perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / kernel / locking / mutex.c
blob3f8a35104285ab29fe2e9992430e75b6aefbff89
1 /*
2 * kernel/locking/mutex.c
4 * Mutexes: blocking mutual exclusion locks
6 * Started by Ingo Molnar:
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
18 * Also see Documentation/locking/mutex-design.txt.
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/rt.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/debug.h>
26 #include <linux/export.h>
27 #include <linux/spinlock.h>
28 #include <linux/interrupt.h>
29 #include <linux/debug_locks.h>
30 #include <linux/osq_lock.h>
32 #ifdef CONFIG_DEBUG_MUTEXES
33 # include "mutex-debug.h"
34 #else
35 # include "mutex.h"
36 #endif
38 void
39 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
41 atomic_long_set(&lock->owner, 0);
42 spin_lock_init(&lock->wait_lock);
43 INIT_LIST_HEAD(&lock->wait_list);
44 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
45 osq_lock_init(&lock->osq);
46 #endif
48 debug_mutex_init(lock, name, key);
50 EXPORT_SYMBOL(__mutex_init);
53 * @owner: contains: 'struct task_struct *' to the current lock owner,
54 * NULL means not owned. Since task_struct pointers are aligned at
55 * at least L1_CACHE_BYTES, we have low bits to store extra state.
57 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
58 * Bit1 indicates unlock needs to hand the lock to the top-waiter
59 * Bit2 indicates handoff has been done and we're waiting for pickup.
61 #define MUTEX_FLAG_WAITERS 0x01
62 #define MUTEX_FLAG_HANDOFF 0x02
63 #define MUTEX_FLAG_PICKUP 0x04
65 #define MUTEX_FLAGS 0x07
67 static inline struct task_struct *__owner_task(unsigned long owner)
69 return (struct task_struct *)(owner & ~MUTEX_FLAGS);
72 static inline unsigned long __owner_flags(unsigned long owner)
74 return owner & MUTEX_FLAGS;
78 * Trylock variant that retuns the owning task on failure.
80 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
82 unsigned long owner, curr = (unsigned long)current;
84 owner = atomic_long_read(&lock->owner);
85 for (;;) { /* must loop, can race against a flag */
86 unsigned long old, flags = __owner_flags(owner);
87 unsigned long task = owner & ~MUTEX_FLAGS;
89 if (task) {
90 if (likely(task != curr))
91 break;
93 if (likely(!(flags & MUTEX_FLAG_PICKUP)))
94 break;
96 flags &= ~MUTEX_FLAG_PICKUP;
97 } else {
98 #ifdef CONFIG_DEBUG_MUTEXES
99 DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
100 #endif
104 * We set the HANDOFF bit, we must make sure it doesn't live
105 * past the point where we acquire it. This would be possible
106 * if we (accidentally) set the bit on an unlocked mutex.
108 flags &= ~MUTEX_FLAG_HANDOFF;
110 old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
111 if (old == owner)
112 return NULL;
114 owner = old;
117 return __owner_task(owner);
121 * Actual trylock that will work on any unlocked state.
123 static inline bool __mutex_trylock(struct mutex *lock)
125 return !__mutex_trylock_or_owner(lock);
128 #ifndef CONFIG_DEBUG_LOCK_ALLOC
130 * Lockdep annotations are contained to the slow paths for simplicity.
131 * There is nothing that would stop spreading the lockdep annotations outwards
132 * except more code.
136 * Optimistic trylock that only works in the uncontended case. Make sure to
137 * follow with a __mutex_trylock() before failing.
139 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
141 unsigned long curr = (unsigned long)current;
142 unsigned long zero = 0UL;
144 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
145 return true;
147 return false;
150 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
152 unsigned long curr = (unsigned long)current;
154 if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
155 return true;
157 return false;
159 #endif
161 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
163 atomic_long_or(flag, &lock->owner);
166 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
168 atomic_long_andnot(flag, &lock->owner);
171 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
173 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
177 * Add @waiter to a given location in the lock wait_list and set the
178 * FLAG_WAITERS flag if it's the first waiter.
180 static void __sched
181 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
182 struct list_head *list)
184 debug_mutex_add_waiter(lock, waiter, current);
186 list_add_tail(&waiter->list, list);
187 if (__mutex_waiter_is_first(lock, waiter))
188 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
192 * Give up ownership to a specific task, when @task = NULL, this is equivalent
193 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
194 * WAITERS. Provides RELEASE semantics like a regular unlock, the
195 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
197 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
199 unsigned long owner = atomic_long_read(&lock->owner);
201 for (;;) {
202 unsigned long old, new;
204 #ifdef CONFIG_DEBUG_MUTEXES
205 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
206 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
207 #endif
209 new = (owner & MUTEX_FLAG_WAITERS);
210 new |= (unsigned long)task;
211 if (task)
212 new |= MUTEX_FLAG_PICKUP;
214 old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
215 if (old == owner)
216 break;
218 owner = old;
222 #ifndef CONFIG_DEBUG_LOCK_ALLOC
224 * We split the mutex lock/unlock logic into separate fastpath and
225 * slowpath functions, to reduce the register pressure on the fastpath.
226 * We also put the fastpath first in the kernel image, to make sure the
227 * branch is predicted by the CPU as default-untaken.
229 static void __sched __mutex_lock_slowpath(struct mutex *lock);
232 * mutex_lock - acquire the mutex
233 * @lock: the mutex to be acquired
235 * Lock the mutex exclusively for this task. If the mutex is not
236 * available right now, it will sleep until it can get it.
238 * The mutex must later on be released by the same task that
239 * acquired it. Recursive locking is not allowed. The task
240 * may not exit without first unlocking the mutex. Also, kernel
241 * memory where the mutex resides must not be freed with
242 * the mutex still locked. The mutex must first be initialized
243 * (or statically defined) before it can be locked. memset()-ing
244 * the mutex to 0 is not allowed.
246 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
247 * checks that will enforce the restrictions and will also do
248 * deadlock debugging)
250 * This function is similar to (but not equivalent to) down().
252 void __sched mutex_lock(struct mutex *lock)
254 might_sleep();
256 if (!__mutex_trylock_fast(lock))
257 __mutex_lock_slowpath(lock);
259 EXPORT_SYMBOL(mutex_lock);
260 #endif
263 * Wait-Die:
264 * The newer transactions are killed when:
265 * It (the new transaction) makes a request for a lock being held
266 * by an older transaction.
268 * Wound-Wait:
269 * The newer transactions are wounded when:
270 * An older transaction makes a request for a lock being held by
271 * the newer transaction.
275 * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
276 * it.
278 static __always_inline void
279 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
281 #ifdef CONFIG_DEBUG_MUTEXES
283 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
284 * but released with a normal mutex_unlock in this call.
286 * This should never happen, always use ww_mutex_unlock.
288 DEBUG_LOCKS_WARN_ON(ww->ctx);
291 * Not quite done after calling ww_acquire_done() ?
293 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
295 if (ww_ctx->contending_lock) {
297 * After -EDEADLK you tried to
298 * acquire a different ww_mutex? Bad!
300 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
303 * You called ww_mutex_lock after receiving -EDEADLK,
304 * but 'forgot' to unlock everything else first?
306 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
307 ww_ctx->contending_lock = NULL;
311 * Naughty, using a different class will lead to undefined behavior!
313 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
314 #endif
315 ww_ctx->acquired++;
316 ww->ctx = ww_ctx;
320 * Determine if context @a is 'after' context @b. IOW, @a is a younger
321 * transaction than @b and depending on algorithm either needs to wait for
322 * @b or die.
324 static inline bool __sched
325 __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
328 return (signed long)(a->stamp - b->stamp) > 0;
332 * Wait-Die; wake a younger waiter context (when locks held) such that it can
333 * die.
335 * Among waiters with context, only the first one can have other locks acquired
336 * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
337 * __ww_mutex_check_kill() wake any but the earliest context.
339 static bool __sched
340 __ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter,
341 struct ww_acquire_ctx *ww_ctx)
343 if (!ww_ctx->is_wait_die)
344 return false;
346 if (waiter->ww_ctx->acquired > 0 &&
347 __ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) {
348 debug_mutex_wake_waiter(lock, waiter);
349 wake_up_process(waiter->task);
352 return true;
356 * Wound-Wait; wound a younger @hold_ctx if it holds the lock.
358 * Wound the lock holder if there are waiters with older transactions than
359 * the lock holders. Even if multiple waiters may wound the lock holder,
360 * it's sufficient that only one does.
362 static bool __ww_mutex_wound(struct mutex *lock,
363 struct ww_acquire_ctx *ww_ctx,
364 struct ww_acquire_ctx *hold_ctx)
366 struct task_struct *owner = __mutex_owner(lock);
368 lockdep_assert_held(&lock->wait_lock);
371 * Possible through __ww_mutex_add_waiter() when we race with
372 * ww_mutex_set_context_fastpath(). In that case we'll get here again
373 * through __ww_mutex_check_waiters().
375 if (!hold_ctx)
376 return false;
379 * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
380 * it cannot go away because we'll have FLAG_WAITERS set and hold
381 * wait_lock.
383 if (!owner)
384 return false;
386 if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) {
387 hold_ctx->wounded = 1;
390 * wake_up_process() paired with set_current_state()
391 * inserts sufficient barriers to make sure @owner either sees
392 * it's wounded in __ww_mutex_check_kill() or has a
393 * wakeup pending to re-read the wounded state.
395 if (owner != current)
396 wake_up_process(owner);
398 return true;
401 return false;
405 * We just acquired @lock under @ww_ctx, if there are later contexts waiting
406 * behind us on the wait-list, check if they need to die, or wound us.
408 * See __ww_mutex_add_waiter() for the list-order construction; basically the
409 * list is ordered by stamp, smallest (oldest) first.
411 * This relies on never mixing wait-die/wound-wait on the same wait-list;
412 * which is currently ensured by that being a ww_class property.
414 * The current task must not be on the wait list.
416 static void __sched
417 __ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
419 struct mutex_waiter *cur;
421 lockdep_assert_held(&lock->wait_lock);
423 list_for_each_entry(cur, &lock->wait_list, list) {
424 if (!cur->ww_ctx)
425 continue;
427 if (__ww_mutex_die(lock, cur, ww_ctx) ||
428 __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
429 break;
434 * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
435 * and wake up any waiters so they can recheck.
437 static __always_inline void
438 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
440 ww_mutex_lock_acquired(lock, ctx);
443 * The lock->ctx update should be visible on all cores before
444 * the WAITERS check is done, otherwise contended waiters might be
445 * missed. The contended waiters will either see ww_ctx == NULL
446 * and keep spinning, or it will acquire wait_lock, add itself
447 * to waiter list and sleep.
449 smp_mb(); /* See comments above and below. */
452 * [W] ww->ctx = ctx [W] MUTEX_FLAG_WAITERS
453 * MB MB
454 * [R] MUTEX_FLAG_WAITERS [R] ww->ctx
456 * The memory barrier above pairs with the memory barrier in
457 * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
458 * and/or !empty list.
460 if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
461 return;
464 * Uh oh, we raced in fastpath, check if any of the waiters need to
465 * die or wound us.
467 spin_lock(&lock->base.wait_lock);
468 __ww_mutex_check_waiters(&lock->base, ctx);
469 spin_unlock(&lock->base.wait_lock);
472 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
474 static inline
475 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
476 struct mutex_waiter *waiter)
478 struct ww_mutex *ww;
480 ww = container_of(lock, struct ww_mutex, base);
483 * If ww->ctx is set the contents are undefined, only
484 * by acquiring wait_lock there is a guarantee that
485 * they are not invalid when reading.
487 * As such, when deadlock detection needs to be
488 * performed the optimistic spinning cannot be done.
490 * Check this in every inner iteration because we may
491 * be racing against another thread's ww_mutex_lock.
493 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
494 return false;
497 * If we aren't on the wait list yet, cancel the spin
498 * if there are waiters. We want to avoid stealing the
499 * lock from a waiter with an earlier stamp, since the
500 * other thread may already own a lock that we also
501 * need.
503 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
504 return false;
507 * Similarly, stop spinning if we are no longer the
508 * first waiter.
510 if (waiter && !__mutex_waiter_is_first(lock, waiter))
511 return false;
513 return true;
517 * Look out! "owner" is an entirely speculative pointer access and not
518 * reliable.
520 * "noinline" so that this function shows up on perf profiles.
522 static noinline
523 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
524 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
526 bool ret = true;
528 rcu_read_lock();
529 while (__mutex_owner(lock) == owner) {
531 * Ensure we emit the owner->on_cpu, dereference _after_
532 * checking lock->owner still matches owner. If that fails,
533 * owner might point to freed memory. If it still matches,
534 * the rcu_read_lock() ensures the memory stays valid.
536 barrier();
539 * Use vcpu_is_preempted to detect lock holder preemption issue.
541 if (!owner->on_cpu || need_resched() ||
542 vcpu_is_preempted(task_cpu(owner))) {
543 ret = false;
544 break;
547 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
548 ret = false;
549 break;
552 cpu_relax();
554 rcu_read_unlock();
556 return ret;
560 * Initial check for entering the mutex spinning loop
562 static inline int mutex_can_spin_on_owner(struct mutex *lock)
564 struct task_struct *owner;
565 int retval = 1;
567 if (need_resched())
568 return 0;
570 rcu_read_lock();
571 owner = __mutex_owner(lock);
574 * As lock holder preemption issue, we both skip spinning if task is not
575 * on cpu or its cpu is preempted
577 if (owner)
578 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
579 rcu_read_unlock();
582 * If lock->owner is not set, the mutex has been released. Return true
583 * such that we'll trylock in the spin path, which is a faster option
584 * than the blocking slow path.
586 return retval;
590 * Optimistic spinning.
592 * We try to spin for acquisition when we find that the lock owner
593 * is currently running on a (different) CPU and while we don't
594 * need to reschedule. The rationale is that if the lock owner is
595 * running, it is likely to release the lock soon.
597 * The mutex spinners are queued up using MCS lock so that only one
598 * spinner can compete for the mutex. However, if mutex spinning isn't
599 * going to happen, there is no point in going through the lock/unlock
600 * overhead.
602 * Returns true when the lock was taken, otherwise false, indicating
603 * that we need to jump to the slowpath and sleep.
605 * The waiter flag is set to true if the spinner is a waiter in the wait
606 * queue. The waiter-spinner will spin on the lock directly and concurrently
607 * with the spinner at the head of the OSQ, if present, until the owner is
608 * changed to itself.
610 static __always_inline bool
611 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
612 const bool use_ww_ctx, struct mutex_waiter *waiter)
614 if (!waiter) {
616 * The purpose of the mutex_can_spin_on_owner() function is
617 * to eliminate the overhead of osq_lock() and osq_unlock()
618 * in case spinning isn't possible. As a waiter-spinner
619 * is not going to take OSQ lock anyway, there is no need
620 * to call mutex_can_spin_on_owner().
622 if (!mutex_can_spin_on_owner(lock))
623 goto fail;
626 * In order to avoid a stampede of mutex spinners trying to
627 * acquire the mutex all at once, the spinners need to take a
628 * MCS (queued) lock first before spinning on the owner field.
630 if (!osq_lock(&lock->osq))
631 goto fail;
634 for (;;) {
635 struct task_struct *owner;
637 /* Try to acquire the mutex... */
638 owner = __mutex_trylock_or_owner(lock);
639 if (!owner)
640 break;
643 * There's an owner, wait for it to either
644 * release the lock or go to sleep.
646 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
647 goto fail_unlock;
650 * The cpu_relax() call is a compiler barrier which forces
651 * everything in this loop to be re-loaded. We don't need
652 * memory barriers as we'll eventually observe the right
653 * values at the cost of a few extra spins.
655 cpu_relax();
658 if (!waiter)
659 osq_unlock(&lock->osq);
661 return true;
664 fail_unlock:
665 if (!waiter)
666 osq_unlock(&lock->osq);
668 fail:
670 * If we fell out of the spin path because of need_resched(),
671 * reschedule now, before we try-lock the mutex. This avoids getting
672 * scheduled out right after we obtained the mutex.
674 if (need_resched()) {
676 * We _should_ have TASK_RUNNING here, but just in case
677 * we do not, make it so, otherwise we might get stuck.
679 __set_current_state(TASK_RUNNING);
680 schedule_preempt_disabled();
683 return false;
685 #else
686 static __always_inline bool
687 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
688 const bool use_ww_ctx, struct mutex_waiter *waiter)
690 return false;
692 #endif
694 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
697 * mutex_unlock - release the mutex
698 * @lock: the mutex to be released
700 * Unlock a mutex that has been locked by this task previously.
702 * This function must not be used in interrupt context. Unlocking
703 * of a not locked mutex is not allowed.
705 * This function is similar to (but not equivalent to) up().
707 void __sched mutex_unlock(struct mutex *lock)
709 #ifndef CONFIG_DEBUG_LOCK_ALLOC
710 if (__mutex_unlock_fast(lock))
711 return;
712 #endif
713 __mutex_unlock_slowpath(lock, _RET_IP_);
715 EXPORT_SYMBOL(mutex_unlock);
718 * ww_mutex_unlock - release the w/w mutex
719 * @lock: the mutex to be released
721 * Unlock a mutex that has been locked by this task previously with any of the
722 * ww_mutex_lock* functions (with or without an acquire context). It is
723 * forbidden to release the locks after releasing the acquire context.
725 * This function must not be used in interrupt context. Unlocking
726 * of a unlocked mutex is not allowed.
728 void __sched ww_mutex_unlock(struct ww_mutex *lock)
731 * The unlocking fastpath is the 0->1 transition from 'locked'
732 * into 'unlocked' state:
734 if (lock->ctx) {
735 #ifdef CONFIG_DEBUG_MUTEXES
736 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
737 #endif
738 if (lock->ctx->acquired > 0)
739 lock->ctx->acquired--;
740 lock->ctx = NULL;
743 mutex_unlock(&lock->base);
745 EXPORT_SYMBOL(ww_mutex_unlock);
748 static __always_inline int __sched
749 __ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
751 if (ww_ctx->acquired > 0) {
752 #ifdef CONFIG_DEBUG_MUTEXES
753 struct ww_mutex *ww;
755 ww = container_of(lock, struct ww_mutex, base);
756 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
757 ww_ctx->contending_lock = ww;
758 #endif
759 return -EDEADLK;
762 return 0;
767 * Check the wound condition for the current lock acquire.
769 * Wound-Wait: If we're wounded, kill ourself.
771 * Wait-Die: If we're trying to acquire a lock already held by an older
772 * context, kill ourselves.
774 * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
775 * look at waiters before us in the wait-list.
777 static inline int __sched
778 __ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter,
779 struct ww_acquire_ctx *ctx)
781 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
782 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
783 struct mutex_waiter *cur;
785 if (ctx->acquired == 0)
786 return 0;
788 if (!ctx->is_wait_die) {
789 if (ctx->wounded)
790 return __ww_mutex_kill(lock, ctx);
792 return 0;
795 if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
796 return __ww_mutex_kill(lock, ctx);
799 * If there is a waiter in front of us that has a context, then its
800 * stamp is earlier than ours and we must kill ourself.
802 cur = waiter;
803 list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
804 if (!cur->ww_ctx)
805 continue;
807 return __ww_mutex_kill(lock, ctx);
810 return 0;
814 * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
815 * first. Such that older contexts are preferred to acquire the lock over
816 * younger contexts.
818 * Waiters without context are interspersed in FIFO order.
820 * Furthermore, for Wait-Die kill ourself immediately when possible (there are
821 * older contexts already waiting) to avoid unnecessary waiting and for
822 * Wound-Wait ensure we wound the owning context when it is younger.
824 static inline int __sched
825 __ww_mutex_add_waiter(struct mutex_waiter *waiter,
826 struct mutex *lock,
827 struct ww_acquire_ctx *ww_ctx)
829 struct mutex_waiter *cur;
830 struct list_head *pos;
831 bool is_wait_die;
833 if (!ww_ctx) {
834 __mutex_add_waiter(lock, waiter, &lock->wait_list);
835 return 0;
838 is_wait_die = ww_ctx->is_wait_die;
841 * Add the waiter before the first waiter with a higher stamp.
842 * Waiters without a context are skipped to avoid starving
843 * them. Wait-Die waiters may die here. Wound-Wait waiters
844 * never die here, but they are sorted in stamp order and
845 * may wound the lock holder.
847 pos = &lock->wait_list;
848 list_for_each_entry_reverse(cur, &lock->wait_list, list) {
849 if (!cur->ww_ctx)
850 continue;
852 if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
854 * Wait-Die: if we find an older context waiting, there
855 * is no point in queueing behind it, as we'd have to
856 * die the moment it would acquire the lock.
858 if (is_wait_die) {
859 int ret = __ww_mutex_kill(lock, ww_ctx);
861 if (ret)
862 return ret;
865 break;
868 pos = &cur->list;
870 /* Wait-Die: ensure younger waiters die. */
871 __ww_mutex_die(lock, cur, ww_ctx);
874 __mutex_add_waiter(lock, waiter, pos);
877 * Wound-Wait: if we're blocking on a mutex owned by a younger context,
878 * wound that such that we might proceed.
880 if (!is_wait_die) {
881 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
884 * See ww_mutex_set_context_fastpath(). Orders setting
885 * MUTEX_FLAG_WAITERS vs the ww->ctx load,
886 * such that either we or the fastpath will wound @ww->ctx.
888 smp_mb();
889 __ww_mutex_wound(lock, ww_ctx, ww->ctx);
892 return 0;
896 * Lock a mutex (possibly interruptible), slowpath:
898 static __always_inline int __sched
899 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
900 struct lockdep_map *nest_lock, unsigned long ip,
901 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
903 struct mutex_waiter waiter;
904 bool first = false;
905 struct ww_mutex *ww;
906 int ret;
908 might_sleep();
910 ww = container_of(lock, struct ww_mutex, base);
911 if (use_ww_ctx && ww_ctx) {
912 if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
913 return -EALREADY;
916 * Reset the wounded flag after a kill. No other process can
917 * race and wound us here since they can't have a valid owner
918 * pointer if we don't have any locks held.
920 if (ww_ctx->acquired == 0)
921 ww_ctx->wounded = 0;
924 preempt_disable();
925 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
927 if (__mutex_trylock(lock) ||
928 mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) {
929 /* got the lock, yay! */
930 lock_acquired(&lock->dep_map, ip);
931 if (use_ww_ctx && ww_ctx)
932 ww_mutex_set_context_fastpath(ww, ww_ctx);
933 preempt_enable();
934 return 0;
937 spin_lock(&lock->wait_lock);
939 * After waiting to acquire the wait_lock, try again.
941 if (__mutex_trylock(lock)) {
942 if (use_ww_ctx && ww_ctx)
943 __ww_mutex_check_waiters(lock, ww_ctx);
945 goto skip_wait;
948 debug_mutex_lock_common(lock, &waiter);
950 lock_contended(&lock->dep_map, ip);
952 if (!use_ww_ctx) {
953 /* add waiting tasks to the end of the waitqueue (FIFO): */
954 __mutex_add_waiter(lock, &waiter, &lock->wait_list);
957 #ifdef CONFIG_DEBUG_MUTEXES
958 waiter.ww_ctx = MUTEX_POISON_WW_CTX;
959 #endif
960 } else {
962 * Add in stamp order, waking up waiters that must kill
963 * themselves.
965 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
966 if (ret)
967 goto err_early_kill;
969 waiter.ww_ctx = ww_ctx;
972 waiter.task = current;
974 set_current_state(state);
975 for (;;) {
977 * Once we hold wait_lock, we're serialized against
978 * mutex_unlock() handing the lock off to us, do a trylock
979 * before testing the error conditions to make sure we pick up
980 * the handoff.
982 if (__mutex_trylock(lock))
983 goto acquired;
986 * Check for signals and kill conditions while holding
987 * wait_lock. This ensures the lock cancellation is ordered
988 * against mutex_unlock() and wake-ups do not go missing.
990 if (unlikely(signal_pending_state(state, current))) {
991 ret = -EINTR;
992 goto err;
995 if (use_ww_ctx && ww_ctx) {
996 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
997 if (ret)
998 goto err;
1001 spin_unlock(&lock->wait_lock);
1002 schedule_preempt_disabled();
1005 * ww_mutex needs to always recheck its position since its waiter
1006 * list is not FIFO ordered.
1008 if ((use_ww_ctx && ww_ctx) || !first) {
1009 first = __mutex_waiter_is_first(lock, &waiter);
1010 if (first)
1011 __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
1014 set_current_state(state);
1016 * Here we order against unlock; we must either see it change
1017 * state back to RUNNING and fall through the next schedule(),
1018 * or we must see its unlock and acquire.
1020 if (__mutex_trylock(lock) ||
1021 (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter)))
1022 break;
1024 spin_lock(&lock->wait_lock);
1026 spin_lock(&lock->wait_lock);
1027 acquired:
1028 __set_current_state(TASK_RUNNING);
1030 if (use_ww_ctx && ww_ctx) {
1032 * Wound-Wait; we stole the lock (!first_waiter), check the
1033 * waiters as anyone might want to wound us.
1035 if (!ww_ctx->is_wait_die &&
1036 !__mutex_waiter_is_first(lock, &waiter))
1037 __ww_mutex_check_waiters(lock, ww_ctx);
1040 mutex_remove_waiter(lock, &waiter, current);
1041 if (likely(list_empty(&lock->wait_list)))
1042 __mutex_clear_flag(lock, MUTEX_FLAGS);
1044 debug_mutex_free_waiter(&waiter);
1046 skip_wait:
1047 /* got the lock - cleanup and rejoice! */
1048 lock_acquired(&lock->dep_map, ip);
1050 if (use_ww_ctx && ww_ctx)
1051 ww_mutex_lock_acquired(ww, ww_ctx);
1053 spin_unlock(&lock->wait_lock);
1054 preempt_enable();
1055 return 0;
1057 err:
1058 __set_current_state(TASK_RUNNING);
1059 mutex_remove_waiter(lock, &waiter, current);
1060 err_early_kill:
1061 spin_unlock(&lock->wait_lock);
1062 debug_mutex_free_waiter(&waiter);
1063 mutex_release(&lock->dep_map, 1, ip);
1064 preempt_enable();
1065 return ret;
1068 static int __sched
1069 __mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1070 struct lockdep_map *nest_lock, unsigned long ip)
1072 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
1075 static int __sched
1076 __ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1077 struct lockdep_map *nest_lock, unsigned long ip,
1078 struct ww_acquire_ctx *ww_ctx)
1080 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
1083 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1084 void __sched
1085 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
1087 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
1090 EXPORT_SYMBOL_GPL(mutex_lock_nested);
1092 void __sched
1093 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
1095 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
1097 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
1099 int __sched
1100 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
1102 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
1104 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
1106 int __sched
1107 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
1109 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
1111 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
1113 void __sched
1114 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
1116 int token;
1118 might_sleep();
1120 token = io_schedule_prepare();
1121 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
1122 subclass, NULL, _RET_IP_, NULL, 0);
1123 io_schedule_finish(token);
1125 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
1127 static inline int
1128 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1130 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
1131 unsigned tmp;
1133 if (ctx->deadlock_inject_countdown-- == 0) {
1134 tmp = ctx->deadlock_inject_interval;
1135 if (tmp > UINT_MAX/4)
1136 tmp = UINT_MAX;
1137 else
1138 tmp = tmp*2 + tmp + tmp/2;
1140 ctx->deadlock_inject_interval = tmp;
1141 ctx->deadlock_inject_countdown = tmp;
1142 ctx->contending_lock = lock;
1144 ww_mutex_unlock(lock);
1146 return -EDEADLK;
1148 #endif
1150 return 0;
1153 int __sched
1154 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1156 int ret;
1158 might_sleep();
1159 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
1160 0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1161 ctx);
1162 if (!ret && ctx && ctx->acquired > 1)
1163 return ww_mutex_deadlock_injection(lock, ctx);
1165 return ret;
1167 EXPORT_SYMBOL_GPL(ww_mutex_lock);
1169 int __sched
1170 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1172 int ret;
1174 might_sleep();
1175 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
1176 0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1177 ctx);
1179 if (!ret && ctx && ctx->acquired > 1)
1180 return ww_mutex_deadlock_injection(lock, ctx);
1182 return ret;
1184 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
1186 #endif
1189 * Release the lock, slowpath:
1191 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
1193 struct task_struct *next = NULL;
1194 DEFINE_WAKE_Q(wake_q);
1195 unsigned long owner;
1197 mutex_release(&lock->dep_map, 1, ip);
1200 * Release the lock before (potentially) taking the spinlock such that
1201 * other contenders can get on with things ASAP.
1203 * Except when HANDOFF, in that case we must not clear the owner field,
1204 * but instead set it to the top waiter.
1206 owner = atomic_long_read(&lock->owner);
1207 for (;;) {
1208 unsigned long old;
1210 #ifdef CONFIG_DEBUG_MUTEXES
1211 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
1212 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
1213 #endif
1215 if (owner & MUTEX_FLAG_HANDOFF)
1216 break;
1218 old = atomic_long_cmpxchg_release(&lock->owner, owner,
1219 __owner_flags(owner));
1220 if (old == owner) {
1221 if (owner & MUTEX_FLAG_WAITERS)
1222 break;
1224 return;
1227 owner = old;
1230 spin_lock(&lock->wait_lock);
1231 debug_mutex_unlock(lock);
1232 if (!list_empty(&lock->wait_list)) {
1233 /* get the first entry from the wait-list: */
1234 struct mutex_waiter *waiter =
1235 list_first_entry(&lock->wait_list,
1236 struct mutex_waiter, list);
1238 next = waiter->task;
1240 debug_mutex_wake_waiter(lock, waiter);
1241 wake_q_add(&wake_q, next);
1244 if (owner & MUTEX_FLAG_HANDOFF)
1245 __mutex_handoff(lock, next);
1247 spin_unlock(&lock->wait_lock);
1249 wake_up_q(&wake_q);
1252 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1254 * Here come the less common (and hence less performance-critical) APIs:
1255 * mutex_lock_interruptible() and mutex_trylock().
1257 static noinline int __sched
1258 __mutex_lock_killable_slowpath(struct mutex *lock);
1260 static noinline int __sched
1261 __mutex_lock_interruptible_slowpath(struct mutex *lock);
1264 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
1265 * @lock: The mutex to be acquired.
1267 * Lock the mutex like mutex_lock(). If a signal is delivered while the
1268 * process is sleeping, this function will return without acquiring the
1269 * mutex.
1271 * Context: Process context.
1272 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1273 * signal arrived.
1275 int __sched mutex_lock_interruptible(struct mutex *lock)
1277 might_sleep();
1279 if (__mutex_trylock_fast(lock))
1280 return 0;
1282 return __mutex_lock_interruptible_slowpath(lock);
1285 EXPORT_SYMBOL(mutex_lock_interruptible);
1288 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1289 * @lock: The mutex to be acquired.
1291 * Lock the mutex like mutex_lock(). If a signal which will be fatal to
1292 * the current process is delivered while the process is sleeping, this
1293 * function will return without acquiring the mutex.
1295 * Context: Process context.
1296 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1297 * fatal signal arrived.
1299 int __sched mutex_lock_killable(struct mutex *lock)
1301 might_sleep();
1303 if (__mutex_trylock_fast(lock))
1304 return 0;
1306 return __mutex_lock_killable_slowpath(lock);
1308 EXPORT_SYMBOL(mutex_lock_killable);
1311 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1312 * @lock: The mutex to be acquired.
1314 * Lock the mutex like mutex_lock(). While the task is waiting for this
1315 * mutex, it will be accounted as being in the IO wait state by the
1316 * scheduler.
1318 * Context: Process context.
1320 void __sched mutex_lock_io(struct mutex *lock)
1322 int token;
1324 token = io_schedule_prepare();
1325 mutex_lock(lock);
1326 io_schedule_finish(token);
1328 EXPORT_SYMBOL_GPL(mutex_lock_io);
1330 static noinline void __sched
1331 __mutex_lock_slowpath(struct mutex *lock)
1333 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1336 static noinline int __sched
1337 __mutex_lock_killable_slowpath(struct mutex *lock)
1339 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1342 static noinline int __sched
1343 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1345 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1348 static noinline int __sched
1349 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1351 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
1352 _RET_IP_, ctx);
1355 static noinline int __sched
1356 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1357 struct ww_acquire_ctx *ctx)
1359 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
1360 _RET_IP_, ctx);
1363 #endif
1366 * mutex_trylock - try to acquire the mutex, without waiting
1367 * @lock: the mutex to be acquired
1369 * Try to acquire the mutex atomically. Returns 1 if the mutex
1370 * has been acquired successfully, and 0 on contention.
1372 * NOTE: this function follows the spin_trylock() convention, so
1373 * it is negated from the down_trylock() return values! Be careful
1374 * about this when converting semaphore users to mutexes.
1376 * This function must not be used in interrupt context. The
1377 * mutex must be released by the same task that acquired it.
1379 int __sched mutex_trylock(struct mutex *lock)
1381 bool locked = __mutex_trylock(lock);
1383 if (locked)
1384 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1386 return locked;
1388 EXPORT_SYMBOL(mutex_trylock);
1390 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1391 int __sched
1392 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1394 might_sleep();
1396 if (__mutex_trylock_fast(&lock->base)) {
1397 if (ctx)
1398 ww_mutex_set_context_fastpath(lock, ctx);
1399 return 0;
1402 return __ww_mutex_lock_slowpath(lock, ctx);
1404 EXPORT_SYMBOL(ww_mutex_lock);
1406 int __sched
1407 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1409 might_sleep();
1411 if (__mutex_trylock_fast(&lock->base)) {
1412 if (ctx)
1413 ww_mutex_set_context_fastpath(lock, ctx);
1414 return 0;
1417 return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1419 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1421 #endif
1424 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1425 * @cnt: the atomic which we are to dec
1426 * @lock: the mutex to return holding if we dec to 0
1428 * return true and hold lock if we dec to 0, return false otherwise
1430 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1432 /* dec if we can't possibly hit 0 */
1433 if (atomic_add_unless(cnt, -1, 1))
1434 return 0;
1435 /* we might hit 0, so take the lock */
1436 mutex_lock(lock);
1437 if (!atomic_dec_and_test(cnt)) {
1438 /* when we actually did the dec, we didn't hit 0 */
1439 mutex_unlock(lock);
1440 return 0;
1442 /* we hit 0, and we hold the lock */
1443 return 1;
1445 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);