2 * sched_clock() for unstable CPU clocks
4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
14 * What this file implements:
16 * cpu_clock(i) provides a fast (execution time) high resolution
17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
20 * ######################### BIG FAT WARNING ##########################
21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
23 * ####################################################################
25 * There is no strict promise about the base, although it tends to start
26 * at 0 on boot (but people really shouldn't rely on that).
28 * cpu_clock(i) -- can be used from any context, including NMI.
29 * local_clock() -- is cpu_clock() on the current CPU.
33 * How it is implemented:
35 * The implementation either uses sched_clock() when
36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37 * sched_clock() is assumed to provide these properties (mostly it means
38 * the architecture provides a globally synchronized highres time source).
40 * Otherwise it tries to create a semi stable clock from a mixture of other
43 * - GTOD (clock monotomic)
45 * - explicit idle events
47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48 * deltas are filtered to provide monotonicity and keeping it within an
51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52 * that is otherwise invisible (TSC gets stopped).
56 #include <linux/sched_clock.h>
59 * Scheduler clock - returns current time in nanosec units.
60 * This is default implementation.
61 * Architectures and sub-architectures can override this.
63 unsigned long long __weak
sched_clock(void)
65 return (unsigned long long)(jiffies
- INITIAL_JIFFIES
)
66 * (NSEC_PER_SEC
/ HZ
);
68 EXPORT_SYMBOL_GPL(sched_clock
);
70 static DEFINE_STATIC_KEY_FALSE(sched_clock_running
);
72 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
74 * We must start with !__sched_clock_stable because the unstable -> stable
75 * transition is accurate, while the stable -> unstable transition is not.
77 * Similarly we start with __sched_clock_stable_early, thereby assuming we
78 * will become stable, such that there's only a single 1 -> 0 transition.
80 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable
);
81 static int __sched_clock_stable_early
= 1;
84 * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
86 __read_mostly u64 __sched_clock_offset
;
87 static __read_mostly u64 __gtod_offset
;
89 struct sched_clock_data
{
95 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data
, sched_clock_data
);
97 static inline struct sched_clock_data
*this_scd(void)
99 return this_cpu_ptr(&sched_clock_data
);
102 static inline struct sched_clock_data
*cpu_sdc(int cpu
)
104 return &per_cpu(sched_clock_data
, cpu
);
107 int sched_clock_stable(void)
109 return static_branch_likely(&__sched_clock_stable
);
112 static void __scd_stamp(struct sched_clock_data
*scd
)
114 scd
->tick_gtod
= ktime_get_ns();
115 scd
->tick_raw
= sched_clock();
118 static void __set_sched_clock_stable(void)
120 struct sched_clock_data
*scd
;
123 * Since we're still unstable and the tick is already running, we have
124 * to disable IRQs in order to get a consistent scd->tick* reading.
129 * Attempt to make the (initial) unstable->stable transition continuous.
131 __sched_clock_offset
= (scd
->tick_gtod
+ __gtod_offset
) - (scd
->tick_raw
);
134 printk(KERN_INFO
"sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
135 scd
->tick_gtod
, __gtod_offset
,
136 scd
->tick_raw
, __sched_clock_offset
);
138 static_branch_enable(&__sched_clock_stable
);
139 tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE
);
143 * If we ever get here, we're screwed, because we found out -- typically after
144 * the fact -- that TSC wasn't good. This means all our clocksources (including
145 * ktime) could have reported wrong values.
147 * What we do here is an attempt to fix up and continue sort of where we left
148 * off in a coherent manner.
150 * The only way to fully avoid random clock jumps is to boot with:
153 static void __sched_clock_work(struct work_struct
*work
)
155 struct sched_clock_data
*scd
;
158 /* take a current timestamp and set 'now' */
162 scd
->clock
= scd
->tick_gtod
+ __gtod_offset
;
165 /* clone to all CPUs */
166 for_each_possible_cpu(cpu
)
167 per_cpu(sched_clock_data
, cpu
) = *scd
;
169 printk(KERN_WARNING
"TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
170 printk(KERN_INFO
"sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
171 scd
->tick_gtod
, __gtod_offset
,
172 scd
->tick_raw
, __sched_clock_offset
);
174 static_branch_disable(&__sched_clock_stable
);
177 static DECLARE_WORK(sched_clock_work
, __sched_clock_work
);
179 static void __clear_sched_clock_stable(void)
181 if (!sched_clock_stable())
184 tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE
);
185 schedule_work(&sched_clock_work
);
188 void clear_sched_clock_stable(void)
190 __sched_clock_stable_early
= 0;
192 smp_mb(); /* matches sched_clock_init_late() */
194 if (static_key_count(&sched_clock_running
.key
) == 2)
195 __clear_sched_clock_stable();
198 static void __sched_clock_gtod_offset(void)
200 struct sched_clock_data
*scd
= this_scd();
203 __gtod_offset
= (scd
->tick_raw
+ __sched_clock_offset
) - scd
->tick_gtod
;
206 void __init
sched_clock_init(void)
209 * Set __gtod_offset such that once we mark sched_clock_running,
210 * sched_clock_tick() continues where sched_clock() left off.
212 * Even if TSC is buggered, we're still UP at this point so it
213 * can't really be out of sync.
216 __sched_clock_gtod_offset();
219 static_branch_inc(&sched_clock_running
);
222 * We run this as late_initcall() such that it runs after all built-in drivers,
223 * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
225 static int __init
sched_clock_init_late(void)
227 static_branch_inc(&sched_clock_running
);
229 * Ensure that it is impossible to not do a static_key update.
231 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
232 * and do the update, or we must see their __sched_clock_stable_early
233 * and do the update, or both.
235 smp_mb(); /* matches {set,clear}_sched_clock_stable() */
237 if (__sched_clock_stable_early
)
238 __set_sched_clock_stable();
242 late_initcall(sched_clock_init_late
);
245 * min, max except they take wrapping into account
248 static inline u64
wrap_min(u64 x
, u64 y
)
250 return (s64
)(x
- y
) < 0 ? x
: y
;
253 static inline u64
wrap_max(u64 x
, u64 y
)
255 return (s64
)(x
- y
) > 0 ? x
: y
;
259 * update the percpu scd from the raw @now value
261 * - filter out backward motion
262 * - use the GTOD tick value to create a window to filter crazy TSC values
264 static u64
sched_clock_local(struct sched_clock_data
*scd
)
266 u64 now
, clock
, old_clock
, min_clock
, max_clock
, gtod
;
271 delta
= now
- scd
->tick_raw
;
272 if (unlikely(delta
< 0))
275 old_clock
= scd
->clock
;
278 * scd->clock = clamp(scd->tick_gtod + delta,
279 * max(scd->tick_gtod, scd->clock),
280 * scd->tick_gtod + TICK_NSEC);
283 gtod
= scd
->tick_gtod
+ __gtod_offset
;
284 clock
= gtod
+ delta
;
285 min_clock
= wrap_max(gtod
, old_clock
);
286 max_clock
= wrap_max(old_clock
, gtod
+ TICK_NSEC
);
288 clock
= wrap_max(clock
, min_clock
);
289 clock
= wrap_min(clock
, max_clock
);
291 if (cmpxchg64(&scd
->clock
, old_clock
, clock
) != old_clock
)
297 static u64
sched_clock_remote(struct sched_clock_data
*scd
)
299 struct sched_clock_data
*my_scd
= this_scd();
300 u64 this_clock
, remote_clock
;
301 u64
*ptr
, old_val
, val
;
303 #if BITS_PER_LONG != 64
306 * Careful here: The local and the remote clock values need to
307 * be read out atomic as we need to compare the values and
308 * then update either the local or the remote side. So the
309 * cmpxchg64 below only protects one readout.
311 * We must reread via sched_clock_local() in the retry case on
312 * 32-bit kernels as an NMI could use sched_clock_local() via the
313 * tracer and hit between the readout of
314 * the low 32-bit and the high 32-bit portion.
316 this_clock
= sched_clock_local(my_scd
);
318 * We must enforce atomic readout on 32-bit, otherwise the
319 * update on the remote CPU can hit inbetween the readout of
320 * the low 32-bit and the high 32-bit portion.
322 remote_clock
= cmpxchg64(&scd
->clock
, 0, 0);
325 * On 64-bit kernels the read of [my]scd->clock is atomic versus the
326 * update, so we can avoid the above 32-bit dance.
328 sched_clock_local(my_scd
);
330 this_clock
= my_scd
->clock
;
331 remote_clock
= scd
->clock
;
335 * Use the opportunity that we have both locks
336 * taken to couple the two clocks: we take the
337 * larger time as the latest time for both
338 * runqueues. (this creates monotonic movement)
340 if (likely((s64
)(remote_clock
- this_clock
) < 0)) {
342 old_val
= remote_clock
;
346 * Should be rare, but possible:
348 ptr
= &my_scd
->clock
;
349 old_val
= this_clock
;
353 if (cmpxchg64(ptr
, old_val
, val
) != old_val
)
360 * Similar to cpu_clock(), but requires local IRQs to be disabled.
364 u64
sched_clock_cpu(int cpu
)
366 struct sched_clock_data
*scd
;
369 if (sched_clock_stable())
370 return sched_clock() + __sched_clock_offset
;
372 if (!static_branch_unlikely(&sched_clock_running
))
373 return sched_clock();
375 preempt_disable_notrace();
378 if (cpu
!= smp_processor_id())
379 clock
= sched_clock_remote(scd
);
381 clock
= sched_clock_local(scd
);
382 preempt_enable_notrace();
386 EXPORT_SYMBOL_GPL(sched_clock_cpu
);
388 void sched_clock_tick(void)
390 struct sched_clock_data
*scd
;
392 if (sched_clock_stable())
395 if (!static_branch_unlikely(&sched_clock_running
))
398 lockdep_assert_irqs_disabled();
402 sched_clock_local(scd
);
405 void sched_clock_tick_stable(void)
407 if (!sched_clock_stable())
411 * Called under watchdog_lock.
413 * The watchdog just found this TSC to (still) be stable, so now is a
414 * good moment to update our __gtod_offset. Because once we find the
415 * TSC to be unstable, any computation will be computing crap.
418 __sched_clock_gtod_offset();
423 * We are going deep-idle (irqs are disabled):
425 void sched_clock_idle_sleep_event(void)
427 sched_clock_cpu(smp_processor_id());
429 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
432 * We just idled; resync with ktime.
434 void sched_clock_idle_wakeup_event(void)
438 if (sched_clock_stable())
441 if (unlikely(timekeeping_suspended
))
444 local_irq_save(flags
);
446 local_irq_restore(flags
);
448 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
450 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
452 void __init
sched_clock_init(void)
454 static_branch_inc(&sched_clock_running
);
456 generic_sched_clock_init();
460 u64
sched_clock_cpu(int cpu
)
462 if (!static_branch_unlikely(&sched_clock_running
))
465 return sched_clock();
468 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
471 * Running clock - returns the time that has elapsed while a guest has been
473 * On a guest this value should be local_clock minus the time the guest was
474 * suspended by the hypervisor (for any reason).
475 * On bare metal this function should return the same as local_clock.
476 * Architectures and sub-architectures can override this.
478 u64 __weak
running_clock(void)
480 return local_clock();