2 * Sleepable Read-Copy Update mechanism for mutual exclusion.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright (C) IBM Corporation, 2006
19 * Copyright (C) Fujitsu, 2012
21 * Author: Paul McKenney <paulmck@us.ibm.com>
22 * Lai Jiangshan <laijs@cn.fujitsu.com>
24 * For detailed explanation of Read-Copy Update mechanism see -
25 * Documentation/RCU/ *.txt
29 #define pr_fmt(fmt) "rcu: " fmt
31 #include <linux/export.h>
32 #include <linux/mutex.h>
33 #include <linux/percpu.h>
34 #include <linux/preempt.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/sched.h>
37 #include <linux/smp.h>
38 #include <linux/delay.h>
39 #include <linux/module.h>
40 #include <linux/srcu.h>
43 #include "rcu_segcblist.h"
45 /* Holdoff in nanoseconds for auto-expediting. */
46 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
47 static ulong exp_holdoff
= DEFAULT_SRCU_EXP_HOLDOFF
;
48 module_param(exp_holdoff
, ulong
, 0444);
50 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */
51 static ulong counter_wrap_check
= (ULONG_MAX
>> 2);
52 module_param(counter_wrap_check
, ulong
, 0444);
54 /* Early-boot callback-management, so early that no lock is required! */
55 static LIST_HEAD(srcu_boot_list
);
56 static bool __read_mostly srcu_init_done
;
58 static void srcu_invoke_callbacks(struct work_struct
*work
);
59 static void srcu_reschedule(struct srcu_struct
*sp
, unsigned long delay
);
60 static void process_srcu(struct work_struct
*work
);
62 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
63 #define spin_lock_rcu_node(p) \
65 spin_lock(&ACCESS_PRIVATE(p, lock)); \
66 smp_mb__after_unlock_lock(); \
69 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
71 #define spin_lock_irq_rcu_node(p) \
73 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \
74 smp_mb__after_unlock_lock(); \
77 #define spin_unlock_irq_rcu_node(p) \
78 spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
80 #define spin_lock_irqsave_rcu_node(p, flags) \
82 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
83 smp_mb__after_unlock_lock(); \
86 #define spin_unlock_irqrestore_rcu_node(p, flags) \
87 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \
90 * Initialize SRCU combining tree. Note that statically allocated
91 * srcu_struct structures might already have srcu_read_lock() and
92 * srcu_read_unlock() running against them. So if the is_static parameter
93 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
95 static void init_srcu_struct_nodes(struct srcu_struct
*sp
, bool is_static
)
100 int levelspread
[RCU_NUM_LVLS
];
101 struct srcu_data
*sdp
;
102 struct srcu_node
*snp
;
103 struct srcu_node
*snp_first
;
105 /* Work out the overall tree geometry. */
106 sp
->level
[0] = &sp
->node
[0];
107 for (i
= 1; i
< rcu_num_lvls
; i
++)
108 sp
->level
[i
] = sp
->level
[i
- 1] + num_rcu_lvl
[i
- 1];
109 rcu_init_levelspread(levelspread
, num_rcu_lvl
);
111 /* Each pass through this loop initializes one srcu_node structure. */
112 srcu_for_each_node_breadth_first(sp
, snp
) {
113 spin_lock_init(&ACCESS_PRIVATE(snp
, lock
));
114 WARN_ON_ONCE(ARRAY_SIZE(snp
->srcu_have_cbs
) !=
115 ARRAY_SIZE(snp
->srcu_data_have_cbs
));
116 for (i
= 0; i
< ARRAY_SIZE(snp
->srcu_have_cbs
); i
++) {
117 snp
->srcu_have_cbs
[i
] = 0;
118 snp
->srcu_data_have_cbs
[i
] = 0;
120 snp
->srcu_gp_seq_needed_exp
= 0;
123 if (snp
== &sp
->node
[0]) {
124 /* Root node, special case. */
125 snp
->srcu_parent
= NULL
;
130 if (snp
== sp
->level
[level
+ 1])
132 snp
->srcu_parent
= sp
->level
[level
- 1] +
133 (snp
- sp
->level
[level
]) /
134 levelspread
[level
- 1];
138 * Initialize the per-CPU srcu_data array, which feeds into the
139 * leaves of the srcu_node tree.
141 WARN_ON_ONCE(ARRAY_SIZE(sdp
->srcu_lock_count
) !=
142 ARRAY_SIZE(sdp
->srcu_unlock_count
));
143 level
= rcu_num_lvls
- 1;
144 snp_first
= sp
->level
[level
];
145 for_each_possible_cpu(cpu
) {
146 sdp
= per_cpu_ptr(sp
->sda
, cpu
);
147 spin_lock_init(&ACCESS_PRIVATE(sdp
, lock
));
148 rcu_segcblist_init(&sdp
->srcu_cblist
);
149 sdp
->srcu_cblist_invoking
= false;
150 sdp
->srcu_gp_seq_needed
= sp
->srcu_gp_seq
;
151 sdp
->srcu_gp_seq_needed_exp
= sp
->srcu_gp_seq
;
152 sdp
->mynode
= &snp_first
[cpu
/ levelspread
[level
]];
153 for (snp
= sdp
->mynode
; snp
!= NULL
; snp
= snp
->srcu_parent
) {
159 INIT_DELAYED_WORK(&sdp
->work
, srcu_invoke_callbacks
);
161 sdp
->grpmask
= 1 << (cpu
- sdp
->mynode
->grplo
);
165 /* Dynamically allocated, better be no srcu_read_locks()! */
166 for (i
= 0; i
< ARRAY_SIZE(sdp
->srcu_lock_count
); i
++) {
167 sdp
->srcu_lock_count
[i
] = 0;
168 sdp
->srcu_unlock_count
[i
] = 0;
174 * Initialize non-compile-time initialized fields, including the
175 * associated srcu_node and srcu_data structures. The is_static
176 * parameter is passed through to init_srcu_struct_nodes(), and
177 * also tells us that ->sda has already been wired up to srcu_data.
179 static int init_srcu_struct_fields(struct srcu_struct
*sp
, bool is_static
)
181 mutex_init(&sp
->srcu_cb_mutex
);
182 mutex_init(&sp
->srcu_gp_mutex
);
185 sp
->srcu_barrier_seq
= 0;
186 mutex_init(&sp
->srcu_barrier_mutex
);
187 atomic_set(&sp
->srcu_barrier_cpu_cnt
, 0);
188 INIT_DELAYED_WORK(&sp
->work
, process_srcu
);
190 sp
->sda
= alloc_percpu(struct srcu_data
);
191 init_srcu_struct_nodes(sp
, is_static
);
192 sp
->srcu_gp_seq_needed_exp
= 0;
193 sp
->srcu_last_gp_end
= ktime_get_mono_fast_ns();
194 smp_store_release(&sp
->srcu_gp_seq_needed
, 0); /* Init done. */
195 return sp
->sda
? 0 : -ENOMEM
;
198 #ifdef CONFIG_DEBUG_LOCK_ALLOC
200 int __init_srcu_struct(struct srcu_struct
*sp
, const char *name
,
201 struct lock_class_key
*key
)
203 /* Don't re-initialize a lock while it is held. */
204 debug_check_no_locks_freed((void *)sp
, sizeof(*sp
));
205 lockdep_init_map(&sp
->dep_map
, name
, key
, 0);
206 spin_lock_init(&ACCESS_PRIVATE(sp
, lock
));
207 return init_srcu_struct_fields(sp
, false);
209 EXPORT_SYMBOL_GPL(__init_srcu_struct
);
211 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
214 * init_srcu_struct - initialize a sleep-RCU structure
215 * @sp: structure to initialize.
217 * Must invoke this on a given srcu_struct before passing that srcu_struct
218 * to any other function. Each srcu_struct represents a separate domain
219 * of SRCU protection.
221 int init_srcu_struct(struct srcu_struct
*sp
)
223 spin_lock_init(&ACCESS_PRIVATE(sp
, lock
));
224 return init_srcu_struct_fields(sp
, false);
226 EXPORT_SYMBOL_GPL(init_srcu_struct
);
228 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
231 * First-use initialization of statically allocated srcu_struct
232 * structure. Wiring up the combining tree is more than can be
233 * done with compile-time initialization, so this check is added
234 * to each update-side SRCU primitive. Use sp->lock, which -is-
235 * compile-time initialized, to resolve races involving multiple
236 * CPUs trying to garner first-use privileges.
238 static void check_init_srcu_struct(struct srcu_struct
*sp
)
242 /* The smp_load_acquire() pairs with the smp_store_release(). */
243 if (!rcu_seq_state(smp_load_acquire(&sp
->srcu_gp_seq_needed
))) /*^^^*/
244 return; /* Already initialized. */
245 spin_lock_irqsave_rcu_node(sp
, flags
);
246 if (!rcu_seq_state(sp
->srcu_gp_seq_needed
)) {
247 spin_unlock_irqrestore_rcu_node(sp
, flags
);
250 init_srcu_struct_fields(sp
, true);
251 spin_unlock_irqrestore_rcu_node(sp
, flags
);
255 * Returns approximate total of the readers' ->srcu_lock_count[] values
256 * for the rank of per-CPU counters specified by idx.
258 static unsigned long srcu_readers_lock_idx(struct srcu_struct
*sp
, int idx
)
261 unsigned long sum
= 0;
263 for_each_possible_cpu(cpu
) {
264 struct srcu_data
*cpuc
= per_cpu_ptr(sp
->sda
, cpu
);
266 sum
+= READ_ONCE(cpuc
->srcu_lock_count
[idx
]);
272 * Returns approximate total of the readers' ->srcu_unlock_count[] values
273 * for the rank of per-CPU counters specified by idx.
275 static unsigned long srcu_readers_unlock_idx(struct srcu_struct
*sp
, int idx
)
278 unsigned long sum
= 0;
280 for_each_possible_cpu(cpu
) {
281 struct srcu_data
*cpuc
= per_cpu_ptr(sp
->sda
, cpu
);
283 sum
+= READ_ONCE(cpuc
->srcu_unlock_count
[idx
]);
289 * Return true if the number of pre-existing readers is determined to
292 static bool srcu_readers_active_idx_check(struct srcu_struct
*sp
, int idx
)
294 unsigned long unlocks
;
296 unlocks
= srcu_readers_unlock_idx(sp
, idx
);
299 * Make sure that a lock is always counted if the corresponding
300 * unlock is counted. Needs to be a smp_mb() as the read side may
301 * contain a read from a variable that is written to before the
302 * synchronize_srcu() in the write side. In this case smp_mb()s
303 * A and B act like the store buffering pattern.
305 * This smp_mb() also pairs with smp_mb() C to prevent accesses
306 * after the synchronize_srcu() from being executed before the
312 * If the locks are the same as the unlocks, then there must have
313 * been no readers on this index at some time in between. This does
314 * not mean that there are no more readers, as one could have read
315 * the current index but not have incremented the lock counter yet.
317 * So suppose that the updater is preempted here for so long
318 * that more than ULONG_MAX non-nested readers come and go in
319 * the meantime. It turns out that this cannot result in overflow
320 * because if a reader modifies its unlock count after we read it
321 * above, then that reader's next load of ->srcu_idx is guaranteed
322 * to get the new value, which will cause it to operate on the
323 * other bank of counters, where it cannot contribute to the
324 * overflow of these counters. This means that there is a maximum
325 * of 2*NR_CPUS increments, which cannot overflow given current
326 * systems, especially not on 64-bit systems.
328 * OK, how about nesting? This does impose a limit on nesting
329 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
330 * especially on 64-bit systems.
332 return srcu_readers_lock_idx(sp
, idx
) == unlocks
;
336 * srcu_readers_active - returns true if there are readers. and false
338 * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
340 * Note that this is not an atomic primitive, and can therefore suffer
341 * severe errors when invoked on an active srcu_struct. That said, it
342 * can be useful as an error check at cleanup time.
344 static bool srcu_readers_active(struct srcu_struct
*sp
)
347 unsigned long sum
= 0;
349 for_each_possible_cpu(cpu
) {
350 struct srcu_data
*cpuc
= per_cpu_ptr(sp
->sda
, cpu
);
352 sum
+= READ_ONCE(cpuc
->srcu_lock_count
[0]);
353 sum
+= READ_ONCE(cpuc
->srcu_lock_count
[1]);
354 sum
-= READ_ONCE(cpuc
->srcu_unlock_count
[0]);
355 sum
-= READ_ONCE(cpuc
->srcu_unlock_count
[1]);
360 #define SRCU_INTERVAL 1
363 * Return grace-period delay, zero if there are expedited grace
364 * periods pending, SRCU_INTERVAL otherwise.
366 static unsigned long srcu_get_delay(struct srcu_struct
*sp
)
368 if (ULONG_CMP_LT(READ_ONCE(sp
->srcu_gp_seq
),
369 READ_ONCE(sp
->srcu_gp_seq_needed_exp
)))
371 return SRCU_INTERVAL
;
374 /* Helper for cleanup_srcu_struct() and cleanup_srcu_struct_quiesced(). */
375 void _cleanup_srcu_struct(struct srcu_struct
*sp
, bool quiesced
)
379 if (WARN_ON(!srcu_get_delay(sp
)))
380 return; /* Just leak it! */
381 if (WARN_ON(srcu_readers_active(sp
)))
382 return; /* Just leak it! */
384 if (WARN_ON(delayed_work_pending(&sp
->work
)))
385 return; /* Just leak it! */
387 flush_delayed_work(&sp
->work
);
389 for_each_possible_cpu(cpu
)
391 if (WARN_ON(delayed_work_pending(&per_cpu_ptr(sp
->sda
, cpu
)->work
)))
392 return; /* Just leak it! */
394 flush_delayed_work(&per_cpu_ptr(sp
->sda
, cpu
)->work
);
396 if (WARN_ON(rcu_seq_state(READ_ONCE(sp
->srcu_gp_seq
)) != SRCU_STATE_IDLE
) ||
397 WARN_ON(srcu_readers_active(sp
))) {
398 pr_info("%s: Active srcu_struct %p state: %d\n",
399 __func__
, sp
, rcu_seq_state(READ_ONCE(sp
->srcu_gp_seq
)));
400 return; /* Caller forgot to stop doing call_srcu()? */
402 free_percpu(sp
->sda
);
405 EXPORT_SYMBOL_GPL(_cleanup_srcu_struct
);
408 * Counts the new reader in the appropriate per-CPU element of the
410 * Returns an index that must be passed to the matching srcu_read_unlock().
412 int __srcu_read_lock(struct srcu_struct
*sp
)
416 idx
= READ_ONCE(sp
->srcu_idx
) & 0x1;
417 this_cpu_inc(sp
->sda
->srcu_lock_count
[idx
]);
418 smp_mb(); /* B */ /* Avoid leaking the critical section. */
421 EXPORT_SYMBOL_GPL(__srcu_read_lock
);
424 * Removes the count for the old reader from the appropriate per-CPU
425 * element of the srcu_struct. Note that this may well be a different
426 * CPU than that which was incremented by the corresponding srcu_read_lock().
428 void __srcu_read_unlock(struct srcu_struct
*sp
, int idx
)
430 smp_mb(); /* C */ /* Avoid leaking the critical section. */
431 this_cpu_inc(sp
->sda
->srcu_unlock_count
[idx
]);
433 EXPORT_SYMBOL_GPL(__srcu_read_unlock
);
436 * We use an adaptive strategy for synchronize_srcu() and especially for
437 * synchronize_srcu_expedited(). We spin for a fixed time period
438 * (defined below) to allow SRCU readers to exit their read-side critical
439 * sections. If there are still some readers after a few microseconds,
440 * we repeatedly block for 1-millisecond time periods.
442 #define SRCU_RETRY_CHECK_DELAY 5
445 * Start an SRCU grace period.
447 static void srcu_gp_start(struct srcu_struct
*sp
)
449 struct srcu_data
*sdp
= this_cpu_ptr(sp
->sda
);
452 lockdep_assert_held(&ACCESS_PRIVATE(sp
, lock
));
453 WARN_ON_ONCE(ULONG_CMP_GE(sp
->srcu_gp_seq
, sp
->srcu_gp_seq_needed
));
454 rcu_segcblist_advance(&sdp
->srcu_cblist
,
455 rcu_seq_current(&sp
->srcu_gp_seq
));
456 (void)rcu_segcblist_accelerate(&sdp
->srcu_cblist
,
457 rcu_seq_snap(&sp
->srcu_gp_seq
));
458 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
459 rcu_seq_start(&sp
->srcu_gp_seq
);
460 state
= rcu_seq_state(READ_ONCE(sp
->srcu_gp_seq
));
461 WARN_ON_ONCE(state
!= SRCU_STATE_SCAN1
);
465 * Track online CPUs to guide callback workqueue placement.
467 DEFINE_PER_CPU(bool, srcu_online
);
469 void srcu_online_cpu(unsigned int cpu
)
471 WRITE_ONCE(per_cpu(srcu_online
, cpu
), true);
474 void srcu_offline_cpu(unsigned int cpu
)
476 WRITE_ONCE(per_cpu(srcu_online
, cpu
), false);
480 * Place the workqueue handler on the specified CPU if online, otherwise
481 * just run it whereever. This is useful for placing workqueue handlers
482 * that are to invoke the specified CPU's callbacks.
484 static bool srcu_queue_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
485 struct delayed_work
*dwork
,
491 if (READ_ONCE(per_cpu(srcu_online
, cpu
)))
492 ret
= queue_delayed_work_on(cpu
, wq
, dwork
, delay
);
494 ret
= queue_delayed_work(wq
, dwork
, delay
);
500 * Schedule callback invocation for the specified srcu_data structure,
501 * if possible, on the corresponding CPU.
503 static void srcu_schedule_cbs_sdp(struct srcu_data
*sdp
, unsigned long delay
)
505 srcu_queue_delayed_work_on(sdp
->cpu
, rcu_gp_wq
, &sdp
->work
, delay
);
509 * Schedule callback invocation for all srcu_data structures associated
510 * with the specified srcu_node structure that have callbacks for the
511 * just-completed grace period, the one corresponding to idx. If possible,
512 * schedule this invocation on the corresponding CPUs.
514 static void srcu_schedule_cbs_snp(struct srcu_struct
*sp
, struct srcu_node
*snp
,
515 unsigned long mask
, unsigned long delay
)
519 for (cpu
= snp
->grplo
; cpu
<= snp
->grphi
; cpu
++) {
520 if (!(mask
& (1 << (cpu
- snp
->grplo
))))
522 srcu_schedule_cbs_sdp(per_cpu_ptr(sp
->sda
, cpu
), delay
);
527 * Note the end of an SRCU grace period. Initiates callback invocation
528 * and starts a new grace period if needed.
530 * The ->srcu_cb_mutex acquisition does not protect any data, but
531 * instead prevents more than one grace period from starting while we
532 * are initiating callback invocation. This allows the ->srcu_have_cbs[]
533 * array to have a finite number of elements.
535 static void srcu_gp_end(struct srcu_struct
*sp
)
537 unsigned long cbdelay
;
545 struct srcu_data
*sdp
;
546 struct srcu_node
*snp
;
548 /* Prevent more than one additional grace period. */
549 mutex_lock(&sp
->srcu_cb_mutex
);
551 /* End the current grace period. */
552 spin_lock_irq_rcu_node(sp
);
553 idx
= rcu_seq_state(sp
->srcu_gp_seq
);
554 WARN_ON_ONCE(idx
!= SRCU_STATE_SCAN2
);
555 cbdelay
= srcu_get_delay(sp
);
556 sp
->srcu_last_gp_end
= ktime_get_mono_fast_ns();
557 rcu_seq_end(&sp
->srcu_gp_seq
);
558 gpseq
= rcu_seq_current(&sp
->srcu_gp_seq
);
559 if (ULONG_CMP_LT(sp
->srcu_gp_seq_needed_exp
, gpseq
))
560 sp
->srcu_gp_seq_needed_exp
= gpseq
;
561 spin_unlock_irq_rcu_node(sp
);
562 mutex_unlock(&sp
->srcu_gp_mutex
);
563 /* A new grace period can start at this point. But only one. */
565 /* Initiate callback invocation as needed. */
566 idx
= rcu_seq_ctr(gpseq
) % ARRAY_SIZE(snp
->srcu_have_cbs
);
567 srcu_for_each_node_breadth_first(sp
, snp
) {
568 spin_lock_irq_rcu_node(snp
);
570 last_lvl
= snp
>= sp
->level
[rcu_num_lvls
- 1];
572 cbs
= snp
->srcu_have_cbs
[idx
] == gpseq
;
573 snp
->srcu_have_cbs
[idx
] = gpseq
;
574 rcu_seq_set_state(&snp
->srcu_have_cbs
[idx
], 1);
575 if (ULONG_CMP_LT(snp
->srcu_gp_seq_needed_exp
, gpseq
))
576 snp
->srcu_gp_seq_needed_exp
= gpseq
;
577 mask
= snp
->srcu_data_have_cbs
[idx
];
578 snp
->srcu_data_have_cbs
[idx
] = 0;
579 spin_unlock_irq_rcu_node(snp
);
581 srcu_schedule_cbs_snp(sp
, snp
, mask
, cbdelay
);
583 /* Occasionally prevent srcu_data counter wrap. */
584 if (!(gpseq
& counter_wrap_check
) && last_lvl
)
585 for (cpu
= snp
->grplo
; cpu
<= snp
->grphi
; cpu
++) {
586 sdp
= per_cpu_ptr(sp
->sda
, cpu
);
587 spin_lock_irqsave_rcu_node(sdp
, flags
);
588 if (ULONG_CMP_GE(gpseq
,
589 sdp
->srcu_gp_seq_needed
+ 100))
590 sdp
->srcu_gp_seq_needed
= gpseq
;
591 if (ULONG_CMP_GE(gpseq
,
592 sdp
->srcu_gp_seq_needed_exp
+ 100))
593 sdp
->srcu_gp_seq_needed_exp
= gpseq
;
594 spin_unlock_irqrestore_rcu_node(sdp
, flags
);
598 /* Callback initiation done, allow grace periods after next. */
599 mutex_unlock(&sp
->srcu_cb_mutex
);
601 /* Start a new grace period if needed. */
602 spin_lock_irq_rcu_node(sp
);
603 gpseq
= rcu_seq_current(&sp
->srcu_gp_seq
);
604 if (!rcu_seq_state(gpseq
) &&
605 ULONG_CMP_LT(gpseq
, sp
->srcu_gp_seq_needed
)) {
607 spin_unlock_irq_rcu_node(sp
);
608 srcu_reschedule(sp
, 0);
610 spin_unlock_irq_rcu_node(sp
);
615 * Funnel-locking scheme to scalably mediate many concurrent expedited
616 * grace-period requests. This function is invoked for the first known
617 * expedited request for a grace period that has already been requested,
618 * but without expediting. To start a completely new grace period,
619 * whether expedited or not, use srcu_funnel_gp_start() instead.
621 static void srcu_funnel_exp_start(struct srcu_struct
*sp
, struct srcu_node
*snp
,
626 for (; snp
!= NULL
; snp
= snp
->srcu_parent
) {
627 if (rcu_seq_done(&sp
->srcu_gp_seq
, s
) ||
628 ULONG_CMP_GE(READ_ONCE(snp
->srcu_gp_seq_needed_exp
), s
))
630 spin_lock_irqsave_rcu_node(snp
, flags
);
631 if (ULONG_CMP_GE(snp
->srcu_gp_seq_needed_exp
, s
)) {
632 spin_unlock_irqrestore_rcu_node(snp
, flags
);
635 WRITE_ONCE(snp
->srcu_gp_seq_needed_exp
, s
);
636 spin_unlock_irqrestore_rcu_node(snp
, flags
);
638 spin_lock_irqsave_rcu_node(sp
, flags
);
639 if (ULONG_CMP_LT(sp
->srcu_gp_seq_needed_exp
, s
))
640 sp
->srcu_gp_seq_needed_exp
= s
;
641 spin_unlock_irqrestore_rcu_node(sp
, flags
);
645 * Funnel-locking scheme to scalably mediate many concurrent grace-period
646 * requests. The winner has to do the work of actually starting grace
647 * period s. Losers must either ensure that their desired grace-period
648 * number is recorded on at least their leaf srcu_node structure, or they
649 * must take steps to invoke their own callbacks.
651 * Note that this function also does the work of srcu_funnel_exp_start(),
652 * in some cases by directly invoking it.
654 static void srcu_funnel_gp_start(struct srcu_struct
*sp
, struct srcu_data
*sdp
,
655 unsigned long s
, bool do_norm
)
658 int idx
= rcu_seq_ctr(s
) % ARRAY_SIZE(sdp
->mynode
->srcu_have_cbs
);
659 struct srcu_node
*snp
= sdp
->mynode
;
660 unsigned long snp_seq
;
662 /* Each pass through the loop does one level of the srcu_node tree. */
663 for (; snp
!= NULL
; snp
= snp
->srcu_parent
) {
664 if (rcu_seq_done(&sp
->srcu_gp_seq
, s
) && snp
!= sdp
->mynode
)
665 return; /* GP already done and CBs recorded. */
666 spin_lock_irqsave_rcu_node(snp
, flags
);
667 if (ULONG_CMP_GE(snp
->srcu_have_cbs
[idx
], s
)) {
668 snp_seq
= snp
->srcu_have_cbs
[idx
];
669 if (snp
== sdp
->mynode
&& snp_seq
== s
)
670 snp
->srcu_data_have_cbs
[idx
] |= sdp
->grpmask
;
671 spin_unlock_irqrestore_rcu_node(snp
, flags
);
672 if (snp
== sdp
->mynode
&& snp_seq
!= s
) {
673 srcu_schedule_cbs_sdp(sdp
, do_norm
679 srcu_funnel_exp_start(sp
, snp
, s
);
682 snp
->srcu_have_cbs
[idx
] = s
;
683 if (snp
== sdp
->mynode
)
684 snp
->srcu_data_have_cbs
[idx
] |= sdp
->grpmask
;
685 if (!do_norm
&& ULONG_CMP_LT(snp
->srcu_gp_seq_needed_exp
, s
))
686 snp
->srcu_gp_seq_needed_exp
= s
;
687 spin_unlock_irqrestore_rcu_node(snp
, flags
);
690 /* Top of tree, must ensure the grace period will be started. */
691 spin_lock_irqsave_rcu_node(sp
, flags
);
692 if (ULONG_CMP_LT(sp
->srcu_gp_seq_needed
, s
)) {
694 * Record need for grace period s. Pair with load
695 * acquire setting up for initialization.
697 smp_store_release(&sp
->srcu_gp_seq_needed
, s
); /*^^^*/
699 if (!do_norm
&& ULONG_CMP_LT(sp
->srcu_gp_seq_needed_exp
, s
))
700 sp
->srcu_gp_seq_needed_exp
= s
;
702 /* If grace period not already done and none in progress, start it. */
703 if (!rcu_seq_done(&sp
->srcu_gp_seq
, s
) &&
704 rcu_seq_state(sp
->srcu_gp_seq
) == SRCU_STATE_IDLE
) {
705 WARN_ON_ONCE(ULONG_CMP_GE(sp
->srcu_gp_seq
, sp
->srcu_gp_seq_needed
));
707 if (likely(srcu_init_done
))
708 queue_delayed_work(rcu_gp_wq
, &sp
->work
,
710 else if (list_empty(&sp
->work
.work
.entry
))
711 list_add(&sp
->work
.work
.entry
, &srcu_boot_list
);
713 spin_unlock_irqrestore_rcu_node(sp
, flags
);
717 * Wait until all readers counted by array index idx complete, but
718 * loop an additional time if there is an expedited grace period pending.
719 * The caller must ensure that ->srcu_idx is not changed while checking.
721 static bool try_check_zero(struct srcu_struct
*sp
, int idx
, int trycount
)
724 if (srcu_readers_active_idx_check(sp
, idx
))
726 if (--trycount
+ !srcu_get_delay(sp
) <= 0)
728 udelay(SRCU_RETRY_CHECK_DELAY
);
733 * Increment the ->srcu_idx counter so that future SRCU readers will
734 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows
735 * us to wait for pre-existing readers in a starvation-free manner.
737 static void srcu_flip(struct srcu_struct
*sp
)
740 * Ensure that if this updater saw a given reader's increment
741 * from __srcu_read_lock(), that reader was using an old value
742 * of ->srcu_idx. Also ensure that if a given reader sees the
743 * new value of ->srcu_idx, this updater's earlier scans cannot
744 * have seen that reader's increments (which is OK, because this
745 * grace period need not wait on that reader).
747 smp_mb(); /* E */ /* Pairs with B and C. */
749 WRITE_ONCE(sp
->srcu_idx
, sp
->srcu_idx
+ 1);
752 * Ensure that if the updater misses an __srcu_read_unlock()
753 * increment, that task's next __srcu_read_lock() will see the
754 * above counter update. Note that both this memory barrier
755 * and the one in srcu_readers_active_idx_check() provide the
756 * guarantee for __srcu_read_lock().
758 smp_mb(); /* D */ /* Pairs with C. */
762 * If SRCU is likely idle, return true, otherwise return false.
764 * Note that it is OK for several current from-idle requests for a new
765 * grace period from idle to specify expediting because they will all end
766 * up requesting the same grace period anyhow. So no loss.
768 * Note also that if any CPU (including the current one) is still invoking
769 * callbacks, this function will nevertheless say "idle". This is not
770 * ideal, but the overhead of checking all CPUs' callback lists is even
771 * less ideal, especially on large systems. Furthermore, the wakeup
772 * can happen before the callback is fully removed, so we have no choice
773 * but to accept this type of error.
775 * This function is also subject to counter-wrap errors, but let's face
776 * it, if this function was preempted for enough time for the counters
777 * to wrap, it really doesn't matter whether or not we expedite the grace
778 * period. The extra overhead of a needlessly expedited grace period is
779 * negligible when amoritized over that time period, and the extra latency
780 * of a needlessly non-expedited grace period is similarly negligible.
782 static bool srcu_might_be_idle(struct srcu_struct
*sp
)
784 unsigned long curseq
;
786 struct srcu_data
*sdp
;
789 /* If the local srcu_data structure has callbacks, not idle. */
790 local_irq_save(flags
);
791 sdp
= this_cpu_ptr(sp
->sda
);
792 if (rcu_segcblist_pend_cbs(&sdp
->srcu_cblist
)) {
793 local_irq_restore(flags
);
794 return false; /* Callbacks already present, so not idle. */
796 local_irq_restore(flags
);
799 * No local callbacks, so probabalistically probe global state.
800 * Exact information would require acquiring locks, which would
801 * kill scalability, hence the probabalistic nature of the probe.
804 /* First, see if enough time has passed since the last GP. */
805 t
= ktime_get_mono_fast_ns();
806 if (exp_holdoff
== 0 ||
807 time_in_range_open(t
, sp
->srcu_last_gp_end
,
808 sp
->srcu_last_gp_end
+ exp_holdoff
))
809 return false; /* Too soon after last GP. */
811 /* Next, check for probable idleness. */
812 curseq
= rcu_seq_current(&sp
->srcu_gp_seq
);
813 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
814 if (ULONG_CMP_LT(curseq
, READ_ONCE(sp
->srcu_gp_seq_needed
)))
815 return false; /* Grace period in progress, so not idle. */
816 smp_mb(); /* Order ->srcu_gp_seq with prior access. */
817 if (curseq
!= rcu_seq_current(&sp
->srcu_gp_seq
))
818 return false; /* GP # changed, so not idle. */
819 return true; /* With reasonable probability, idle! */
823 * SRCU callback function to leak a callback.
825 static void srcu_leak_callback(struct rcu_head
*rhp
)
830 * Enqueue an SRCU callback on the srcu_data structure associated with
831 * the current CPU and the specified srcu_struct structure, initiating
832 * grace-period processing if it is not already running.
834 * Note that all CPUs must agree that the grace period extended beyond
835 * all pre-existing SRCU read-side critical section. On systems with
836 * more than one CPU, this means that when "func()" is invoked, each CPU
837 * is guaranteed to have executed a full memory barrier since the end of
838 * its last corresponding SRCU read-side critical section whose beginning
839 * preceded the call to call_srcu(). It also means that each CPU executing
840 * an SRCU read-side critical section that continues beyond the start of
841 * "func()" must have executed a memory barrier after the call_srcu()
842 * but before the beginning of that SRCU read-side critical section.
843 * Note that these guarantees include CPUs that are offline, idle, or
844 * executing in user mode, as well as CPUs that are executing in the kernel.
846 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
847 * resulting SRCU callback function "func()", then both CPU A and CPU
848 * B are guaranteed to execute a full memory barrier during the time
849 * interval between the call to call_srcu() and the invocation of "func()".
850 * This guarantee applies even if CPU A and CPU B are the same CPU (but
851 * again only if the system has more than one CPU).
853 * Of course, these guarantees apply only for invocations of call_srcu(),
854 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
855 * srcu_struct structure.
857 void __call_srcu(struct srcu_struct
*sp
, struct rcu_head
*rhp
,
858 rcu_callback_t func
, bool do_norm
)
861 bool needexp
= false;
864 struct srcu_data
*sdp
;
866 check_init_srcu_struct(sp
);
867 if (debug_rcu_head_queue(rhp
)) {
868 /* Probable double call_srcu(), so leak the callback. */
869 WRITE_ONCE(rhp
->func
, srcu_leak_callback
);
870 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
874 local_irq_save(flags
);
875 sdp
= this_cpu_ptr(sp
->sda
);
876 spin_lock_rcu_node(sdp
);
877 rcu_segcblist_enqueue(&sdp
->srcu_cblist
, rhp
, false);
878 rcu_segcblist_advance(&sdp
->srcu_cblist
,
879 rcu_seq_current(&sp
->srcu_gp_seq
));
880 s
= rcu_seq_snap(&sp
->srcu_gp_seq
);
881 (void)rcu_segcblist_accelerate(&sdp
->srcu_cblist
, s
);
882 if (ULONG_CMP_LT(sdp
->srcu_gp_seq_needed
, s
)) {
883 sdp
->srcu_gp_seq_needed
= s
;
886 if (!do_norm
&& ULONG_CMP_LT(sdp
->srcu_gp_seq_needed_exp
, s
)) {
887 sdp
->srcu_gp_seq_needed_exp
= s
;
890 spin_unlock_irqrestore_rcu_node(sdp
, flags
);
892 srcu_funnel_gp_start(sp
, sdp
, s
, do_norm
);
894 srcu_funnel_exp_start(sp
, sdp
->mynode
, s
);
898 * call_srcu() - Queue a callback for invocation after an SRCU grace period
899 * @sp: srcu_struct in queue the callback
900 * @rhp: structure to be used for queueing the SRCU callback.
901 * @func: function to be invoked after the SRCU grace period
903 * The callback function will be invoked some time after a full SRCU
904 * grace period elapses, in other words after all pre-existing SRCU
905 * read-side critical sections have completed. However, the callback
906 * function might well execute concurrently with other SRCU read-side
907 * critical sections that started after call_srcu() was invoked. SRCU
908 * read-side critical sections are delimited by srcu_read_lock() and
909 * srcu_read_unlock(), and may be nested.
911 * The callback will be invoked from process context, but must nevertheless
912 * be fast and must not block.
914 void call_srcu(struct srcu_struct
*sp
, struct rcu_head
*rhp
,
917 __call_srcu(sp
, rhp
, func
, true);
919 EXPORT_SYMBOL_GPL(call_srcu
);
922 * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
924 static void __synchronize_srcu(struct srcu_struct
*sp
, bool do_norm
)
926 struct rcu_synchronize rcu
;
928 RCU_LOCKDEP_WARN(lock_is_held(&sp
->dep_map
) ||
929 lock_is_held(&rcu_bh_lock_map
) ||
930 lock_is_held(&rcu_lock_map
) ||
931 lock_is_held(&rcu_sched_lock_map
),
932 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
934 if (rcu_scheduler_active
== RCU_SCHEDULER_INACTIVE
)
937 check_init_srcu_struct(sp
);
938 init_completion(&rcu
.completion
);
939 init_rcu_head_on_stack(&rcu
.head
);
940 __call_srcu(sp
, &rcu
.head
, wakeme_after_rcu
, do_norm
);
941 wait_for_completion(&rcu
.completion
);
942 destroy_rcu_head_on_stack(&rcu
.head
);
945 * Make sure that later code is ordered after the SRCU grace
946 * period. This pairs with the spin_lock_irq_rcu_node()
947 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed
948 * because the current CPU might have been totally uninvolved with
949 * (and thus unordered against) that grace period.
955 * synchronize_srcu_expedited - Brute-force SRCU grace period
956 * @sp: srcu_struct with which to synchronize.
958 * Wait for an SRCU grace period to elapse, but be more aggressive about
959 * spinning rather than blocking when waiting.
961 * Note that synchronize_srcu_expedited() has the same deadlock and
962 * memory-ordering properties as does synchronize_srcu().
964 void synchronize_srcu_expedited(struct srcu_struct
*sp
)
966 __synchronize_srcu(sp
, rcu_gp_is_normal());
968 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited
);
971 * synchronize_srcu - wait for prior SRCU read-side critical-section completion
972 * @sp: srcu_struct with which to synchronize.
974 * Wait for the count to drain to zero of both indexes. To avoid the
975 * possible starvation of synchronize_srcu(), it waits for the count of
976 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
977 * and then flip the srcu_idx and wait for the count of the other index.
979 * Can block; must be called from process context.
981 * Note that it is illegal to call synchronize_srcu() from the corresponding
982 * SRCU read-side critical section; doing so will result in deadlock.
983 * However, it is perfectly legal to call synchronize_srcu() on one
984 * srcu_struct from some other srcu_struct's read-side critical section,
985 * as long as the resulting graph of srcu_structs is acyclic.
987 * There are memory-ordering constraints implied by synchronize_srcu().
988 * On systems with more than one CPU, when synchronize_srcu() returns,
989 * each CPU is guaranteed to have executed a full memory barrier since
990 * the end of its last corresponding SRCU read-side critical section
991 * whose beginning preceded the call to synchronize_srcu(). In addition,
992 * each CPU having an SRCU read-side critical section that extends beyond
993 * the return from synchronize_srcu() is guaranteed to have executed a
994 * full memory barrier after the beginning of synchronize_srcu() and before
995 * the beginning of that SRCU read-side critical section. Note that these
996 * guarantees include CPUs that are offline, idle, or executing in user mode,
997 * as well as CPUs that are executing in the kernel.
999 * Furthermore, if CPU A invoked synchronize_srcu(), which returned
1000 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
1001 * to have executed a full memory barrier during the execution of
1002 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B
1003 * are the same CPU, but again only if the system has more than one CPU.
1005 * Of course, these memory-ordering guarantees apply only when
1006 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1007 * passed the same srcu_struct structure.
1009 * If SRCU is likely idle, expedite the first request. This semantic
1010 * was provided by Classic SRCU, and is relied upon by its users, so TREE
1011 * SRCU must also provide it. Note that detecting idleness is heuristic
1012 * and subject to both false positives and negatives.
1014 void synchronize_srcu(struct srcu_struct
*sp
)
1016 if (srcu_might_be_idle(sp
) || rcu_gp_is_expedited())
1017 synchronize_srcu_expedited(sp
);
1019 __synchronize_srcu(sp
, true);
1021 EXPORT_SYMBOL_GPL(synchronize_srcu
);
1024 * Callback function for srcu_barrier() use.
1026 static void srcu_barrier_cb(struct rcu_head
*rhp
)
1028 struct srcu_data
*sdp
;
1029 struct srcu_struct
*sp
;
1031 sdp
= container_of(rhp
, struct srcu_data
, srcu_barrier_head
);
1033 if (atomic_dec_and_test(&sp
->srcu_barrier_cpu_cnt
))
1034 complete(&sp
->srcu_barrier_completion
);
1038 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1039 * @sp: srcu_struct on which to wait for in-flight callbacks.
1041 void srcu_barrier(struct srcu_struct
*sp
)
1044 struct srcu_data
*sdp
;
1045 unsigned long s
= rcu_seq_snap(&sp
->srcu_barrier_seq
);
1047 check_init_srcu_struct(sp
);
1048 mutex_lock(&sp
->srcu_barrier_mutex
);
1049 if (rcu_seq_done(&sp
->srcu_barrier_seq
, s
)) {
1050 smp_mb(); /* Force ordering following return. */
1051 mutex_unlock(&sp
->srcu_barrier_mutex
);
1052 return; /* Someone else did our work for us. */
1054 rcu_seq_start(&sp
->srcu_barrier_seq
);
1055 init_completion(&sp
->srcu_barrier_completion
);
1057 /* Initial count prevents reaching zero until all CBs are posted. */
1058 atomic_set(&sp
->srcu_barrier_cpu_cnt
, 1);
1061 * Each pass through this loop enqueues a callback, but only
1062 * on CPUs already having callbacks enqueued. Note that if
1063 * a CPU already has callbacks enqueue, it must have already
1064 * registered the need for a future grace period, so all we
1065 * need do is enqueue a callback that will use the same
1066 * grace period as the last callback already in the queue.
1068 for_each_possible_cpu(cpu
) {
1069 sdp
= per_cpu_ptr(sp
->sda
, cpu
);
1070 spin_lock_irq_rcu_node(sdp
);
1071 atomic_inc(&sp
->srcu_barrier_cpu_cnt
);
1072 sdp
->srcu_barrier_head
.func
= srcu_barrier_cb
;
1073 debug_rcu_head_queue(&sdp
->srcu_barrier_head
);
1074 if (!rcu_segcblist_entrain(&sdp
->srcu_cblist
,
1075 &sdp
->srcu_barrier_head
, 0)) {
1076 debug_rcu_head_unqueue(&sdp
->srcu_barrier_head
);
1077 atomic_dec(&sp
->srcu_barrier_cpu_cnt
);
1079 spin_unlock_irq_rcu_node(sdp
);
1082 /* Remove the initial count, at which point reaching zero can happen. */
1083 if (atomic_dec_and_test(&sp
->srcu_barrier_cpu_cnt
))
1084 complete(&sp
->srcu_barrier_completion
);
1085 wait_for_completion(&sp
->srcu_barrier_completion
);
1087 rcu_seq_end(&sp
->srcu_barrier_seq
);
1088 mutex_unlock(&sp
->srcu_barrier_mutex
);
1090 EXPORT_SYMBOL_GPL(srcu_barrier
);
1093 * srcu_batches_completed - return batches completed.
1094 * @sp: srcu_struct on which to report batch completion.
1096 * Report the number of batches, correlated with, but not necessarily
1097 * precisely the same as, the number of grace periods that have elapsed.
1099 unsigned long srcu_batches_completed(struct srcu_struct
*sp
)
1101 return sp
->srcu_idx
;
1103 EXPORT_SYMBOL_GPL(srcu_batches_completed
);
1106 * Core SRCU state machine. Push state bits of ->srcu_gp_seq
1107 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1108 * completed in that state.
1110 static void srcu_advance_state(struct srcu_struct
*sp
)
1114 mutex_lock(&sp
->srcu_gp_mutex
);
1117 * Because readers might be delayed for an extended period after
1118 * fetching ->srcu_idx for their index, at any point in time there
1119 * might well be readers using both idx=0 and idx=1. We therefore
1120 * need to wait for readers to clear from both index values before
1121 * invoking a callback.
1123 * The load-acquire ensures that we see the accesses performed
1124 * by the prior grace period.
1126 idx
= rcu_seq_state(smp_load_acquire(&sp
->srcu_gp_seq
)); /* ^^^ */
1127 if (idx
== SRCU_STATE_IDLE
) {
1128 spin_lock_irq_rcu_node(sp
);
1129 if (ULONG_CMP_GE(sp
->srcu_gp_seq
, sp
->srcu_gp_seq_needed
)) {
1130 WARN_ON_ONCE(rcu_seq_state(sp
->srcu_gp_seq
));
1131 spin_unlock_irq_rcu_node(sp
);
1132 mutex_unlock(&sp
->srcu_gp_mutex
);
1135 idx
= rcu_seq_state(READ_ONCE(sp
->srcu_gp_seq
));
1136 if (idx
== SRCU_STATE_IDLE
)
1138 spin_unlock_irq_rcu_node(sp
);
1139 if (idx
!= SRCU_STATE_IDLE
) {
1140 mutex_unlock(&sp
->srcu_gp_mutex
);
1141 return; /* Someone else started the grace period. */
1145 if (rcu_seq_state(READ_ONCE(sp
->srcu_gp_seq
)) == SRCU_STATE_SCAN1
) {
1146 idx
= 1 ^ (sp
->srcu_idx
& 1);
1147 if (!try_check_zero(sp
, idx
, 1)) {
1148 mutex_unlock(&sp
->srcu_gp_mutex
);
1149 return; /* readers present, retry later. */
1152 rcu_seq_set_state(&sp
->srcu_gp_seq
, SRCU_STATE_SCAN2
);
1155 if (rcu_seq_state(READ_ONCE(sp
->srcu_gp_seq
)) == SRCU_STATE_SCAN2
) {
1158 * SRCU read-side critical sections are normally short,
1159 * so check at least twice in quick succession after a flip.
1161 idx
= 1 ^ (sp
->srcu_idx
& 1);
1162 if (!try_check_zero(sp
, idx
, 2)) {
1163 mutex_unlock(&sp
->srcu_gp_mutex
);
1164 return; /* readers present, retry later. */
1166 srcu_gp_end(sp
); /* Releases ->srcu_gp_mutex. */
1171 * Invoke a limited number of SRCU callbacks that have passed through
1172 * their grace period. If there are more to do, SRCU will reschedule
1173 * the workqueue. Note that needed memory barriers have been executed
1174 * in this task's context by srcu_readers_active_idx_check().
1176 static void srcu_invoke_callbacks(struct work_struct
*work
)
1179 struct rcu_cblist ready_cbs
;
1180 struct rcu_head
*rhp
;
1181 struct srcu_data
*sdp
;
1182 struct srcu_struct
*sp
;
1184 sdp
= container_of(work
, struct srcu_data
, work
.work
);
1186 rcu_cblist_init(&ready_cbs
);
1187 spin_lock_irq_rcu_node(sdp
);
1188 rcu_segcblist_advance(&sdp
->srcu_cblist
,
1189 rcu_seq_current(&sp
->srcu_gp_seq
));
1190 if (sdp
->srcu_cblist_invoking
||
1191 !rcu_segcblist_ready_cbs(&sdp
->srcu_cblist
)) {
1192 spin_unlock_irq_rcu_node(sdp
);
1193 return; /* Someone else on the job or nothing to do. */
1196 /* We are on the job! Extract and invoke ready callbacks. */
1197 sdp
->srcu_cblist_invoking
= true;
1198 rcu_segcblist_extract_done_cbs(&sdp
->srcu_cblist
, &ready_cbs
);
1199 spin_unlock_irq_rcu_node(sdp
);
1200 rhp
= rcu_cblist_dequeue(&ready_cbs
);
1201 for (; rhp
!= NULL
; rhp
= rcu_cblist_dequeue(&ready_cbs
)) {
1202 debug_rcu_head_unqueue(rhp
);
1209 * Update counts, accelerate new callbacks, and if needed,
1210 * schedule another round of callback invocation.
1212 spin_lock_irq_rcu_node(sdp
);
1213 rcu_segcblist_insert_count(&sdp
->srcu_cblist
, &ready_cbs
);
1214 (void)rcu_segcblist_accelerate(&sdp
->srcu_cblist
,
1215 rcu_seq_snap(&sp
->srcu_gp_seq
));
1216 sdp
->srcu_cblist_invoking
= false;
1217 more
= rcu_segcblist_ready_cbs(&sdp
->srcu_cblist
);
1218 spin_unlock_irq_rcu_node(sdp
);
1220 srcu_schedule_cbs_sdp(sdp
, 0);
1224 * Finished one round of SRCU grace period. Start another if there are
1225 * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1227 static void srcu_reschedule(struct srcu_struct
*sp
, unsigned long delay
)
1231 spin_lock_irq_rcu_node(sp
);
1232 if (ULONG_CMP_GE(sp
->srcu_gp_seq
, sp
->srcu_gp_seq_needed
)) {
1233 if (!WARN_ON_ONCE(rcu_seq_state(sp
->srcu_gp_seq
))) {
1234 /* All requests fulfilled, time to go idle. */
1237 } else if (!rcu_seq_state(sp
->srcu_gp_seq
)) {
1238 /* Outstanding request and no GP. Start one. */
1241 spin_unlock_irq_rcu_node(sp
);
1244 queue_delayed_work(rcu_gp_wq
, &sp
->work
, delay
);
1248 * This is the work-queue function that handles SRCU grace periods.
1250 static void process_srcu(struct work_struct
*work
)
1252 struct srcu_struct
*sp
;
1254 sp
= container_of(work
, struct srcu_struct
, work
.work
);
1256 srcu_advance_state(sp
);
1257 srcu_reschedule(sp
, srcu_get_delay(sp
));
1260 void srcutorture_get_gp_data(enum rcutorture_type test_type
,
1261 struct srcu_struct
*sp
, int *flags
,
1262 unsigned long *gp_seq
)
1264 if (test_type
!= SRCU_FLAVOR
)
1267 *gp_seq
= rcu_seq_current(&sp
->srcu_gp_seq
);
1269 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data
);
1271 void srcu_torture_stats_print(struct srcu_struct
*sp
, char *tt
, char *tf
)
1275 unsigned long s0
= 0, s1
= 0;
1277 idx
= sp
->srcu_idx
& 0x1;
1278 pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):",
1279 tt
, tf
, rcu_seq_current(&sp
->srcu_gp_seq
), idx
);
1280 for_each_possible_cpu(cpu
) {
1281 unsigned long l0
, l1
;
1282 unsigned long u0
, u1
;
1284 struct srcu_data
*sdp
;
1286 sdp
= per_cpu_ptr(sp
->sda
, cpu
);
1287 u0
= sdp
->srcu_unlock_count
[!idx
];
1288 u1
= sdp
->srcu_unlock_count
[idx
];
1291 * Make sure that a lock is always counted if the corresponding
1292 * unlock is counted.
1296 l0
= sdp
->srcu_lock_count
[!idx
];
1297 l1
= sdp
->srcu_lock_count
[idx
];
1301 pr_cont(" %d(%ld,%ld %1p)",
1302 cpu
, c0
, c1
, rcu_segcblist_head(&sdp
->srcu_cblist
));
1306 pr_cont(" T(%ld,%ld)\n", s0
, s1
);
1308 EXPORT_SYMBOL_GPL(srcu_torture_stats_print
);
1310 static int __init
srcu_bootup_announce(void)
1312 pr_info("Hierarchical SRCU implementation.\n");
1313 if (exp_holdoff
!= DEFAULT_SRCU_EXP_HOLDOFF
)
1314 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff
);
1317 early_initcall(srcu_bootup_announce
);
1319 void __init
srcu_init(void)
1321 struct srcu_struct
*sp
;
1323 srcu_init_done
= true;
1324 while (!list_empty(&srcu_boot_list
)) {
1325 sp
= list_first_entry(&srcu_boot_list
, struct srcu_struct
,
1327 check_init_srcu_struct(sp
);
1328 list_del_init(&sp
->work
.work
.entry
);
1329 queue_work(rcu_gp_wq
, &sp
->work
.work
);