files:
2123 exit_files(p); /* blocking */
2124 bad_fork_cleanup_semundo:
2125 exit_sem(p);
2126 bad_fork_cleanup_security:
2127 security_task_free(p);
2128 bad_fork_cleanup_audit:
2129 audit_free(p);
2130 bad_fork_cleanup_perf:
2131 perf_event_free_task(p);
2132 bad_fork_cleanup_policy:
2133 lockdep_free_task(p);
2134 #ifdef CONFIG_NUMA
2135 mpol_put(p->mempolicy);
2136 bad_fork_cleanup_threadgroup_lock:
2137 #endif
2138 delayacct_tsk_free(p);
2139 bad_fork_cleanup_count:
2140 atomic_dec(&p->cred->user->processes);
2141 exit_creds(p);
2142 bad_fork_free:
2143 p->state = TASK_DEAD;
2144 put_task_stack(p);
2145 free_task(p);
2146 fork_out:
2147 spin_lock_irq(&current->sighand->siglock);
2148 hlist_del_init(&delayed.node);
2149 spin_unlock_irq(&current->sighand->siglock);
2150 return ERR_PTR(retval);
2153 static inline void init_idle_pids(struct task_struct *idle)
2155 enum pid_type type;
2157 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2158 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2159 init_task_pid(idle, type, &init_struct_pid);
2163 struct task_struct *fork_idle(int cpu)
2165 struct task_struct *task;
2166 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2167 cpu_to_node(cpu));
2168 if (!IS_ERR(task)) {
2169 init_idle_pids(task);
2170 init_idle(task, cpu);
2173 return task;
2177 * Ok, this is the main fork-routine.
2179 * It copies the process, and if successful kick-starts
2180 * it and waits for it to finish using the VM if required.
2182 long _do_fork(unsigned long clone_flags,
2183 unsigned long stack_start,
2184 unsigned long stack_size,
2185 int __user *parent_tidptr,
2186 int __user *child_tidptr,
2187 unsigned long tls)
2189 struct completion vfork;
2190 struct pid *pid;
2191 struct task_struct *p;
2192 int trace = 0;
2193 long nr;
2196 * Determine whether and which event to report to ptracer. When
2197 * called from kernel_thread or CLONE_UNTRACED is explicitly
2198 * requested, no event is reported; otherwise, report if the event
2199 * for the type of forking is enabled.
2201 if (!(clone_flags & CLONE_UNTRACED)) {
2202 if (clone_flags & CLONE_VFORK)
2203 trace = PTRACE_EVENT_VFORK;
2204 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2205 trace = PTRACE_EVENT_CLONE;
2206 else
2207 trace = PTRACE_EVENT_FORK;
2209 if (likely(!ptrace_event_enabled(current, trace)))
2210 trace = 0;
2213 p = copy_process(clone_flags, stack_start, stack_size,
2214 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2215 add_latent_entropy();
2217 if (IS_ERR(p))
2218 return PTR_ERR(p);
2221 * Do this prior waking up the new thread - the thread pointer
2222 * might get invalid after that point, if the thread exits quickly.
2224 trace_sched_process_fork(current, p);
2226 pid = get_task_pid(p, PIDTYPE_PID);
2227 nr = pid_vnr(pid);
2229 if (clone_flags & CLONE_PARENT_SETTID)
2230 put_user(nr, parent_tidptr);
2232 if (clone_flags & CLONE_VFORK) {
2233 p->vfork_done = &vfork;
2234 init_completion(&vfork);
2235 get_task_struct(p);
2238 wake_up_new_task(p);
2240 /* forking complete and child started to run, tell ptracer */
2241 if (unlikely(trace))
2242 ptrace_event_pid(trace, pid);
2244 if (clone_flags & CLONE_VFORK) {
2245 if (!wait_for_vfork_done(p, &vfork))
2246 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2249 put_pid(pid);
2250 return nr;
2253 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2254 /* For compatibility with architectures that call do_fork directly rather than
2255 * using the syscall entry points below. */
2256 long do_fork(unsigned long clone_flags,
2257 unsigned long stack_start,
2258 unsigned long stack_size,
2259 int __user *parent_tidptr,
2260 int __user *child_tidptr)
2262 return _do_fork(clone_flags, stack_start, stack_size,
2263 parent_tidptr, child_tidptr, 0);
2265 #endif
2268 * Create a kernel thread.
2270 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2272 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2273 (unsigned long)arg, NULL, NULL, 0);
2276 #ifdef __ARCH_WANT_SYS_FORK
2277 SYSCALL_DEFINE0(fork)
2279 #ifdef CONFIG_MMU
2280 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2281 #else
2282 /* can not support in nommu mode */
2283 return -EINVAL;
2284 #endif
2286 #endif
2288 #ifdef __ARCH_WANT_SYS_VFORK
2289 SYSCALL_DEFINE0(vfork)
2291 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2292 0, NULL, NULL, 0);
2294 #endif
2296 #ifdef __ARCH_WANT_SYS_CLONE
2297 #ifdef CONFIG_CLONE_BACKWARDS
2298 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2299 int __user *, parent_tidptr,
2300 unsigned long, tls,
2301 int __user *, child_tidptr)
2302 #elif defined(CONFIG_CLONE_BACKWARDS2)
2303 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2304 int __user *, parent_tidptr,
2305 int __user *, child_tidptr,
2306 unsigned long, tls)
2307 #elif defined(CONFIG_CLONE_BACKWARDS3)
2308 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2309 int, stack_size,
2310 int __user *, parent_tidptr,
2311 int __user *, child_tidptr,
2312 unsigned long, tls)
2313 #else
2314 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2315 int __user *, parent_tidptr,
2316 int __user *, child_tidptr,
2317 unsigned long, tls)
2318 #endif
2320 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2322 #endif
2324 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2326 struct task_struct *leader, *parent, *child;
2327 int res;
2329 read_lock(&tasklist_lock);
2330 leader = top = top->group_leader;
2331 down:
2332 for_each_thread(leader, parent) {
2333 list_for_each_entry(child, &parent->children, sibling) {
2334 res = visitor(child, data);
2335 if (res) {
2336 if (res < 0)
2337 goto out;
2338 leader = child;
2339 goto down;
2346 if (leader != top) {
2347 child = leader;
2348 parent = child->real_parent;
2349 leader = parent->group_leader;
2350 goto up;
2352 out:
2353 read_unlock(&tasklist_lock);
2356 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2357 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2358 #endif
2360 static void sighand_ctor(void *data)
2362 struct sighand_struct *sighand = data;
2364 spin_lock_init(&sighand->siglock);
2365 init_waitqueue_head(&sighand->signalfd_wqh);
2368 void __init proc_caches_init(void)
2370 unsigned int mm_size;
2372 sighand_cachep = kmem_cache_create("sighand_cache",
2373 sizeof(struct sighand_struct), 0,
2374 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2375 SLAB_ACCOUNT, sighand_ctor);
2376 signal_cachep = kmem_cache_create("signal_cache",
2377 sizeof(struct signal_struct), 0,
2378 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2379 NULL);
2380 files_cachep = kmem_cache_create("files_cache",
2381 sizeof(struct files_struct), 0,
2382 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2383 NULL);
2384 fs_cachep = kmem_cache_create("fs_cache",
2385 sizeof(struct fs_struct), 0,
2386 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2387 NULL);
2390 * The mm_cpumask is located at the end of mm_struct, and is
2391 * dynamically sized based on the maximum CPU number this system
2392 * can have, taking hotplug into account (nr_cpu_ids).
2394 mm_size = sizeof(struct mm_struct) + cpumask_size();
2396 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2397 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2398 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2399 offsetof(struct mm_struct, saved_auxv),
2400 sizeof_field(struct mm_struct, saved_auxv),
2401 NULL);
2402 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2403 mmap_init();
2404 nsproxy_cache_init();
2408 * Check constraints on flags passed to the unshare system call.
2410 static int check_unshare_flags(unsigned long unshare_flags)
2412 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2413 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2414 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2415 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2416 return -EINVAL;
2418 * Not implemented, but pretend it works if there is nothing
2419 * to unshare. Note that unsharing the address space or the
2420 * signal handlers also need to unshare the signal queues (aka
2421 * CLONE_THREAD).
2423 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2424 if (!thread_group_empty(current))
2425 return -EINVAL;
2427 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2428 if (atomic_read(&current->sighand->count) > 1)
2429 return -EINVAL;
2431 if (unshare_flags & CLONE_VM) {
2432 if (!current_is_single_threaded())
2433 return -EINVAL;
2436 return 0;
2440 * Unshare the filesystem structure if it is being shared
2442 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2444 struct fs_struct *fs = current->fs;
2446 if (!(unshare_flags & CLONE_FS) || !fs)
2447 return 0;
2449 /* don't need lock here; in the worst case we'll do useless copy */
2450 if (fs->users == 1)
2451 return 0;
2453 *new_fsp = copy_fs_struct(fs);
2454 if (!*new_fsp)
2455 return -ENOMEM;
2457 return 0;
2461 * Unshare file descriptor table if it is being shared
2463 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2465 struct files_struct *fd = current->files;
2466 int error = 0;
2468 if ((unshare_flags & CLONE_FILES) &&
2469 (fd && atomic_read(&fd->count) > 1)) {
2470 *new_fdp = dup_fd(fd, &error);
2471 if (!*new_fdp)
2472 return error;
2475 return 0;
2479 * unshare allows a process to 'unshare' part of the process
2480 * context which was originally shared using clone. copy_*
2481 * functions used by do_fork() cannot be used here directly
2482 * because they modify an inactive task_struct that is being
2483 * constructed. Here we are modifying the current, active,
2484 * task_struct.
2486 int ksys_unshare(unsigned long unshare_flags)
2488 struct fs_struct *fs, *new_fs = NULL;
2489 struct files_struct *fd, *new_fd = NULL;
2490 struct cred *new_cred = NULL;
2491 struct nsproxy *new_nsproxy = NULL;
2492 int do_sysvsem = 0;
2493 int err;
2496 * If unsharing a user namespace must also unshare the thread group
2497 * and unshare the filesystem root and working directories.
2499 if (unshare_flags & CLONE_NEWUSER)
2500 unshare_flags |= CLONE_THREAD | CLONE_FS;
2502 * If unsharing vm, must also unshare signal handlers.
2504 if (unshare_flags & CLONE_VM)
2505 unshare_flags |= CLONE_SIGHAND;
2507 * If unsharing a signal handlers, must also unshare the signal queues.
2509 if (unshare_flags & CLONE_SIGHAND)
2510 unshare_flags |= CLONE_THREAD;
2512 * If unsharing namespace, must also unshare filesystem information.
2514 if (unshare_flags & CLONE_NEWNS)
2515 unshare_flags |= CLONE_FS;
2517 err = check_unshare_flags(unshare_flags);
2518 if (err)
2519 goto bad_unshare_out;
2521 * CLONE_NEWIPC must also detach from the undolist: after switching
2522 * to a new ipc namespace, the semaphore arrays from the old
2523 * namespace are unreachable.
2525 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2526 do_sysvsem = 1;
2527 err = unshare_fs(unshare_flags, &new_fs);
2528 if (err)
2529 goto bad_unshare_out;
2530 err = unshare_fd(unshare_flags, &new_fd);
2531 if (err)
2532 goto bad_unshare_cleanup_fs;
2533 err = unshare_userns(unshare_flags, &new_cred);
2534 if (err)
2535 goto bad_unshare_cleanup_fd;
2536 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2537 new_cred, new_fs);
2538 if (err)
2539 goto bad_unshare_cleanup_cred;
2541 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2542 if (do_sysvsem) {
2544 * CLONE_SYSVSEM is equivalent to sys_exit().
2546 exit_sem(current);
2548 if (unshare_flags & CLONE_NEWIPC) {
2549 /* Orphan segments in old ns (see sem above). */
2550 exit_shm(current);
2551 shm_init_task(current);
2554 if (new_nsproxy)
2555 switch_task_namespaces(current, new_nsproxy);
2557 task_lock(current);
2559 if (new_fs) {
2560 fs = current->fs;
2561 spin_lock(&fs->lock);
2562 current->fs = new_fs;
2563 if (--fs->users)
2564 new_fs = NULL;
2565 else
2566 new_fs = fs;
2567 spin_unlock(&fs->lock);
2570 if (new_fd) {
2571 fd = current->files;
2572 current->files = new_fd;
2573 new_fd = fd;
2576 task_unlock(current);
2578 if (new_cred) {
2579 /* Install the new user namespace */
2580 commit_creds(new_cred);
2581 new_cred = NULL;
2585 perf_event_namespaces(current);
2587 bad_unshare_cleanup_cred:
2588 if (new_cred)
2589 put_cred(new_cred);
2590 bad_unshare_cleanup_fd:
2591 if (new_fd)
2592 put_files_struct(new_fd);
2594 bad_unshare_cleanup_fs:
2595 if (new_fs)
2596 free_fs_struct(new_fs);
2598 bad_unshare_out:
2599 return err;
2602 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2604 return ksys_unshare(unshare_flags);
2608 * Helper to unshare the files of the current task.
2609 * We don't want to expose copy_files internals to
2610 * the exec layer of the kernel.
2613 int unshare_files(struct files_struct **displaced)
2615 struct task_struct *task = current;
2616 struct files_struct *copy = NULL;
2617 int error;
2619 error = unshare_fd(CLONE_FILES, &copy);
2620 if (error || !copy) {
2621 *displaced = NULL;
2622 return error;
2624 *displaced = task->files;
2625 task_lock(task);
2626 task->files = copy;
2627 task_unlock(task);
2628 return 0;
2631 int sysctl_max_threads(struct ctl_table *table, int write,
2632 void __user *buffer, size_t *lenp, loff_t *ppos)
2634 struct ctl_table t;
2635 int ret;
2636 int threads = max_threads;
2637 int min = MIN_THREADS;
2638 int max = MAX_THREADS;
2640 t = *table;
2641 t.data = &threads;
2642 t.extra1 = &min;
2643 t.extra2 = &max;
2645 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2646 if (ret || !write)
2647 return ret;
2649 set_max_threads(threads);
2651 return 0;