perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / kernel / kprobes.c
blob90e98e233647f13dda24630567c520aee08c5e49
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72 raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 unsigned int __unused)
78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
83 return &(kretprobe_table_locks[hash].lock);
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
91 * kprobe->ainsn.insn points to the copy of the instruction to be
92 * single-stepped. x86_64, POWER4 and above have no-exec support and
93 * stepping on the instruction on a vmalloced/kmalloced/data page
94 * is a recipe for disaster
96 struct kprobe_insn_page {
97 struct list_head list;
98 kprobe_opcode_t *insns; /* Page of instruction slots */
99 struct kprobe_insn_cache *cache;
100 int nused;
101 int ngarbage;
102 char slot_used[];
105 #define KPROBE_INSN_PAGE_SIZE(slots) \
106 (offsetof(struct kprobe_insn_page, slot_used) + \
107 (sizeof(char) * (slots)))
109 static int slots_per_page(struct kprobe_insn_cache *c)
111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
114 enum kprobe_slot_state {
115 SLOT_CLEAN = 0,
116 SLOT_DIRTY = 1,
117 SLOT_USED = 2,
120 void __weak *alloc_insn_page(void)
122 return module_alloc(PAGE_SIZE);
125 void __weak free_insn_page(void *page)
127 module_memfree(page);
130 struct kprobe_insn_cache kprobe_insn_slots = {
131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 .alloc = alloc_insn_page,
133 .free = free_insn_page,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156 for (i = 0; i < slots_per_page(c); i++) {
157 if (kip->slot_used[i] == SLOT_CLEAN) {
158 kip->slot_used[i] = SLOT_USED;
159 kip->nused++;
160 slot = kip->insns + (i * c->insn_size);
161 rcu_read_unlock();
162 goto out;
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
170 rcu_read_unlock();
172 /* If there are any garbage slots, collect it and try again. */
173 if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 goto retry;
176 /* All out of space. Need to allocate a new page. */
177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 if (!kip)
179 goto out;
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
186 kip->insns = c->alloc();
187 if (!kip->insns) {
188 kfree(kip);
189 goto out;
191 INIT_LIST_HEAD(&kip->list);
192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 kip->slot_used[0] = SLOT_USED;
194 kip->nused = 1;
195 kip->ngarbage = 0;
196 kip->cache = c;
197 list_add_rcu(&kip->list, &c->pages);
198 slot = kip->insns;
199 out:
200 mutex_unlock(&c->mutex);
201 return slot;
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
216 if (!list_is_singular(&kip->list)) {
217 list_del_rcu(&kip->list);
218 synchronize_rcu();
219 kip->cache->free(kip->insns);
220 kfree(kip);
222 return 1;
224 return 0;
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
229 struct kprobe_insn_page *kip, *next;
231 /* Ensure no-one is interrupted on the garbages */
232 synchronize_sched();
234 list_for_each_entry_safe(kip, next, &c->pages, list) {
235 int i;
236 if (kip->ngarbage == 0)
237 continue;
238 kip->ngarbage = 0; /* we will collect all garbages */
239 for (i = 0; i < slots_per_page(c); i++) {
240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 break;
244 c->nr_garbage = 0;
245 return 0;
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 kprobe_opcode_t *slot, int dirty)
251 struct kprobe_insn_page *kip;
252 long idx;
254 mutex_lock(&c->mutex);
255 rcu_read_lock();
256 list_for_each_entry_rcu(kip, &c->pages, list) {
257 idx = ((long)slot - (long)kip->insns) /
258 (c->insn_size * sizeof(kprobe_opcode_t));
259 if (idx >= 0 && idx < slots_per_page(c))
260 goto out;
262 /* Could not find this slot. */
263 WARN_ON(1);
264 kip = NULL;
265 out:
266 rcu_read_unlock();
267 /* Mark and sweep: this may sleep */
268 if (kip) {
269 /* Check double free */
270 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 if (dirty) {
272 kip->slot_used[idx] = SLOT_DIRTY;
273 kip->ngarbage++;
274 if (++c->nr_garbage > slots_per_page(c))
275 collect_garbage_slots(c);
276 } else {
277 collect_one_slot(kip, idx);
280 mutex_unlock(&c->mutex);
284 * Check given address is on the page of kprobe instruction slots.
285 * This will be used for checking whether the address on a stack
286 * is on a text area or not.
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
290 struct kprobe_insn_page *kip;
291 bool ret = false;
293 rcu_read_lock();
294 list_for_each_entry_rcu(kip, &c->pages, list) {
295 if (addr >= (unsigned long)kip->insns &&
296 addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 ret = true;
298 break;
301 rcu_read_unlock();
303 return ret;
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 .alloc = alloc_insn_page,
311 .free = free_insn_page,
312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 /* .insn_size is initialized later */
314 .nr_garbage = 0,
316 #endif
317 #endif
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
322 __this_cpu_write(kprobe_instance, kp);
325 static inline void reset_kprobe_instance(void)
327 __this_cpu_write(kprobe_instance, NULL);
331 * This routine is called either:
332 * - under the kprobe_mutex - during kprobe_[un]register()
333 * OR
334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
336 struct kprobe *get_kprobe(void *addr)
338 struct hlist_head *head;
339 struct kprobe *p;
341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 hlist_for_each_entry_rcu(p, head, hlist) {
343 if (p->addr == addr)
344 return p;
347 return NULL;
349 NOKPROBE_SYMBOL(get_kprobe);
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
356 return p->pre_handler == aggr_pre_handler;
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
362 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 list_empty(&p->list);
367 * Keep all fields in the kprobe consistent
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
380 * Call all pre_handler on the list, but ignores its return value.
381 * This must be called from arch-dep optimized caller.
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
385 struct kprobe *kp;
387 list_for_each_entry_rcu(kp, &p->list, list) {
388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 set_kprobe_instance(kp);
390 kp->pre_handler(kp, regs);
392 reset_kprobe_instance();
395 NOKPROBE_SYMBOL(opt_pre_handler);
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
400 struct optimized_kprobe *op;
402 op = container_of(p, struct optimized_kprobe, kp);
403 arch_remove_optimized_kprobe(op);
404 arch_remove_kprobe(p);
405 kfree(op);
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
411 struct optimized_kprobe *op;
413 if (kprobe_aggrprobe(p)) {
414 op = container_of(p, struct optimized_kprobe, kp);
415 return arch_prepared_optinsn(&op->optinsn);
418 return 0;
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
424 struct optimized_kprobe *op;
426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 if (!kprobe_aggrprobe(p))
428 return kprobe_disabled(p);
430 op = container_of(p, struct optimized_kprobe, kp);
432 return kprobe_disabled(p) && list_empty(&op->list);
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
438 struct optimized_kprobe *op;
440 if (kprobe_aggrprobe(p)) {
441 op = container_of(p, struct optimized_kprobe, kp);
442 if (!list_empty(&op->list))
443 return 1;
445 return 0;
449 * Return an optimized kprobe whose optimizing code replaces
450 * instructions including addr (exclude breakpoint).
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
454 int i;
455 struct kprobe *p = NULL;
456 struct optimized_kprobe *op;
458 /* Don't check i == 0, since that is a breakpoint case. */
459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 p = get_kprobe((void *)(addr - i));
462 if (p && kprobe_optready(p)) {
463 op = container_of(p, struct optimized_kprobe, kp);
464 if (arch_within_optimized_kprobe(op, addr))
465 return p;
468 return NULL;
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
481 * Optimize (replace a breakpoint with a jump) kprobes listed on
482 * optimizing_list.
484 static void do_optimize_kprobes(void)
487 * The optimization/unoptimization refers online_cpus via
488 * stop_machine() and cpu-hotplug modifies online_cpus.
489 * And same time, text_mutex will be held in cpu-hotplug and here.
490 * This combination can cause a deadlock (cpu-hotplug try to lock
491 * text_mutex but stop_machine can not be done because online_cpus
492 * has been changed)
493 * To avoid this deadlock, caller must have locked cpu hotplug
494 * for preventing cpu-hotplug outside of text_mutex locking.
496 lockdep_assert_cpus_held();
498 /* Optimization never be done when disarmed */
499 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500 list_empty(&optimizing_list))
501 return;
503 mutex_lock(&text_mutex);
504 arch_optimize_kprobes(&optimizing_list);
505 mutex_unlock(&text_mutex);
509 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510 * if need) kprobes listed on unoptimizing_list.
512 static void do_unoptimize_kprobes(void)
514 struct optimized_kprobe *op, *tmp;
516 /* See comment in do_optimize_kprobes() */
517 lockdep_assert_cpus_held();
519 /* Unoptimization must be done anytime */
520 if (list_empty(&unoptimizing_list))
521 return;
523 mutex_lock(&text_mutex);
524 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525 /* Loop free_list for disarming */
526 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527 /* Disarm probes if marked disabled */
528 if (kprobe_disabled(&op->kp))
529 arch_disarm_kprobe(&op->kp);
530 if (kprobe_unused(&op->kp)) {
532 * Remove unused probes from hash list. After waiting
533 * for synchronization, these probes are reclaimed.
534 * (reclaiming is done by do_free_cleaned_kprobes.)
536 hlist_del_rcu(&op->kp.hlist);
537 } else
538 list_del_init(&op->list);
540 mutex_unlock(&text_mutex);
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
546 struct optimized_kprobe *op, *tmp;
548 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 list_del_init(&op->list);
550 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
552 * This must not happen, but if there is a kprobe
553 * still in use, keep it on kprobes hash list.
555 continue;
557 free_aggr_kprobe(&op->kp);
561 /* Start optimizer after OPTIMIZE_DELAY passed */
562 static void kick_kprobe_optimizer(void)
564 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
567 /* Kprobe jump optimizer */
568 static void kprobe_optimizer(struct work_struct *work)
570 mutex_lock(&kprobe_mutex);
571 cpus_read_lock();
572 /* Lock modules while optimizing kprobes */
573 mutex_lock(&module_mutex);
576 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
577 * kprobes before waiting for quiesence period.
579 do_unoptimize_kprobes();
582 * Step 2: Wait for quiesence period to ensure all potentially
583 * preempted tasks to have normally scheduled. Because optprobe
584 * may modify multiple instructions, there is a chance that Nth
585 * instruction is preempted. In that case, such tasks can return
586 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
587 * Note that on non-preemptive kernel, this is transparently converted
588 * to synchronoze_sched() to wait for all interrupts to have completed.
590 synchronize_rcu_tasks();
592 /* Step 3: Optimize kprobes after quiesence period */
593 do_optimize_kprobes();
595 /* Step 4: Free cleaned kprobes after quiesence period */
596 do_free_cleaned_kprobes();
598 mutex_unlock(&module_mutex);
599 cpus_read_unlock();
600 mutex_unlock(&kprobe_mutex);
602 /* Step 5: Kick optimizer again if needed */
603 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
604 kick_kprobe_optimizer();
607 /* Wait for completing optimization and unoptimization */
608 void wait_for_kprobe_optimizer(void)
610 mutex_lock(&kprobe_mutex);
612 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
613 mutex_unlock(&kprobe_mutex);
615 /* this will also make optimizing_work execute immmediately */
616 flush_delayed_work(&optimizing_work);
617 /* @optimizing_work might not have been queued yet, relax */
618 cpu_relax();
620 mutex_lock(&kprobe_mutex);
623 mutex_unlock(&kprobe_mutex);
626 /* Optimize kprobe if p is ready to be optimized */
627 static void optimize_kprobe(struct kprobe *p)
629 struct optimized_kprobe *op;
631 /* Check if the kprobe is disabled or not ready for optimization. */
632 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
633 (kprobe_disabled(p) || kprobes_all_disarmed))
634 return;
636 /* kprobes with post_handler can not be optimized */
637 if (p->post_handler)
638 return;
640 op = container_of(p, struct optimized_kprobe, kp);
642 /* Check there is no other kprobes at the optimized instructions */
643 if (arch_check_optimized_kprobe(op) < 0)
644 return;
646 /* Check if it is already optimized. */
647 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
648 return;
649 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
651 if (!list_empty(&op->list))
652 /* This is under unoptimizing. Just dequeue the probe */
653 list_del_init(&op->list);
654 else {
655 list_add(&op->list, &optimizing_list);
656 kick_kprobe_optimizer();
660 /* Short cut to direct unoptimizing */
661 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
663 lockdep_assert_cpus_held();
664 arch_unoptimize_kprobe(op);
665 if (kprobe_disabled(&op->kp))
666 arch_disarm_kprobe(&op->kp);
669 /* Unoptimize a kprobe if p is optimized */
670 static void unoptimize_kprobe(struct kprobe *p, bool force)
672 struct optimized_kprobe *op;
674 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
675 return; /* This is not an optprobe nor optimized */
677 op = container_of(p, struct optimized_kprobe, kp);
678 if (!kprobe_optimized(p)) {
679 /* Unoptimized or unoptimizing case */
680 if (force && !list_empty(&op->list)) {
682 * Only if this is unoptimizing kprobe and forced,
683 * forcibly unoptimize it. (No need to unoptimize
684 * unoptimized kprobe again :)
686 list_del_init(&op->list);
687 force_unoptimize_kprobe(op);
689 return;
692 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
693 if (!list_empty(&op->list)) {
694 /* Dequeue from the optimization queue */
695 list_del_init(&op->list);
696 return;
698 /* Optimized kprobe case */
699 if (force)
700 /* Forcibly update the code: this is a special case */
701 force_unoptimize_kprobe(op);
702 else {
703 list_add(&op->list, &unoptimizing_list);
704 kick_kprobe_optimizer();
708 /* Cancel unoptimizing for reusing */
709 static int reuse_unused_kprobe(struct kprobe *ap)
711 struct optimized_kprobe *op;
712 int ret;
715 * Unused kprobe MUST be on the way of delayed unoptimizing (means
716 * there is still a relative jump) and disabled.
718 op = container_of(ap, struct optimized_kprobe, kp);
719 WARN_ON_ONCE(list_empty(&op->list));
720 /* Enable the probe again */
721 ap->flags &= ~KPROBE_FLAG_DISABLED;
722 /* Optimize it again (remove from op->list) */
723 ret = kprobe_optready(ap);
724 if (ret)
725 return ret;
727 optimize_kprobe(ap);
728 return 0;
731 /* Remove optimized instructions */
732 static void kill_optimized_kprobe(struct kprobe *p)
734 struct optimized_kprobe *op;
736 op = container_of(p, struct optimized_kprobe, kp);
737 if (!list_empty(&op->list))
738 /* Dequeue from the (un)optimization queue */
739 list_del_init(&op->list);
740 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
742 if (kprobe_unused(p)) {
743 /* Enqueue if it is unused */
744 list_add(&op->list, &freeing_list);
746 * Remove unused probes from the hash list. After waiting
747 * for synchronization, this probe is reclaimed.
748 * (reclaiming is done by do_free_cleaned_kprobes().)
750 hlist_del_rcu(&op->kp.hlist);
753 /* Don't touch the code, because it is already freed. */
754 arch_remove_optimized_kprobe(op);
757 static inline
758 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
760 if (!kprobe_ftrace(p))
761 arch_prepare_optimized_kprobe(op, p);
764 /* Try to prepare optimized instructions */
765 static void prepare_optimized_kprobe(struct kprobe *p)
767 struct optimized_kprobe *op;
769 op = container_of(p, struct optimized_kprobe, kp);
770 __prepare_optimized_kprobe(op, p);
773 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
774 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
776 struct optimized_kprobe *op;
778 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
779 if (!op)
780 return NULL;
782 INIT_LIST_HEAD(&op->list);
783 op->kp.addr = p->addr;
784 __prepare_optimized_kprobe(op, p);
786 return &op->kp;
789 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
792 * Prepare an optimized_kprobe and optimize it
793 * NOTE: p must be a normal registered kprobe
795 static void try_to_optimize_kprobe(struct kprobe *p)
797 struct kprobe *ap;
798 struct optimized_kprobe *op;
800 /* Impossible to optimize ftrace-based kprobe */
801 if (kprobe_ftrace(p))
802 return;
804 /* For preparing optimization, jump_label_text_reserved() is called */
805 cpus_read_lock();
806 jump_label_lock();
807 mutex_lock(&text_mutex);
809 ap = alloc_aggr_kprobe(p);
810 if (!ap)
811 goto out;
813 op = container_of(ap, struct optimized_kprobe, kp);
814 if (!arch_prepared_optinsn(&op->optinsn)) {
815 /* If failed to setup optimizing, fallback to kprobe */
816 arch_remove_optimized_kprobe(op);
817 kfree(op);
818 goto out;
821 init_aggr_kprobe(ap, p);
822 optimize_kprobe(ap); /* This just kicks optimizer thread */
824 out:
825 mutex_unlock(&text_mutex);
826 jump_label_unlock();
827 cpus_read_unlock();
830 #ifdef CONFIG_SYSCTL
831 static void optimize_all_kprobes(void)
833 struct hlist_head *head;
834 struct kprobe *p;
835 unsigned int i;
837 mutex_lock(&kprobe_mutex);
838 /* If optimization is already allowed, just return */
839 if (kprobes_allow_optimization)
840 goto out;
842 cpus_read_lock();
843 kprobes_allow_optimization = true;
844 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
845 head = &kprobe_table[i];
846 hlist_for_each_entry_rcu(p, head, hlist)
847 if (!kprobe_disabled(p))
848 optimize_kprobe(p);
850 cpus_read_unlock();
851 printk(KERN_INFO "Kprobes globally optimized\n");
852 out:
853 mutex_unlock(&kprobe_mutex);
856 static void unoptimize_all_kprobes(void)
858 struct hlist_head *head;
859 struct kprobe *p;
860 unsigned int i;
862 mutex_lock(&kprobe_mutex);
863 /* If optimization is already prohibited, just return */
864 if (!kprobes_allow_optimization) {
865 mutex_unlock(&kprobe_mutex);
866 return;
869 cpus_read_lock();
870 kprobes_allow_optimization = false;
871 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
872 head = &kprobe_table[i];
873 hlist_for_each_entry_rcu(p, head, hlist) {
874 if (!kprobe_disabled(p))
875 unoptimize_kprobe(p, false);
878 cpus_read_unlock();
879 mutex_unlock(&kprobe_mutex);
881 /* Wait for unoptimizing completion */
882 wait_for_kprobe_optimizer();
883 printk(KERN_INFO "Kprobes globally unoptimized\n");
886 static DEFINE_MUTEX(kprobe_sysctl_mutex);
887 int sysctl_kprobes_optimization;
888 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
889 void __user *buffer, size_t *length,
890 loff_t *ppos)
892 int ret;
894 mutex_lock(&kprobe_sysctl_mutex);
895 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
896 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
898 if (sysctl_kprobes_optimization)
899 optimize_all_kprobes();
900 else
901 unoptimize_all_kprobes();
902 mutex_unlock(&kprobe_sysctl_mutex);
904 return ret;
906 #endif /* CONFIG_SYSCTL */
908 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
909 static void __arm_kprobe(struct kprobe *p)
911 struct kprobe *_p;
913 /* Check collision with other optimized kprobes */
914 _p = get_optimized_kprobe((unsigned long)p->addr);
915 if (unlikely(_p))
916 /* Fallback to unoptimized kprobe */
917 unoptimize_kprobe(_p, true);
919 arch_arm_kprobe(p);
920 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
923 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
924 static void __disarm_kprobe(struct kprobe *p, bool reopt)
926 struct kprobe *_p;
928 /* Try to unoptimize */
929 unoptimize_kprobe(p, kprobes_all_disarmed);
931 if (!kprobe_queued(p)) {
932 arch_disarm_kprobe(p);
933 /* If another kprobe was blocked, optimize it. */
934 _p = get_optimized_kprobe((unsigned long)p->addr);
935 if (unlikely(_p) && reopt)
936 optimize_kprobe(_p);
938 /* TODO: reoptimize others after unoptimized this probe */
941 #else /* !CONFIG_OPTPROBES */
943 #define optimize_kprobe(p) do {} while (0)
944 #define unoptimize_kprobe(p, f) do {} while (0)
945 #define kill_optimized_kprobe(p) do {} while (0)
946 #define prepare_optimized_kprobe(p) do {} while (0)
947 #define try_to_optimize_kprobe(p) do {} while (0)
948 #define __arm_kprobe(p) arch_arm_kprobe(p)
949 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
950 #define kprobe_disarmed(p) kprobe_disabled(p)
951 #define wait_for_kprobe_optimizer() do {} while (0)
953 static int reuse_unused_kprobe(struct kprobe *ap)
956 * If the optimized kprobe is NOT supported, the aggr kprobe is
957 * released at the same time that the last aggregated kprobe is
958 * unregistered.
959 * Thus there should be no chance to reuse unused kprobe.
961 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
962 return -EINVAL;
965 static void free_aggr_kprobe(struct kprobe *p)
967 arch_remove_kprobe(p);
968 kfree(p);
971 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
973 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
975 #endif /* CONFIG_OPTPROBES */
977 #ifdef CONFIG_KPROBES_ON_FTRACE
978 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
979 .func = kprobe_ftrace_handler,
980 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
982 static int kprobe_ftrace_enabled;
984 /* Must ensure p->addr is really on ftrace */
985 static int prepare_kprobe(struct kprobe *p)
987 if (!kprobe_ftrace(p))
988 return arch_prepare_kprobe(p);
990 return arch_prepare_kprobe_ftrace(p);
993 /* Caller must lock kprobe_mutex */
994 static int arm_kprobe_ftrace(struct kprobe *p)
996 int ret = 0;
998 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
999 (unsigned long)p->addr, 0, 0);
1000 if (ret) {
1001 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1002 p->addr, ret);
1003 return ret;
1006 if (kprobe_ftrace_enabled == 0) {
1007 ret = register_ftrace_function(&kprobe_ftrace_ops);
1008 if (ret) {
1009 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1010 goto err_ftrace;
1014 kprobe_ftrace_enabled++;
1015 return ret;
1017 err_ftrace:
1019 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1020 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1021 * empty filter_hash which would undesirably trace all functions.
1023 ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1024 return ret;
1027 /* Caller must lock kprobe_mutex */
1028 static int disarm_kprobe_ftrace(struct kprobe *p)
1030 int ret = 0;
1032 if (kprobe_ftrace_enabled == 1) {
1033 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1034 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1035 return ret;
1038 kprobe_ftrace_enabled--;
1040 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1041 (unsigned long)p->addr, 1, 0);
1042 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1043 p->addr, ret);
1044 return ret;
1046 #else /* !CONFIG_KPROBES_ON_FTRACE */
1047 #define prepare_kprobe(p) arch_prepare_kprobe(p)
1048 #define arm_kprobe_ftrace(p) (-ENODEV)
1049 #define disarm_kprobe_ftrace(p) (-ENODEV)
1050 #endif
1052 /* Arm a kprobe with text_mutex */
1053 static int arm_kprobe(struct kprobe *kp)
1055 if (unlikely(kprobe_ftrace(kp)))
1056 return arm_kprobe_ftrace(kp);
1058 cpus_read_lock();
1059 mutex_lock(&text_mutex);
1060 __arm_kprobe(kp);
1061 mutex_unlock(&text_mutex);
1062 cpus_read_unlock();
1064 return 0;
1067 /* Disarm a kprobe with text_mutex */
1068 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1070 if (unlikely(kprobe_ftrace(kp)))
1071 return disarm_kprobe_ftrace(kp);
1073 cpus_read_lock();
1074 mutex_lock(&text_mutex);
1075 __disarm_kprobe(kp, reopt);
1076 mutex_unlock(&text_mutex);
1077 cpus_read_unlock();
1079 return 0;
1083 * Aggregate handlers for multiple kprobes support - these handlers
1084 * take care of invoking the individual kprobe handlers on p->list
1086 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1088 struct kprobe *kp;
1090 list_for_each_entry_rcu(kp, &p->list, list) {
1091 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1092 set_kprobe_instance(kp);
1093 if (kp->pre_handler(kp, regs))
1094 return 1;
1096 reset_kprobe_instance();
1098 return 0;
1100 NOKPROBE_SYMBOL(aggr_pre_handler);
1102 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1103 unsigned long flags)
1105 struct kprobe *kp;
1107 list_for_each_entry_rcu(kp, &p->list, list) {
1108 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1109 set_kprobe_instance(kp);
1110 kp->post_handler(kp, regs, flags);
1111 reset_kprobe_instance();
1115 NOKPROBE_SYMBOL(aggr_post_handler);
1117 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1118 int trapnr)
1120 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1123 * if we faulted "during" the execution of a user specified
1124 * probe handler, invoke just that probe's fault handler
1126 if (cur && cur->fault_handler) {
1127 if (cur->fault_handler(cur, regs, trapnr))
1128 return 1;
1130 return 0;
1132 NOKPROBE_SYMBOL(aggr_fault_handler);
1134 /* Walks the list and increments nmissed count for multiprobe case */
1135 void kprobes_inc_nmissed_count(struct kprobe *p)
1137 struct kprobe *kp;
1138 if (!kprobe_aggrprobe(p)) {
1139 p->nmissed++;
1140 } else {
1141 list_for_each_entry_rcu(kp, &p->list, list)
1142 kp->nmissed++;
1144 return;
1146 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1148 void recycle_rp_inst(struct kretprobe_instance *ri,
1149 struct hlist_head *head)
1151 struct kretprobe *rp = ri->rp;
1153 /* remove rp inst off the rprobe_inst_table */
1154 hlist_del(&ri->hlist);
1155 INIT_HLIST_NODE(&ri->hlist);
1156 if (likely(rp)) {
1157 raw_spin_lock(&rp->lock);
1158 hlist_add_head(&ri->hlist, &rp->free_instances);
1159 raw_spin_unlock(&rp->lock);
1160 } else
1161 /* Unregistering */
1162 hlist_add_head(&ri->hlist, head);
1164 NOKPROBE_SYMBOL(recycle_rp_inst);
1166 void kretprobe_hash_lock(struct task_struct *tsk,
1167 struct hlist_head **head, unsigned long *flags)
1168 __acquires(hlist_lock)
1170 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1171 raw_spinlock_t *hlist_lock;
1173 *head = &kretprobe_inst_table[hash];
1174 hlist_lock = kretprobe_table_lock_ptr(hash);
1175 raw_spin_lock_irqsave(hlist_lock, *flags);
1177 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1179 static void kretprobe_table_lock(unsigned long hash,
1180 unsigned long *flags)
1181 __acquires(hlist_lock)
1183 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1184 raw_spin_lock_irqsave(hlist_lock, *flags);
1186 NOKPROBE_SYMBOL(kretprobe_table_lock);
1188 void kretprobe_hash_unlock(struct task_struct *tsk,
1189 unsigned long *flags)
1190 __releases(hlist_lock)
1192 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1193 raw_spinlock_t *hlist_lock;
1195 hlist_lock = kretprobe_table_lock_ptr(hash);
1196 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1198 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1200 static void kretprobe_table_unlock(unsigned long hash,
1201 unsigned long *flags)
1202 __releases(hlist_lock)
1204 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1205 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1207 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1210 * This function is called from finish_task_switch when task tk becomes dead,
1211 * so that we can recycle any function-return probe instances associated
1212 * with this task. These left over instances represent probed functions
1213 * that have been called but will never return.
1215 void kprobe_flush_task(struct task_struct *tk)
1217 struct kretprobe_instance *ri;
1218 struct hlist_head *head, empty_rp;
1219 struct hlist_node *tmp;
1220 unsigned long hash, flags = 0;
1222 if (unlikely(!kprobes_initialized))
1223 /* Early boot. kretprobe_table_locks not yet initialized. */
1224 return;
1226 INIT_HLIST_HEAD(&empty_rp);
1227 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1228 head = &kretprobe_inst_table[hash];
1229 kretprobe_table_lock(hash, &flags);
1230 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1231 if (ri->task == tk)
1232 recycle_rp_inst(ri, &empty_rp);
1234 kretprobe_table_unlock(hash, &flags);
1235 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1236 hlist_del(&ri->hlist);
1237 kfree(ri);
1240 NOKPROBE_SYMBOL(kprobe_flush_task);
1242 static inline void free_rp_inst(struct kretprobe *rp)
1244 struct kretprobe_instance *ri;
1245 struct hlist_node *next;
1247 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1248 hlist_del(&ri->hlist);
1249 kfree(ri);
1253 static void cleanup_rp_inst(struct kretprobe *rp)
1255 unsigned long flags, hash;
1256 struct kretprobe_instance *ri;
1257 struct hlist_node *next;
1258 struct hlist_head *head;
1260 /* No race here */
1261 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1262 kretprobe_table_lock(hash, &flags);
1263 head = &kretprobe_inst_table[hash];
1264 hlist_for_each_entry_safe(ri, next, head, hlist) {
1265 if (ri->rp == rp)
1266 ri->rp = NULL;
1268 kretprobe_table_unlock(hash, &flags);
1270 free_rp_inst(rp);
1272 NOKPROBE_SYMBOL(cleanup_rp_inst);
1274 /* Add the new probe to ap->list */
1275 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1277 if (p->post_handler)
1278 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1280 list_add_rcu(&p->list, &ap->list);
1281 if (p->post_handler && !ap->post_handler)
1282 ap->post_handler = aggr_post_handler;
1284 return 0;
1288 * Fill in the required fields of the "manager kprobe". Replace the
1289 * earlier kprobe in the hlist with the manager kprobe
1291 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1293 /* Copy p's insn slot to ap */
1294 copy_kprobe(p, ap);
1295 flush_insn_slot(ap);
1296 ap->addr = p->addr;
1297 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1298 ap->pre_handler = aggr_pre_handler;
1299 ap->fault_handler = aggr_fault_handler;
1300 /* We don't care the kprobe which has gone. */
1301 if (p->post_handler && !kprobe_gone(p))
1302 ap->post_handler = aggr_post_handler;
1304 INIT_LIST_HEAD(&ap->list);
1305 INIT_HLIST_NODE(&ap->hlist);
1307 list_add_rcu(&p->list, &ap->list);
1308 hlist_replace_rcu(&p->hlist, &ap->hlist);
1312 * This is the second or subsequent kprobe at the address - handle
1313 * the intricacies
1315 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1317 int ret = 0;
1318 struct kprobe *ap = orig_p;
1320 cpus_read_lock();
1322 /* For preparing optimization, jump_label_text_reserved() is called */
1323 jump_label_lock();
1324 mutex_lock(&text_mutex);
1326 if (!kprobe_aggrprobe(orig_p)) {
1327 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1328 ap = alloc_aggr_kprobe(orig_p);
1329 if (!ap) {
1330 ret = -ENOMEM;
1331 goto out;
1333 init_aggr_kprobe(ap, orig_p);
1334 } else if (kprobe_unused(ap)) {
1335 /* This probe is going to die. Rescue it */
1336 ret = reuse_unused_kprobe(ap);
1337 if (ret)
1338 goto out;
1341 if (kprobe_gone(ap)) {
1343 * Attempting to insert new probe at the same location that
1344 * had a probe in the module vaddr area which already
1345 * freed. So, the instruction slot has already been
1346 * released. We need a new slot for the new probe.
1348 ret = arch_prepare_kprobe(ap);
1349 if (ret)
1351 * Even if fail to allocate new slot, don't need to
1352 * free aggr_probe. It will be used next time, or
1353 * freed by unregister_kprobe.
1355 goto out;
1357 /* Prepare optimized instructions if possible. */
1358 prepare_optimized_kprobe(ap);
1361 * Clear gone flag to prevent allocating new slot again, and
1362 * set disabled flag because it is not armed yet.
1364 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1365 | KPROBE_FLAG_DISABLED;
1368 /* Copy ap's insn slot to p */
1369 copy_kprobe(ap, p);
1370 ret = add_new_kprobe(ap, p);
1372 out:
1373 mutex_unlock(&text_mutex);
1374 jump_label_unlock();
1375 cpus_read_unlock();
1377 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1378 ap->flags &= ~KPROBE_FLAG_DISABLED;
1379 if (!kprobes_all_disarmed) {
1380 /* Arm the breakpoint again. */
1381 ret = arm_kprobe(ap);
1382 if (ret) {
1383 ap->flags |= KPROBE_FLAG_DISABLED;
1384 list_del_rcu(&p->list);
1385 synchronize_sched();
1389 return ret;
1392 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1394 /* The __kprobes marked functions and entry code must not be probed */
1395 return addr >= (unsigned long)__kprobes_text_start &&
1396 addr < (unsigned long)__kprobes_text_end;
1399 bool within_kprobe_blacklist(unsigned long addr)
1401 struct kprobe_blacklist_entry *ent;
1403 if (arch_within_kprobe_blacklist(addr))
1404 return true;
1406 * If there exists a kprobe_blacklist, verify and
1407 * fail any probe registration in the prohibited area
1409 list_for_each_entry(ent, &kprobe_blacklist, list) {
1410 if (addr >= ent->start_addr && addr < ent->end_addr)
1411 return true;
1414 return false;
1418 * If we have a symbol_name argument, look it up and add the offset field
1419 * to it. This way, we can specify a relative address to a symbol.
1420 * This returns encoded errors if it fails to look up symbol or invalid
1421 * combination of parameters.
1423 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1424 const char *symbol_name, unsigned int offset)
1426 if ((symbol_name && addr) || (!symbol_name && !addr))
1427 goto invalid;
1429 if (symbol_name) {
1430 addr = kprobe_lookup_name(symbol_name, offset);
1431 if (!addr)
1432 return ERR_PTR(-ENOENT);
1435 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1436 if (addr)
1437 return addr;
1439 invalid:
1440 return ERR_PTR(-EINVAL);
1443 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1445 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1448 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1449 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1451 struct kprobe *ap, *list_p;
1453 ap = get_kprobe(p->addr);
1454 if (unlikely(!ap))
1455 return NULL;
1457 if (p != ap) {
1458 list_for_each_entry_rcu(list_p, &ap->list, list)
1459 if (list_p == p)
1460 /* kprobe p is a valid probe */
1461 goto valid;
1462 return NULL;
1464 valid:
1465 return ap;
1468 /* Return error if the kprobe is being re-registered */
1469 static inline int check_kprobe_rereg(struct kprobe *p)
1471 int ret = 0;
1473 mutex_lock(&kprobe_mutex);
1474 if (__get_valid_kprobe(p))
1475 ret = -EINVAL;
1476 mutex_unlock(&kprobe_mutex);
1478 return ret;
1481 int __weak arch_check_ftrace_location(struct kprobe *p)
1483 unsigned long ftrace_addr;
1485 ftrace_addr = ftrace_location((unsigned long)p->addr);
1486 if (ftrace_addr) {
1487 #ifdef CONFIG_KPROBES_ON_FTRACE
1488 /* Given address is not on the instruction boundary */
1489 if ((unsigned long)p->addr != ftrace_addr)
1490 return -EILSEQ;
1491 p->flags |= KPROBE_FLAG_FTRACE;
1492 #else /* !CONFIG_KPROBES_ON_FTRACE */
1493 return -EINVAL;
1494 #endif
1496 return 0;
1499 static int check_kprobe_address_safe(struct kprobe *p,
1500 struct module **probed_mod)
1502 int ret;
1504 ret = arch_check_ftrace_location(p);
1505 if (ret)
1506 return ret;
1507 jump_label_lock();
1508 preempt_disable();
1510 /* Ensure it is not in reserved area nor out of text */
1511 if (!kernel_text_address((unsigned long) p->addr) ||
1512 within_kprobe_blacklist((unsigned long) p->addr) ||
1513 jump_label_text_reserved(p->addr, p->addr)) {
1514 ret = -EINVAL;
1515 goto out;
1518 /* Check if are we probing a module */
1519 *probed_mod = __module_text_address((unsigned long) p->addr);
1520 if (*probed_mod) {
1522 * We must hold a refcount of the probed module while updating
1523 * its code to prohibit unexpected unloading.
1525 if (unlikely(!try_module_get(*probed_mod))) {
1526 ret = -ENOENT;
1527 goto out;
1531 * If the module freed .init.text, we couldn't insert
1532 * kprobes in there.
1534 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1535 (*probed_mod)->state != MODULE_STATE_COMING) {
1536 module_put(*probed_mod);
1537 *probed_mod = NULL;
1538 ret = -ENOENT;
1541 out:
1542 preempt_enable();
1543 jump_label_unlock();
1545 return ret;
1548 int register_kprobe(struct kprobe *p)
1550 int ret;
1551 struct kprobe *old_p;
1552 struct module *probed_mod;
1553 kprobe_opcode_t *addr;
1555 /* Adjust probe address from symbol */
1556 addr = kprobe_addr(p);
1557 if (IS_ERR(addr))
1558 return PTR_ERR(addr);
1559 p->addr = addr;
1561 ret = check_kprobe_rereg(p);
1562 if (ret)
1563 return ret;
1565 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1566 p->flags &= KPROBE_FLAG_DISABLED;
1567 p->nmissed = 0;
1568 INIT_LIST_HEAD(&p->list);
1570 ret = check_kprobe_address_safe(p, &probed_mod);
1571 if (ret)
1572 return ret;
1574 mutex_lock(&kprobe_mutex);
1576 old_p = get_kprobe(p->addr);
1577 if (old_p) {
1578 /* Since this may unoptimize old_p, locking text_mutex. */
1579 ret = register_aggr_kprobe(old_p, p);
1580 goto out;
1583 cpus_read_lock();
1584 /* Prevent text modification */
1585 mutex_lock(&text_mutex);
1586 ret = prepare_kprobe(p);
1587 mutex_unlock(&text_mutex);
1588 cpus_read_unlock();
1589 if (ret)
1590 goto out;
1592 INIT_HLIST_NODE(&p->hlist);
1593 hlist_add_head_rcu(&p->hlist,
1594 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1596 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1597 ret = arm_kprobe(p);
1598 if (ret) {
1599 hlist_del_rcu(&p->hlist);
1600 synchronize_sched();
1601 goto out;
1605 /* Try to optimize kprobe */
1606 try_to_optimize_kprobe(p);
1607 out:
1608 mutex_unlock(&kprobe_mutex);
1610 if (probed_mod)
1611 module_put(probed_mod);
1613 return ret;
1615 EXPORT_SYMBOL_GPL(register_kprobe);
1617 /* Check if all probes on the aggrprobe are disabled */
1618 static int aggr_kprobe_disabled(struct kprobe *ap)
1620 struct kprobe *kp;
1622 list_for_each_entry_rcu(kp, &ap->list, list)
1623 if (!kprobe_disabled(kp))
1625 * There is an active probe on the list.
1626 * We can't disable this ap.
1628 return 0;
1630 return 1;
1633 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1634 static struct kprobe *__disable_kprobe(struct kprobe *p)
1636 struct kprobe *orig_p;
1637 int ret;
1639 /* Get an original kprobe for return */
1640 orig_p = __get_valid_kprobe(p);
1641 if (unlikely(orig_p == NULL))
1642 return ERR_PTR(-EINVAL);
1644 if (!kprobe_disabled(p)) {
1645 /* Disable probe if it is a child probe */
1646 if (p != orig_p)
1647 p->flags |= KPROBE_FLAG_DISABLED;
1649 /* Try to disarm and disable this/parent probe */
1650 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1652 * If kprobes_all_disarmed is set, orig_p
1653 * should have already been disarmed, so
1654 * skip unneed disarming process.
1656 if (!kprobes_all_disarmed) {
1657 ret = disarm_kprobe(orig_p, true);
1658 if (ret) {
1659 p->flags &= ~KPROBE_FLAG_DISABLED;
1660 return ERR_PTR(ret);
1663 orig_p->flags |= KPROBE_FLAG_DISABLED;
1667 return orig_p;
1671 * Unregister a kprobe without a scheduler synchronization.
1673 static int __unregister_kprobe_top(struct kprobe *p)
1675 struct kprobe *ap, *list_p;
1677 /* Disable kprobe. This will disarm it if needed. */
1678 ap = __disable_kprobe(p);
1679 if (IS_ERR(ap))
1680 return PTR_ERR(ap);
1682 if (ap == p)
1684 * This probe is an independent(and non-optimized) kprobe
1685 * (not an aggrprobe). Remove from the hash list.
1687 goto disarmed;
1689 /* Following process expects this probe is an aggrprobe */
1690 WARN_ON(!kprobe_aggrprobe(ap));
1692 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1694 * !disarmed could be happen if the probe is under delayed
1695 * unoptimizing.
1697 goto disarmed;
1698 else {
1699 /* If disabling probe has special handlers, update aggrprobe */
1700 if (p->post_handler && !kprobe_gone(p)) {
1701 list_for_each_entry_rcu(list_p, &ap->list, list) {
1702 if ((list_p != p) && (list_p->post_handler))
1703 goto noclean;
1705 ap->post_handler = NULL;
1707 noclean:
1709 * Remove from the aggrprobe: this path will do nothing in
1710 * __unregister_kprobe_bottom().
1712 list_del_rcu(&p->list);
1713 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1715 * Try to optimize this probe again, because post
1716 * handler may have been changed.
1718 optimize_kprobe(ap);
1720 return 0;
1722 disarmed:
1723 hlist_del_rcu(&ap->hlist);
1724 return 0;
1727 static void __unregister_kprobe_bottom(struct kprobe *p)
1729 struct kprobe *ap;
1731 if (list_empty(&p->list))
1732 /* This is an independent kprobe */
1733 arch_remove_kprobe(p);
1734 else if (list_is_singular(&p->list)) {
1735 /* This is the last child of an aggrprobe */
1736 ap = list_entry(p->list.next, struct kprobe, list);
1737 list_del(&p->list);
1738 free_aggr_kprobe(ap);
1740 /* Otherwise, do nothing. */
1743 int register_kprobes(struct kprobe **kps, int num)
1745 int i, ret = 0;
1747 if (num <= 0)
1748 return -EINVAL;
1749 for (i = 0; i < num; i++) {
1750 ret = register_kprobe(kps[i]);
1751 if (ret < 0) {
1752 if (i > 0)
1753 unregister_kprobes(kps, i);
1754 break;
1757 return ret;
1759 EXPORT_SYMBOL_GPL(register_kprobes);
1761 void unregister_kprobe(struct kprobe *p)
1763 unregister_kprobes(&p, 1);
1765 EXPORT_SYMBOL_GPL(unregister_kprobe);
1767 void unregister_kprobes(struct kprobe **kps, int num)
1769 int i;
1771 if (num <= 0)
1772 return;
1773 mutex_lock(&kprobe_mutex);
1774 for (i = 0; i < num; i++)
1775 if (__unregister_kprobe_top(kps[i]) < 0)
1776 kps[i]->addr = NULL;
1777 mutex_unlock(&kprobe_mutex);
1779 synchronize_sched();
1780 for (i = 0; i < num; i++)
1781 if (kps[i]->addr)
1782 __unregister_kprobe_bottom(kps[i]);
1784 EXPORT_SYMBOL_GPL(unregister_kprobes);
1786 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1787 unsigned long val, void *data)
1789 return NOTIFY_DONE;
1791 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1793 static struct notifier_block kprobe_exceptions_nb = {
1794 .notifier_call = kprobe_exceptions_notify,
1795 .priority = 0x7fffffff /* we need to be notified first */
1798 unsigned long __weak arch_deref_entry_point(void *entry)
1800 return (unsigned long)entry;
1803 #ifdef CONFIG_KRETPROBES
1805 * This kprobe pre_handler is registered with every kretprobe. When probe
1806 * hits it will set up the return probe.
1808 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1810 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1811 unsigned long hash, flags = 0;
1812 struct kretprobe_instance *ri;
1815 * To avoid deadlocks, prohibit return probing in NMI contexts,
1816 * just skip the probe and increase the (inexact) 'nmissed'
1817 * statistical counter, so that the user is informed that
1818 * something happened:
1820 if (unlikely(in_nmi())) {
1821 rp->nmissed++;
1822 return 0;
1825 /* TODO: consider to only swap the RA after the last pre_handler fired */
1826 hash = hash_ptr(current, KPROBE_HASH_BITS);
1827 raw_spin_lock_irqsave(&rp->lock, flags);
1828 if (!hlist_empty(&rp->free_instances)) {
1829 ri = hlist_entry(rp->free_instances.first,
1830 struct kretprobe_instance, hlist);
1831 hlist_del(&ri->hlist);
1832 raw_spin_unlock_irqrestore(&rp->lock, flags);
1834 ri->rp = rp;
1835 ri->task = current;
1837 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1838 raw_spin_lock_irqsave(&rp->lock, flags);
1839 hlist_add_head(&ri->hlist, &rp->free_instances);
1840 raw_spin_unlock_irqrestore(&rp->lock, flags);
1841 return 0;
1844 arch_prepare_kretprobe(ri, regs);
1846 /* XXX(hch): why is there no hlist_move_head? */
1847 INIT_HLIST_NODE(&ri->hlist);
1848 kretprobe_table_lock(hash, &flags);
1849 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1850 kretprobe_table_unlock(hash, &flags);
1851 } else {
1852 rp->nmissed++;
1853 raw_spin_unlock_irqrestore(&rp->lock, flags);
1855 return 0;
1857 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1859 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1861 return !offset;
1864 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1866 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1868 if (IS_ERR(kp_addr))
1869 return false;
1871 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1872 !arch_kprobe_on_func_entry(offset))
1873 return false;
1875 return true;
1878 int register_kretprobe(struct kretprobe *rp)
1880 int ret = 0;
1881 struct kretprobe_instance *inst;
1882 int i;
1883 void *addr;
1885 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1886 return -EINVAL;
1888 if (kretprobe_blacklist_size) {
1889 addr = kprobe_addr(&rp->kp);
1890 if (IS_ERR(addr))
1891 return PTR_ERR(addr);
1893 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1894 if (kretprobe_blacklist[i].addr == addr)
1895 return -EINVAL;
1899 rp->kp.pre_handler = pre_handler_kretprobe;
1900 rp->kp.post_handler = NULL;
1901 rp->kp.fault_handler = NULL;
1903 /* Pre-allocate memory for max kretprobe instances */
1904 if (rp->maxactive <= 0) {
1905 #ifdef CONFIG_PREEMPT
1906 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1907 #else
1908 rp->maxactive = num_possible_cpus();
1909 #endif
1911 raw_spin_lock_init(&rp->lock);
1912 INIT_HLIST_HEAD(&rp->free_instances);
1913 for (i = 0; i < rp->maxactive; i++) {
1914 inst = kmalloc(sizeof(struct kretprobe_instance) +
1915 rp->data_size, GFP_KERNEL);
1916 if (inst == NULL) {
1917 free_rp_inst(rp);
1918 return -ENOMEM;
1920 INIT_HLIST_NODE(&inst->hlist);
1921 hlist_add_head(&inst->hlist, &rp->free_instances);
1924 rp->nmissed = 0;
1925 /* Establish function entry probe point */
1926 ret = register_kprobe(&rp->kp);
1927 if (ret != 0)
1928 free_rp_inst(rp);
1929 return ret;
1931 EXPORT_SYMBOL_GPL(register_kretprobe);
1933 int register_kretprobes(struct kretprobe **rps, int num)
1935 int ret = 0, i;
1937 if (num <= 0)
1938 return -EINVAL;
1939 for (i = 0; i < num; i++) {
1940 ret = register_kretprobe(rps[i]);
1941 if (ret < 0) {
1942 if (i > 0)
1943 unregister_kretprobes(rps, i);
1944 break;
1947 return ret;
1949 EXPORT_SYMBOL_GPL(register_kretprobes);
1951 void unregister_kretprobe(struct kretprobe *rp)
1953 unregister_kretprobes(&rp, 1);
1955 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1957 void unregister_kretprobes(struct kretprobe **rps, int num)
1959 int i;
1961 if (num <= 0)
1962 return;
1963 mutex_lock(&kprobe_mutex);
1964 for (i = 0; i < num; i++)
1965 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1966 rps[i]->kp.addr = NULL;
1967 mutex_unlock(&kprobe_mutex);
1969 synchronize_sched();
1970 for (i = 0; i < num; i++) {
1971 if (rps[i]->kp.addr) {
1972 __unregister_kprobe_bottom(&rps[i]->kp);
1973 cleanup_rp_inst(rps[i]);
1977 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1979 #else /* CONFIG_KRETPROBES */
1980 int register_kretprobe(struct kretprobe *rp)
1982 return -ENOSYS;
1984 EXPORT_SYMBOL_GPL(register_kretprobe);
1986 int register_kretprobes(struct kretprobe **rps, int num)
1988 return -ENOSYS;
1990 EXPORT_SYMBOL_GPL(register_kretprobes);
1992 void unregister_kretprobe(struct kretprobe *rp)
1995 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1997 void unregister_kretprobes(struct kretprobe **rps, int num)
2000 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2002 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2004 return 0;
2006 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2008 #endif /* CONFIG_KRETPROBES */
2010 /* Set the kprobe gone and remove its instruction buffer. */
2011 static void kill_kprobe(struct kprobe *p)
2013 struct kprobe *kp;
2015 p->flags |= KPROBE_FLAG_GONE;
2016 if (kprobe_aggrprobe(p)) {
2018 * If this is an aggr_kprobe, we have to list all the
2019 * chained probes and mark them GONE.
2021 list_for_each_entry_rcu(kp, &p->list, list)
2022 kp->flags |= KPROBE_FLAG_GONE;
2023 p->post_handler = NULL;
2024 kill_optimized_kprobe(p);
2027 * Here, we can remove insn_slot safely, because no thread calls
2028 * the original probed function (which will be freed soon) any more.
2030 arch_remove_kprobe(p);
2033 /* Disable one kprobe */
2034 int disable_kprobe(struct kprobe *kp)
2036 int ret = 0;
2037 struct kprobe *p;
2039 mutex_lock(&kprobe_mutex);
2041 /* Disable this kprobe */
2042 p = __disable_kprobe(kp);
2043 if (IS_ERR(p))
2044 ret = PTR_ERR(p);
2046 mutex_unlock(&kprobe_mutex);
2047 return ret;
2049 EXPORT_SYMBOL_GPL(disable_kprobe);
2051 /* Enable one kprobe */
2052 int enable_kprobe(struct kprobe *kp)
2054 int ret = 0;
2055 struct kprobe *p;
2057 mutex_lock(&kprobe_mutex);
2059 /* Check whether specified probe is valid. */
2060 p = __get_valid_kprobe(kp);
2061 if (unlikely(p == NULL)) {
2062 ret = -EINVAL;
2063 goto out;
2066 if (kprobe_gone(kp)) {
2067 /* This kprobe has gone, we couldn't enable it. */
2068 ret = -EINVAL;
2069 goto out;
2072 if (p != kp)
2073 kp->flags &= ~KPROBE_FLAG_DISABLED;
2075 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2076 p->flags &= ~KPROBE_FLAG_DISABLED;
2077 ret = arm_kprobe(p);
2078 if (ret)
2079 p->flags |= KPROBE_FLAG_DISABLED;
2081 out:
2082 mutex_unlock(&kprobe_mutex);
2083 return ret;
2085 EXPORT_SYMBOL_GPL(enable_kprobe);
2087 /* Caller must NOT call this in usual path. This is only for critical case */
2088 void dump_kprobe(struct kprobe *kp)
2090 pr_err("Dumping kprobe:\n");
2091 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2092 kp->symbol_name, kp->offset, kp->addr);
2094 NOKPROBE_SYMBOL(dump_kprobe);
2097 * Lookup and populate the kprobe_blacklist.
2099 * Unlike the kretprobe blacklist, we'll need to determine
2100 * the range of addresses that belong to the said functions,
2101 * since a kprobe need not necessarily be at the beginning
2102 * of a function.
2104 static int __init populate_kprobe_blacklist(unsigned long *start,
2105 unsigned long *end)
2107 unsigned long *iter;
2108 struct kprobe_blacklist_entry *ent;
2109 unsigned long entry, offset = 0, size = 0;
2111 for (iter = start; iter < end; iter++) {
2112 entry = arch_deref_entry_point((void *)*iter);
2114 if (!kernel_text_address(entry) ||
2115 !kallsyms_lookup_size_offset(entry, &size, &offset))
2116 continue;
2118 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2119 if (!ent)
2120 return -ENOMEM;
2121 ent->start_addr = entry;
2122 ent->end_addr = entry + size;
2123 INIT_LIST_HEAD(&ent->list);
2124 list_add_tail(&ent->list, &kprobe_blacklist);
2126 return 0;
2129 /* Module notifier call back, checking kprobes on the module */
2130 static int kprobes_module_callback(struct notifier_block *nb,
2131 unsigned long val, void *data)
2133 struct module *mod = data;
2134 struct hlist_head *head;
2135 struct kprobe *p;
2136 unsigned int i;
2137 int checkcore = (val == MODULE_STATE_GOING);
2139 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2140 return NOTIFY_DONE;
2143 * When MODULE_STATE_GOING was notified, both of module .text and
2144 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2145 * notified, only .init.text section would be freed. We need to
2146 * disable kprobes which have been inserted in the sections.
2148 mutex_lock(&kprobe_mutex);
2149 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2150 head = &kprobe_table[i];
2151 hlist_for_each_entry_rcu(p, head, hlist)
2152 if (within_module_init((unsigned long)p->addr, mod) ||
2153 (checkcore &&
2154 within_module_core((unsigned long)p->addr, mod))) {
2156 * The vaddr this probe is installed will soon
2157 * be vfreed buy not synced to disk. Hence,
2158 * disarming the breakpoint isn't needed.
2160 * Note, this will also move any optimized probes
2161 * that are pending to be removed from their
2162 * corresponding lists to the freeing_list and
2163 * will not be touched by the delayed
2164 * kprobe_optimizer work handler.
2166 kill_kprobe(p);
2169 mutex_unlock(&kprobe_mutex);
2170 return NOTIFY_DONE;
2173 static struct notifier_block kprobe_module_nb = {
2174 .notifier_call = kprobes_module_callback,
2175 .priority = 0
2178 /* Markers of _kprobe_blacklist section */
2179 extern unsigned long __start_kprobe_blacklist[];
2180 extern unsigned long __stop_kprobe_blacklist[];
2182 static int __init init_kprobes(void)
2184 int i, err = 0;
2186 /* FIXME allocate the probe table, currently defined statically */
2187 /* initialize all list heads */
2188 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2189 INIT_HLIST_HEAD(&kprobe_table[i]);
2190 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2191 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2194 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2195 __stop_kprobe_blacklist);
2196 if (err) {
2197 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2198 pr_err("Please take care of using kprobes.\n");
2201 if (kretprobe_blacklist_size) {
2202 /* lookup the function address from its name */
2203 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2204 kretprobe_blacklist[i].addr =
2205 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2206 if (!kretprobe_blacklist[i].addr)
2207 printk("kretprobe: lookup failed: %s\n",
2208 kretprobe_blacklist[i].name);
2212 #if defined(CONFIG_OPTPROBES)
2213 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2214 /* Init kprobe_optinsn_slots */
2215 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2216 #endif
2217 /* By default, kprobes can be optimized */
2218 kprobes_allow_optimization = true;
2219 #endif
2221 /* By default, kprobes are armed */
2222 kprobes_all_disarmed = false;
2224 err = arch_init_kprobes();
2225 if (!err)
2226 err = register_die_notifier(&kprobe_exceptions_nb);
2227 if (!err)
2228 err = register_module_notifier(&kprobe_module_nb);
2230 kprobes_initialized = (err == 0);
2232 if (!err)
2233 init_test_probes();
2234 return err;
2237 #ifdef CONFIG_DEBUG_FS
2238 static void report_probe(struct seq_file *pi, struct kprobe *p,
2239 const char *sym, int offset, char *modname, struct kprobe *pp)
2241 char *kprobe_type;
2242 void *addr = p->addr;
2244 if (p->pre_handler == pre_handler_kretprobe)
2245 kprobe_type = "r";
2246 else
2247 kprobe_type = "k";
2249 if (!kallsyms_show_value())
2250 addr = NULL;
2252 if (sym)
2253 seq_printf(pi, "%px %s %s+0x%x %s ",
2254 addr, kprobe_type, sym, offset,
2255 (modname ? modname : " "));
2256 else /* try to use %pS */
2257 seq_printf(pi, "%px %s %pS ",
2258 addr, kprobe_type, p->addr);
2260 if (!pp)
2261 pp = p;
2262 seq_printf(pi, "%s%s%s%s\n",
2263 (kprobe_gone(p) ? "[GONE]" : ""),
2264 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2265 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2266 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2269 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2271 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2274 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2276 (*pos)++;
2277 if (*pos >= KPROBE_TABLE_SIZE)
2278 return NULL;
2279 return pos;
2282 static void kprobe_seq_stop(struct seq_file *f, void *v)
2284 /* Nothing to do */
2287 static int show_kprobe_addr(struct seq_file *pi, void *v)
2289 struct hlist_head *head;
2290 struct kprobe *p, *kp;
2291 const char *sym = NULL;
2292 unsigned int i = *(loff_t *) v;
2293 unsigned long offset = 0;
2294 char *modname, namebuf[KSYM_NAME_LEN];
2296 head = &kprobe_table[i];
2297 preempt_disable();
2298 hlist_for_each_entry_rcu(p, head, hlist) {
2299 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2300 &offset, &modname, namebuf);
2301 if (kprobe_aggrprobe(p)) {
2302 list_for_each_entry_rcu(kp, &p->list, list)
2303 report_probe(pi, kp, sym, offset, modname, p);
2304 } else
2305 report_probe(pi, p, sym, offset, modname, NULL);
2307 preempt_enable();
2308 return 0;
2311 static const struct seq_operations kprobes_seq_ops = {
2312 .start = kprobe_seq_start,
2313 .next = kprobe_seq_next,
2314 .stop = kprobe_seq_stop,
2315 .show = show_kprobe_addr
2318 static int kprobes_open(struct inode *inode, struct file *filp)
2320 return seq_open(filp, &kprobes_seq_ops);
2323 static const struct file_operations debugfs_kprobes_operations = {
2324 .open = kprobes_open,
2325 .read = seq_read,
2326 .llseek = seq_lseek,
2327 .release = seq_release,
2330 /* kprobes/blacklist -- shows which functions can not be probed */
2331 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2333 return seq_list_start(&kprobe_blacklist, *pos);
2336 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2338 return seq_list_next(v, &kprobe_blacklist, pos);
2341 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2343 struct kprobe_blacklist_entry *ent =
2344 list_entry(v, struct kprobe_blacklist_entry, list);
2347 * If /proc/kallsyms is not showing kernel address, we won't
2348 * show them here either.
2350 if (!kallsyms_show_value())
2351 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2352 (void *)ent->start_addr);
2353 else
2354 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2355 (void *)ent->end_addr, (void *)ent->start_addr);
2356 return 0;
2359 static const struct seq_operations kprobe_blacklist_seq_ops = {
2360 .start = kprobe_blacklist_seq_start,
2361 .next = kprobe_blacklist_seq_next,
2362 .stop = kprobe_seq_stop, /* Reuse void function */
2363 .show = kprobe_blacklist_seq_show,
2366 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2368 return seq_open(filp, &kprobe_blacklist_seq_ops);
2371 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2372 .open = kprobe_blacklist_open,
2373 .read = seq_read,
2374 .llseek = seq_lseek,
2375 .release = seq_release,
2378 static int arm_all_kprobes(void)
2380 struct hlist_head *head;
2381 struct kprobe *p;
2382 unsigned int i, total = 0, errors = 0;
2383 int err, ret = 0;
2385 mutex_lock(&kprobe_mutex);
2387 /* If kprobes are armed, just return */
2388 if (!kprobes_all_disarmed)
2389 goto already_enabled;
2392 * optimize_kprobe() called by arm_kprobe() checks
2393 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2394 * arm_kprobe.
2396 kprobes_all_disarmed = false;
2397 /* Arming kprobes doesn't optimize kprobe itself */
2398 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2399 head = &kprobe_table[i];
2400 /* Arm all kprobes on a best-effort basis */
2401 hlist_for_each_entry_rcu(p, head, hlist) {
2402 if (!kprobe_disabled(p)) {
2403 err = arm_kprobe(p);
2404 if (err) {
2405 errors++;
2406 ret = err;
2408 total++;
2413 if (errors)
2414 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2415 errors, total);
2416 else
2417 pr_info("Kprobes globally enabled\n");
2419 already_enabled:
2420 mutex_unlock(&kprobe_mutex);
2421 return ret;
2424 static int disarm_all_kprobes(void)
2426 struct hlist_head *head;
2427 struct kprobe *p;
2428 unsigned int i, total = 0, errors = 0;
2429 int err, ret = 0;
2431 mutex_lock(&kprobe_mutex);
2433 /* If kprobes are already disarmed, just return */
2434 if (kprobes_all_disarmed) {
2435 mutex_unlock(&kprobe_mutex);
2436 return 0;
2439 kprobes_all_disarmed = true;
2441 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2442 head = &kprobe_table[i];
2443 /* Disarm all kprobes on a best-effort basis */
2444 hlist_for_each_entry_rcu(p, head, hlist) {
2445 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2446 err = disarm_kprobe(p, false);
2447 if (err) {
2448 errors++;
2449 ret = err;
2451 total++;
2456 if (errors)
2457 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2458 errors, total);
2459 else
2460 pr_info("Kprobes globally disabled\n");
2462 mutex_unlock(&kprobe_mutex);
2464 /* Wait for disarming all kprobes by optimizer */
2465 wait_for_kprobe_optimizer();
2467 return ret;
2471 * XXX: The debugfs bool file interface doesn't allow for callbacks
2472 * when the bool state is switched. We can reuse that facility when
2473 * available
2475 static ssize_t read_enabled_file_bool(struct file *file,
2476 char __user *user_buf, size_t count, loff_t *ppos)
2478 char buf[3];
2480 if (!kprobes_all_disarmed)
2481 buf[0] = '1';
2482 else
2483 buf[0] = '0';
2484 buf[1] = '\n';
2485 buf[2] = 0x00;
2486 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2489 static ssize_t write_enabled_file_bool(struct file *file,
2490 const char __user *user_buf, size_t count, loff_t *ppos)
2492 char buf[32];
2493 size_t buf_size;
2494 int ret = 0;
2496 buf_size = min(count, (sizeof(buf)-1));
2497 if (copy_from_user(buf, user_buf, buf_size))
2498 return -EFAULT;
2500 buf[buf_size] = '\0';
2501 switch (buf[0]) {
2502 case 'y':
2503 case 'Y':
2504 case '1':
2505 ret = arm_all_kprobes();
2506 break;
2507 case 'n':
2508 case 'N':
2509 case '0':
2510 ret = disarm_all_kprobes();
2511 break;
2512 default:
2513 return -EINVAL;
2516 if (ret)
2517 return ret;
2519 return count;
2522 static const struct file_operations fops_kp = {
2523 .read = read_enabled_file_bool,
2524 .write = write_enabled_file_bool,
2525 .llseek = default_llseek,
2528 static int __init debugfs_kprobe_init(void)
2530 struct dentry *dir, *file;
2531 unsigned int value = 1;
2533 dir = debugfs_create_dir("kprobes", NULL);
2534 if (!dir)
2535 return -ENOMEM;
2537 file = debugfs_create_file("list", 0400, dir, NULL,
2538 &debugfs_kprobes_operations);
2539 if (!file)
2540 goto error;
2542 file = debugfs_create_file("enabled", 0600, dir,
2543 &value, &fops_kp);
2544 if (!file)
2545 goto error;
2547 file = debugfs_create_file("blacklist", 0400, dir, NULL,
2548 &debugfs_kprobe_blacklist_ops);
2549 if (!file)
2550 goto error;
2552 return 0;
2554 error:
2555 debugfs_remove(dir);
2556 return -ENOMEM;
2559 late_initcall(debugfs_kprobe_init);
2560 #endif /* CONFIG_DEBUG_FS */
2562 module_init(init_kprobes);