perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / kernel / sched / core.c
blobfd2fce8a001be7375d4064de04dab71ac7eab307
1 /*
2 * kernel/sched/core.c
4 * Core kernel scheduler code and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
7 */
8 #include "sched.h"
10 #include <linux/nospec.h>
12 #include <linux/kcov.h>
14 #include <asm/switch_to.h>
15 #include <asm/tlb.h>
17 #include "../workqueue_internal.h"
18 #include "../smpboot.h"
20 #include "pelt.h"
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/sched.h>
25 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
27 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
29 * Debugging: various feature bits
31 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
32 * sysctl_sched_features, defined in sched.h, to allow constants propagation
33 * at compile time and compiler optimization based on features default.
35 #define SCHED_FEAT(name, enabled) \
36 (1UL << __SCHED_FEAT_##name) * enabled |
37 const_debug unsigned int sysctl_sched_features =
38 #include "features.h"
40 #undef SCHED_FEAT
41 #endif
44 * Number of tasks to iterate in a single balance run.
45 * Limited because this is done with IRQs disabled.
47 const_debug unsigned int sysctl_sched_nr_migrate = 32;
50 * period over which we measure -rt task CPU usage in us.
51 * default: 1s
53 unsigned int sysctl_sched_rt_period = 1000000;
55 __read_mostly int scheduler_running;
58 * part of the period that we allow rt tasks to run in us.
59 * default: 0.95s
61 int sysctl_sched_rt_runtime = 950000;
64 * __task_rq_lock - lock the rq @p resides on.
66 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
67 __acquires(rq->lock)
69 struct rq *rq;
71 lockdep_assert_held(&p->pi_lock);
73 for (;;) {
74 rq = task_rq(p);
75 raw_spin_lock(&rq->lock);
76 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
77 rq_pin_lock(rq, rf);
78 return rq;
80 raw_spin_unlock(&rq->lock);
82 while (unlikely(task_on_rq_migrating(p)))
83 cpu_relax();
88 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
90 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
91 __acquires(p->pi_lock)
92 __acquires(rq->lock)
94 struct rq *rq;
96 for (;;) {
97 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
98 rq = task_rq(p);
99 raw_spin_lock(&rq->lock);
101 * move_queued_task() task_rq_lock()
103 * ACQUIRE (rq->lock)
104 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
105 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
106 * [S] ->cpu = new_cpu [L] task_rq()
107 * [L] ->on_rq
108 * RELEASE (rq->lock)
110 * If we observe the old CPU in task_rq_lock, the acquire of
111 * the old rq->lock will fully serialize against the stores.
113 * If we observe the new CPU in task_rq_lock, the acquire will
114 * pair with the WMB to ensure we must then also see migrating.
116 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
117 rq_pin_lock(rq, rf);
118 return rq;
120 raw_spin_unlock(&rq->lock);
121 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
123 while (unlikely(task_on_rq_migrating(p)))
124 cpu_relax();
129 * RQ-clock updating methods:
132 static void update_rq_clock_task(struct rq *rq, s64 delta)
135 * In theory, the compile should just see 0 here, and optimize out the call
136 * to sched_rt_avg_update. But I don't trust it...
138 s64 __maybe_unused steal = 0, irq_delta = 0;
140 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
141 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
144 * Since irq_time is only updated on {soft,}irq_exit, we might run into
145 * this case when a previous update_rq_clock() happened inside a
146 * {soft,}irq region.
148 * When this happens, we stop ->clock_task and only update the
149 * prev_irq_time stamp to account for the part that fit, so that a next
150 * update will consume the rest. This ensures ->clock_task is
151 * monotonic.
153 * It does however cause some slight miss-attribution of {soft,}irq
154 * time, a more accurate solution would be to update the irq_time using
155 * the current rq->clock timestamp, except that would require using
156 * atomic ops.
158 if (irq_delta > delta)
159 irq_delta = delta;
161 rq->prev_irq_time += irq_delta;
162 delta -= irq_delta;
163 #endif
164 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
165 if (static_key_false((&paravirt_steal_rq_enabled))) {
166 steal = paravirt_steal_clock(cpu_of(rq));
167 steal -= rq->prev_steal_time_rq;
169 if (unlikely(steal > delta))
170 steal = delta;
172 rq->prev_steal_time_rq += steal;
173 delta -= steal;
175 #endif
177 rq->clock_task += delta;
179 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
180 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
181 update_irq_load_avg(rq, irq_delta + steal);
182 #endif
185 void update_rq_clock(struct rq *rq)
187 s64 delta;
189 lockdep_assert_held(&rq->lock);
191 if (rq->clock_update_flags & RQCF_ACT_SKIP)
192 return;
194 #ifdef CONFIG_SCHED_DEBUG
195 if (sched_feat(WARN_DOUBLE_CLOCK))
196 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
197 rq->clock_update_flags |= RQCF_UPDATED;
198 #endif
200 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
201 if (delta < 0)
202 return;
203 rq->clock += delta;
204 update_rq_clock_task(rq, delta);
208 #ifdef CONFIG_SCHED_HRTICK
210 * Use HR-timers to deliver accurate preemption points.
213 static void hrtick_clear(struct rq *rq)
215 if (hrtimer_active(&rq->hrtick_timer))
216 hrtimer_cancel(&rq->hrtick_timer);
220 * High-resolution timer tick.
221 * Runs from hardirq context with interrupts disabled.
223 static enum hrtimer_restart hrtick(struct hrtimer *timer)
225 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
226 struct rq_flags rf;
228 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
230 rq_lock(rq, &rf);
231 update_rq_clock(rq);
232 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
233 rq_unlock(rq, &rf);
235 return HRTIMER_NORESTART;
238 #ifdef CONFIG_SMP
240 static void __hrtick_restart(struct rq *rq)
242 struct hrtimer *timer = &rq->hrtick_timer;
244 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
248 * called from hardirq (IPI) context
250 static void __hrtick_start(void *arg)
252 struct rq *rq = arg;
253 struct rq_flags rf;
255 rq_lock(rq, &rf);
256 __hrtick_restart(rq);
257 rq->hrtick_csd_pending = 0;
258 rq_unlock(rq, &rf);
262 * Called to set the hrtick timer state.
264 * called with rq->lock held and irqs disabled
266 void hrtick_start(struct rq *rq, u64 delay)
268 struct hrtimer *timer = &rq->hrtick_timer;
269 ktime_t time;
270 s64 delta;
273 * Don't schedule slices shorter than 10000ns, that just
274 * doesn't make sense and can cause timer DoS.
276 delta = max_t(s64, delay, 10000LL);
277 time = ktime_add_ns(timer->base->get_time(), delta);
279 hrtimer_set_expires(timer, time);
281 if (rq == this_rq()) {
282 __hrtick_restart(rq);
283 } else if (!rq->hrtick_csd_pending) {
284 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
285 rq->hrtick_csd_pending = 1;
289 #else
291 * Called to set the hrtick timer state.
293 * called with rq->lock held and irqs disabled
295 void hrtick_start(struct rq *rq, u64 delay)
298 * Don't schedule slices shorter than 10000ns, that just
299 * doesn't make sense. Rely on vruntime for fairness.
301 delay = max_t(u64, delay, 10000LL);
302 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
303 HRTIMER_MODE_REL_PINNED);
305 #endif /* CONFIG_SMP */
307 static void hrtick_rq_init(struct rq *rq)
309 #ifdef CONFIG_SMP
310 rq->hrtick_csd_pending = 0;
312 rq->hrtick_csd.flags = 0;
313 rq->hrtick_csd.func = __hrtick_start;
314 rq->hrtick_csd.info = rq;
315 #endif
317 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
318 rq->hrtick_timer.function = hrtick;
320 #else /* CONFIG_SCHED_HRTICK */
321 static inline void hrtick_clear(struct rq *rq)
325 static inline void hrtick_rq_init(struct rq *rq)
328 #endif /* CONFIG_SCHED_HRTICK */
331 * cmpxchg based fetch_or, macro so it works for different integer types
333 #define fetch_or(ptr, mask) \
334 ({ \
335 typeof(ptr) _ptr = (ptr); \
336 typeof(mask) _mask = (mask); \
337 typeof(*_ptr) _old, _val = *_ptr; \
339 for (;;) { \
340 _old = cmpxchg(_ptr, _val, _val | _mask); \
341 if (_old == _val) \
342 break; \
343 _val = _old; \
345 _old; \
348 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
350 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
351 * this avoids any races wrt polling state changes and thereby avoids
352 * spurious IPIs.
354 static bool set_nr_and_not_polling(struct task_struct *p)
356 struct thread_info *ti = task_thread_info(p);
357 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
361 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
363 * If this returns true, then the idle task promises to call
364 * sched_ttwu_pending() and reschedule soon.
366 static bool set_nr_if_polling(struct task_struct *p)
368 struct thread_info *ti = task_thread_info(p);
369 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
371 for (;;) {
372 if (!(val & _TIF_POLLING_NRFLAG))
373 return false;
374 if (val & _TIF_NEED_RESCHED)
375 return true;
376 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
377 if (old == val)
378 break;
379 val = old;
381 return true;
384 #else
385 static bool set_nr_and_not_polling(struct task_struct *p)
387 set_tsk_need_resched(p);
388 return true;
391 #ifdef CONFIG_SMP
392 static bool set_nr_if_polling(struct task_struct *p)
394 return false;
396 #endif
397 #endif
399 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
401 struct wake_q_node *node = &task->wake_q;
404 * Atomically grab the task, if ->wake_q is !nil already it means
405 * its already queued (either by us or someone else) and will get the
406 * wakeup due to that.
408 * This cmpxchg() executes a full barrier, which pairs with the full
409 * barrier executed by the wakeup in wake_up_q().
411 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
412 return;
414 get_task_struct(task);
417 * The head is context local, there can be no concurrency.
419 *head->lastp = node;
420 head->lastp = &node->next;
423 void wake_up_q(struct wake_q_head *head)
425 struct wake_q_node *node = head->first;
427 while (node != WAKE_Q_TAIL) {
428 struct task_struct *task;
430 task = container_of(node, struct task_struct, wake_q);
431 BUG_ON(!task);
432 /* Task can safely be re-inserted now: */
433 node = node->next;
434 task->wake_q.next = NULL;
437 * wake_up_process() executes a full barrier, which pairs with
438 * the queueing in wake_q_add() so as not to miss wakeups.
440 wake_up_process(task);
441 put_task_struct(task);
446 * resched_curr - mark rq's current task 'to be rescheduled now'.
448 * On UP this means the setting of the need_resched flag, on SMP it
449 * might also involve a cross-CPU call to trigger the scheduler on
450 * the target CPU.
452 void resched_curr(struct rq *rq)
454 struct task_struct *curr = rq->curr;
455 int cpu;
457 lockdep_assert_held(&rq->lock);
459 if (test_tsk_need_resched(curr))
460 return;
462 cpu = cpu_of(rq);
464 if (cpu == smp_processor_id()) {
465 set_tsk_need_resched(curr);
466 set_preempt_need_resched();
467 return;
470 if (set_nr_and_not_polling(curr))
471 smp_send_reschedule(cpu);
472 else
473 trace_sched_wake_idle_without_ipi(cpu);
476 void resched_cpu(int cpu)
478 struct rq *rq = cpu_rq(cpu);
479 unsigned long flags;
481 raw_spin_lock_irqsave(&rq->lock, flags);
482 if (cpu_online(cpu) || cpu == smp_processor_id())
483 resched_curr(rq);
484 raw_spin_unlock_irqrestore(&rq->lock, flags);
487 #ifdef CONFIG_SMP
488 #ifdef CONFIG_NO_HZ_COMMON
490 * In the semi idle case, use the nearest busy CPU for migrating timers
491 * from an idle CPU. This is good for power-savings.
493 * We don't do similar optimization for completely idle system, as
494 * selecting an idle CPU will add more delays to the timers than intended
495 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
497 int get_nohz_timer_target(void)
499 int i, cpu = smp_processor_id();
500 struct sched_domain *sd;
502 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
503 return cpu;
505 rcu_read_lock();
506 for_each_domain(cpu, sd) {
507 for_each_cpu(i, sched_domain_span(sd)) {
508 if (cpu == i)
509 continue;
511 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
512 cpu = i;
513 goto unlock;
518 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
519 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
520 unlock:
521 rcu_read_unlock();
522 return cpu;
526 * When add_timer_on() enqueues a timer into the timer wheel of an
527 * idle CPU then this timer might expire before the next timer event
528 * which is scheduled to wake up that CPU. In case of a completely
529 * idle system the next event might even be infinite time into the
530 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
531 * leaves the inner idle loop so the newly added timer is taken into
532 * account when the CPU goes back to idle and evaluates the timer
533 * wheel for the next timer event.
535 static void wake_up_idle_cpu(int cpu)
537 struct rq *rq = cpu_rq(cpu);
539 if (cpu == smp_processor_id())
540 return;
542 if (set_nr_and_not_polling(rq->idle))
543 smp_send_reschedule(cpu);
544 else
545 trace_sched_wake_idle_without_ipi(cpu);
548 static bool wake_up_full_nohz_cpu(int cpu)
551 * We just need the target to call irq_exit() and re-evaluate
552 * the next tick. The nohz full kick at least implies that.
553 * If needed we can still optimize that later with an
554 * empty IRQ.
556 if (cpu_is_offline(cpu))
557 return true; /* Don't try to wake offline CPUs. */
558 if (tick_nohz_full_cpu(cpu)) {
559 if (cpu != smp_processor_id() ||
560 tick_nohz_tick_stopped())
561 tick_nohz_full_kick_cpu(cpu);
562 return true;
565 return false;
569 * Wake up the specified CPU. If the CPU is going offline, it is the
570 * caller's responsibility to deal with the lost wakeup, for example,
571 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
573 void wake_up_nohz_cpu(int cpu)
575 if (!wake_up_full_nohz_cpu(cpu))
576 wake_up_idle_cpu(cpu);
579 static inline bool got_nohz_idle_kick(void)
581 int cpu = smp_processor_id();
583 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
584 return false;
586 if (idle_cpu(cpu) && !need_resched())
587 return true;
590 * We can't run Idle Load Balance on this CPU for this time so we
591 * cancel it and clear NOHZ_BALANCE_KICK
593 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
594 return false;
597 #else /* CONFIG_NO_HZ_COMMON */
599 static inline bool got_nohz_idle_kick(void)
601 return false;
604 #endif /* CONFIG_NO_HZ_COMMON */
606 #ifdef CONFIG_NO_HZ_FULL
607 bool sched_can_stop_tick(struct rq *rq)
609 int fifo_nr_running;
611 /* Deadline tasks, even if single, need the tick */
612 if (rq->dl.dl_nr_running)
613 return false;
616 * If there are more than one RR tasks, we need the tick to effect the
617 * actual RR behaviour.
619 if (rq->rt.rr_nr_running) {
620 if (rq->rt.rr_nr_running == 1)
621 return true;
622 else
623 return false;
627 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
628 * forced preemption between FIFO tasks.
630 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
631 if (fifo_nr_running)
632 return true;
635 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
636 * if there's more than one we need the tick for involuntary
637 * preemption.
639 if (rq->nr_running > 1)
640 return false;
642 return true;
644 #endif /* CONFIG_NO_HZ_FULL */
645 #endif /* CONFIG_SMP */
647 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
650 * Iterate task_group tree rooted at *from, calling @down when first entering a
651 * node and @up when leaving it for the final time.
653 * Caller must hold rcu_lock or sufficient equivalent.
655 int walk_tg_tree_from(struct task_group *from,
656 tg_visitor down, tg_visitor up, void *data)
658 struct task_group *parent, *child;
659 int ret;
661 parent = from;
663 down:
664 ret = (*down)(parent, data);
665 if (ret)
666 goto out;
667 list_for_each_entry_rcu(child, &parent->children, siblings) {
668 parent = child;
669 goto down;
672 continue;
674 ret = (*up)(parent, data);
675 if (ret || parent == from)
676 goto out;
678 child = parent;
679 parent = parent->parent;
680 if (parent)
681 goto up;
682 out:
683 return ret;
686 int tg_nop(struct task_group *tg, void *data)
688 return 0;
690 #endif
692 static void set_load_weight(struct task_struct *p, bool update_load)
694 int prio = p->static_prio - MAX_RT_PRIO;
695 struct load_weight *load = &p->se.load;
698 * SCHED_IDLE tasks get minimal weight:
700 if (idle_policy(p->policy)) {
701 load->weight = scale_load(WEIGHT_IDLEPRIO);
702 load->inv_weight = WMULT_IDLEPRIO;
703 p->se.runnable_weight = load->weight;
704 return;
708 * SCHED_OTHER tasks have to update their load when changing their
709 * weight
711 if (update_load && p->sched_class == &fair_sched_class) {
712 reweight_task(p, prio);
713 } else {
714 load->weight = scale_load(sched_prio_to_weight[prio]);
715 load->inv_weight = sched_prio_to_wmult[prio];
716 p->se.runnable_weight = load->weight;
720 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
722 if (!(flags & ENQUEUE_NOCLOCK))
723 update_rq_clock(rq);
725 if (!(flags & ENQUEUE_RESTORE)) {
726 sched_info_queued(rq, p);
727 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
730 p->sched_class->enqueue_task(rq, p, flags);
733 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
735 if (!(flags & DEQUEUE_NOCLOCK))
736 update_rq_clock(rq);
738 if (!(flags & DEQUEUE_SAVE)) {
739 sched_info_dequeued(rq, p);
740 psi_dequeue(p, flags & DEQUEUE_SLEEP);
743 p->sched_class->dequeue_task(rq, p, flags);
746 void activate_task(struct rq *rq, struct task_struct *p, int flags)
748 if (task_contributes_to_load(p))
749 rq->nr_uninterruptible--;
751 enqueue_task(rq, p, flags);
754 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
756 if (task_contributes_to_load(p))
757 rq->nr_uninterruptible++;
759 dequeue_task(rq, p, flags);
763 * __normal_prio - return the priority that is based on the static prio
765 static inline int __normal_prio(struct task_struct *p)
767 return p->static_prio;
771 * Calculate the expected normal priority: i.e. priority
772 * without taking RT-inheritance into account. Might be
773 * boosted by interactivity modifiers. Changes upon fork,
774 * setprio syscalls, and whenever the interactivity
775 * estimator recalculates.
777 static inline int normal_prio(struct task_struct *p)
779 int prio;
781 if (task_has_dl_policy(p))
782 prio = MAX_DL_PRIO-1;
783 else if (task_has_rt_policy(p))
784 prio = MAX_RT_PRIO-1 - p->rt_priority;
785 else
786 prio = __normal_prio(p);
787 return prio;
791 * Calculate the current priority, i.e. the priority
792 * taken into account by the scheduler. This value might
793 * be boosted by RT tasks, or might be boosted by
794 * interactivity modifiers. Will be RT if the task got
795 * RT-boosted. If not then it returns p->normal_prio.
797 static int effective_prio(struct task_struct *p)
799 p->normal_prio = normal_prio(p);
801 * If we are RT tasks or we were boosted to RT priority,
802 * keep the priority unchanged. Otherwise, update priority
803 * to the normal priority:
805 if (!rt_prio(p->prio))
806 return p->normal_prio;
807 return p->prio;
811 * task_curr - is this task currently executing on a CPU?
812 * @p: the task in question.
814 * Return: 1 if the task is currently executing. 0 otherwise.
816 inline int task_curr(const struct task_struct *p)
818 return cpu_curr(task_cpu(p)) == p;
822 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
823 * use the balance_callback list if you want balancing.
825 * this means any call to check_class_changed() must be followed by a call to
826 * balance_callback().
828 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
829 const struct sched_class *prev_class,
830 int oldprio)
832 if (prev_class != p->sched_class) {
833 if (prev_class->switched_from)
834 prev_class->switched_from(rq, p);
836 p->sched_class->switched_to(rq, p);
837 } else if (oldprio != p->prio || dl_task(p))
838 p->sched_class->prio_changed(rq, p, oldprio);
841 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
843 const struct sched_class *class;
845 if (p->sched_class == rq->curr->sched_class) {
846 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
847 } else {
848 for_each_class(class) {
849 if (class == rq->curr->sched_class)
850 break;
851 if (class == p->sched_class) {
852 resched_curr(rq);
853 break;
859 * A queue event has occurred, and we're going to schedule. In
860 * this case, we can save a useless back to back clock update.
862 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
863 rq_clock_skip_update(rq);
866 #ifdef CONFIG_SMP
868 static inline bool is_per_cpu_kthread(struct task_struct *p)
870 if (!(p->flags & PF_KTHREAD))
871 return false;
873 if (p->nr_cpus_allowed != 1)
874 return false;
876 return true;
880 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
881 * __set_cpus_allowed_ptr() and select_fallback_rq().
883 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
885 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
886 return false;
888 if (is_per_cpu_kthread(p))
889 return cpu_online(cpu);
891 return cpu_active(cpu);
895 * This is how migration works:
897 * 1) we invoke migration_cpu_stop() on the target CPU using
898 * stop_one_cpu().
899 * 2) stopper starts to run (implicitly forcing the migrated thread
900 * off the CPU)
901 * 3) it checks whether the migrated task is still in the wrong runqueue.
902 * 4) if it's in the wrong runqueue then the migration thread removes
903 * it and puts it into the right queue.
904 * 5) stopper completes and stop_one_cpu() returns and the migration
905 * is done.
909 * move_queued_task - move a queued task to new rq.
911 * Returns (locked) new rq. Old rq's lock is released.
913 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
914 struct task_struct *p, int new_cpu)
916 lockdep_assert_held(&rq->lock);
918 p->on_rq = TASK_ON_RQ_MIGRATING;
919 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
920 set_task_cpu(p, new_cpu);
921 rq_unlock(rq, rf);
923 rq = cpu_rq(new_cpu);
925 rq_lock(rq, rf);
926 BUG_ON(task_cpu(p) != new_cpu);
927 enqueue_task(rq, p, 0);
928 p->on_rq = TASK_ON_RQ_QUEUED;
929 check_preempt_curr(rq, p, 0);
931 return rq;
934 struct migration_arg {
935 struct task_struct *task;
936 int dest_cpu;
940 * Move (not current) task off this CPU, onto the destination CPU. We're doing
941 * this because either it can't run here any more (set_cpus_allowed()
942 * away from this CPU, or CPU going down), or because we're
943 * attempting to rebalance this task on exec (sched_exec).
945 * So we race with normal scheduler movements, but that's OK, as long
946 * as the task is no longer on this CPU.
948 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
949 struct task_struct *p, int dest_cpu)
951 /* Affinity changed (again). */
952 if (!is_cpu_allowed(p, dest_cpu))
953 return rq;
955 update_rq_clock(rq);
956 rq = move_queued_task(rq, rf, p, dest_cpu);
958 return rq;
962 * migration_cpu_stop - this will be executed by a highprio stopper thread
963 * and performs thread migration by bumping thread off CPU then
964 * 'pushing' onto another runqueue.
966 static int migration_cpu_stop(void *data)
968 struct migration_arg *arg = data;
969 struct task_struct *p = arg->task;
970 struct rq *rq = this_rq();
971 struct rq_flags rf;
974 * The original target CPU might have gone down and we might
975 * be on another CPU but it doesn't matter.
977 local_irq_disable();
979 * We need to explicitly wake pending tasks before running
980 * __migrate_task() such that we will not miss enforcing cpus_allowed
981 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
983 sched_ttwu_pending();
985 raw_spin_lock(&p->pi_lock);
986 rq_lock(rq, &rf);
988 * If task_rq(p) != rq, it cannot be migrated here, because we're
989 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
990 * we're holding p->pi_lock.
992 if (task_rq(p) == rq) {
993 if (task_on_rq_queued(p))
994 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
995 else
996 p->wake_cpu = arg->dest_cpu;
998 rq_unlock(rq, &rf);
999 raw_spin_unlock(&p->pi_lock);
1001 local_irq_enable();
1002 return 0;
1006 * sched_class::set_cpus_allowed must do the below, but is not required to
1007 * actually call this function.
1009 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1011 cpumask_copy(&p->cpus_allowed, new_mask);
1012 p->nr_cpus_allowed = cpumask_weight(new_mask);
1015 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1017 struct rq *rq = task_rq(p);
1018 bool queued, running;
1020 lockdep_assert_held(&p->pi_lock);
1022 queued = task_on_rq_queued(p);
1023 running = task_current(rq, p);
1025 if (queued) {
1027 * Because __kthread_bind() calls this on blocked tasks without
1028 * holding rq->lock.
1030 lockdep_assert_held(&rq->lock);
1031 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1033 if (running)
1034 put_prev_task(rq, p);
1036 p->sched_class->set_cpus_allowed(p, new_mask);
1038 if (queued)
1039 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1040 if (running)
1041 set_curr_task(rq, p);
1045 * Change a given task's CPU affinity. Migrate the thread to a
1046 * proper CPU and schedule it away if the CPU it's executing on
1047 * is removed from the allowed bitmask.
1049 * NOTE: the caller must have a valid reference to the task, the
1050 * task must not exit() & deallocate itself prematurely. The
1051 * call is not atomic; no spinlocks may be held.
1053 static int __set_cpus_allowed_ptr(struct task_struct *p,
1054 const struct cpumask *new_mask, bool check)
1056 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1057 unsigned int dest_cpu;
1058 struct rq_flags rf;
1059 struct rq *rq;
1060 int ret = 0;
1062 rq = task_rq_lock(p, &rf);
1063 update_rq_clock(rq);
1065 if (p->flags & PF_KTHREAD) {
1067 * Kernel threads are allowed on online && !active CPUs
1069 cpu_valid_mask = cpu_online_mask;
1073 * Must re-check here, to close a race against __kthread_bind(),
1074 * sched_setaffinity() is not guaranteed to observe the flag.
1076 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1077 ret = -EINVAL;
1078 goto out;
1081 if (cpumask_equal(&p->cpus_allowed, new_mask))
1082 goto out;
1084 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1085 ret = -EINVAL;
1086 goto out;
1089 do_set_cpus_allowed(p, new_mask);
1091 if (p->flags & PF_KTHREAD) {
1093 * For kernel threads that do indeed end up on online &&
1094 * !active we want to ensure they are strict per-CPU threads.
1096 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1097 !cpumask_intersects(new_mask, cpu_active_mask) &&
1098 p->nr_cpus_allowed != 1);
1101 /* Can the task run on the task's current CPU? If so, we're done */
1102 if (cpumask_test_cpu(task_cpu(p), new_mask))
1103 goto out;
1105 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1106 if (task_running(rq, p) || p->state == TASK_WAKING) {
1107 struct migration_arg arg = { p, dest_cpu };
1108 /* Need help from migration thread: drop lock and wait. */
1109 task_rq_unlock(rq, p, &rf);
1110 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1111 tlb_migrate_finish(p->mm);
1112 return 0;
1113 } else if (task_on_rq_queued(p)) {
1115 * OK, since we're going to drop the lock immediately
1116 * afterwards anyway.
1118 rq = move_queued_task(rq, &rf, p, dest_cpu);
1120 out:
1121 task_rq_unlock(rq, p, &rf);
1123 return ret;
1126 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1128 return __set_cpus_allowed_ptr(p, new_mask, false);
1130 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1132 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1134 #ifdef CONFIG_SCHED_DEBUG
1136 * We should never call set_task_cpu() on a blocked task,
1137 * ttwu() will sort out the placement.
1139 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1140 !p->on_rq);
1143 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1144 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1145 * time relying on p->on_rq.
1147 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1148 p->sched_class == &fair_sched_class &&
1149 (p->on_rq && !task_on_rq_migrating(p)));
1151 #ifdef CONFIG_LOCKDEP
1153 * The caller should hold either p->pi_lock or rq->lock, when changing
1154 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1156 * sched_move_task() holds both and thus holding either pins the cgroup,
1157 * see task_group().
1159 * Furthermore, all task_rq users should acquire both locks, see
1160 * task_rq_lock().
1162 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1163 lockdep_is_held(&task_rq(p)->lock)));
1164 #endif
1166 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1168 WARN_ON_ONCE(!cpu_online(new_cpu));
1169 #endif
1171 trace_sched_migrate_task(p, new_cpu);
1173 if (task_cpu(p) != new_cpu) {
1174 if (p->sched_class->migrate_task_rq)
1175 p->sched_class->migrate_task_rq(p, new_cpu);
1176 p->se.nr_migrations++;
1177 rseq_migrate(p);
1178 perf_event_task_migrate(p);
1181 __set_task_cpu(p, new_cpu);
1184 #ifdef CONFIG_NUMA_BALANCING
1185 static void __migrate_swap_task(struct task_struct *p, int cpu)
1187 if (task_on_rq_queued(p)) {
1188 struct rq *src_rq, *dst_rq;
1189 struct rq_flags srf, drf;
1191 src_rq = task_rq(p);
1192 dst_rq = cpu_rq(cpu);
1194 rq_pin_lock(src_rq, &srf);
1195 rq_pin_lock(dst_rq, &drf);
1197 p->on_rq = TASK_ON_RQ_MIGRATING;
1198 deactivate_task(src_rq, p, 0);
1199 set_task_cpu(p, cpu);
1200 activate_task(dst_rq, p, 0);
1201 p->on_rq = TASK_ON_RQ_QUEUED;
1202 check_preempt_curr(dst_rq, p, 0);
1204 rq_unpin_lock(dst_rq, &drf);
1205 rq_unpin_lock(src_rq, &srf);
1207 } else {
1209 * Task isn't running anymore; make it appear like we migrated
1210 * it before it went to sleep. This means on wakeup we make the
1211 * previous CPU our target instead of where it really is.
1213 p->wake_cpu = cpu;
1217 struct migration_swap_arg {
1218 struct task_struct *src_task, *dst_task;
1219 int src_cpu, dst_cpu;
1222 static int migrate_swap_stop(void *data)
1224 struct migration_swap_arg *arg = data;
1225 struct rq *src_rq, *dst_rq;
1226 int ret = -EAGAIN;
1228 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1229 return -EAGAIN;
1231 src_rq = cpu_rq(arg->src_cpu);
1232 dst_rq = cpu_rq(arg->dst_cpu);
1234 double_raw_lock(&arg->src_task->pi_lock,
1235 &arg->dst_task->pi_lock);
1236 double_rq_lock(src_rq, dst_rq);
1238 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1239 goto unlock;
1241 if (task_cpu(arg->src_task) != arg->src_cpu)
1242 goto unlock;
1244 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1245 goto unlock;
1247 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1248 goto unlock;
1250 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1251 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1253 ret = 0;
1255 unlock:
1256 double_rq_unlock(src_rq, dst_rq);
1257 raw_spin_unlock(&arg->dst_task->pi_lock);
1258 raw_spin_unlock(&arg->src_task->pi_lock);
1260 return ret;
1264 * Cross migrate two tasks
1266 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1267 int target_cpu, int curr_cpu)
1269 struct migration_swap_arg arg;
1270 int ret = -EINVAL;
1272 arg = (struct migration_swap_arg){
1273 .src_task = cur,
1274 .src_cpu = curr_cpu,
1275 .dst_task = p,
1276 .dst_cpu = target_cpu,
1279 if (arg.src_cpu == arg.dst_cpu)
1280 goto out;
1283 * These three tests are all lockless; this is OK since all of them
1284 * will be re-checked with proper locks held further down the line.
1286 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1287 goto out;
1289 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1290 goto out;
1292 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1293 goto out;
1295 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1296 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1298 out:
1299 return ret;
1301 #endif /* CONFIG_NUMA_BALANCING */
1304 * wait_task_inactive - wait for a thread to unschedule.
1306 * If @match_state is nonzero, it's the @p->state value just checked and
1307 * not expected to change. If it changes, i.e. @p might have woken up,
1308 * then return zero. When we succeed in waiting for @p to be off its CPU,
1309 * we return a positive number (its total switch count). If a second call
1310 * a short while later returns the same number, the caller can be sure that
1311 * @p has remained unscheduled the whole time.
1313 * The caller must ensure that the task *will* unschedule sometime soon,
1314 * else this function might spin for a *long* time. This function can't
1315 * be called with interrupts off, or it may introduce deadlock with
1316 * smp_call_function() if an IPI is sent by the same process we are
1317 * waiting to become inactive.
1319 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1321 int running, queued;
1322 struct rq_flags rf;
1323 unsigned long ncsw;
1324 struct rq *rq;
1326 for (;;) {
1328 * We do the initial early heuristics without holding
1329 * any task-queue locks at all. We'll only try to get
1330 * the runqueue lock when things look like they will
1331 * work out!
1333 rq = task_rq(p);
1336 * If the task is actively running on another CPU
1337 * still, just relax and busy-wait without holding
1338 * any locks.
1340 * NOTE! Since we don't hold any locks, it's not
1341 * even sure that "rq" stays as the right runqueue!
1342 * But we don't care, since "task_running()" will
1343 * return false if the runqueue has changed and p
1344 * is actually now running somewhere else!
1346 while (task_running(rq, p)) {
1347 if (match_state && unlikely(p->state != match_state))
1348 return 0;
1349 cpu_relax();
1353 * Ok, time to look more closely! We need the rq
1354 * lock now, to be *sure*. If we're wrong, we'll
1355 * just go back and repeat.
1357 rq = task_rq_lock(p, &rf);
1358 trace_sched_wait_task(p);
1359 running = task_running(rq, p);
1360 queued = task_on_rq_queued(p);
1361 ncsw = 0;
1362 if (!match_state || p->state == match_state)
1363 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1364 task_rq_unlock(rq, p, &rf);
1367 * If it changed from the expected state, bail out now.
1369 if (unlikely(!ncsw))
1370 break;
1373 * Was it really running after all now that we
1374 * checked with the proper locks actually held?
1376 * Oops. Go back and try again..
1378 if (unlikely(running)) {
1379 cpu_relax();
1380 continue;
1384 * It's not enough that it's not actively running,
1385 * it must be off the runqueue _entirely_, and not
1386 * preempted!
1388 * So if it was still runnable (but just not actively
1389 * running right now), it's preempted, and we should
1390 * yield - it could be a while.
1392 if (unlikely(queued)) {
1393 ktime_t to = NSEC_PER_SEC / HZ;
1395 set_current_state(TASK_UNINTERRUPTIBLE);
1396 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1397 continue;
1401 * Ahh, all good. It wasn't running, and it wasn't
1402 * runnable, which means that it will never become
1403 * running in the future either. We're all done!
1405 break;
1408 return ncsw;
1411 /***
1412 * kick_process - kick a running thread to enter/exit the kernel
1413 * @p: the to-be-kicked thread
1415 * Cause a process which is running on another CPU to enter
1416 * kernel-mode, without any delay. (to get signals handled.)
1418 * NOTE: this function doesn't have to take the runqueue lock,
1419 * because all it wants to ensure is that the remote task enters
1420 * the kernel. If the IPI races and the task has been migrated
1421 * to another CPU then no harm is done and the purpose has been
1422 * achieved as well.
1424 void kick_process(struct task_struct *p)
1426 int cpu;
1428 preempt_disable();
1429 cpu = task_cpu(p);
1430 if ((cpu != smp_processor_id()) && task_curr(p))
1431 smp_send_reschedule(cpu);
1432 preempt_enable();
1434 EXPORT_SYMBOL_GPL(kick_process);
1437 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1439 * A few notes on cpu_active vs cpu_online:
1441 * - cpu_active must be a subset of cpu_online
1443 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1444 * see __set_cpus_allowed_ptr(). At this point the newly online
1445 * CPU isn't yet part of the sched domains, and balancing will not
1446 * see it.
1448 * - on CPU-down we clear cpu_active() to mask the sched domains and
1449 * avoid the load balancer to place new tasks on the to be removed
1450 * CPU. Existing tasks will remain running there and will be taken
1451 * off.
1453 * This means that fallback selection must not select !active CPUs.
1454 * And can assume that any active CPU must be online. Conversely
1455 * select_task_rq() below may allow selection of !active CPUs in order
1456 * to satisfy the above rules.
1458 static int select_fallback_rq(int cpu, struct task_struct *p)
1460 int nid = cpu_to_node(cpu);
1461 const struct cpumask *nodemask = NULL;
1462 enum { cpuset, possible, fail } state = cpuset;
1463 int dest_cpu;
1466 * If the node that the CPU is on has been offlined, cpu_to_node()
1467 * will return -1. There is no CPU on the node, and we should
1468 * select the CPU on the other node.
1470 if (nid != -1) {
1471 nodemask = cpumask_of_node(nid);
1473 /* Look for allowed, online CPU in same node. */
1474 for_each_cpu(dest_cpu, nodemask) {
1475 if (!cpu_active(dest_cpu))
1476 continue;
1477 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1478 return dest_cpu;
1482 for (;;) {
1483 /* Any allowed, online CPU? */
1484 for_each_cpu(dest_cpu, &p->cpus_allowed) {
1485 if (!is_cpu_allowed(p, dest_cpu))
1486 continue;
1488 goto out;
1491 /* No more Mr. Nice Guy. */
1492 switch (state) {
1493 case cpuset:
1494 if (IS_ENABLED(CONFIG_CPUSETS)) {
1495 cpuset_cpus_allowed_fallback(p);
1496 state = possible;
1497 break;
1499 /* Fall-through */
1500 case possible:
1501 do_set_cpus_allowed(p, cpu_possible_mask);
1502 state = fail;
1503 break;
1505 case fail:
1506 BUG();
1507 break;
1511 out:
1512 if (state != cpuset) {
1514 * Don't tell them about moving exiting tasks or
1515 * kernel threads (both mm NULL), since they never
1516 * leave kernel.
1518 if (p->mm && printk_ratelimit()) {
1519 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1520 task_pid_nr(p), p->comm, cpu);
1524 return dest_cpu;
1528 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1530 static inline
1531 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1533 lockdep_assert_held(&p->pi_lock);
1535 if (p->nr_cpus_allowed > 1)
1536 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1537 else
1538 cpu = cpumask_any(&p->cpus_allowed);
1541 * In order not to call set_task_cpu() on a blocking task we need
1542 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1543 * CPU.
1545 * Since this is common to all placement strategies, this lives here.
1547 * [ this allows ->select_task() to simply return task_cpu(p) and
1548 * not worry about this generic constraint ]
1550 if (unlikely(!is_cpu_allowed(p, cpu)))
1551 cpu = select_fallback_rq(task_cpu(p), p);
1553 return cpu;
1556 static void update_avg(u64 *avg, u64 sample)
1558 s64 diff = sample - *avg;
1559 *avg += diff >> 3;
1562 void sched_set_stop_task(int cpu, struct task_struct *stop)
1564 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1565 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1567 if (stop) {
1569 * Make it appear like a SCHED_FIFO task, its something
1570 * userspace knows about and won't get confused about.
1572 * Also, it will make PI more or less work without too
1573 * much confusion -- but then, stop work should not
1574 * rely on PI working anyway.
1576 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1578 stop->sched_class = &stop_sched_class;
1581 cpu_rq(cpu)->stop = stop;
1583 if (old_stop) {
1585 * Reset it back to a normal scheduling class so that
1586 * it can die in pieces.
1588 old_stop->sched_class = &rt_sched_class;
1592 #else
1594 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1595 const struct cpumask *new_mask, bool check)
1597 return set_cpus_allowed_ptr(p, new_mask);
1600 #endif /* CONFIG_SMP */
1602 static void
1603 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1605 struct rq *rq;
1607 if (!schedstat_enabled())
1608 return;
1610 rq = this_rq();
1612 #ifdef CONFIG_SMP
1613 if (cpu == rq->cpu) {
1614 __schedstat_inc(rq->ttwu_local);
1615 __schedstat_inc(p->se.statistics.nr_wakeups_local);
1616 } else {
1617 struct sched_domain *sd;
1619 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
1620 rcu_read_lock();
1621 for_each_domain(rq->cpu, sd) {
1622 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1623 __schedstat_inc(sd->ttwu_wake_remote);
1624 break;
1627 rcu_read_unlock();
1630 if (wake_flags & WF_MIGRATED)
1631 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1632 #endif /* CONFIG_SMP */
1634 __schedstat_inc(rq->ttwu_count);
1635 __schedstat_inc(p->se.statistics.nr_wakeups);
1637 if (wake_flags & WF_SYNC)
1638 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
1641 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1643 activate_task(rq, p, en_flags);
1644 p->on_rq = TASK_ON_RQ_QUEUED;
1646 /* If a worker is waking up, notify the workqueue: */
1647 if (p->flags & PF_WQ_WORKER)
1648 wq_worker_waking_up(p, cpu_of(rq));
1652 * Mark the task runnable and perform wakeup-preemption.
1654 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1655 struct rq_flags *rf)
1657 check_preempt_curr(rq, p, wake_flags);
1658 p->state = TASK_RUNNING;
1659 trace_sched_wakeup(p);
1661 #ifdef CONFIG_SMP
1662 if (p->sched_class->task_woken) {
1664 * Our task @p is fully woken up and running; so its safe to
1665 * drop the rq->lock, hereafter rq is only used for statistics.
1667 rq_unpin_lock(rq, rf);
1668 p->sched_class->task_woken(rq, p);
1669 rq_repin_lock(rq, rf);
1672 if (rq->idle_stamp) {
1673 u64 delta = rq_clock(rq) - rq->idle_stamp;
1674 u64 max = 2*rq->max_idle_balance_cost;
1676 update_avg(&rq->avg_idle, delta);
1678 if (rq->avg_idle > max)
1679 rq->avg_idle = max;
1681 rq->idle_stamp = 0;
1683 #endif
1686 static void
1687 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1688 struct rq_flags *rf)
1690 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1692 lockdep_assert_held(&rq->lock);
1694 #ifdef CONFIG_SMP
1695 if (p->sched_contributes_to_load)
1696 rq->nr_uninterruptible--;
1698 if (wake_flags & WF_MIGRATED)
1699 en_flags |= ENQUEUE_MIGRATED;
1700 #endif
1702 ttwu_activate(rq, p, en_flags);
1703 ttwu_do_wakeup(rq, p, wake_flags, rf);
1707 * Called in case the task @p isn't fully descheduled from its runqueue,
1708 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1709 * since all we need to do is flip p->state to TASK_RUNNING, since
1710 * the task is still ->on_rq.
1712 static int ttwu_remote(struct task_struct *p, int wake_flags)
1714 struct rq_flags rf;
1715 struct rq *rq;
1716 int ret = 0;
1718 rq = __task_rq_lock(p, &rf);
1719 if (task_on_rq_queued(p)) {
1720 /* check_preempt_curr() may use rq clock */
1721 update_rq_clock(rq);
1722 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1723 ret = 1;
1725 __task_rq_unlock(rq, &rf);
1727 return ret;
1730 #ifdef CONFIG_SMP
1731 void sched_ttwu_pending(void)
1733 struct rq *rq = this_rq();
1734 struct llist_node *llist = llist_del_all(&rq->wake_list);
1735 struct task_struct *p, *t;
1736 struct rq_flags rf;
1738 if (!llist)
1739 return;
1741 rq_lock_irqsave(rq, &rf);
1742 update_rq_clock(rq);
1744 llist_for_each_entry_safe(p, t, llist, wake_entry)
1745 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1747 rq_unlock_irqrestore(rq, &rf);
1750 void scheduler_ipi(void)
1753 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1754 * TIF_NEED_RESCHED remotely (for the first time) will also send
1755 * this IPI.
1757 preempt_fold_need_resched();
1759 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1760 return;
1763 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1764 * traditionally all their work was done from the interrupt return
1765 * path. Now that we actually do some work, we need to make sure
1766 * we do call them.
1768 * Some archs already do call them, luckily irq_enter/exit nest
1769 * properly.
1771 * Arguably we should visit all archs and update all handlers,
1772 * however a fair share of IPIs are still resched only so this would
1773 * somewhat pessimize the simple resched case.
1775 irq_enter();
1776 sched_ttwu_pending();
1779 * Check if someone kicked us for doing the nohz idle load balance.
1781 if (unlikely(got_nohz_idle_kick())) {
1782 this_rq()->idle_balance = 1;
1783 raise_softirq_irqoff(SCHED_SOFTIRQ);
1785 irq_exit();
1788 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1790 struct rq *rq = cpu_rq(cpu);
1792 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1794 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1795 if (!set_nr_if_polling(rq->idle))
1796 smp_send_reschedule(cpu);
1797 else
1798 trace_sched_wake_idle_without_ipi(cpu);
1802 void wake_up_if_idle(int cpu)
1804 struct rq *rq = cpu_rq(cpu);
1805 struct rq_flags rf;
1807 rcu_read_lock();
1809 if (!is_idle_task(rcu_dereference(rq->curr)))
1810 goto out;
1812 if (set_nr_if_polling(rq->idle)) {
1813 trace_sched_wake_idle_without_ipi(cpu);
1814 } else {
1815 rq_lock_irqsave(rq, &rf);
1816 if (is_idle_task(rq->curr))
1817 smp_send_reschedule(cpu);
1818 /* Else CPU is not idle, do nothing here: */
1819 rq_unlock_irqrestore(rq, &rf);
1822 out:
1823 rcu_read_unlock();
1826 bool cpus_share_cache(int this_cpu, int that_cpu)
1828 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1830 #endif /* CONFIG_SMP */
1832 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1834 struct rq *rq = cpu_rq(cpu);
1835 struct rq_flags rf;
1837 #if defined(CONFIG_SMP)
1838 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1839 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1840 ttwu_queue_remote(p, cpu, wake_flags);
1841 return;
1843 #endif
1845 rq_lock(rq, &rf);
1846 update_rq_clock(rq);
1847 ttwu_do_activate(rq, p, wake_flags, &rf);
1848 rq_unlock(rq, &rf);
1852 * Notes on Program-Order guarantees on SMP systems.
1854 * MIGRATION
1856 * The basic program-order guarantee on SMP systems is that when a task [t]
1857 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1858 * execution on its new CPU [c1].
1860 * For migration (of runnable tasks) this is provided by the following means:
1862 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1863 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1864 * rq(c1)->lock (if not at the same time, then in that order).
1865 * C) LOCK of the rq(c1)->lock scheduling in task
1867 * Release/acquire chaining guarantees that B happens after A and C after B.
1868 * Note: the CPU doing B need not be c0 or c1
1870 * Example:
1872 * CPU0 CPU1 CPU2
1874 * LOCK rq(0)->lock
1875 * sched-out X
1876 * sched-in Y
1877 * UNLOCK rq(0)->lock
1879 * LOCK rq(0)->lock // orders against CPU0
1880 * dequeue X
1881 * UNLOCK rq(0)->lock
1883 * LOCK rq(1)->lock
1884 * enqueue X
1885 * UNLOCK rq(1)->lock
1887 * LOCK rq(1)->lock // orders against CPU2
1888 * sched-out Z
1889 * sched-in X
1890 * UNLOCK rq(1)->lock
1893 * BLOCKING -- aka. SLEEP + WAKEUP
1895 * For blocking we (obviously) need to provide the same guarantee as for
1896 * migration. However the means are completely different as there is no lock
1897 * chain to provide order. Instead we do:
1899 * 1) smp_store_release(X->on_cpu, 0)
1900 * 2) smp_cond_load_acquire(!X->on_cpu)
1902 * Example:
1904 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1906 * LOCK rq(0)->lock LOCK X->pi_lock
1907 * dequeue X
1908 * sched-out X
1909 * smp_store_release(X->on_cpu, 0);
1911 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1912 * X->state = WAKING
1913 * set_task_cpu(X,2)
1915 * LOCK rq(2)->lock
1916 * enqueue X
1917 * X->state = RUNNING
1918 * UNLOCK rq(2)->lock
1920 * LOCK rq(2)->lock // orders against CPU1
1921 * sched-out Z
1922 * sched-in X
1923 * UNLOCK rq(2)->lock
1925 * UNLOCK X->pi_lock
1926 * UNLOCK rq(0)->lock
1929 * However, for wakeups there is a second guarantee we must provide, namely we
1930 * must ensure that CONDITION=1 done by the caller can not be reordered with
1931 * accesses to the task state; see try_to_wake_up() and set_current_state().
1935 * try_to_wake_up - wake up a thread
1936 * @p: the thread to be awakened
1937 * @state: the mask of task states that can be woken
1938 * @wake_flags: wake modifier flags (WF_*)
1940 * If (@state & @p->state) @p->state = TASK_RUNNING.
1942 * If the task was not queued/runnable, also place it back on a runqueue.
1944 * Atomic against schedule() which would dequeue a task, also see
1945 * set_current_state().
1947 * This function executes a full memory barrier before accessing the task
1948 * state; see set_current_state().
1950 * Return: %true if @p->state changes (an actual wakeup was done),
1951 * %false otherwise.
1953 static int
1954 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1956 unsigned long flags;
1957 int cpu, success = 0;
1960 * If we are going to wake up a thread waiting for CONDITION we
1961 * need to ensure that CONDITION=1 done by the caller can not be
1962 * reordered with p->state check below. This pairs with mb() in
1963 * set_current_state() the waiting thread does.
1965 raw_spin_lock_irqsave(&p->pi_lock, flags);
1966 smp_mb__after_spinlock();
1967 if (!(p->state & state))
1968 goto out;
1970 trace_sched_waking(p);
1972 /* We're going to change ->state: */
1973 success = 1;
1974 cpu = task_cpu(p);
1977 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1978 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1979 * in smp_cond_load_acquire() below.
1981 * sched_ttwu_pending() try_to_wake_up()
1982 * STORE p->on_rq = 1 LOAD p->state
1983 * UNLOCK rq->lock
1985 * __schedule() (switch to task 'p')
1986 * LOCK rq->lock smp_rmb();
1987 * smp_mb__after_spinlock();
1988 * UNLOCK rq->lock
1990 * [task p]
1991 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
1993 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
1994 * __schedule(). See the comment for smp_mb__after_spinlock().
1996 smp_rmb();
1997 if (p->on_rq && ttwu_remote(p, wake_flags))
1998 goto stat;
2000 #ifdef CONFIG_SMP
2002 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2003 * possible to, falsely, observe p->on_cpu == 0.
2005 * One must be running (->on_cpu == 1) in order to remove oneself
2006 * from the runqueue.
2008 * __schedule() (switch to task 'p') try_to_wake_up()
2009 * STORE p->on_cpu = 1 LOAD p->on_rq
2010 * UNLOCK rq->lock
2012 * __schedule() (put 'p' to sleep)
2013 * LOCK rq->lock smp_rmb();
2014 * smp_mb__after_spinlock();
2015 * STORE p->on_rq = 0 LOAD p->on_cpu
2017 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2018 * __schedule(). See the comment for smp_mb__after_spinlock().
2020 smp_rmb();
2023 * If the owning (remote) CPU is still in the middle of schedule() with
2024 * this task as prev, wait until its done referencing the task.
2026 * Pairs with the smp_store_release() in finish_task().
2028 * This ensures that tasks getting woken will be fully ordered against
2029 * their previous state and preserve Program Order.
2031 smp_cond_load_acquire(&p->on_cpu, !VAL);
2033 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2034 p->state = TASK_WAKING;
2036 if (p->in_iowait) {
2037 delayacct_blkio_end(p);
2038 atomic_dec(&task_rq(p)->nr_iowait);
2041 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2042 if (task_cpu(p) != cpu) {
2043 wake_flags |= WF_MIGRATED;
2044 psi_ttwu_dequeue(p);
2045 set_task_cpu(p, cpu);
2048 #else /* CONFIG_SMP */
2050 if (p->in_iowait) {
2051 delayacct_blkio_end(p);
2052 atomic_dec(&task_rq(p)->nr_iowait);
2055 #endif /* CONFIG_SMP */
2057 ttwu_queue(p, cpu, wake_flags);
2058 stat:
2059 ttwu_stat(p, cpu, wake_flags);
2060 out:
2061 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2063 return success;
2067 * try_to_wake_up_local - try to wake up a local task with rq lock held
2068 * @p: the thread to be awakened
2069 * @rf: request-queue flags for pinning
2071 * Put @p on the run-queue if it's not already there. The caller must
2072 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2073 * the current task.
2075 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2077 struct rq *rq = task_rq(p);
2079 if (WARN_ON_ONCE(rq != this_rq()) ||
2080 WARN_ON_ONCE(p == current))
2081 return;
2083 lockdep_assert_held(&rq->lock);
2085 if (!raw_spin_trylock(&p->pi_lock)) {
2087 * This is OK, because current is on_cpu, which avoids it being
2088 * picked for load-balance and preemption/IRQs are still
2089 * disabled avoiding further scheduler activity on it and we've
2090 * not yet picked a replacement task.
2092 rq_unlock(rq, rf);
2093 raw_spin_lock(&p->pi_lock);
2094 rq_relock(rq, rf);
2097 if (!(p->state & TASK_NORMAL))
2098 goto out;
2100 trace_sched_waking(p);
2102 if (!task_on_rq_queued(p)) {
2103 if (p->in_iowait) {
2104 delayacct_blkio_end(p);
2105 atomic_dec(&rq->nr_iowait);
2107 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2110 ttwu_do_wakeup(rq, p, 0, rf);
2111 ttwu_stat(p, smp_processor_id(), 0);
2112 out:
2113 raw_spin_unlock(&p->pi_lock);
2117 * wake_up_process - Wake up a specific process
2118 * @p: The process to be woken up.
2120 * Attempt to wake up the nominated process and move it to the set of runnable
2121 * processes.
2123 * Return: 1 if the process was woken up, 0 if it was already running.
2125 * This function executes a full memory barrier before accessing the task state.
2127 int wake_up_process(struct task_struct *p)
2129 return try_to_wake_up(p, TASK_NORMAL, 0);
2131 EXPORT_SYMBOL(wake_up_process);
2133 int wake_up_state(struct task_struct *p, unsigned int state)
2135 return try_to_wake_up(p, state, 0);
2139 * Perform scheduler related setup for a newly forked process p.
2140 * p is forked by current.
2142 * __sched_fork() is basic setup used by init_idle() too:
2144 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2146 p->on_rq = 0;
2148 p->se.on_rq = 0;
2149 p->se.exec_start = 0;
2150 p->se.sum_exec_runtime = 0;
2151 p->se.prev_sum_exec_runtime = 0;
2152 p->se.nr_migrations = 0;
2153 p->se.vruntime = 0;
2154 INIT_LIST_HEAD(&p->se.group_node);
2156 #ifdef CONFIG_FAIR_GROUP_SCHED
2157 p->se.cfs_rq = NULL;
2158 #endif
2160 #ifdef CONFIG_SCHEDSTATS
2161 /* Even if schedstat is disabled, there should not be garbage */
2162 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2163 #endif
2165 RB_CLEAR_NODE(&p->dl.rb_node);
2166 init_dl_task_timer(&p->dl);
2167 init_dl_inactive_task_timer(&p->dl);
2168 __dl_clear_params(p);
2170 INIT_LIST_HEAD(&p->rt.run_list);
2171 p->rt.timeout = 0;
2172 p->rt.time_slice = sched_rr_timeslice;
2173 p->rt.on_rq = 0;
2174 p->rt.on_list = 0;
2176 #ifdef CONFIG_PREEMPT_NOTIFIERS
2177 INIT_HLIST_HEAD(&p->preempt_notifiers);
2178 #endif
2180 init_numa_balancing(clone_flags, p);
2183 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2185 #ifdef CONFIG_NUMA_BALANCING
2187 void set_numabalancing_state(bool enabled)
2189 if (enabled)
2190 static_branch_enable(&sched_numa_balancing);
2191 else
2192 static_branch_disable(&sched_numa_balancing);
2195 #ifdef CONFIG_PROC_SYSCTL
2196 int sysctl_numa_balancing(struct ctl_table *table, int write,
2197 void __user *buffer, size_t *lenp, loff_t *ppos)
2199 struct ctl_table t;
2200 int err;
2201 int state = static_branch_likely(&sched_numa_balancing);
2203 if (write && !capable(CAP_SYS_ADMIN))
2204 return -EPERM;
2206 t = *table;
2207 t.data = &state;
2208 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2209 if (err < 0)
2210 return err;
2211 if (write)
2212 set_numabalancing_state(state);
2213 return err;
2215 #endif
2216 #endif
2218 #ifdef CONFIG_SCHEDSTATS
2220 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2221 static bool __initdata __sched_schedstats = false;
2223 static void set_schedstats(bool enabled)
2225 if (enabled)
2226 static_branch_enable(&sched_schedstats);
2227 else
2228 static_branch_disable(&sched_schedstats);
2231 void force_schedstat_enabled(void)
2233 if (!schedstat_enabled()) {
2234 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2235 static_branch_enable(&sched_schedstats);
2239 static int __init setup_schedstats(char *str)
2241 int ret = 0;
2242 if (!str)
2243 goto out;
2246 * This code is called before jump labels have been set up, so we can't
2247 * change the static branch directly just yet. Instead set a temporary
2248 * variable so init_schedstats() can do it later.
2250 if (!strcmp(str, "enable")) {
2251 __sched_schedstats = true;
2252 ret = 1;
2253 } else if (!strcmp(str, "disable")) {
2254 __sched_schedstats = false;
2255 ret = 1;
2257 out:
2258 if (!ret)
2259 pr_warn("Unable to parse schedstats=\n");
2261 return ret;
2263 __setup("schedstats=", setup_schedstats);
2265 static void __init init_schedstats(void)
2267 set_schedstats(__sched_schedstats);
2270 #ifdef CONFIG_PROC_SYSCTL
2271 int sysctl_schedstats(struct ctl_table *table, int write,
2272 void __user *buffer, size_t *lenp, loff_t *ppos)
2274 struct ctl_table t;
2275 int err;
2276 int state = static_branch_likely(&sched_schedstats);
2278 if (write && !capable(CAP_SYS_ADMIN))
2279 return -EPERM;
2281 t = *table;
2282 t.data = &state;
2283 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2284 if (err < 0)
2285 return err;
2286 if (write)
2287 set_schedstats(state);
2288 return err;
2290 #endif /* CONFIG_PROC_SYSCTL */
2291 #else /* !CONFIG_SCHEDSTATS */
2292 static inline void init_schedstats(void) {}
2293 #endif /* CONFIG_SCHEDSTATS */
2296 * fork()/clone()-time setup:
2298 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2300 unsigned long flags;
2302 __sched_fork(clone_flags, p);
2304 * We mark the process as NEW here. This guarantees that
2305 * nobody will actually run it, and a signal or other external
2306 * event cannot wake it up and insert it on the runqueue either.
2308 p->state = TASK_NEW;
2311 * Make sure we do not leak PI boosting priority to the child.
2313 p->prio = current->normal_prio;
2316 * Revert to default priority/policy on fork if requested.
2318 if (unlikely(p->sched_reset_on_fork)) {
2319 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2320 p->policy = SCHED_NORMAL;
2321 p->static_prio = NICE_TO_PRIO(0);
2322 p->rt_priority = 0;
2323 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2324 p->static_prio = NICE_TO_PRIO(0);
2326 p->prio = p->normal_prio = __normal_prio(p);
2327 set_load_weight(p, false);
2330 * We don't need the reset flag anymore after the fork. It has
2331 * fulfilled its duty:
2333 p->sched_reset_on_fork = 0;
2336 if (dl_prio(p->prio))
2337 return -EAGAIN;
2338 else if (rt_prio(p->prio))
2339 p->sched_class = &rt_sched_class;
2340 else
2341 p->sched_class = &fair_sched_class;
2343 init_entity_runnable_average(&p->se);
2346 * The child is not yet in the pid-hash so no cgroup attach races,
2347 * and the cgroup is pinned to this child due to cgroup_fork()
2348 * is ran before sched_fork().
2350 * Silence PROVE_RCU.
2352 raw_spin_lock_irqsave(&p->pi_lock, flags);
2354 * We're setting the CPU for the first time, we don't migrate,
2355 * so use __set_task_cpu().
2357 __set_task_cpu(p, smp_processor_id());
2358 if (p->sched_class->task_fork)
2359 p->sched_class->task_fork(p);
2360 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2362 #ifdef CONFIG_SCHED_INFO
2363 if (likely(sched_info_on()))
2364 memset(&p->sched_info, 0, sizeof(p->sched_info));
2365 #endif
2366 #if defined(CONFIG_SMP)
2367 p->on_cpu = 0;
2368 #endif
2369 init_task_preempt_count(p);
2370 #ifdef CONFIG_SMP
2371 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2372 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2373 #endif
2374 return 0;
2377 unsigned long to_ratio(u64 period, u64 runtime)
2379 if (runtime == RUNTIME_INF)
2380 return BW_UNIT;
2383 * Doing this here saves a lot of checks in all
2384 * the calling paths, and returning zero seems
2385 * safe for them anyway.
2387 if (period == 0)
2388 return 0;
2390 return div64_u64(runtime << BW_SHIFT, period);
2394 * wake_up_new_task - wake up a newly created task for the first time.
2396 * This function will do some initial scheduler statistics housekeeping
2397 * that must be done for every newly created context, then puts the task
2398 * on the runqueue and wakes it.
2400 void wake_up_new_task(struct task_struct *p)
2402 struct rq_flags rf;
2403 struct rq *rq;
2405 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2406 p->state = TASK_RUNNING;
2407 #ifdef CONFIG_SMP
2409 * Fork balancing, do it here and not earlier because:
2410 * - cpus_allowed can change in the fork path
2411 * - any previously selected CPU might disappear through hotplug
2413 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2414 * as we're not fully set-up yet.
2416 p->recent_used_cpu = task_cpu(p);
2417 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2418 #endif
2419 rq = __task_rq_lock(p, &rf);
2420 update_rq_clock(rq);
2421 post_init_entity_util_avg(&p->se);
2423 activate_task(rq, p, ENQUEUE_NOCLOCK);
2424 p->on_rq = TASK_ON_RQ_QUEUED;
2425 trace_sched_wakeup_new(p);
2426 check_preempt_curr(rq, p, WF_FORK);
2427 #ifdef CONFIG_SMP
2428 if (p->sched_class->task_woken) {
2430 * Nothing relies on rq->lock after this, so its fine to
2431 * drop it.
2433 rq_unpin_lock(rq, &rf);
2434 p->sched_class->task_woken(rq, p);
2435 rq_repin_lock(rq, &rf);
2437 #endif
2438 task_rq_unlock(rq, p, &rf);
2441 #ifdef CONFIG_PREEMPT_NOTIFIERS
2443 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2445 void preempt_notifier_inc(void)
2447 static_branch_inc(&preempt_notifier_key);
2449 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2451 void preempt_notifier_dec(void)
2453 static_branch_dec(&preempt_notifier_key);
2455 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2458 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2459 * @notifier: notifier struct to register
2461 void preempt_notifier_register(struct preempt_notifier *notifier)
2463 if (!static_branch_unlikely(&preempt_notifier_key))
2464 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2466 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2468 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2471 * preempt_notifier_unregister - no longer interested in preemption notifications
2472 * @notifier: notifier struct to unregister
2474 * This is *not* safe to call from within a preemption notifier.
2476 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2478 hlist_del(&notifier->link);
2480 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2482 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2484 struct preempt_notifier *notifier;
2486 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2487 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2490 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2492 if (static_branch_unlikely(&preempt_notifier_key))
2493 __fire_sched_in_preempt_notifiers(curr);
2496 static void
2497 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2498 struct task_struct *next)
2500 struct preempt_notifier *notifier;
2502 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2503 notifier->ops->sched_out(notifier, next);
2506 static __always_inline void
2507 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2508 struct task_struct *next)
2510 if (static_branch_unlikely(&preempt_notifier_key))
2511 __fire_sched_out_preempt_notifiers(curr, next);
2514 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2516 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2520 static inline void
2521 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2522 struct task_struct *next)
2526 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2528 static inline void prepare_task(struct task_struct *next)
2530 #ifdef CONFIG_SMP
2532 * Claim the task as running, we do this before switching to it
2533 * such that any running task will have this set.
2535 next->on_cpu = 1;
2536 #endif
2539 static inline void finish_task(struct task_struct *prev)
2541 #ifdef CONFIG_SMP
2543 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2544 * We must ensure this doesn't happen until the switch is completely
2545 * finished.
2547 * In particular, the load of prev->state in finish_task_switch() must
2548 * happen before this.
2550 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2552 smp_store_release(&prev->on_cpu, 0);
2553 #endif
2556 static inline void
2557 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2560 * Since the runqueue lock will be released by the next
2561 * task (which is an invalid locking op but in the case
2562 * of the scheduler it's an obvious special-case), so we
2563 * do an early lockdep release here:
2565 rq_unpin_lock(rq, rf);
2566 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2567 #ifdef CONFIG_DEBUG_SPINLOCK
2568 /* this is a valid case when another task releases the spinlock */
2569 rq->lock.owner = next;
2570 #endif
2573 static inline void finish_lock_switch(struct rq *rq)
2576 * If we are tracking spinlock dependencies then we have to
2577 * fix up the runqueue lock - which gets 'carried over' from
2578 * prev into current:
2580 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2581 raw_spin_unlock_irq(&rq->lock);
2585 * NOP if the arch has not defined these:
2588 #ifndef prepare_arch_switch
2589 # define prepare_arch_switch(next) do { } while (0)
2590 #endif
2592 #ifndef finish_arch_post_lock_switch
2593 # define finish_arch_post_lock_switch() do { } while (0)
2594 #endif
2597 * prepare_task_switch - prepare to switch tasks
2598 * @rq: the runqueue preparing to switch
2599 * @prev: the current task that is being switched out
2600 * @next: the task we are going to switch to.
2602 * This is called with the rq lock held and interrupts off. It must
2603 * be paired with a subsequent finish_task_switch after the context
2604 * switch.
2606 * prepare_task_switch sets up locking and calls architecture specific
2607 * hooks.
2609 static inline void
2610 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2611 struct task_struct *next)
2613 kcov_prepare_switch(prev);
2614 sched_info_switch(rq, prev, next);
2615 perf_event_task_sched_out(prev, next);
2616 rseq_preempt(prev);
2617 fire_sched_out_preempt_notifiers(prev, next);
2618 prepare_task(next);
2619 prepare_arch_switch(next);
2623 * finish_task_switch - clean up after a task-switch
2624 * @prev: the thread we just switched away from.
2626 * finish_task_switch must be called after the context switch, paired
2627 * with a prepare_task_switch call before the context switch.
2628 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2629 * and do any other architecture-specific cleanup actions.
2631 * Note that we may have delayed dropping an mm in context_switch(). If
2632 * so, we finish that here outside of the runqueue lock. (Doing it
2633 * with the lock held can cause deadlocks; see schedule() for
2634 * details.)
2636 * The context switch have flipped the stack from under us and restored the
2637 * local variables which were saved when this task called schedule() in the
2638 * past. prev == current is still correct but we need to recalculate this_rq
2639 * because prev may have moved to another CPU.
2641 static struct rq *finish_task_switch(struct task_struct *prev)
2642 __releases(rq->lock)
2644 struct rq *rq = this_rq();
2645 struct mm_struct *mm = rq->prev_mm;
2646 long prev_state;
2649 * The previous task will have left us with a preempt_count of 2
2650 * because it left us after:
2652 * schedule()
2653 * preempt_disable(); // 1
2654 * __schedule()
2655 * raw_spin_lock_irq(&rq->lock) // 2
2657 * Also, see FORK_PREEMPT_COUNT.
2659 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2660 "corrupted preempt_count: %s/%d/0x%x\n",
2661 current->comm, current->pid, preempt_count()))
2662 preempt_count_set(FORK_PREEMPT_COUNT);
2664 rq->prev_mm = NULL;
2667 * A task struct has one reference for the use as "current".
2668 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2669 * schedule one last time. The schedule call will never return, and
2670 * the scheduled task must drop that reference.
2672 * We must observe prev->state before clearing prev->on_cpu (in
2673 * finish_task), otherwise a concurrent wakeup can get prev
2674 * running on another CPU and we could rave with its RUNNING -> DEAD
2675 * transition, resulting in a double drop.
2677 prev_state = prev->state;
2678 vtime_task_switch(prev);
2679 perf_event_task_sched_in(prev, current);
2680 finish_task(prev);
2681 finish_lock_switch(rq);
2682 finish_arch_post_lock_switch();
2683 kcov_finish_switch(current);
2685 fire_sched_in_preempt_notifiers(current);
2687 * When switching through a kernel thread, the loop in
2688 * membarrier_{private,global}_expedited() may have observed that
2689 * kernel thread and not issued an IPI. It is therefore possible to
2690 * schedule between user->kernel->user threads without passing though
2691 * switch_mm(). Membarrier requires a barrier after storing to
2692 * rq->curr, before returning to userspace, so provide them here:
2694 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2695 * provided by mmdrop(),
2696 * - a sync_core for SYNC_CORE.
2698 if (mm) {
2699 membarrier_mm_sync_core_before_usermode(mm);
2700 mmdrop(mm);
2702 if (unlikely(prev_state == TASK_DEAD)) {
2703 if (prev->sched_class->task_dead)
2704 prev->sched_class->task_dead(prev);
2707 * Remove function-return probe instances associated with this
2708 * task and put them back on the free list.
2710 kprobe_flush_task(prev);
2712 /* Task is done with its stack. */
2713 put_task_stack(prev);
2715 put_task_struct(prev);
2718 tick_nohz_task_switch();
2719 return rq;
2722 #ifdef CONFIG_SMP
2724 /* rq->lock is NOT held, but preemption is disabled */
2725 static void __balance_callback(struct rq *rq)
2727 struct callback_head *head, *next;
2728 void (*func)(struct rq *rq);
2729 unsigned long flags;
2731 raw_spin_lock_irqsave(&rq->lock, flags);
2732 head = rq->balance_callback;
2733 rq->balance_callback = NULL;
2734 while (head) {
2735 func = (void (*)(struct rq *))head->func;
2736 next = head->next;
2737 head->next = NULL;
2738 head = next;
2740 func(rq);
2742 raw_spin_unlock_irqrestore(&rq->lock, flags);
2745 static inline void balance_callback(struct rq *rq)
2747 if (unlikely(rq->balance_callback))
2748 __balance_callback(rq);
2751 #else
2753 static inline void balance_callback(struct rq *rq)
2757 #endif
2760 * schedule_tail - first thing a freshly forked thread must call.
2761 * @prev: the thread we just switched away from.
2763 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2764 __releases(rq->lock)
2766 struct rq *rq;
2769 * New tasks start with FORK_PREEMPT_COUNT, see there and
2770 * finish_task_switch() for details.
2772 * finish_task_switch() will drop rq->lock() and lower preempt_count
2773 * and the preempt_enable() will end up enabling preemption (on
2774 * PREEMPT_COUNT kernels).
2777 rq = finish_task_switch(prev);
2778 balance_callback(rq);
2779 preempt_enable();
2781 if (current->set_child_tid)
2782 put_user(task_pid_vnr(current), current->set_child_tid);
2784 calculate_sigpending();
2788 * context_switch - switch to the new MM and the new thread's register state.
2790 static __always_inline struct rq *
2791 context_switch(struct rq *rq, struct task_struct *prev,
2792 struct task_struct *next, struct rq_flags *rf)
2794 struct mm_struct *mm, *oldmm;
2796 prepare_task_switch(rq, prev, next);
2798 mm = next->mm;
2799 oldmm = prev->active_mm;
2801 * For paravirt, this is coupled with an exit in switch_to to
2802 * combine the page table reload and the switch backend into
2803 * one hypercall.
2805 arch_start_context_switch(prev);
2808 * If mm is non-NULL, we pass through switch_mm(). If mm is
2809 * NULL, we will pass through mmdrop() in finish_task_switch().
2810 * Both of these contain the full memory barrier required by
2811 * membarrier after storing to rq->curr, before returning to
2812 * user-space.
2814 if (!mm) {
2815 next->active_mm = oldmm;
2816 mmgrab(oldmm);
2817 enter_lazy_tlb(oldmm, next);
2818 } else
2819 switch_mm_irqs_off(oldmm, mm, next);
2821 if (!prev->mm) {
2822 prev->active_mm = NULL;
2823 rq->prev_mm = oldmm;
2826 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2828 prepare_lock_switch(rq, next, rf);
2830 /* Here we just switch the register state and the stack. */
2831 switch_to(prev, next, prev);
2832 barrier();
2834 return finish_task_switch(prev);
2838 * nr_running and nr_context_switches:
2840 * externally visible scheduler statistics: current number of runnable
2841 * threads, total number of context switches performed since bootup.
2843 unsigned long nr_running(void)
2845 unsigned long i, sum = 0;
2847 for_each_online_cpu(i)
2848 sum += cpu_rq(i)->nr_running;
2850 return sum;
2854 * Check if only the current task is running on the CPU.
2856 * Caution: this function does not check that the caller has disabled
2857 * preemption, thus the result might have a time-of-check-to-time-of-use
2858 * race. The caller is responsible to use it correctly, for example:
2860 * - from a non-preemptable section (of course)
2862 * - from a thread that is bound to a single CPU
2864 * - in a loop with very short iterations (e.g. a polling loop)
2866 bool single_task_running(void)
2868 return raw_rq()->nr_running == 1;
2870 EXPORT_SYMBOL(single_task_running);
2872 unsigned long long nr_context_switches(void)
2874 int i;
2875 unsigned long long sum = 0;
2877 for_each_possible_cpu(i)
2878 sum += cpu_rq(i)->nr_switches;
2880 return sum;
2884 * IO-wait accounting, and how its mostly bollocks (on SMP).
2886 * The idea behind IO-wait account is to account the idle time that we could
2887 * have spend running if it were not for IO. That is, if we were to improve the
2888 * storage performance, we'd have a proportional reduction in IO-wait time.
2890 * This all works nicely on UP, where, when a task blocks on IO, we account
2891 * idle time as IO-wait, because if the storage were faster, it could've been
2892 * running and we'd not be idle.
2894 * This has been extended to SMP, by doing the same for each CPU. This however
2895 * is broken.
2897 * Imagine for instance the case where two tasks block on one CPU, only the one
2898 * CPU will have IO-wait accounted, while the other has regular idle. Even
2899 * though, if the storage were faster, both could've ran at the same time,
2900 * utilising both CPUs.
2902 * This means, that when looking globally, the current IO-wait accounting on
2903 * SMP is a lower bound, by reason of under accounting.
2905 * Worse, since the numbers are provided per CPU, they are sometimes
2906 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2907 * associated with any one particular CPU, it can wake to another CPU than it
2908 * blocked on. This means the per CPU IO-wait number is meaningless.
2910 * Task CPU affinities can make all that even more 'interesting'.
2913 unsigned long nr_iowait(void)
2915 unsigned long i, sum = 0;
2917 for_each_possible_cpu(i)
2918 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2920 return sum;
2924 * Consumers of these two interfaces, like for example the cpuidle menu
2925 * governor, are using nonsensical data. Preferring shallow idle state selection
2926 * for a CPU that has IO-wait which might not even end up running the task when
2927 * it does become runnable.
2930 unsigned long nr_iowait_cpu(int cpu)
2932 struct rq *this = cpu_rq(cpu);
2933 return atomic_read(&this->nr_iowait);
2936 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2938 struct rq *rq = this_rq();
2939 *nr_waiters = atomic_read(&rq->nr_iowait);
2940 *load = rq->load.weight;
2943 #ifdef CONFIG_SMP
2946 * sched_exec - execve() is a valuable balancing opportunity, because at
2947 * this point the task has the smallest effective memory and cache footprint.
2949 void sched_exec(void)
2951 struct task_struct *p = current;
2952 unsigned long flags;
2953 int dest_cpu;
2955 raw_spin_lock_irqsave(&p->pi_lock, flags);
2956 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2957 if (dest_cpu == smp_processor_id())
2958 goto unlock;
2960 if (likely(cpu_active(dest_cpu))) {
2961 struct migration_arg arg = { p, dest_cpu };
2963 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2964 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2965 return;
2967 unlock:
2968 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2971 #endif
2973 DEFINE_PER_CPU(struct kernel_stat, kstat);
2974 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2976 EXPORT_PER_CPU_SYMBOL(kstat);
2977 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2980 * The function fair_sched_class.update_curr accesses the struct curr
2981 * and its field curr->exec_start; when called from task_sched_runtime(),
2982 * we observe a high rate of cache misses in practice.
2983 * Prefetching this data results in improved performance.
2985 static inline void prefetch_curr_exec_start(struct task_struct *p)
2987 #ifdef CONFIG_FAIR_GROUP_SCHED
2988 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2989 #else
2990 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2991 #endif
2992 prefetch(curr);
2993 prefetch(&curr->exec_start);
2997 * Return accounted runtime for the task.
2998 * In case the task is currently running, return the runtime plus current's
2999 * pending runtime that have not been accounted yet.
3001 unsigned long long task_sched_runtime(struct task_struct *p)
3003 struct rq_flags rf;
3004 struct rq *rq;
3005 u64 ns;
3007 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3009 * 64-bit doesn't need locks to atomically read a 64-bit value.
3010 * So we have a optimization chance when the task's delta_exec is 0.
3011 * Reading ->on_cpu is racy, but this is ok.
3013 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3014 * If we race with it entering CPU, unaccounted time is 0. This is
3015 * indistinguishable from the read occurring a few cycles earlier.
3016 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3017 * been accounted, so we're correct here as well.
3019 if (!p->on_cpu || !task_on_rq_queued(p))
3020 return p->se.sum_exec_runtime;
3021 #endif
3023 rq = task_rq_lock(p, &rf);
3025 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3026 * project cycles that may never be accounted to this
3027 * thread, breaking clock_gettime().
3029 if (task_current(rq, p) && task_on_rq_queued(p)) {
3030 prefetch_curr_exec_start(p);
3031 update_rq_clock(rq);
3032 p->sched_class->update_curr(rq);
3034 ns = p->se.sum_exec_runtime;
3035 task_rq_unlock(rq, p, &rf);
3037 return ns;
3041 * This function gets called by the timer code, with HZ frequency.
3042 * We call it with interrupts disabled.
3044 void scheduler_tick(void)
3046 int cpu = smp_processor_id();
3047 struct rq *rq = cpu_rq(cpu);
3048 struct task_struct *curr = rq->curr;
3049 struct rq_flags rf;
3051 sched_clock_tick();
3053 rq_lock(rq, &rf);
3055 update_rq_clock(rq);
3056 curr->sched_class->task_tick(rq, curr, 0);
3057 cpu_load_update_active(rq);
3058 calc_global_load_tick(rq);
3059 psi_task_tick(rq);
3061 rq_unlock(rq, &rf);
3063 perf_event_task_tick();
3065 #ifdef CONFIG_SMP
3066 rq->idle_balance = idle_cpu(cpu);
3067 trigger_load_balance(rq);
3068 #endif
3071 #ifdef CONFIG_NO_HZ_FULL
3073 struct tick_work {
3074 int cpu;
3075 struct delayed_work work;
3078 static struct tick_work __percpu *tick_work_cpu;
3080 static void sched_tick_remote(struct work_struct *work)
3082 struct delayed_work *dwork = to_delayed_work(work);
3083 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3084 int cpu = twork->cpu;
3085 struct rq *rq = cpu_rq(cpu);
3086 struct task_struct *curr;
3087 struct rq_flags rf;
3088 u64 delta;
3091 * Handle the tick only if it appears the remote CPU is running in full
3092 * dynticks mode. The check is racy by nature, but missing a tick or
3093 * having one too much is no big deal because the scheduler tick updates
3094 * statistics and checks timeslices in a time-independent way, regardless
3095 * of when exactly it is running.
3097 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3098 goto out_requeue;
3100 rq_lock_irq(rq, &rf);
3101 curr = rq->curr;
3102 if (is_idle_task(curr))
3103 goto out_unlock;
3105 update_rq_clock(rq);
3106 delta = rq_clock_task(rq) - curr->se.exec_start;
3109 * Make sure the next tick runs within a reasonable
3110 * amount of time.
3112 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3113 curr->sched_class->task_tick(rq, curr, 0);
3115 out_unlock:
3116 rq_unlock_irq(rq, &rf);
3118 out_requeue:
3120 * Run the remote tick once per second (1Hz). This arbitrary
3121 * frequency is large enough to avoid overload but short enough
3122 * to keep scheduler internal stats reasonably up to date.
3124 queue_delayed_work(system_unbound_wq, dwork, HZ);
3127 static void sched_tick_start(int cpu)
3129 struct tick_work *twork;
3131 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3132 return;
3134 WARN_ON_ONCE(!tick_work_cpu);
3136 twork = per_cpu_ptr(tick_work_cpu, cpu);
3137 twork->cpu = cpu;
3138 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3139 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3142 #ifdef CONFIG_HOTPLUG_CPU
3143 static void sched_tick_stop(int cpu)
3145 struct tick_work *twork;
3147 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3148 return;
3150 WARN_ON_ONCE(!tick_work_cpu);
3152 twork = per_cpu_ptr(tick_work_cpu, cpu);
3153 cancel_delayed_work_sync(&twork->work);
3155 #endif /* CONFIG_HOTPLUG_CPU */
3157 int __init sched_tick_offload_init(void)
3159 tick_work_cpu = alloc_percpu(struct tick_work);
3160 BUG_ON(!tick_work_cpu);
3162 return 0;
3165 #else /* !CONFIG_NO_HZ_FULL */
3166 static inline void sched_tick_start(int cpu) { }
3167 static inline void sched_tick_stop(int cpu) { }
3168 #endif
3170 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3171 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3173 * If the value passed in is equal to the current preempt count
3174 * then we just disabled preemption. Start timing the latency.
3176 static inline void preempt_latency_start(int val)
3178 if (preempt_count() == val) {
3179 unsigned long ip = get_lock_parent_ip();
3180 #ifdef CONFIG_DEBUG_PREEMPT
3181 current->preempt_disable_ip = ip;
3182 #endif
3183 trace_preempt_off(CALLER_ADDR0, ip);
3187 void preempt_count_add(int val)
3189 #ifdef CONFIG_DEBUG_PREEMPT
3191 * Underflow?
3193 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3194 return;
3195 #endif
3196 __preempt_count_add(val);
3197 #ifdef CONFIG_DEBUG_PREEMPT
3199 * Spinlock count overflowing soon?
3201 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3202 PREEMPT_MASK - 10);
3203 #endif
3204 preempt_latency_start(val);
3206 EXPORT_SYMBOL(preempt_count_add);
3207 NOKPROBE_SYMBOL(preempt_count_add);
3210 * If the value passed in equals to the current preempt count
3211 * then we just enabled preemption. Stop timing the latency.
3213 static inline void preempt_latency_stop(int val)
3215 if (preempt_count() == val)
3216 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3219 void preempt_count_sub(int val)
3221 #ifdef CONFIG_DEBUG_PREEMPT
3223 * Underflow?
3225 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3226 return;
3228 * Is the spinlock portion underflowing?
3230 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3231 !(preempt_count() & PREEMPT_MASK)))
3232 return;
3233 #endif
3235 preempt_latency_stop(val);
3236 __preempt_count_sub(val);
3238 EXPORT_SYMBOL(preempt_count_sub);
3239 NOKPROBE_SYMBOL(preempt_count_sub);
3241 #else
3242 static inline void preempt_latency_start(int val) { }
3243 static inline void preempt_latency_stop(int val) { }
3244 #endif
3246 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3248 #ifdef CONFIG_DEBUG_PREEMPT
3249 return p->preempt_disable_ip;
3250 #else
3251 return 0;
3252 #endif
3256 * Print scheduling while atomic bug:
3258 static noinline void __schedule_bug(struct task_struct *prev)
3260 /* Save this before calling printk(), since that will clobber it */
3261 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3263 if (oops_in_progress)
3264 return;
3266 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3267 prev->comm, prev->pid, preempt_count());
3269 debug_show_held_locks(prev);
3270 print_modules();
3271 if (irqs_disabled())
3272 print_irqtrace_events(prev);
3273 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3274 && in_atomic_preempt_off()) {
3275 pr_err("Preemption disabled at:");
3276 print_ip_sym(preempt_disable_ip);
3277 pr_cont("\n");
3279 if (panic_on_warn)
3280 panic("scheduling while atomic\n");
3282 dump_stack();
3283 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3287 * Various schedule()-time debugging checks and statistics:
3289 static inline void schedule_debug(struct task_struct *prev)
3291 #ifdef CONFIG_SCHED_STACK_END_CHECK
3292 if (task_stack_end_corrupted(prev))
3293 panic("corrupted stack end detected inside scheduler\n");
3294 #endif
3296 if (unlikely(in_atomic_preempt_off())) {
3297 __schedule_bug(prev);
3298 preempt_count_set(PREEMPT_DISABLED);
3300 rcu_sleep_check();
3302 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3304 schedstat_inc(this_rq()->sched_count);
3308 * Pick up the highest-prio task:
3310 static inline struct task_struct *
3311 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3313 const struct sched_class *class;
3314 struct task_struct *p;
3317 * Optimization: we know that if all tasks are in the fair class we can
3318 * call that function directly, but only if the @prev task wasn't of a
3319 * higher scheduling class, because otherwise those loose the
3320 * opportunity to pull in more work from other CPUs.
3322 if (likely((prev->sched_class == &idle_sched_class ||
3323 prev->sched_class == &fair_sched_class) &&
3324 rq->nr_running == rq->cfs.h_nr_running)) {
3326 p = fair_sched_class.pick_next_task(rq, prev, rf);
3327 if (unlikely(p == RETRY_TASK))
3328 goto again;
3330 /* Assumes fair_sched_class->next == idle_sched_class */
3331 if (unlikely(!p))
3332 p = idle_sched_class.pick_next_task(rq, prev, rf);
3334 return p;
3337 again:
3338 for_each_class(class) {
3339 p = class->pick_next_task(rq, prev, rf);
3340 if (p) {
3341 if (unlikely(p == RETRY_TASK))
3342 goto again;
3343 return p;
3347 /* The idle class should always have a runnable task: */
3348 BUG();
3352 * __schedule() is the main scheduler function.
3354 * The main means of driving the scheduler and thus entering this function are:
3356 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3358 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3359 * paths. For example, see arch/x86/entry_64.S.
3361 * To drive preemption between tasks, the scheduler sets the flag in timer
3362 * interrupt handler scheduler_tick().
3364 * 3. Wakeups don't really cause entry into schedule(). They add a
3365 * task to the run-queue and that's it.
3367 * Now, if the new task added to the run-queue preempts the current
3368 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3369 * called on the nearest possible occasion:
3371 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3373 * - in syscall or exception context, at the next outmost
3374 * preempt_enable(). (this might be as soon as the wake_up()'s
3375 * spin_unlock()!)
3377 * - in IRQ context, return from interrupt-handler to
3378 * preemptible context
3380 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3381 * then at the next:
3383 * - cond_resched() call
3384 * - explicit schedule() call
3385 * - return from syscall or exception to user-space
3386 * - return from interrupt-handler to user-space
3388 * WARNING: must be called with preemption disabled!
3390 static void __sched notrace __schedule(bool preempt)
3392 struct task_struct *prev, *next;
3393 unsigned long *switch_count;
3394 struct rq_flags rf;
3395 struct rq *rq;
3396 int cpu;
3398 cpu = smp_processor_id();
3399 rq = cpu_rq(cpu);
3400 prev = rq->curr;
3402 schedule_debug(prev);
3404 if (sched_feat(HRTICK))
3405 hrtick_clear(rq);
3407 local_irq_disable();
3408 rcu_note_context_switch(preempt);
3411 * Make sure that signal_pending_state()->signal_pending() below
3412 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3413 * done by the caller to avoid the race with signal_wake_up().
3415 * The membarrier system call requires a full memory barrier
3416 * after coming from user-space, before storing to rq->curr.
3418 rq_lock(rq, &rf);
3419 smp_mb__after_spinlock();
3421 /* Promote REQ to ACT */
3422 rq->clock_update_flags <<= 1;
3423 update_rq_clock(rq);
3425 switch_count = &prev->nivcsw;
3426 if (!preempt && prev->state) {
3427 if (unlikely(signal_pending_state(prev->state, prev))) {
3428 prev->state = TASK_RUNNING;
3429 } else {
3430 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3431 prev->on_rq = 0;
3433 if (prev->in_iowait) {
3434 atomic_inc(&rq->nr_iowait);
3435 delayacct_blkio_start();
3439 * If a worker went to sleep, notify and ask workqueue
3440 * whether it wants to wake up a task to maintain
3441 * concurrency.
3443 if (prev->flags & PF_WQ_WORKER) {
3444 struct task_struct *to_wakeup;
3446 to_wakeup = wq_worker_sleeping(prev);
3447 if (to_wakeup)
3448 try_to_wake_up_local(to_wakeup, &rf);
3451 switch_count = &prev->nvcsw;
3454 next = pick_next_task(rq, prev, &rf);
3455 clear_tsk_need_resched(prev);
3456 clear_preempt_need_resched();
3458 if (likely(prev != next)) {
3459 rq->nr_switches++;
3460 rq->curr = next;
3462 * The membarrier system call requires each architecture
3463 * to have a full memory barrier after updating
3464 * rq->curr, before returning to user-space.
3466 * Here are the schemes providing that barrier on the
3467 * various architectures:
3468 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3469 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3470 * - finish_lock_switch() for weakly-ordered
3471 * architectures where spin_unlock is a full barrier,
3472 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3473 * is a RELEASE barrier),
3475 ++*switch_count;
3477 trace_sched_switch(preempt, prev, next);
3479 /* Also unlocks the rq: */
3480 rq = context_switch(rq, prev, next, &rf);
3481 } else {
3482 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3483 rq_unlock_irq(rq, &rf);
3486 balance_callback(rq);
3489 void __noreturn do_task_dead(void)
3491 /* Causes final put_task_struct in finish_task_switch(): */
3492 set_special_state(TASK_DEAD);
3494 /* Tell freezer to ignore us: */
3495 current->flags |= PF_NOFREEZE;
3497 __schedule(false);
3498 BUG();
3500 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3501 for (;;)
3502 cpu_relax();
3505 static inline void sched_submit_work(struct task_struct *tsk)
3507 if (!tsk->state || tsk_is_pi_blocked(tsk))
3508 return;
3510 * If we are going to sleep and we have plugged IO queued,
3511 * make sure to submit it to avoid deadlocks.
3513 if (blk_needs_flush_plug(tsk))
3514 blk_schedule_flush_plug(tsk);
3517 asmlinkage __visible void __sched schedule(void)
3519 struct task_struct *tsk = current;
3521 sched_submit_work(tsk);
3522 do {
3523 preempt_disable();
3524 __schedule(false);
3525 sched_preempt_enable_no_resched();
3526 } while (need_resched());
3528 EXPORT_SYMBOL(schedule);
3531 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3532 * state (have scheduled out non-voluntarily) by making sure that all
3533 * tasks have either left the run queue or have gone into user space.
3534 * As idle tasks do not do either, they must not ever be preempted
3535 * (schedule out non-voluntarily).
3537 * schedule_idle() is similar to schedule_preempt_disable() except that it
3538 * never enables preemption because it does not call sched_submit_work().
3540 void __sched schedule_idle(void)
3543 * As this skips calling sched_submit_work(), which the idle task does
3544 * regardless because that function is a nop when the task is in a
3545 * TASK_RUNNING state, make sure this isn't used someplace that the
3546 * current task can be in any other state. Note, idle is always in the
3547 * TASK_RUNNING state.
3549 WARN_ON_ONCE(current->state);
3550 do {
3551 __schedule(false);
3552 } while (need_resched());
3555 #ifdef CONFIG_CONTEXT_TRACKING
3556 asmlinkage __visible void __sched schedule_user(void)
3559 * If we come here after a random call to set_need_resched(),
3560 * or we have been woken up remotely but the IPI has not yet arrived,
3561 * we haven't yet exited the RCU idle mode. Do it here manually until
3562 * we find a better solution.
3564 * NB: There are buggy callers of this function. Ideally we
3565 * should warn if prev_state != CONTEXT_USER, but that will trigger
3566 * too frequently to make sense yet.
3568 enum ctx_state prev_state = exception_enter();
3569 schedule();
3570 exception_exit(prev_state);
3572 #endif
3575 * schedule_preempt_disabled - called with preemption disabled
3577 * Returns with preemption disabled. Note: preempt_count must be 1
3579 void __sched schedule_preempt_disabled(void)
3581 sched_preempt_enable_no_resched();
3582 schedule();
3583 preempt_disable();
3586 static void __sched notrace preempt_schedule_common(void)
3588 do {
3590 * Because the function tracer can trace preempt_count_sub()
3591 * and it also uses preempt_enable/disable_notrace(), if
3592 * NEED_RESCHED is set, the preempt_enable_notrace() called
3593 * by the function tracer will call this function again and
3594 * cause infinite recursion.
3596 * Preemption must be disabled here before the function
3597 * tracer can trace. Break up preempt_disable() into two
3598 * calls. One to disable preemption without fear of being
3599 * traced. The other to still record the preemption latency,
3600 * which can also be traced by the function tracer.
3602 preempt_disable_notrace();
3603 preempt_latency_start(1);
3604 __schedule(true);
3605 preempt_latency_stop(1);
3606 preempt_enable_no_resched_notrace();
3609 * Check again in case we missed a preemption opportunity
3610 * between schedule and now.
3612 } while (need_resched());
3615 #ifdef CONFIG_PREEMPT
3617 * this is the entry point to schedule() from in-kernel preemption
3618 * off of preempt_enable. Kernel preemptions off return from interrupt
3619 * occur there and call schedule directly.
3621 asmlinkage __visible void __sched notrace preempt_schedule(void)
3624 * If there is a non-zero preempt_count or interrupts are disabled,
3625 * we do not want to preempt the current task. Just return..
3627 if (likely(!preemptible()))
3628 return;
3630 preempt_schedule_common();
3632 NOKPROBE_SYMBOL(preempt_schedule);
3633 EXPORT_SYMBOL(preempt_schedule);
3636 * preempt_schedule_notrace - preempt_schedule called by tracing
3638 * The tracing infrastructure uses preempt_enable_notrace to prevent
3639 * recursion and tracing preempt enabling caused by the tracing
3640 * infrastructure itself. But as tracing can happen in areas coming
3641 * from userspace or just about to enter userspace, a preempt enable
3642 * can occur before user_exit() is called. This will cause the scheduler
3643 * to be called when the system is still in usermode.
3645 * To prevent this, the preempt_enable_notrace will use this function
3646 * instead of preempt_schedule() to exit user context if needed before
3647 * calling the scheduler.
3649 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3651 enum ctx_state prev_ctx;
3653 if (likely(!preemptible()))
3654 return;
3656 do {
3658 * Because the function tracer can trace preempt_count_sub()
3659 * and it also uses preempt_enable/disable_notrace(), if
3660 * NEED_RESCHED is set, the preempt_enable_notrace() called
3661 * by the function tracer will call this function again and
3662 * cause infinite recursion.
3664 * Preemption must be disabled here before the function
3665 * tracer can trace. Break up preempt_disable() into two
3666 * calls. One to disable preemption without fear of being
3667 * traced. The other to still record the preemption latency,
3668 * which can also be traced by the function tracer.
3670 preempt_disable_notrace();
3671 preempt_latency_start(1);
3673 * Needs preempt disabled in case user_exit() is traced
3674 * and the tracer calls preempt_enable_notrace() causing
3675 * an infinite recursion.
3677 prev_ctx = exception_enter();
3678 __schedule(true);
3679 exception_exit(prev_ctx);
3681 preempt_latency_stop(1);
3682 preempt_enable_no_resched_notrace();
3683 } while (need_resched());
3685 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3687 #endif /* CONFIG_PREEMPT */
3690 * this is the entry point to schedule() from kernel preemption
3691 * off of irq context.
3692 * Note, that this is called and return with irqs disabled. This will
3693 * protect us against recursive calling from irq.
3695 asmlinkage __visible void __sched preempt_schedule_irq(void)
3697 enum ctx_state prev_state;
3699 /* Catch callers which need to be fixed */
3700 BUG_ON(preempt_count() || !irqs_disabled());
3702 prev_state = exception_enter();
3704 do {
3705 preempt_disable();
3706 local_irq_enable();
3707 __schedule(true);
3708 local_irq_disable();
3709 sched_preempt_enable_no_resched();
3710 } while (need_resched());
3712 exception_exit(prev_state);
3715 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3716 void *key)
3718 return try_to_wake_up(curr->private, mode, wake_flags);
3720 EXPORT_SYMBOL(default_wake_function);
3722 #ifdef CONFIG_RT_MUTEXES
3724 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3726 if (pi_task)
3727 prio = min(prio, pi_task->prio);
3729 return prio;
3732 static inline int rt_effective_prio(struct task_struct *p, int prio)
3734 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3736 return __rt_effective_prio(pi_task, prio);
3740 * rt_mutex_setprio - set the current priority of a task
3741 * @p: task to boost
3742 * @pi_task: donor task
3744 * This function changes the 'effective' priority of a task. It does
3745 * not touch ->normal_prio like __setscheduler().
3747 * Used by the rt_mutex code to implement priority inheritance
3748 * logic. Call site only calls if the priority of the task changed.
3750 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3752 int prio, oldprio, queued, running, queue_flag =
3753 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3754 const struct sched_class *prev_class;
3755 struct rq_flags rf;
3756 struct rq *rq;
3758 /* XXX used to be waiter->prio, not waiter->task->prio */
3759 prio = __rt_effective_prio(pi_task, p->normal_prio);
3762 * If nothing changed; bail early.
3764 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3765 return;
3767 rq = __task_rq_lock(p, &rf);
3768 update_rq_clock(rq);
3770 * Set under pi_lock && rq->lock, such that the value can be used under
3771 * either lock.
3773 * Note that there is loads of tricky to make this pointer cache work
3774 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3775 * ensure a task is de-boosted (pi_task is set to NULL) before the
3776 * task is allowed to run again (and can exit). This ensures the pointer
3777 * points to a blocked task -- which guaratees the task is present.
3779 p->pi_top_task = pi_task;
3782 * For FIFO/RR we only need to set prio, if that matches we're done.
3784 if (prio == p->prio && !dl_prio(prio))
3785 goto out_unlock;
3788 * Idle task boosting is a nono in general. There is one
3789 * exception, when PREEMPT_RT and NOHZ is active:
3791 * The idle task calls get_next_timer_interrupt() and holds
3792 * the timer wheel base->lock on the CPU and another CPU wants
3793 * to access the timer (probably to cancel it). We can safely
3794 * ignore the boosting request, as the idle CPU runs this code
3795 * with interrupts disabled and will complete the lock
3796 * protected section without being interrupted. So there is no
3797 * real need to boost.
3799 if (unlikely(p == rq->idle)) {
3800 WARN_ON(p != rq->curr);
3801 WARN_ON(p->pi_blocked_on);
3802 goto out_unlock;
3805 trace_sched_pi_setprio(p, pi_task);
3806 oldprio = p->prio;
3808 if (oldprio == prio)
3809 queue_flag &= ~DEQUEUE_MOVE;
3811 prev_class = p->sched_class;
3812 queued = task_on_rq_queued(p);
3813 running = task_current(rq, p);
3814 if (queued)
3815 dequeue_task(rq, p, queue_flag);
3816 if (running)
3817 put_prev_task(rq, p);
3820 * Boosting condition are:
3821 * 1. -rt task is running and holds mutex A
3822 * --> -dl task blocks on mutex A
3824 * 2. -dl task is running and holds mutex A
3825 * --> -dl task blocks on mutex A and could preempt the
3826 * running task
3828 if (dl_prio(prio)) {
3829 if (!dl_prio(p->normal_prio) ||
3830 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3831 p->dl.dl_boosted = 1;
3832 queue_flag |= ENQUEUE_REPLENISH;
3833 } else
3834 p->dl.dl_boosted = 0;
3835 p->sched_class = &dl_sched_class;
3836 } else if (rt_prio(prio)) {
3837 if (dl_prio(oldprio))
3838 p->dl.dl_boosted = 0;
3839 if (oldprio < prio)
3840 queue_flag |= ENQUEUE_HEAD;
3841 p->sched_class = &rt_sched_class;
3842 } else {
3843 if (dl_prio(oldprio))
3844 p->dl.dl_boosted = 0;
3845 if (rt_prio(oldprio))
3846 p->rt.timeout = 0;
3847 p->sched_class = &fair_sched_class;
3850 p->prio = prio;
3852 if (queued)
3853 enqueue_task(rq, p, queue_flag);
3854 if (running)
3855 set_curr_task(rq, p);
3857 check_class_changed(rq, p, prev_class, oldprio);
3858 out_unlock:
3859 /* Avoid rq from going away on us: */
3860 preempt_disable();
3861 __task_rq_unlock(rq, &rf);
3863 balance_callback(rq);
3864 preempt_enable();
3866 #else
3867 static inline int rt_effective_prio(struct task_struct *p, int prio)
3869 return prio;
3871 #endif
3873 void set_user_nice(struct task_struct *p, long nice)
3875 bool queued, running;
3876 int old_prio, delta;
3877 struct rq_flags rf;
3878 struct rq *rq;
3880 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3881 return;
3883 * We have to be careful, if called from sys_setpriority(),
3884 * the task might be in the middle of scheduling on another CPU.
3886 rq = task_rq_lock(p, &rf);
3887 update_rq_clock(rq);
3890 * The RT priorities are set via sched_setscheduler(), but we still
3891 * allow the 'normal' nice value to be set - but as expected
3892 * it wont have any effect on scheduling until the task is
3893 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3895 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3896 p->static_prio = NICE_TO_PRIO(nice);
3897 goto out_unlock;
3899 queued = task_on_rq_queued(p);
3900 running = task_current(rq, p);
3901 if (queued)
3902 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3903 if (running)
3904 put_prev_task(rq, p);
3906 p->static_prio = NICE_TO_PRIO(nice);
3907 set_load_weight(p, true);
3908 old_prio = p->prio;
3909 p->prio = effective_prio(p);
3910 delta = p->prio - old_prio;
3912 if (queued) {
3913 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3915 * If the task increased its priority or is running and
3916 * lowered its priority, then reschedule its CPU:
3918 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3919 resched_curr(rq);
3921 if (running)
3922 set_curr_task(rq, p);
3923 out_unlock:
3924 task_rq_unlock(rq, p, &rf);
3926 EXPORT_SYMBOL(set_user_nice);
3929 * can_nice - check if a task can reduce its nice value
3930 * @p: task
3931 * @nice: nice value
3933 int can_nice(const struct task_struct *p, const int nice)
3935 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
3936 int nice_rlim = nice_to_rlimit(nice);
3938 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3939 capable(CAP_SYS_NICE));
3942 #ifdef __ARCH_WANT_SYS_NICE
3945 * sys_nice - change the priority of the current process.
3946 * @increment: priority increment
3948 * sys_setpriority is a more generic, but much slower function that
3949 * does similar things.
3951 SYSCALL_DEFINE1(nice, int, increment)
3953 long nice, retval;
3956 * Setpriority might change our priority at the same moment.
3957 * We don't have to worry. Conceptually one call occurs first
3958 * and we have a single winner.
3960 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3961 nice = task_nice(current) + increment;
3963 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3964 if (increment < 0 && !can_nice(current, nice))
3965 return -EPERM;
3967 retval = security_task_setnice(current, nice);
3968 if (retval)
3969 return retval;
3971 set_user_nice(current, nice);
3972 return 0;
3975 #endif
3978 * task_prio - return the priority value of a given task.
3979 * @p: the task in question.
3981 * Return: The priority value as seen by users in /proc.
3982 * RT tasks are offset by -200. Normal tasks are centered
3983 * around 0, value goes from -16 to +15.
3985 int task_prio(const struct task_struct *p)
3987 return p->prio - MAX_RT_PRIO;
3991 * idle_cpu - is a given CPU idle currently?
3992 * @cpu: the processor in question.
3994 * Return: 1 if the CPU is currently idle. 0 otherwise.
3996 int idle_cpu(int cpu)
3998 struct rq *rq = cpu_rq(cpu);
4000 if (rq->curr != rq->idle)
4001 return 0;
4003 if (rq->nr_running)
4004 return 0;
4006 #ifdef CONFIG_SMP
4007 if (!llist_empty(&rq->wake_list))
4008 return 0;
4009 #endif
4011 return 1;
4015 * available_idle_cpu - is a given CPU idle for enqueuing work.
4016 * @cpu: the CPU in question.
4018 * Return: 1 if the CPU is currently idle. 0 otherwise.
4020 int available_idle_cpu(int cpu)
4022 if (!idle_cpu(cpu))
4023 return 0;
4025 if (vcpu_is_preempted(cpu))
4026 return 0;
4028 return 1;
4032 * idle_task - return the idle task for a given CPU.
4033 * @cpu: the processor in question.
4035 * Return: The idle task for the CPU @cpu.
4037 struct task_struct *idle_task(int cpu)
4039 return cpu_rq(cpu)->idle;
4043 * find_process_by_pid - find a process with a matching PID value.
4044 * @pid: the pid in question.
4046 * The task of @pid, if found. %NULL otherwise.
4048 static struct task_struct *find_process_by_pid(pid_t pid)
4050 return pid ? find_task_by_vpid(pid) : current;
4054 * sched_setparam() passes in -1 for its policy, to let the functions
4055 * it calls know not to change it.
4057 #define SETPARAM_POLICY -1
4059 static void __setscheduler_params(struct task_struct *p,
4060 const struct sched_attr *attr)
4062 int policy = attr->sched_policy;
4064 if (policy == SETPARAM_POLICY)
4065 policy = p->policy;
4067 p->policy = policy;
4069 if (dl_policy(policy))
4070 __setparam_dl(p, attr);
4071 else if (fair_policy(policy))
4072 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4075 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4076 * !rt_policy. Always setting this ensures that things like
4077 * getparam()/getattr() don't report silly values for !rt tasks.
4079 p->rt_priority = attr->sched_priority;
4080 p->normal_prio = normal_prio(p);
4081 set_load_weight(p, true);
4084 /* Actually do priority change: must hold pi & rq lock. */
4085 static void __setscheduler(struct rq *rq, struct task_struct *p,
4086 const struct sched_attr *attr, bool keep_boost)
4088 __setscheduler_params(p, attr);
4091 * Keep a potential priority boosting if called from
4092 * sched_setscheduler().
4094 p->prio = normal_prio(p);
4095 if (keep_boost)
4096 p->prio = rt_effective_prio(p, p->prio);
4098 if (dl_prio(p->prio))
4099 p->sched_class = &dl_sched_class;
4100 else if (rt_prio(p->prio))
4101 p->sched_class = &rt_sched_class;
4102 else
4103 p->sched_class = &fair_sched_class;
4107 * Check the target process has a UID that matches the current process's:
4109 static bool check_same_owner(struct task_struct *p)
4111 const struct cred *cred = current_cred(), *pcred;
4112 bool match;
4114 rcu_read_lock();
4115 pcred = __task_cred(p);
4116 match = (uid_eq(cred->euid, pcred->euid) ||
4117 uid_eq(cred->euid, pcred->uid));
4118 rcu_read_unlock();
4119 return match;
4122 static int __sched_setscheduler(struct task_struct *p,
4123 const struct sched_attr *attr,
4124 bool user, bool pi)
4126 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4127 MAX_RT_PRIO - 1 - attr->sched_priority;
4128 int retval, oldprio, oldpolicy = -1, queued, running;
4129 int new_effective_prio, policy = attr->sched_policy;
4130 const struct sched_class *prev_class;
4131 struct rq_flags rf;
4132 int reset_on_fork;
4133 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4134 struct rq *rq;
4136 /* The pi code expects interrupts enabled */
4137 BUG_ON(pi && in_interrupt());
4138 recheck:
4139 /* Double check policy once rq lock held: */
4140 if (policy < 0) {
4141 reset_on_fork = p->sched_reset_on_fork;
4142 policy = oldpolicy = p->policy;
4143 } else {
4144 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4146 if (!valid_policy(policy))
4147 return -EINVAL;
4150 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4151 return -EINVAL;
4154 * Valid priorities for SCHED_FIFO and SCHED_RR are
4155 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4156 * SCHED_BATCH and SCHED_IDLE is 0.
4158 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4159 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4160 return -EINVAL;
4161 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4162 (rt_policy(policy) != (attr->sched_priority != 0)))
4163 return -EINVAL;
4166 * Allow unprivileged RT tasks to decrease priority:
4168 if (user && !capable(CAP_SYS_NICE)) {
4169 if (fair_policy(policy)) {
4170 if (attr->sched_nice < task_nice(p) &&
4171 !can_nice(p, attr->sched_nice))
4172 return -EPERM;
4175 if (rt_policy(policy)) {
4176 unsigned long rlim_rtprio =
4177 task_rlimit(p, RLIMIT_RTPRIO);
4179 /* Can't set/change the rt policy: */
4180 if (policy != p->policy && !rlim_rtprio)
4181 return -EPERM;
4183 /* Can't increase priority: */
4184 if (attr->sched_priority > p->rt_priority &&
4185 attr->sched_priority > rlim_rtprio)
4186 return -EPERM;
4190 * Can't set/change SCHED_DEADLINE policy at all for now
4191 * (safest behavior); in the future we would like to allow
4192 * unprivileged DL tasks to increase their relative deadline
4193 * or reduce their runtime (both ways reducing utilization)
4195 if (dl_policy(policy))
4196 return -EPERM;
4199 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4200 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4202 if (idle_policy(p->policy) && !idle_policy(policy)) {
4203 if (!can_nice(p, task_nice(p)))
4204 return -EPERM;
4207 /* Can't change other user's priorities: */
4208 if (!check_same_owner(p))
4209 return -EPERM;
4211 /* Normal users shall not reset the sched_reset_on_fork flag: */
4212 if (p->sched_reset_on_fork && !reset_on_fork)
4213 return -EPERM;
4216 if (user) {
4217 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4218 return -EINVAL;
4220 retval = security_task_setscheduler(p);
4221 if (retval)
4222 return retval;
4226 * Make sure no PI-waiters arrive (or leave) while we are
4227 * changing the priority of the task:
4229 * To be able to change p->policy safely, the appropriate
4230 * runqueue lock must be held.
4232 rq = task_rq_lock(p, &rf);
4233 update_rq_clock(rq);
4236 * Changing the policy of the stop threads its a very bad idea:
4238 if (p == rq->stop) {
4239 task_rq_unlock(rq, p, &rf);
4240 return -EINVAL;
4244 * If not changing anything there's no need to proceed further,
4245 * but store a possible modification of reset_on_fork.
4247 if (unlikely(policy == p->policy)) {
4248 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4249 goto change;
4250 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4251 goto change;
4252 if (dl_policy(policy) && dl_param_changed(p, attr))
4253 goto change;
4255 p->sched_reset_on_fork = reset_on_fork;
4256 task_rq_unlock(rq, p, &rf);
4257 return 0;
4259 change:
4261 if (user) {
4262 #ifdef CONFIG_RT_GROUP_SCHED
4264 * Do not allow realtime tasks into groups that have no runtime
4265 * assigned.
4267 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4268 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4269 !task_group_is_autogroup(task_group(p))) {
4270 task_rq_unlock(rq, p, &rf);
4271 return -EPERM;
4273 #endif
4274 #ifdef CONFIG_SMP
4275 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4276 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4277 cpumask_t *span = rq->rd->span;
4280 * Don't allow tasks with an affinity mask smaller than
4281 * the entire root_domain to become SCHED_DEADLINE. We
4282 * will also fail if there's no bandwidth available.
4284 if (!cpumask_subset(span, &p->cpus_allowed) ||
4285 rq->rd->dl_bw.bw == 0) {
4286 task_rq_unlock(rq, p, &rf);
4287 return -EPERM;
4290 #endif
4293 /* Re-check policy now with rq lock held: */
4294 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4295 policy = oldpolicy = -1;
4296 task_rq_unlock(rq, p, &rf);
4297 goto recheck;
4301 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4302 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4303 * is available.
4305 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4306 task_rq_unlock(rq, p, &rf);
4307 return -EBUSY;
4310 p->sched_reset_on_fork = reset_on_fork;
4311 oldprio = p->prio;
4313 if (pi) {
4315 * Take priority boosted tasks into account. If the new
4316 * effective priority is unchanged, we just store the new
4317 * normal parameters and do not touch the scheduler class and
4318 * the runqueue. This will be done when the task deboost
4319 * itself.
4321 new_effective_prio = rt_effective_prio(p, newprio);
4322 if (new_effective_prio == oldprio)
4323 queue_flags &= ~DEQUEUE_MOVE;
4326 queued = task_on_rq_queued(p);
4327 running = task_current(rq, p);
4328 if (queued)
4329 dequeue_task(rq, p, queue_flags);
4330 if (running)
4331 put_prev_task(rq, p);
4333 prev_class = p->sched_class;
4334 __setscheduler(rq, p, attr, pi);
4336 if (queued) {
4338 * We enqueue to tail when the priority of a task is
4339 * increased (user space view).
4341 if (oldprio < p->prio)
4342 queue_flags |= ENQUEUE_HEAD;
4344 enqueue_task(rq, p, queue_flags);
4346 if (running)
4347 set_curr_task(rq, p);
4349 check_class_changed(rq, p, prev_class, oldprio);
4351 /* Avoid rq from going away on us: */
4352 preempt_disable();
4353 task_rq_unlock(rq, p, &rf);
4355 if (pi)
4356 rt_mutex_adjust_pi(p);
4358 /* Run balance callbacks after we've adjusted the PI chain: */
4359 balance_callback(rq);
4360 preempt_enable();
4362 return 0;
4365 static int _sched_setscheduler(struct task_struct *p, int policy,
4366 const struct sched_param *param, bool check)
4368 struct sched_attr attr = {
4369 .sched_policy = policy,
4370 .sched_priority = param->sched_priority,
4371 .sched_nice = PRIO_TO_NICE(p->static_prio),
4374 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4375 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4376 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4377 policy &= ~SCHED_RESET_ON_FORK;
4378 attr.sched_policy = policy;
4381 return __sched_setscheduler(p, &attr, check, true);
4384 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4385 * @p: the task in question.
4386 * @policy: new policy.
4387 * @param: structure containing the new RT priority.
4389 * Return: 0 on success. An error code otherwise.
4391 * NOTE that the task may be already dead.
4393 int sched_setscheduler(struct task_struct *p, int policy,
4394 const struct sched_param *param)
4396 return _sched_setscheduler(p, policy, param, true);
4398 EXPORT_SYMBOL_GPL(sched_setscheduler);
4400 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4402 return __sched_setscheduler(p, attr, true, true);
4404 EXPORT_SYMBOL_GPL(sched_setattr);
4406 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4408 return __sched_setscheduler(p, attr, false, true);
4412 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4413 * @p: the task in question.
4414 * @policy: new policy.
4415 * @param: structure containing the new RT priority.
4417 * Just like sched_setscheduler, only don't bother checking if the
4418 * current context has permission. For example, this is needed in
4419 * stop_machine(): we create temporary high priority worker threads,
4420 * but our caller might not have that capability.
4422 * Return: 0 on success. An error code otherwise.
4424 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4425 const struct sched_param *param)
4427 return _sched_setscheduler(p, policy, param, false);
4429 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4431 static int
4432 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4434 struct sched_param lparam;
4435 struct task_struct *p;
4436 int retval;
4438 if (!param || pid < 0)
4439 return -EINVAL;
4440 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4441 return -EFAULT;
4443 rcu_read_lock();
4444 retval = -ESRCH;
4445 p = find_process_by_pid(pid);
4446 if (p != NULL)
4447 retval = sched_setscheduler(p, policy, &lparam);
4448 rcu_read_unlock();
4450 return retval;
4454 * Mimics kernel/events/core.c perf_copy_attr().
4456 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4458 u32 size;
4459 int ret;
4461 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4462 return -EFAULT;
4464 /* Zero the full structure, so that a short copy will be nice: */
4465 memset(attr, 0, sizeof(*attr));
4467 ret = get_user(size, &uattr->size);
4468 if (ret)
4469 return ret;
4471 /* Bail out on silly large: */
4472 if (size > PAGE_SIZE)
4473 goto err_size;
4475 /* ABI compatibility quirk: */
4476 if (!size)
4477 size = SCHED_ATTR_SIZE_VER0;
4479 if (size < SCHED_ATTR_SIZE_VER0)
4480 goto err_size;
4483 * If we're handed a bigger struct than we know of,
4484 * ensure all the unknown bits are 0 - i.e. new
4485 * user-space does not rely on any kernel feature
4486 * extensions we dont know about yet.
4488 if (size > sizeof(*attr)) {
4489 unsigned char __user *addr;
4490 unsigned char __user *end;
4491 unsigned char val;
4493 addr = (void __user *)uattr + sizeof(*attr);
4494 end = (void __user *)uattr + size;
4496 for (; addr < end; addr++) {
4497 ret = get_user(val, addr);
4498 if (ret)
4499 return ret;
4500 if (val)
4501 goto err_size;
4503 size = sizeof(*attr);
4506 ret = copy_from_user(attr, uattr, size);
4507 if (ret)
4508 return -EFAULT;
4511 * XXX: Do we want to be lenient like existing syscalls; or do we want
4512 * to be strict and return an error on out-of-bounds values?
4514 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4516 return 0;
4518 err_size:
4519 put_user(sizeof(*attr), &uattr->size);
4520 return -E2BIG;
4524 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4525 * @pid: the pid in question.
4526 * @policy: new policy.
4527 * @param: structure containing the new RT priority.
4529 * Return: 0 on success. An error code otherwise.
4531 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4533 if (policy < 0)
4534 return -EINVAL;
4536 return do_sched_setscheduler(pid, policy, param);
4540 * sys_sched_setparam - set/change the RT priority of a thread
4541 * @pid: the pid in question.
4542 * @param: structure containing the new RT priority.
4544 * Return: 0 on success. An error code otherwise.
4546 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4548 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4552 * sys_sched_setattr - same as above, but with extended sched_attr
4553 * @pid: the pid in question.
4554 * @uattr: structure containing the extended parameters.
4555 * @flags: for future extension.
4557 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4558 unsigned int, flags)
4560 struct sched_attr attr;
4561 struct task_struct *p;
4562 int retval;
4564 if (!uattr || pid < 0 || flags)
4565 return -EINVAL;
4567 retval = sched_copy_attr(uattr, &attr);
4568 if (retval)
4569 return retval;
4571 if ((int)attr.sched_policy < 0)
4572 return -EINVAL;
4574 rcu_read_lock();
4575 retval = -ESRCH;
4576 p = find_process_by_pid(pid);
4577 if (p != NULL)
4578 retval = sched_setattr(p, &attr);
4579 rcu_read_unlock();
4581 return retval;
4585 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4586 * @pid: the pid in question.
4588 * Return: On success, the policy of the thread. Otherwise, a negative error
4589 * code.
4591 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4593 struct task_struct *p;
4594 int retval;
4596 if (pid < 0)
4597 return -EINVAL;
4599 retval = -ESRCH;
4600 rcu_read_lock();
4601 p = find_process_by_pid(pid);
4602 if (p) {
4603 retval = security_task_getscheduler(p);
4604 if (!retval)
4605 retval = p->policy
4606 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4608 rcu_read_unlock();
4609 return retval;
4613 * sys_sched_getparam - get the RT priority of a thread
4614 * @pid: the pid in question.
4615 * @param: structure containing the RT priority.
4617 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4618 * code.
4620 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4622 struct sched_param lp = { .sched_priority = 0 };
4623 struct task_struct *p;
4624 int retval;
4626 if (!param || pid < 0)
4627 return -EINVAL;
4629 rcu_read_lock();
4630 p = find_process_by_pid(pid);
4631 retval = -ESRCH;
4632 if (!p)
4633 goto out_unlock;
4635 retval = security_task_getscheduler(p);
4636 if (retval)
4637 goto out_unlock;
4639 if (task_has_rt_policy(p))
4640 lp.sched_priority = p->rt_priority;
4641 rcu_read_unlock();
4644 * This one might sleep, we cannot do it with a spinlock held ...
4646 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4648 return retval;
4650 out_unlock:
4651 rcu_read_unlock();
4652 return retval;
4655 static int sched_read_attr(struct sched_attr __user *uattr,
4656 struct sched_attr *attr,
4657 unsigned int usize)
4659 int ret;
4661 if (!access_ok(VERIFY_WRITE, uattr, usize))
4662 return -EFAULT;
4665 * If we're handed a smaller struct than we know of,
4666 * ensure all the unknown bits are 0 - i.e. old
4667 * user-space does not get uncomplete information.
4669 if (usize < sizeof(*attr)) {
4670 unsigned char *addr;
4671 unsigned char *end;
4673 addr = (void *)attr + usize;
4674 end = (void *)attr + sizeof(*attr);
4676 for (; addr < end; addr++) {
4677 if (*addr)
4678 return -EFBIG;
4681 attr->size = usize;
4684 ret = copy_to_user(uattr, attr, attr->size);
4685 if (ret)
4686 return -EFAULT;
4688 return 0;
4692 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4693 * @pid: the pid in question.
4694 * @uattr: structure containing the extended parameters.
4695 * @size: sizeof(attr) for fwd/bwd comp.
4696 * @flags: for future extension.
4698 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4699 unsigned int, size, unsigned int, flags)
4701 struct sched_attr attr = {
4702 .size = sizeof(struct sched_attr),
4704 struct task_struct *p;
4705 int retval;
4707 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4708 size < SCHED_ATTR_SIZE_VER0 || flags)
4709 return -EINVAL;
4711 rcu_read_lock();
4712 p = find_process_by_pid(pid);
4713 retval = -ESRCH;
4714 if (!p)
4715 goto out_unlock;
4717 retval = security_task_getscheduler(p);
4718 if (retval)
4719 goto out_unlock;
4721 attr.sched_policy = p->policy;
4722 if (p->sched_reset_on_fork)
4723 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4724 if (task_has_dl_policy(p))
4725 __getparam_dl(p, &attr);
4726 else if (task_has_rt_policy(p))
4727 attr.sched_priority = p->rt_priority;
4728 else
4729 attr.sched_nice = task_nice(p);
4731 rcu_read_unlock();
4733 retval = sched_read_attr(uattr, &attr, size);
4734 return retval;
4736 out_unlock:
4737 rcu_read_unlock();
4738 return retval;
4741 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4743 cpumask_var_t cpus_allowed, new_mask;
4744 struct task_struct *p;
4745 int retval;
4747 rcu_read_lock();
4749 p = find_process_by_pid(pid);
4750 if (!p) {
4751 rcu_read_unlock();
4752 return -ESRCH;
4755 /* Prevent p going away */
4756 get_task_struct(p);
4757 rcu_read_unlock();
4759 if (p->flags & PF_NO_SETAFFINITY) {
4760 retval = -EINVAL;
4761 goto out_put_task;
4763 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4764 retval = -ENOMEM;
4765 goto out_put_task;
4767 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4768 retval = -ENOMEM;
4769 goto out_free_cpus_allowed;
4771 retval = -EPERM;
4772 if (!check_same_owner(p)) {
4773 rcu_read_lock();
4774 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4775 rcu_read_unlock();
4776 goto out_free_new_mask;
4778 rcu_read_unlock();
4781 retval = security_task_setscheduler(p);
4782 if (retval)
4783 goto out_free_new_mask;
4786 cpuset_cpus_allowed(p, cpus_allowed);
4787 cpumask_and(new_mask, in_mask, cpus_allowed);
4790 * Since bandwidth control happens on root_domain basis,
4791 * if admission test is enabled, we only admit -deadline
4792 * tasks allowed to run on all the CPUs in the task's
4793 * root_domain.
4795 #ifdef CONFIG_SMP
4796 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4797 rcu_read_lock();
4798 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4799 retval = -EBUSY;
4800 rcu_read_unlock();
4801 goto out_free_new_mask;
4803 rcu_read_unlock();
4805 #endif
4806 again:
4807 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4809 if (!retval) {
4810 cpuset_cpus_allowed(p, cpus_allowed);
4811 if (!cpumask_subset(new_mask, cpus_allowed)) {
4813 * We must have raced with a concurrent cpuset
4814 * update. Just reset the cpus_allowed to the
4815 * cpuset's cpus_allowed
4817 cpumask_copy(new_mask, cpus_allowed);
4818 goto again;
4821 out_free_new_mask:
4822 free_cpumask_var(new_mask);
4823 out_free_cpus_allowed:
4824 free_cpumask_var(cpus_allowed);
4825 out_put_task:
4826 put_task_struct(p);
4827 return retval;
4830 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4831 struct cpumask *new_mask)
4833 if (len < cpumask_size())
4834 cpumask_clear(new_mask);
4835 else if (len > cpumask_size())
4836 len = cpumask_size();
4838 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4842 * sys_sched_setaffinity - set the CPU affinity of a process
4843 * @pid: pid of the process
4844 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4845 * @user_mask_ptr: user-space pointer to the new CPU mask
4847 * Return: 0 on success. An error code otherwise.
4849 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4850 unsigned long __user *, user_mask_ptr)
4852 cpumask_var_t new_mask;
4853 int retval;
4855 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4856 return -ENOMEM;
4858 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4859 if (retval == 0)
4860 retval = sched_setaffinity(pid, new_mask);
4861 free_cpumask_var(new_mask);
4862 return retval;
4865 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4867 struct task_struct *p;
4868 unsigned long flags;
4869 int retval;
4871 rcu_read_lock();
4873 retval = -ESRCH;
4874 p = find_process_by_pid(pid);
4875 if (!p)
4876 goto out_unlock;
4878 retval = security_task_getscheduler(p);
4879 if (retval)
4880 goto out_unlock;
4882 raw_spin_lock_irqsave(&p->pi_lock, flags);
4883 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4884 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4886 out_unlock:
4887 rcu_read_unlock();
4889 return retval;
4893 * sys_sched_getaffinity - get the CPU affinity of a process
4894 * @pid: pid of the process
4895 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4896 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4898 * Return: size of CPU mask copied to user_mask_ptr on success. An
4899 * error code otherwise.
4901 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4902 unsigned long __user *, user_mask_ptr)
4904 int ret;
4905 cpumask_var_t mask;
4907 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4908 return -EINVAL;
4909 if (len & (sizeof(unsigned long)-1))
4910 return -EINVAL;
4912 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4913 return -ENOMEM;
4915 ret = sched_getaffinity(pid, mask);
4916 if (ret == 0) {
4917 unsigned int retlen = min(len, cpumask_size());
4919 if (copy_to_user(user_mask_ptr, mask, retlen))
4920 ret = -EFAULT;
4921 else
4922 ret = retlen;
4924 free_cpumask_var(mask);
4926 return ret;
4930 * sys_sched_yield - yield the current processor to other threads.
4932 * This function yields the current CPU to other tasks. If there are no
4933 * other threads running on this CPU then this function will return.
4935 * Return: 0.
4937 static void do_sched_yield(void)
4939 struct rq_flags rf;
4940 struct rq *rq;
4942 rq = this_rq_lock_irq(&rf);
4944 schedstat_inc(rq->yld_count);
4945 current->sched_class->yield_task(rq);
4948 * Since we are going to call schedule() anyway, there's
4949 * no need to preempt or enable interrupts:
4951 preempt_disable();
4952 rq_unlock(rq, &rf);
4953 sched_preempt_enable_no_resched();
4955 schedule();
4958 SYSCALL_DEFINE0(sched_yield)
4960 do_sched_yield();
4961 return 0;
4964 #ifndef CONFIG_PREEMPT
4965 int __sched _cond_resched(void)
4967 if (should_resched(0)) {
4968 preempt_schedule_common();
4969 return 1;
4971 rcu_all_qs();
4972 return 0;
4974 EXPORT_SYMBOL(_cond_resched);
4975 #endif
4978 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4979 * call schedule, and on return reacquire the lock.
4981 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4982 * operations here to prevent schedule() from being called twice (once via
4983 * spin_unlock(), once by hand).
4985 int __cond_resched_lock(spinlock_t *lock)
4987 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4988 int ret = 0;
4990 lockdep_assert_held(lock);
4992 if (spin_needbreak(lock) || resched) {
4993 spin_unlock(lock);
4994 if (resched)
4995 preempt_schedule_common();
4996 else
4997 cpu_relax();
4998 ret = 1;
4999 spin_lock(lock);
5001 return ret;
5003 EXPORT_SYMBOL(__cond_resched_lock);
5006 * yield - yield the current processor to other threads.
5008 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5010 * The scheduler is at all times free to pick the calling task as the most
5011 * eligible task to run, if removing the yield() call from your code breaks
5012 * it, its already broken.
5014 * Typical broken usage is:
5016 * while (!event)
5017 * yield();
5019 * where one assumes that yield() will let 'the other' process run that will
5020 * make event true. If the current task is a SCHED_FIFO task that will never
5021 * happen. Never use yield() as a progress guarantee!!
5023 * If you want to use yield() to wait for something, use wait_event().
5024 * If you want to use yield() to be 'nice' for others, use cond_resched().
5025 * If you still want to use yield(), do not!
5027 void __sched yield(void)
5029 set_current_state(TASK_RUNNING);
5030 do_sched_yield();
5032 EXPORT_SYMBOL(yield);
5035 * yield_to - yield the current processor to another thread in
5036 * your thread group, or accelerate that thread toward the
5037 * processor it's on.
5038 * @p: target task
5039 * @preempt: whether task preemption is allowed or not
5041 * It's the caller's job to ensure that the target task struct
5042 * can't go away on us before we can do any checks.
5044 * Return:
5045 * true (>0) if we indeed boosted the target task.
5046 * false (0) if we failed to boost the target.
5047 * -ESRCH if there's no task to yield to.
5049 int __sched yield_to(struct task_struct *p, bool preempt)
5051 struct task_struct *curr = current;
5052 struct rq *rq, *p_rq;
5053 unsigned long flags;
5054 int yielded = 0;
5056 local_irq_save(flags);
5057 rq = this_rq();
5059 again:
5060 p_rq = task_rq(p);
5062 * If we're the only runnable task on the rq and target rq also
5063 * has only one task, there's absolutely no point in yielding.
5065 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5066 yielded = -ESRCH;
5067 goto out_irq;
5070 double_rq_lock(rq, p_rq);
5071 if (task_rq(p) != p_rq) {
5072 double_rq_unlock(rq, p_rq);
5073 goto again;
5076 if (!curr->sched_class->yield_to_task)
5077 goto out_unlock;
5079 if (curr->sched_class != p->sched_class)
5080 goto out_unlock;
5082 if (task_running(p_rq, p) || p->state)
5083 goto out_unlock;
5085 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5086 if (yielded) {
5087 schedstat_inc(rq->yld_count);
5089 * Make p's CPU reschedule; pick_next_entity takes care of
5090 * fairness.
5092 if (preempt && rq != p_rq)
5093 resched_curr(p_rq);
5096 out_unlock:
5097 double_rq_unlock(rq, p_rq);
5098 out_irq:
5099 local_irq_restore(flags);
5101 if (yielded > 0)
5102 schedule();
5104 return yielded;
5106 EXPORT_SYMBOL_GPL(yield_to);
5108 int io_schedule_prepare(void)
5110 int old_iowait = current->in_iowait;
5112 current->in_iowait = 1;
5113 blk_schedule_flush_plug(current);
5115 return old_iowait;
5118 void io_schedule_finish(int token)
5120 current->in_iowait = token;
5124 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5125 * that process accounting knows that this is a task in IO wait state.
5127 long __sched io_schedule_timeout(long timeout)
5129 int token;
5130 long ret;
5132 token = io_schedule_prepare();
5133 ret = schedule_timeout(timeout);
5134 io_schedule_finish(token);
5136 return ret;
5138 EXPORT_SYMBOL(io_schedule_timeout);
5140 void io_schedule(void)
5142 int token;
5144 token = io_schedule_prepare();
5145 schedule();
5146 io_schedule_finish(token);
5148 EXPORT_SYMBOL(io_schedule);
5151 * sys_sched_get_priority_max - return maximum RT priority.
5152 * @policy: scheduling class.
5154 * Return: On success, this syscall returns the maximum
5155 * rt_priority that can be used by a given scheduling class.
5156 * On failure, a negative error code is returned.
5158 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5160 int ret = -EINVAL;
5162 switch (policy) {
5163 case SCHED_FIFO:
5164 case SCHED_RR:
5165 ret = MAX_USER_RT_PRIO-1;
5166 break;
5167 case SCHED_DEADLINE:
5168 case SCHED_NORMAL:
5169 case SCHED_BATCH:
5170 case SCHED_IDLE:
5171 ret = 0;
5172 break;
5174 return ret;
5178 * sys_sched_get_priority_min - return minimum RT priority.
5179 * @policy: scheduling class.
5181 * Return: On success, this syscall returns the minimum
5182 * rt_priority that can be used by a given scheduling class.
5183 * On failure, a negative error code is returned.
5185 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5187 int ret = -EINVAL;
5189 switch (policy) {
5190 case SCHED_FIFO:
5191 case SCHED_RR:
5192 ret = 1;
5193 break;
5194 case SCHED_DEADLINE:
5195 case SCHED_NORMAL:
5196 case SCHED_BATCH:
5197 case SCHED_IDLE:
5198 ret = 0;
5200 return ret;
5203 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5205 struct task_struct *p;
5206 unsigned int time_slice;
5207 struct rq_flags rf;
5208 struct rq *rq;
5209 int retval;
5211 if (pid < 0)
5212 return -EINVAL;
5214 retval = -ESRCH;
5215 rcu_read_lock();
5216 p = find_process_by_pid(pid);
5217 if (!p)
5218 goto out_unlock;
5220 retval = security_task_getscheduler(p);
5221 if (retval)
5222 goto out_unlock;
5224 rq = task_rq_lock(p, &rf);
5225 time_slice = 0;
5226 if (p->sched_class->get_rr_interval)
5227 time_slice = p->sched_class->get_rr_interval(rq, p);
5228 task_rq_unlock(rq, p, &rf);
5230 rcu_read_unlock();
5231 jiffies_to_timespec64(time_slice, t);
5232 return 0;
5234 out_unlock:
5235 rcu_read_unlock();
5236 return retval;
5240 * sys_sched_rr_get_interval - return the default timeslice of a process.
5241 * @pid: pid of the process.
5242 * @interval: userspace pointer to the timeslice value.
5244 * this syscall writes the default timeslice value of a given process
5245 * into the user-space timespec buffer. A value of '0' means infinity.
5247 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5248 * an error code.
5250 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5251 struct __kernel_timespec __user *, interval)
5253 struct timespec64 t;
5254 int retval = sched_rr_get_interval(pid, &t);
5256 if (retval == 0)
5257 retval = put_timespec64(&t, interval);
5259 return retval;
5262 #ifdef CONFIG_COMPAT_32BIT_TIME
5263 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5264 compat_pid_t, pid,
5265 struct old_timespec32 __user *, interval)
5267 struct timespec64 t;
5268 int retval = sched_rr_get_interval(pid, &t);
5270 if (retval == 0)
5271 retval = put_old_timespec32(&t, interval);
5272 return retval;
5274 #endif
5276 void sched_show_task(struct task_struct *p)
5278 unsigned long free = 0;
5279 int ppid;
5281 if (!try_get_task_stack(p))
5282 return;
5284 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5286 if (p->state == TASK_RUNNING)
5287 printk(KERN_CONT " running task ");
5288 #ifdef CONFIG_DEBUG_STACK_USAGE
5289 free = stack_not_used(p);
5290 #endif
5291 ppid = 0;
5292 rcu_read_lock();
5293 if (pid_alive(p))
5294 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5295 rcu_read_unlock();
5296 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5297 task_pid_nr(p), ppid,
5298 (unsigned long)task_thread_info(p)->flags);
5300 print_worker_info(KERN_INFO, p);
5301 show_stack(p, NULL);
5302 put_task_stack(p);
5304 EXPORT_SYMBOL_GPL(sched_show_task);
5306 static inline bool
5307 state_filter_match(unsigned long state_filter, struct task_struct *p)
5309 /* no filter, everything matches */
5310 if (!state_filter)
5311 return true;
5313 /* filter, but doesn't match */
5314 if (!(p->state & state_filter))
5315 return false;
5318 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5319 * TASK_KILLABLE).
5321 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5322 return false;
5324 return true;
5328 void show_state_filter(unsigned long state_filter)
5330 struct task_struct *g, *p;
5332 #if BITS_PER_LONG == 32
5333 printk(KERN_INFO
5334 " task PC stack pid father\n");
5335 #else
5336 printk(KERN_INFO
5337 " task PC stack pid father\n");
5338 #endif
5339 rcu_read_lock();
5340 for_each_process_thread(g, p) {
5342 * reset the NMI-timeout, listing all files on a slow
5343 * console might take a lot of time:
5344 * Also, reset softlockup watchdogs on all CPUs, because
5345 * another CPU might be blocked waiting for us to process
5346 * an IPI.
5348 touch_nmi_watchdog();
5349 touch_all_softlockup_watchdogs();
5350 if (state_filter_match(state_filter, p))
5351 sched_show_task(p);
5354 #ifdef CONFIG_SCHED_DEBUG
5355 if (!state_filter)
5356 sysrq_sched_debug_show();
5357 #endif
5358 rcu_read_unlock();
5360 * Only show locks if all tasks are dumped:
5362 if (!state_filter)
5363 debug_show_all_locks();
5367 * init_idle - set up an idle thread for a given CPU
5368 * @idle: task in question
5369 * @cpu: CPU the idle task belongs to
5371 * NOTE: this function does not set the idle thread's NEED_RESCHED
5372 * flag, to make booting more robust.
5374 void init_idle(struct task_struct *idle, int cpu)
5376 struct rq *rq = cpu_rq(cpu);
5377 unsigned long flags;
5379 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5380 raw_spin_lock(&rq->lock);
5382 __sched_fork(0, idle);
5383 idle->state = TASK_RUNNING;
5384 idle->se.exec_start = sched_clock();
5385 idle->flags |= PF_IDLE;
5387 kasan_unpoison_task_stack(idle);
5389 #ifdef CONFIG_SMP
5391 * Its possible that init_idle() gets called multiple times on a task,
5392 * in that case do_set_cpus_allowed() will not do the right thing.
5394 * And since this is boot we can forgo the serialization.
5396 set_cpus_allowed_common(idle, cpumask_of(cpu));
5397 #endif
5399 * We're having a chicken and egg problem, even though we are
5400 * holding rq->lock, the CPU isn't yet set to this CPU so the
5401 * lockdep check in task_group() will fail.
5403 * Similar case to sched_fork(). / Alternatively we could
5404 * use task_rq_lock() here and obtain the other rq->lock.
5406 * Silence PROVE_RCU
5408 rcu_read_lock();
5409 __set_task_cpu(idle, cpu);
5410 rcu_read_unlock();
5412 rq->curr = rq->idle = idle;
5413 idle->on_rq = TASK_ON_RQ_QUEUED;
5414 #ifdef CONFIG_SMP
5415 idle->on_cpu = 1;
5416 #endif
5417 raw_spin_unlock(&rq->lock);
5418 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5420 /* Set the preempt count _outside_ the spinlocks! */
5421 init_idle_preempt_count(idle, cpu);
5424 * The idle tasks have their own, simple scheduling class:
5426 idle->sched_class = &idle_sched_class;
5427 ftrace_graph_init_idle_task(idle, cpu);
5428 vtime_init_idle(idle, cpu);
5429 #ifdef CONFIG_SMP
5430 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5431 #endif
5434 #ifdef CONFIG_SMP
5436 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5437 const struct cpumask *trial)
5439 int ret = 1;
5441 if (!cpumask_weight(cur))
5442 return ret;
5444 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5446 return ret;
5449 int task_can_attach(struct task_struct *p,
5450 const struct cpumask *cs_cpus_allowed)
5452 int ret = 0;
5455 * Kthreads which disallow setaffinity shouldn't be moved
5456 * to a new cpuset; we don't want to change their CPU
5457 * affinity and isolating such threads by their set of
5458 * allowed nodes is unnecessary. Thus, cpusets are not
5459 * applicable for such threads. This prevents checking for
5460 * success of set_cpus_allowed_ptr() on all attached tasks
5461 * before cpus_allowed may be changed.
5463 if (p->flags & PF_NO_SETAFFINITY) {
5464 ret = -EINVAL;
5465 goto out;
5468 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5469 cs_cpus_allowed))
5470 ret = dl_task_can_attach(p, cs_cpus_allowed);
5472 out:
5473 return ret;
5476 bool sched_smp_initialized __read_mostly;
5478 #ifdef CONFIG_NUMA_BALANCING
5479 /* Migrate current task p to target_cpu */
5480 int migrate_task_to(struct task_struct *p, int target_cpu)
5482 struct migration_arg arg = { p, target_cpu };
5483 int curr_cpu = task_cpu(p);
5485 if (curr_cpu == target_cpu)
5486 return 0;
5488 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5489 return -EINVAL;
5491 /* TODO: This is not properly updating schedstats */
5493 trace_sched_move_numa(p, curr_cpu, target_cpu);
5494 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5498 * Requeue a task on a given node and accurately track the number of NUMA
5499 * tasks on the runqueues
5501 void sched_setnuma(struct task_struct *p, int nid)
5503 bool queued, running;
5504 struct rq_flags rf;
5505 struct rq *rq;
5507 rq = task_rq_lock(p, &rf);
5508 queued = task_on_rq_queued(p);
5509 running = task_current(rq, p);
5511 if (queued)
5512 dequeue_task(rq, p, DEQUEUE_SAVE);
5513 if (running)
5514 put_prev_task(rq, p);
5516 p->numa_preferred_nid = nid;
5518 if (queued)
5519 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5520 if (running)
5521 set_curr_task(rq, p);
5522 task_rq_unlock(rq, p, &rf);
5524 #endif /* CONFIG_NUMA_BALANCING */
5526 #ifdef CONFIG_HOTPLUG_CPU
5528 * Ensure that the idle task is using init_mm right before its CPU goes
5529 * offline.
5531 void idle_task_exit(void)
5533 struct mm_struct *mm = current->active_mm;
5535 BUG_ON(cpu_online(smp_processor_id()));
5537 if (mm != &init_mm) {
5538 switch_mm(mm, &init_mm, current);
5539 current->active_mm = &init_mm;
5540 finish_arch_post_lock_switch();
5542 mmdrop(mm);
5546 * Since this CPU is going 'away' for a while, fold any nr_active delta
5547 * we might have. Assumes we're called after migrate_tasks() so that the
5548 * nr_active count is stable. We need to take the teardown thread which
5549 * is calling this into account, so we hand in adjust = 1 to the load
5550 * calculation.
5552 * Also see the comment "Global load-average calculations".
5554 static void calc_load_migrate(struct rq *rq)
5556 long delta = calc_load_fold_active(rq, 1);
5557 if (delta)
5558 atomic_long_add(delta, &calc_load_tasks);
5561 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5565 static const struct sched_class fake_sched_class = {
5566 .put_prev_task = put_prev_task_fake,
5569 static struct task_struct fake_task = {
5571 * Avoid pull_{rt,dl}_task()
5573 .prio = MAX_PRIO + 1,
5574 .sched_class = &fake_sched_class,
5578 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5579 * try_to_wake_up()->select_task_rq().
5581 * Called with rq->lock held even though we'er in stop_machine() and
5582 * there's no concurrency possible, we hold the required locks anyway
5583 * because of lock validation efforts.
5585 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5587 struct rq *rq = dead_rq;
5588 struct task_struct *next, *stop = rq->stop;
5589 struct rq_flags orf = *rf;
5590 int dest_cpu;
5593 * Fudge the rq selection such that the below task selection loop
5594 * doesn't get stuck on the currently eligible stop task.
5596 * We're currently inside stop_machine() and the rq is either stuck
5597 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5598 * either way we should never end up calling schedule() until we're
5599 * done here.
5601 rq->stop = NULL;
5604 * put_prev_task() and pick_next_task() sched
5605 * class method both need to have an up-to-date
5606 * value of rq->clock[_task]
5608 update_rq_clock(rq);
5610 for (;;) {
5612 * There's this thread running, bail when that's the only
5613 * remaining thread:
5615 if (rq->nr_running == 1)
5616 break;
5619 * pick_next_task() assumes pinned rq->lock:
5621 next = pick_next_task(rq, &fake_task, rf);
5622 BUG_ON(!next);
5623 put_prev_task(rq, next);
5626 * Rules for changing task_struct::cpus_allowed are holding
5627 * both pi_lock and rq->lock, such that holding either
5628 * stabilizes the mask.
5630 * Drop rq->lock is not quite as disastrous as it usually is
5631 * because !cpu_active at this point, which means load-balance
5632 * will not interfere. Also, stop-machine.
5634 rq_unlock(rq, rf);
5635 raw_spin_lock(&next->pi_lock);
5636 rq_relock(rq, rf);
5639 * Since we're inside stop-machine, _nothing_ should have
5640 * changed the task, WARN if weird stuff happened, because in
5641 * that case the above rq->lock drop is a fail too.
5643 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5644 raw_spin_unlock(&next->pi_lock);
5645 continue;
5648 /* Find suitable destination for @next, with force if needed. */
5649 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5650 rq = __migrate_task(rq, rf, next, dest_cpu);
5651 if (rq != dead_rq) {
5652 rq_unlock(rq, rf);
5653 rq = dead_rq;
5654 *rf = orf;
5655 rq_relock(rq, rf);
5657 raw_spin_unlock(&next->pi_lock);
5660 rq->stop = stop;
5662 #endif /* CONFIG_HOTPLUG_CPU */
5664 void set_rq_online(struct rq *rq)
5666 if (!rq->online) {
5667 const struct sched_class *class;
5669 cpumask_set_cpu(rq->cpu, rq->rd->online);
5670 rq->online = 1;
5672 for_each_class(class) {
5673 if (class->rq_online)
5674 class->rq_online(rq);
5679 void set_rq_offline(struct rq *rq)
5681 if (rq->online) {
5682 const struct sched_class *class;
5684 for_each_class(class) {
5685 if (class->rq_offline)
5686 class->rq_offline(rq);
5689 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5690 rq->online = 0;
5695 * used to mark begin/end of suspend/resume:
5697 static int num_cpus_frozen;
5700 * Update cpusets according to cpu_active mask. If cpusets are
5701 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5702 * around partition_sched_domains().
5704 * If we come here as part of a suspend/resume, don't touch cpusets because we
5705 * want to restore it back to its original state upon resume anyway.
5707 static void cpuset_cpu_active(void)
5709 if (cpuhp_tasks_frozen) {
5711 * num_cpus_frozen tracks how many CPUs are involved in suspend
5712 * resume sequence. As long as this is not the last online
5713 * operation in the resume sequence, just build a single sched
5714 * domain, ignoring cpusets.
5716 partition_sched_domains(1, NULL, NULL);
5717 if (--num_cpus_frozen)
5718 return;
5720 * This is the last CPU online operation. So fall through and
5721 * restore the original sched domains by considering the
5722 * cpuset configurations.
5724 cpuset_force_rebuild();
5726 cpuset_update_active_cpus();
5729 static int cpuset_cpu_inactive(unsigned int cpu)
5731 if (!cpuhp_tasks_frozen) {
5732 if (dl_cpu_busy(cpu))
5733 return -EBUSY;
5734 cpuset_update_active_cpus();
5735 } else {
5736 num_cpus_frozen++;
5737 partition_sched_domains(1, NULL, NULL);
5739 return 0;
5742 int sched_cpu_activate(unsigned int cpu)
5744 struct rq *rq = cpu_rq(cpu);
5745 struct rq_flags rf;
5747 #ifdef CONFIG_SCHED_SMT
5749 * The sched_smt_present static key needs to be evaluated on every
5750 * hotplug event because at boot time SMT might be disabled when
5751 * the number of booted CPUs is limited.
5753 * If then later a sibling gets hotplugged, then the key would stay
5754 * off and SMT scheduling would never be functional.
5756 if (cpumask_weight(cpu_smt_mask(cpu)) > 1)
5757 static_branch_enable_cpuslocked(&sched_smt_present);
5758 #endif
5759 set_cpu_active(cpu, true);
5761 if (sched_smp_initialized) {
5762 sched_domains_numa_masks_set(cpu);
5763 cpuset_cpu_active();
5767 * Put the rq online, if not already. This happens:
5769 * 1) In the early boot process, because we build the real domains
5770 * after all CPUs have been brought up.
5772 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5773 * domains.
5775 rq_lock_irqsave(rq, &rf);
5776 if (rq->rd) {
5777 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5778 set_rq_online(rq);
5780 rq_unlock_irqrestore(rq, &rf);
5782 update_max_interval();
5784 return 0;
5787 int sched_cpu_deactivate(unsigned int cpu)
5789 int ret;
5791 set_cpu_active(cpu, false);
5793 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5794 * users of this state to go away such that all new such users will
5795 * observe it.
5797 * Do sync before park smpboot threads to take care the rcu boost case.
5799 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5801 if (!sched_smp_initialized)
5802 return 0;
5804 ret = cpuset_cpu_inactive(cpu);
5805 if (ret) {
5806 set_cpu_active(cpu, true);
5807 return ret;
5809 sched_domains_numa_masks_clear(cpu);
5810 return 0;
5813 static void sched_rq_cpu_starting(unsigned int cpu)
5815 struct rq *rq = cpu_rq(cpu);
5817 rq->calc_load_update = calc_load_update;
5818 update_max_interval();
5821 int sched_cpu_starting(unsigned int cpu)
5823 sched_rq_cpu_starting(cpu);
5824 sched_tick_start(cpu);
5825 return 0;
5828 #ifdef CONFIG_HOTPLUG_CPU
5829 int sched_cpu_dying(unsigned int cpu)
5831 struct rq *rq = cpu_rq(cpu);
5832 struct rq_flags rf;
5834 /* Handle pending wakeups and then migrate everything off */
5835 sched_ttwu_pending();
5836 sched_tick_stop(cpu);
5838 rq_lock_irqsave(rq, &rf);
5839 if (rq->rd) {
5840 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5841 set_rq_offline(rq);
5843 migrate_tasks(rq, &rf);
5844 BUG_ON(rq->nr_running != 1);
5845 rq_unlock_irqrestore(rq, &rf);
5847 calc_load_migrate(rq);
5848 update_max_interval();
5849 nohz_balance_exit_idle(rq);
5850 hrtick_clear(rq);
5851 return 0;
5853 #endif
5855 void __init sched_init_smp(void)
5857 sched_init_numa();
5860 * There's no userspace yet to cause hotplug operations; hence all the
5861 * CPU masks are stable and all blatant races in the below code cannot
5862 * happen.
5864 mutex_lock(&sched_domains_mutex);
5865 sched_init_domains(cpu_active_mask);
5866 mutex_unlock(&sched_domains_mutex);
5868 /* Move init over to a non-isolated CPU */
5869 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5870 BUG();
5871 sched_init_granularity();
5873 init_sched_rt_class();
5874 init_sched_dl_class();
5876 sched_smp_initialized = true;
5879 static int __init migration_init(void)
5881 sched_rq_cpu_starting(smp_processor_id());
5882 return 0;
5884 early_initcall(migration_init);
5886 #else
5887 void __init sched_init_smp(void)
5889 sched_init_granularity();
5891 #endif /* CONFIG_SMP */
5893 int in_sched_functions(unsigned long addr)
5895 return in_lock_functions(addr) ||
5896 (addr >= (unsigned long)__sched_text_start
5897 && addr < (unsigned long)__sched_text_end);
5900 #ifdef CONFIG_CGROUP_SCHED
5902 * Default task group.
5903 * Every task in system belongs to this group at bootup.
5905 struct task_group root_task_group;
5906 LIST_HEAD(task_groups);
5908 /* Cacheline aligned slab cache for task_group */
5909 static struct kmem_cache *task_group_cache __read_mostly;
5910 #endif
5912 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5913 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5915 void __init sched_init(void)
5917 int i, j;
5918 unsigned long alloc_size = 0, ptr;
5920 wait_bit_init();
5922 #ifdef CONFIG_FAIR_GROUP_SCHED
5923 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5924 #endif
5925 #ifdef CONFIG_RT_GROUP_SCHED
5926 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5927 #endif
5928 if (alloc_size) {
5929 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5931 #ifdef CONFIG_FAIR_GROUP_SCHED
5932 root_task_group.se = (struct sched_entity **)ptr;
5933 ptr += nr_cpu_ids * sizeof(void **);
5935 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5936 ptr += nr_cpu_ids * sizeof(void **);
5938 #endif /* CONFIG_FAIR_GROUP_SCHED */
5939 #ifdef CONFIG_RT_GROUP_SCHED
5940 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5941 ptr += nr_cpu_ids * sizeof(void **);
5943 root_task_group.rt_rq = (struct rt_rq **)ptr;
5944 ptr += nr_cpu_ids * sizeof(void **);
5946 #endif /* CONFIG_RT_GROUP_SCHED */
5948 #ifdef CONFIG_CPUMASK_OFFSTACK
5949 for_each_possible_cpu(i) {
5950 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5951 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5952 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5953 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5955 #endif /* CONFIG_CPUMASK_OFFSTACK */
5957 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5958 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5960 #ifdef CONFIG_SMP
5961 init_defrootdomain();
5962 #endif
5964 #ifdef CONFIG_RT_GROUP_SCHED
5965 init_rt_bandwidth(&root_task_group.rt_bandwidth,
5966 global_rt_period(), global_rt_runtime());
5967 #endif /* CONFIG_RT_GROUP_SCHED */
5969 #ifdef CONFIG_CGROUP_SCHED
5970 task_group_cache = KMEM_CACHE(task_group, 0);
5972 list_add(&root_task_group.list, &task_groups);
5973 INIT_LIST_HEAD(&root_task_group.children);
5974 INIT_LIST_HEAD(&root_task_group.siblings);
5975 autogroup_init(&init_task);
5976 #endif /* CONFIG_CGROUP_SCHED */
5978 for_each_possible_cpu(i) {
5979 struct rq *rq;
5981 rq = cpu_rq(i);
5982 raw_spin_lock_init(&rq->lock);
5983 rq->nr_running = 0;
5984 rq->calc_load_active = 0;
5985 rq->calc_load_update = jiffies + LOAD_FREQ;
5986 init_cfs_rq(&rq->cfs);
5987 init_rt_rq(&rq->rt);
5988 init_dl_rq(&rq->dl);
5989 #ifdef CONFIG_FAIR_GROUP_SCHED
5990 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
5991 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5992 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
5994 * How much CPU bandwidth does root_task_group get?
5996 * In case of task-groups formed thr' the cgroup filesystem, it
5997 * gets 100% of the CPU resources in the system. This overall
5998 * system CPU resource is divided among the tasks of
5999 * root_task_group and its child task-groups in a fair manner,
6000 * based on each entity's (task or task-group's) weight
6001 * (se->load.weight).
6003 * In other words, if root_task_group has 10 tasks of weight
6004 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6005 * then A0's share of the CPU resource is:
6007 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6009 * We achieve this by letting root_task_group's tasks sit
6010 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6012 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6013 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6014 #endif /* CONFIG_FAIR_GROUP_SCHED */
6016 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6017 #ifdef CONFIG_RT_GROUP_SCHED
6018 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6019 #endif
6021 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6022 rq->cpu_load[j] = 0;
6024 #ifdef CONFIG_SMP
6025 rq->sd = NULL;
6026 rq->rd = NULL;
6027 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6028 rq->balance_callback = NULL;
6029 rq->active_balance = 0;
6030 rq->next_balance = jiffies;
6031 rq->push_cpu = 0;
6032 rq->cpu = i;
6033 rq->online = 0;
6034 rq->idle_stamp = 0;
6035 rq->avg_idle = 2*sysctl_sched_migration_cost;
6036 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6038 INIT_LIST_HEAD(&rq->cfs_tasks);
6040 rq_attach_root(rq, &def_root_domain);
6041 #ifdef CONFIG_NO_HZ_COMMON
6042 rq->last_load_update_tick = jiffies;
6043 rq->last_blocked_load_update_tick = jiffies;
6044 atomic_set(&rq->nohz_flags, 0);
6045 #endif
6046 #endif /* CONFIG_SMP */
6047 hrtick_rq_init(rq);
6048 atomic_set(&rq->nr_iowait, 0);
6051 set_load_weight(&init_task, false);
6054 * The boot idle thread does lazy MMU switching as well:
6056 mmgrab(&init_mm);
6057 enter_lazy_tlb(&init_mm, current);
6060 * Make us the idle thread. Technically, schedule() should not be
6061 * called from this thread, however somewhere below it might be,
6062 * but because we are the idle thread, we just pick up running again
6063 * when this runqueue becomes "idle".
6065 init_idle(current, smp_processor_id());
6067 calc_load_update = jiffies + LOAD_FREQ;
6069 #ifdef CONFIG_SMP
6070 idle_thread_set_boot_cpu();
6071 #endif
6072 init_sched_fair_class();
6074 init_schedstats();
6076 psi_init();
6078 scheduler_running = 1;
6081 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6082 static inline int preempt_count_equals(int preempt_offset)
6084 int nested = preempt_count() + rcu_preempt_depth();
6086 return (nested == preempt_offset);
6089 void __might_sleep(const char *file, int line, int preempt_offset)
6092 * Blocking primitives will set (and therefore destroy) current->state,
6093 * since we will exit with TASK_RUNNING make sure we enter with it,
6094 * otherwise we will destroy state.
6096 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6097 "do not call blocking ops when !TASK_RUNNING; "
6098 "state=%lx set at [<%p>] %pS\n",
6099 current->state,
6100 (void *)current->task_state_change,
6101 (void *)current->task_state_change);
6103 ___might_sleep(file, line, preempt_offset);
6105 EXPORT_SYMBOL(__might_sleep);
6107 void ___might_sleep(const char *file, int line, int preempt_offset)
6109 /* Ratelimiting timestamp: */
6110 static unsigned long prev_jiffy;
6112 unsigned long preempt_disable_ip;
6114 /* WARN_ON_ONCE() by default, no rate limit required: */
6115 rcu_sleep_check();
6117 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6118 !is_idle_task(current)) ||
6119 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6120 oops_in_progress)
6121 return;
6123 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6124 return;
6125 prev_jiffy = jiffies;
6127 /* Save this before calling printk(), since that will clobber it: */
6128 preempt_disable_ip = get_preempt_disable_ip(current);
6130 printk(KERN_ERR
6131 "BUG: sleeping function called from invalid context at %s:%d\n",
6132 file, line);
6133 printk(KERN_ERR
6134 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6135 in_atomic(), irqs_disabled(),
6136 current->pid, current->comm);
6138 if (task_stack_end_corrupted(current))
6139 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6141 debug_show_held_locks(current);
6142 if (irqs_disabled())
6143 print_irqtrace_events(current);
6144 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6145 && !preempt_count_equals(preempt_offset)) {
6146 pr_err("Preemption disabled at:");
6147 print_ip_sym(preempt_disable_ip);
6148 pr_cont("\n");
6150 dump_stack();
6151 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6153 EXPORT_SYMBOL(___might_sleep);
6154 #endif
6156 #ifdef CONFIG_MAGIC_SYSRQ
6157 void normalize_rt_tasks(void)
6159 struct task_struct *g, *p;
6160 struct sched_attr attr = {
6161 .sched_policy = SCHED_NORMAL,
6164 read_lock(&tasklist_lock);
6165 for_each_process_thread(g, p) {
6167 * Only normalize user tasks:
6169 if (p->flags & PF_KTHREAD)
6170 continue;
6172 p->se.exec_start = 0;
6173 schedstat_set(p->se.statistics.wait_start, 0);
6174 schedstat_set(p->se.statistics.sleep_start, 0);
6175 schedstat_set(p->se.statistics.block_start, 0);
6177 if (!dl_task(p) && !rt_task(p)) {
6179 * Renice negative nice level userspace
6180 * tasks back to 0:
6182 if (task_nice(p) < 0)
6183 set_user_nice(p, 0);
6184 continue;
6187 __sched_setscheduler(p, &attr, false, false);
6189 read_unlock(&tasklist_lock);
6192 #endif /* CONFIG_MAGIC_SYSRQ */
6194 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6196 * These functions are only useful for the IA64 MCA handling, or kdb.
6198 * They can only be called when the whole system has been
6199 * stopped - every CPU needs to be quiescent, and no scheduling
6200 * activity can take place. Using them for anything else would
6201 * be a serious bug, and as a result, they aren't even visible
6202 * under any other configuration.
6206 * curr_task - return the current task for a given CPU.
6207 * @cpu: the processor in question.
6209 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6211 * Return: The current task for @cpu.
6213 struct task_struct *curr_task(int cpu)
6215 return cpu_curr(cpu);
6218 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6220 #ifdef CONFIG_IA64
6222 * set_curr_task - set the current task for a given CPU.
6223 * @cpu: the processor in question.
6224 * @p: the task pointer to set.
6226 * Description: This function must only be used when non-maskable interrupts
6227 * are serviced on a separate stack. It allows the architecture to switch the
6228 * notion of the current task on a CPU in a non-blocking manner. This function
6229 * must be called with all CPU's synchronized, and interrupts disabled, the
6230 * and caller must save the original value of the current task (see
6231 * curr_task() above) and restore that value before reenabling interrupts and
6232 * re-starting the system.
6234 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6236 void ia64_set_curr_task(int cpu, struct task_struct *p)
6238 cpu_curr(cpu) = p;
6241 #endif
6243 #ifdef CONFIG_CGROUP_SCHED
6244 /* task_group_lock serializes the addition/removal of task groups */
6245 static DEFINE_SPINLOCK(task_group_lock);
6247 static void sched_free_group(struct task_group *tg)
6249 free_fair_sched_group(tg);
6250 free_rt_sched_group(tg);
6251 autogroup_free(tg);
6252 kmem_cache_free(task_group_cache, tg);
6255 /* allocate runqueue etc for a new task group */
6256 struct task_group *sched_create_group(struct task_group *parent)
6258 struct task_group *tg;
6260 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6261 if (!tg)
6262 return ERR_PTR(-ENOMEM);
6264 if (!alloc_fair_sched_group(tg, parent))
6265 goto err;
6267 if (!alloc_rt_sched_group(tg, parent))
6268 goto err;
6270 return tg;
6272 err:
6273 sched_free_group(tg);
6274 return ERR_PTR(-ENOMEM);
6277 void sched_online_group(struct task_group *tg, struct task_group *parent)
6279 unsigned long flags;
6281 spin_lock_irqsave(&task_group_lock, flags);
6282 list_add_rcu(&tg->list, &task_groups);
6284 /* Root should already exist: */
6285 WARN_ON(!parent);
6287 tg->parent = parent;
6288 INIT_LIST_HEAD(&tg->children);
6289 list_add_rcu(&tg->siblings, &parent->children);
6290 spin_unlock_irqrestore(&task_group_lock, flags);
6292 online_fair_sched_group(tg);
6295 /* rcu callback to free various structures associated with a task group */
6296 static void sched_free_group_rcu(struct rcu_head *rhp)
6298 /* Now it should be safe to free those cfs_rqs: */
6299 sched_free_group(container_of(rhp, struct task_group, rcu));
6302 void sched_destroy_group(struct task_group *tg)
6304 /* Wait for possible concurrent references to cfs_rqs complete: */
6305 call_rcu(&tg->rcu, sched_free_group_rcu);
6308 void sched_offline_group(struct task_group *tg)
6310 unsigned long flags;
6312 /* End participation in shares distribution: */
6313 unregister_fair_sched_group(tg);
6315 spin_lock_irqsave(&task_group_lock, flags);
6316 list_del_rcu(&tg->list);
6317 list_del_rcu(&tg->siblings);
6318 spin_unlock_irqrestore(&task_group_lock, flags);
6321 static void sched_change_group(struct task_struct *tsk, int type)
6323 struct task_group *tg;
6326 * All callers are synchronized by task_rq_lock(); we do not use RCU
6327 * which is pointless here. Thus, we pass "true" to task_css_check()
6328 * to prevent lockdep warnings.
6330 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6331 struct task_group, css);
6332 tg = autogroup_task_group(tsk, tg);
6333 tsk->sched_task_group = tg;
6335 #ifdef CONFIG_FAIR_GROUP_SCHED
6336 if (tsk->sched_class->task_change_group)
6337 tsk->sched_class->task_change_group(tsk, type);
6338 else
6339 #endif
6340 set_task_rq(tsk, task_cpu(tsk));
6344 * Change task's runqueue when it moves between groups.
6346 * The caller of this function should have put the task in its new group by
6347 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6348 * its new group.
6350 void sched_move_task(struct task_struct *tsk)
6352 int queued, running, queue_flags =
6353 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6354 struct rq_flags rf;
6355 struct rq *rq;
6357 rq = task_rq_lock(tsk, &rf);
6358 update_rq_clock(rq);
6360 running = task_current(rq, tsk);
6361 queued = task_on_rq_queued(tsk);
6363 if (queued)
6364 dequeue_task(rq, tsk, queue_flags);
6365 if (running)
6366 put_prev_task(rq, tsk);
6368 sched_change_group(tsk, TASK_MOVE_GROUP);
6370 if (queued)
6371 enqueue_task(rq, tsk, queue_flags);
6372 if (running)
6373 set_curr_task(rq, tsk);
6375 task_rq_unlock(rq, tsk, &rf);
6378 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6380 return css ? container_of(css, struct task_group, css) : NULL;
6383 static struct cgroup_subsys_state *
6384 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6386 struct task_group *parent = css_tg(parent_css);
6387 struct task_group *tg;
6389 if (!parent) {
6390 /* This is early initialization for the top cgroup */
6391 return &root_task_group.css;
6394 tg = sched_create_group(parent);
6395 if (IS_ERR(tg))
6396 return ERR_PTR(-ENOMEM);
6398 return &tg->css;
6401 /* Expose task group only after completing cgroup initialization */
6402 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6404 struct task_group *tg = css_tg(css);
6405 struct task_group *parent = css_tg(css->parent);
6407 if (parent)
6408 sched_online_group(tg, parent);
6409 return 0;
6412 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6414 struct task_group *tg = css_tg(css);
6416 sched_offline_group(tg);
6419 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6421 struct task_group *tg = css_tg(css);
6424 * Relies on the RCU grace period between css_released() and this.
6426 sched_free_group(tg);
6430 * This is called before wake_up_new_task(), therefore we really only
6431 * have to set its group bits, all the other stuff does not apply.
6433 static void cpu_cgroup_fork(struct task_struct *task)
6435 struct rq_flags rf;
6436 struct rq *rq;
6438 rq = task_rq_lock(task, &rf);
6440 update_rq_clock(rq);
6441 sched_change_group(task, TASK_SET_GROUP);
6443 task_rq_unlock(rq, task, &rf);
6446 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6448 struct task_struct *task;
6449 struct cgroup_subsys_state *css;
6450 int ret = 0;
6452 cgroup_taskset_for_each(task, css, tset) {
6453 #ifdef CONFIG_RT_GROUP_SCHED
6454 if (!sched_rt_can_attach(css_tg(css), task))
6455 return -EINVAL;
6456 #else
6457 /* We don't support RT-tasks being in separate groups */
6458 if (task->sched_class != &fair_sched_class)
6459 return -EINVAL;
6460 #endif
6462 * Serialize against wake_up_new_task() such that if its
6463 * running, we're sure to observe its full state.
6465 raw_spin_lock_irq(&task->pi_lock);
6467 * Avoid calling sched_move_task() before wake_up_new_task()
6468 * has happened. This would lead to problems with PELT, due to
6469 * move wanting to detach+attach while we're not attached yet.
6471 if (task->state == TASK_NEW)
6472 ret = -EINVAL;
6473 raw_spin_unlock_irq(&task->pi_lock);
6475 if (ret)
6476 break;
6478 return ret;
6481 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6483 struct task_struct *task;
6484 struct cgroup_subsys_state *css;
6486 cgroup_taskset_for_each(task, css, tset)
6487 sched_move_task(task);
6490 #ifdef CONFIG_FAIR_GROUP_SCHED
6491 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6492 struct cftype *cftype, u64 shareval)
6494 return sched_group_set_shares(css_tg(css), scale_load(shareval));
6497 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6498 struct cftype *cft)
6500 struct task_group *tg = css_tg(css);
6502 return (u64) scale_load_down(tg->shares);
6505 #ifdef CONFIG_CFS_BANDWIDTH
6506 static DEFINE_MUTEX(cfs_constraints_mutex);
6508 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6509 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6511 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6513 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6515 int i, ret = 0, runtime_enabled, runtime_was_enabled;
6516 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6518 if (tg == &root_task_group)
6519 return -EINVAL;
6522 * Ensure we have at some amount of bandwidth every period. This is
6523 * to prevent reaching a state of large arrears when throttled via
6524 * entity_tick() resulting in prolonged exit starvation.
6526 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6527 return -EINVAL;
6530 * Likewise, bound things on the otherside by preventing insane quota
6531 * periods. This also allows us to normalize in computing quota
6532 * feasibility.
6534 if (period > max_cfs_quota_period)
6535 return -EINVAL;
6538 * Prevent race between setting of cfs_rq->runtime_enabled and
6539 * unthrottle_offline_cfs_rqs().
6541 get_online_cpus();
6542 mutex_lock(&cfs_constraints_mutex);
6543 ret = __cfs_schedulable(tg, period, quota);
6544 if (ret)
6545 goto out_unlock;
6547 runtime_enabled = quota != RUNTIME_INF;
6548 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6550 * If we need to toggle cfs_bandwidth_used, off->on must occur
6551 * before making related changes, and on->off must occur afterwards
6553 if (runtime_enabled && !runtime_was_enabled)
6554 cfs_bandwidth_usage_inc();
6555 raw_spin_lock_irq(&cfs_b->lock);
6556 cfs_b->period = ns_to_ktime(period);
6557 cfs_b->quota = quota;
6559 __refill_cfs_bandwidth_runtime(cfs_b);
6561 /* Restart the period timer (if active) to handle new period expiry: */
6562 if (runtime_enabled)
6563 start_cfs_bandwidth(cfs_b);
6565 raw_spin_unlock_irq(&cfs_b->lock);
6567 for_each_online_cpu(i) {
6568 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6569 struct rq *rq = cfs_rq->rq;
6570 struct rq_flags rf;
6572 rq_lock_irq(rq, &rf);
6573 cfs_rq->runtime_enabled = runtime_enabled;
6574 cfs_rq->runtime_remaining = 0;
6576 if (cfs_rq->throttled)
6577 unthrottle_cfs_rq(cfs_rq);
6578 rq_unlock_irq(rq, &rf);
6580 if (runtime_was_enabled && !runtime_enabled)
6581 cfs_bandwidth_usage_dec();
6582 out_unlock:
6583 mutex_unlock(&cfs_constraints_mutex);
6584 put_online_cpus();
6586 return ret;
6589 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6591 u64 quota, period;
6593 period = ktime_to_ns(tg->cfs_bandwidth.period);
6594 if (cfs_quota_us < 0)
6595 quota = RUNTIME_INF;
6596 else
6597 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6599 return tg_set_cfs_bandwidth(tg, period, quota);
6602 long tg_get_cfs_quota(struct task_group *tg)
6604 u64 quota_us;
6606 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6607 return -1;
6609 quota_us = tg->cfs_bandwidth.quota;
6610 do_div(quota_us, NSEC_PER_USEC);
6612 return quota_us;
6615 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6617 u64 quota, period;
6619 period = (u64)cfs_period_us * NSEC_PER_USEC;
6620 quota = tg->cfs_bandwidth.quota;
6622 return tg_set_cfs_bandwidth(tg, period, quota);
6625 long tg_get_cfs_period(struct task_group *tg)
6627 u64 cfs_period_us;
6629 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6630 do_div(cfs_period_us, NSEC_PER_USEC);
6632 return cfs_period_us;
6635 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6636 struct cftype *cft)
6638 return tg_get_cfs_quota(css_tg(css));
6641 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6642 struct cftype *cftype, s64 cfs_quota_us)
6644 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6647 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6648 struct cftype *cft)
6650 return tg_get_cfs_period(css_tg(css));
6653 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6654 struct cftype *cftype, u64 cfs_period_us)
6656 return tg_set_cfs_period(css_tg(css), cfs_period_us);
6659 struct cfs_schedulable_data {
6660 struct task_group *tg;
6661 u64 period, quota;
6665 * normalize group quota/period to be quota/max_period
6666 * note: units are usecs
6668 static u64 normalize_cfs_quota(struct task_group *tg,
6669 struct cfs_schedulable_data *d)
6671 u64 quota, period;
6673 if (tg == d->tg) {
6674 period = d->period;
6675 quota = d->quota;
6676 } else {
6677 period = tg_get_cfs_period(tg);
6678 quota = tg_get_cfs_quota(tg);
6681 /* note: these should typically be equivalent */
6682 if (quota == RUNTIME_INF || quota == -1)
6683 return RUNTIME_INF;
6685 return to_ratio(period, quota);
6688 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6690 struct cfs_schedulable_data *d = data;
6691 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6692 s64 quota = 0, parent_quota = -1;
6694 if (!tg->parent) {
6695 quota = RUNTIME_INF;
6696 } else {
6697 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6699 quota = normalize_cfs_quota(tg, d);
6700 parent_quota = parent_b->hierarchical_quota;
6703 * Ensure max(child_quota) <= parent_quota. On cgroup2,
6704 * always take the min. On cgroup1, only inherit when no
6705 * limit is set:
6707 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6708 quota = min(quota, parent_quota);
6709 } else {
6710 if (quota == RUNTIME_INF)
6711 quota = parent_quota;
6712 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6713 return -EINVAL;
6716 cfs_b->hierarchical_quota = quota;
6718 return 0;
6721 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6723 int ret;
6724 struct cfs_schedulable_data data = {
6725 .tg = tg,
6726 .period = period,
6727 .quota = quota,
6730 if (quota != RUNTIME_INF) {
6731 do_div(data.period, NSEC_PER_USEC);
6732 do_div(data.quota, NSEC_PER_USEC);
6735 rcu_read_lock();
6736 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6737 rcu_read_unlock();
6739 return ret;
6742 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6744 struct task_group *tg = css_tg(seq_css(sf));
6745 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6747 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6748 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6749 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6751 if (schedstat_enabled() && tg != &root_task_group) {
6752 u64 ws = 0;
6753 int i;
6755 for_each_possible_cpu(i)
6756 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
6758 seq_printf(sf, "wait_sum %llu\n", ws);
6761 return 0;
6763 #endif /* CONFIG_CFS_BANDWIDTH */
6764 #endif /* CONFIG_FAIR_GROUP_SCHED */
6766 #ifdef CONFIG_RT_GROUP_SCHED
6767 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6768 struct cftype *cft, s64 val)
6770 return sched_group_set_rt_runtime(css_tg(css), val);
6773 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6774 struct cftype *cft)
6776 return sched_group_rt_runtime(css_tg(css));
6779 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6780 struct cftype *cftype, u64 rt_period_us)
6782 return sched_group_set_rt_period(css_tg(css), rt_period_us);
6785 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6786 struct cftype *cft)
6788 return sched_group_rt_period(css_tg(css));
6790 #endif /* CONFIG_RT_GROUP_SCHED */
6792 static struct cftype cpu_legacy_files[] = {
6793 #ifdef CONFIG_FAIR_GROUP_SCHED
6795 .name = "shares",
6796 .read_u64 = cpu_shares_read_u64,
6797 .write_u64 = cpu_shares_write_u64,
6799 #endif
6800 #ifdef CONFIG_CFS_BANDWIDTH
6802 .name = "cfs_quota_us",
6803 .read_s64 = cpu_cfs_quota_read_s64,
6804 .write_s64 = cpu_cfs_quota_write_s64,
6807 .name = "cfs_period_us",
6808 .read_u64 = cpu_cfs_period_read_u64,
6809 .write_u64 = cpu_cfs_period_write_u64,
6812 .name = "stat",
6813 .seq_show = cpu_cfs_stat_show,
6815 #endif
6816 #ifdef CONFIG_RT_GROUP_SCHED
6818 .name = "rt_runtime_us",
6819 .read_s64 = cpu_rt_runtime_read,
6820 .write_s64 = cpu_rt_runtime_write,
6823 .name = "rt_period_us",
6824 .read_u64 = cpu_rt_period_read_uint,
6825 .write_u64 = cpu_rt_period_write_uint,
6827 #endif
6828 { } /* Terminate */
6831 static int cpu_extra_stat_show(struct seq_file *sf,
6832 struct cgroup_subsys_state *css)
6834 #ifdef CONFIG_CFS_BANDWIDTH
6836 struct task_group *tg = css_tg(css);
6837 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6838 u64 throttled_usec;
6840 throttled_usec = cfs_b->throttled_time;
6841 do_div(throttled_usec, NSEC_PER_USEC);
6843 seq_printf(sf, "nr_periods %d\n"
6844 "nr_throttled %d\n"
6845 "throttled_usec %llu\n",
6846 cfs_b->nr_periods, cfs_b->nr_throttled,
6847 throttled_usec);
6849 #endif
6850 return 0;
6853 #ifdef CONFIG_FAIR_GROUP_SCHED
6854 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6855 struct cftype *cft)
6857 struct task_group *tg = css_tg(css);
6858 u64 weight = scale_load_down(tg->shares);
6860 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6863 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6864 struct cftype *cft, u64 weight)
6867 * cgroup weight knobs should use the common MIN, DFL and MAX
6868 * values which are 1, 100 and 10000 respectively. While it loses
6869 * a bit of range on both ends, it maps pretty well onto the shares
6870 * value used by scheduler and the round-trip conversions preserve
6871 * the original value over the entire range.
6873 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6874 return -ERANGE;
6876 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6878 return sched_group_set_shares(css_tg(css), scale_load(weight));
6881 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6882 struct cftype *cft)
6884 unsigned long weight = scale_load_down(css_tg(css)->shares);
6885 int last_delta = INT_MAX;
6886 int prio, delta;
6888 /* find the closest nice value to the current weight */
6889 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6890 delta = abs(sched_prio_to_weight[prio] - weight);
6891 if (delta >= last_delta)
6892 break;
6893 last_delta = delta;
6896 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6899 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6900 struct cftype *cft, s64 nice)
6902 unsigned long weight;
6903 int idx;
6905 if (nice < MIN_NICE || nice > MAX_NICE)
6906 return -ERANGE;
6908 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6909 idx = array_index_nospec(idx, 40);
6910 weight = sched_prio_to_weight[idx];
6912 return sched_group_set_shares(css_tg(css), scale_load(weight));
6914 #endif
6916 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6917 long period, long quota)
6919 if (quota < 0)
6920 seq_puts(sf, "max");
6921 else
6922 seq_printf(sf, "%ld", quota);
6924 seq_printf(sf, " %ld\n", period);
6927 /* caller should put the current value in *@periodp before calling */
6928 static int __maybe_unused cpu_period_quota_parse(char *buf,
6929 u64 *periodp, u64 *quotap)
6931 char tok[21]; /* U64_MAX */
6933 if (!sscanf(buf, "%s %llu", tok, periodp))
6934 return -EINVAL;
6936 *periodp *= NSEC_PER_USEC;
6938 if (sscanf(tok, "%llu", quotap))
6939 *quotap *= NSEC_PER_USEC;
6940 else if (!strcmp(tok, "max"))
6941 *quotap = RUNTIME_INF;
6942 else
6943 return -EINVAL;
6945 return 0;
6948 #ifdef CONFIG_CFS_BANDWIDTH
6949 static int cpu_max_show(struct seq_file *sf, void *v)
6951 struct task_group *tg = css_tg(seq_css(sf));
6953 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6954 return 0;
6957 static ssize_t cpu_max_write(struct kernfs_open_file *of,
6958 char *buf, size_t nbytes, loff_t off)
6960 struct task_group *tg = css_tg(of_css(of));
6961 u64 period = tg_get_cfs_period(tg);
6962 u64 quota;
6963 int ret;
6965 ret = cpu_period_quota_parse(buf, &period, &quota);
6966 if (!ret)
6967 ret = tg_set_cfs_bandwidth(tg, period, quota);
6968 return ret ?: nbytes;
6970 #endif
6972 static struct cftype cpu_files[] = {
6973 #ifdef CONFIG_FAIR_GROUP_SCHED
6975 .name = "weight",
6976 .flags = CFTYPE_NOT_ON_ROOT,
6977 .read_u64 = cpu_weight_read_u64,
6978 .write_u64 = cpu_weight_write_u64,
6981 .name = "weight.nice",
6982 .flags = CFTYPE_NOT_ON_ROOT,
6983 .read_s64 = cpu_weight_nice_read_s64,
6984 .write_s64 = cpu_weight_nice_write_s64,
6986 #endif
6987 #ifdef CONFIG_CFS_BANDWIDTH
6989 .name = "max",
6990 .flags = CFTYPE_NOT_ON_ROOT,
6991 .seq_show = cpu_max_show,
6992 .write = cpu_max_write,
6994 #endif
6995 { } /* terminate */
6998 struct cgroup_subsys cpu_cgrp_subsys = {
6999 .css_alloc = cpu_cgroup_css_alloc,
7000 .css_online = cpu_cgroup_css_online,
7001 .css_released = cpu_cgroup_css_released,
7002 .css_free = cpu_cgroup_css_free,
7003 .css_extra_stat_show = cpu_extra_stat_show,
7004 .fork = cpu_cgroup_fork,
7005 .can_attach = cpu_cgroup_can_attach,
7006 .attach = cpu_cgroup_attach,
7007 .legacy_cftypes = cpu_legacy_files,
7008 .dfl_cftypes = cpu_files,
7009 .early_init = true,
7010 .threaded = true,
7013 #endif /* CONFIG_CGROUP_SCHED */
7015 void dump_cpu_task(int cpu)
7017 pr_info("Task dump for CPU %d:\n", cpu);
7018 sched_show_task(cpu_curr(cpu));
7022 * Nice levels are multiplicative, with a gentle 10% change for every
7023 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7024 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7025 * that remained on nice 0.
7027 * The "10% effect" is relative and cumulative: from _any_ nice level,
7028 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7029 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7030 * If a task goes up by ~10% and another task goes down by ~10% then
7031 * the relative distance between them is ~25%.)
7033 const int sched_prio_to_weight[40] = {
7034 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7035 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7036 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7037 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7038 /* 0 */ 1024, 820, 655, 526, 423,
7039 /* 5 */ 335, 272, 215, 172, 137,
7040 /* 10 */ 110, 87, 70, 56, 45,
7041 /* 15 */ 36, 29, 23, 18, 15,
7045 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7047 * In cases where the weight does not change often, we can use the
7048 * precalculated inverse to speed up arithmetics by turning divisions
7049 * into multiplications:
7051 const u32 sched_prio_to_wmult[40] = {
7052 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7053 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7054 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7055 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7056 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7057 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7058 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7059 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7062 #undef CREATE_TRACE_POINTS