perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / kernel / sched / psi.c
blob7cdecfc010af83f1f5d8679536433f288aa847d7
1 /*
2 * Pressure stall information for CPU, memory and IO
4 * Copyright (c) 2018 Facebook, Inc.
5 * Author: Johannes Weiner <hannes@cmpxchg.org>
7 * When CPU, memory and IO are contended, tasks experience delays that
8 * reduce throughput and introduce latencies into the workload. Memory
9 * and IO contention, in addition, can cause a full loss of forward
10 * progress in which the CPU goes idle.
12 * This code aggregates individual task delays into resource pressure
13 * metrics that indicate problems with both workload health and
14 * resource utilization.
16 * Model
18 * The time in which a task can execute on a CPU is our baseline for
19 * productivity. Pressure expresses the amount of time in which this
20 * potential cannot be realized due to resource contention.
22 * This concept of productivity has two components: the workload and
23 * the CPU. To measure the impact of pressure on both, we define two
24 * contention states for a resource: SOME and FULL.
26 * In the SOME state of a given resource, one or more tasks are
27 * delayed on that resource. This affects the workload's ability to
28 * perform work, but the CPU may still be executing other tasks.
30 * In the FULL state of a given resource, all non-idle tasks are
31 * delayed on that resource such that nobody is advancing and the CPU
32 * goes idle. This leaves both workload and CPU unproductive.
34 * (Naturally, the FULL state doesn't exist for the CPU resource.)
36 * SOME = nr_delayed_tasks != 0
37 * FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
39 * The percentage of wallclock time spent in those compound stall
40 * states gives pressure numbers between 0 and 100 for each resource,
41 * where the SOME percentage indicates workload slowdowns and the FULL
42 * percentage indicates reduced CPU utilization:
44 * %SOME = time(SOME) / period
45 * %FULL = time(FULL) / period
47 * Multiple CPUs
49 * The more tasks and available CPUs there are, the more work can be
50 * performed concurrently. This means that the potential that can go
51 * unrealized due to resource contention *also* scales with non-idle
52 * tasks and CPUs.
54 * Consider a scenario where 257 number crunching tasks are trying to
55 * run concurrently on 256 CPUs. If we simply aggregated the task
56 * states, we would have to conclude a CPU SOME pressure number of
57 * 100%, since *somebody* is waiting on a runqueue at all
58 * times. However, that is clearly not the amount of contention the
59 * workload is experiencing: only one out of 256 possible exceution
60 * threads will be contended at any given time, or about 0.4%.
62 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
63 * given time *one* of the tasks is delayed due to a lack of memory.
64 * Again, looking purely at the task state would yield a memory FULL
65 * pressure number of 0%, since *somebody* is always making forward
66 * progress. But again this wouldn't capture the amount of execution
67 * potential lost, which is 1 out of 4 CPUs, or 25%.
69 * To calculate wasted potential (pressure) with multiple processors,
70 * we have to base our calculation on the number of non-idle tasks in
71 * conjunction with the number of available CPUs, which is the number
72 * of potential execution threads. SOME becomes then the proportion of
73 * delayed tasks to possibe threads, and FULL is the share of possible
74 * threads that are unproductive due to delays:
76 * threads = min(nr_nonidle_tasks, nr_cpus)
77 * SOME = min(nr_delayed_tasks / threads, 1)
78 * FULL = (threads - min(nr_running_tasks, threads)) / threads
80 * For the 257 number crunchers on 256 CPUs, this yields:
82 * threads = min(257, 256)
83 * SOME = min(1 / 256, 1) = 0.4%
84 * FULL = (256 - min(257, 256)) / 256 = 0%
86 * For the 1 out of 4 memory-delayed tasks, this yields:
88 * threads = min(4, 4)
89 * SOME = min(1 / 4, 1) = 25%
90 * FULL = (4 - min(3, 4)) / 4 = 25%
92 * [ Substitute nr_cpus with 1, and you can see that it's a natural
93 * extension of the single-CPU model. ]
95 * Implementation
97 * To assess the precise time spent in each such state, we would have
98 * to freeze the system on task changes and start/stop the state
99 * clocks accordingly. Obviously that doesn't scale in practice.
101 * Because the scheduler aims to distribute the compute load evenly
102 * among the available CPUs, we can track task state locally to each
103 * CPU and, at much lower frequency, extrapolate the global state for
104 * the cumulative stall times and the running averages.
106 * For each runqueue, we track:
108 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
109 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
110 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
112 * and then periodically aggregate:
114 * tNONIDLE = sum(tNONIDLE[i])
116 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
117 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
119 * %SOME = tSOME / period
120 * %FULL = tFULL / period
122 * This gives us an approximation of pressure that is practical
123 * cost-wise, yet way more sensitive and accurate than periodic
124 * sampling of the aggregate task states would be.
127 #include <linux/sched/loadavg.h>
128 #include <linux/seq_file.h>
129 #include <linux/proc_fs.h>
130 #include <linux/seqlock.h>
131 #include <linux/cgroup.h>
132 #include <linux/module.h>
133 #include <linux/sched.h>
134 #include <linux/psi.h>
135 #include "sched.h"
137 static int psi_bug __read_mostly;
139 bool psi_disabled __read_mostly;
140 core_param(psi_disabled, psi_disabled, bool, 0644);
142 /* Running averages - we need to be higher-res than loadavg */
143 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
144 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
145 #define EXP_60s 1981 /* 1/exp(2s/60s) */
146 #define EXP_300s 2034 /* 1/exp(2s/300s) */
148 /* Sampling frequency in nanoseconds */
149 static u64 psi_period __read_mostly;
151 /* System-level pressure and stall tracking */
152 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
153 static struct psi_group psi_system = {
154 .pcpu = &system_group_pcpu,
157 static void psi_update_work(struct work_struct *work);
159 static void group_init(struct psi_group *group)
161 int cpu;
163 for_each_possible_cpu(cpu)
164 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
165 group->next_update = sched_clock() + psi_period;
166 INIT_DELAYED_WORK(&group->clock_work, psi_update_work);
167 mutex_init(&group->stat_lock);
170 void __init psi_init(void)
172 if (psi_disabled)
173 return;
175 psi_period = jiffies_to_nsecs(PSI_FREQ);
176 group_init(&psi_system);
179 static bool test_state(unsigned int *tasks, enum psi_states state)
181 switch (state) {
182 case PSI_IO_SOME:
183 return tasks[NR_IOWAIT];
184 case PSI_IO_FULL:
185 return tasks[NR_IOWAIT] && !tasks[NR_RUNNING];
186 case PSI_MEM_SOME:
187 return tasks[NR_MEMSTALL];
188 case PSI_MEM_FULL:
189 return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING];
190 case PSI_CPU_SOME:
191 return tasks[NR_RUNNING] > 1;
192 case PSI_NONIDLE:
193 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
194 tasks[NR_RUNNING];
195 default:
196 return false;
200 static void get_recent_times(struct psi_group *group, int cpu, u32 *times)
202 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
203 unsigned int tasks[NR_PSI_TASK_COUNTS];
204 u64 now, state_start;
205 unsigned int seq;
206 int s;
208 /* Snapshot a coherent view of the CPU state */
209 do {
210 seq = read_seqcount_begin(&groupc->seq);
211 now = cpu_clock(cpu);
212 memcpy(times, groupc->times, sizeof(groupc->times));
213 memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
214 state_start = groupc->state_start;
215 } while (read_seqcount_retry(&groupc->seq, seq));
217 /* Calculate state time deltas against the previous snapshot */
218 for (s = 0; s < NR_PSI_STATES; s++) {
219 u32 delta;
221 * In addition to already concluded states, we also
222 * incorporate currently active states on the CPU,
223 * since states may last for many sampling periods.
225 * This way we keep our delta sampling buckets small
226 * (u32) and our reported pressure close to what's
227 * actually happening.
229 if (test_state(tasks, s))
230 times[s] += now - state_start;
232 delta = times[s] - groupc->times_prev[s];
233 groupc->times_prev[s] = times[s];
235 times[s] = delta;
239 static void calc_avgs(unsigned long avg[3], int missed_periods,
240 u64 time, u64 period)
242 unsigned long pct;
244 /* Fill in zeroes for periods of no activity */
245 if (missed_periods) {
246 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
247 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
248 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
251 /* Sample the most recent active period */
252 pct = div_u64(time * 100, period);
253 pct *= FIXED_1;
254 avg[0] = calc_load(avg[0], EXP_10s, pct);
255 avg[1] = calc_load(avg[1], EXP_60s, pct);
256 avg[2] = calc_load(avg[2], EXP_300s, pct);
259 static bool update_stats(struct psi_group *group)
261 u64 deltas[NR_PSI_STATES - 1] = { 0, };
262 unsigned long missed_periods = 0;
263 unsigned long nonidle_total = 0;
264 u64 now, expires, period;
265 int cpu;
266 int s;
268 mutex_lock(&group->stat_lock);
271 * Collect the per-cpu time buckets and average them into a
272 * single time sample that is normalized to wallclock time.
274 * For averaging, each CPU is weighted by its non-idle time in
275 * the sampling period. This eliminates artifacts from uneven
276 * loading, or even entirely idle CPUs.
278 for_each_possible_cpu(cpu) {
279 u32 times[NR_PSI_STATES];
280 u32 nonidle;
282 get_recent_times(group, cpu, times);
284 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
285 nonidle_total += nonidle;
287 for (s = 0; s < PSI_NONIDLE; s++)
288 deltas[s] += (u64)times[s] * nonidle;
292 * Integrate the sample into the running statistics that are
293 * reported to userspace: the cumulative stall times and the
294 * decaying averages.
296 * Pressure percentages are sampled at PSI_FREQ. We might be
297 * called more often when the user polls more frequently than
298 * that; we might be called less often when there is no task
299 * activity, thus no data, and clock ticks are sporadic. The
300 * below handles both.
303 /* total= */
304 for (s = 0; s < NR_PSI_STATES - 1; s++)
305 group->total[s] += div_u64(deltas[s], max(nonidle_total, 1UL));
307 /* avgX= */
308 now = sched_clock();
309 expires = group->next_update;
310 if (now < expires)
311 goto out;
312 if (now - expires > psi_period)
313 missed_periods = div_u64(now - expires, psi_period);
316 * The periodic clock tick can get delayed for various
317 * reasons, especially on loaded systems. To avoid clock
318 * drift, we schedule the clock in fixed psi_period intervals.
319 * But the deltas we sample out of the per-cpu buckets above
320 * are based on the actual time elapsing between clock ticks.
322 group->next_update = expires + ((1 + missed_periods) * psi_period);
323 period = now - (group->last_update + (missed_periods * psi_period));
324 group->last_update = now;
326 for (s = 0; s < NR_PSI_STATES - 1; s++) {
327 u32 sample;
329 sample = group->total[s] - group->total_prev[s];
331 * Due to the lockless sampling of the time buckets,
332 * recorded time deltas can slip into the next period,
333 * which under full pressure can result in samples in
334 * excess of the period length.
336 * We don't want to report non-sensical pressures in
337 * excess of 100%, nor do we want to drop such events
338 * on the floor. Instead we punt any overage into the
339 * future until pressure subsides. By doing this we
340 * don't underreport the occurring pressure curve, we
341 * just report it delayed by one period length.
343 * The error isn't cumulative. As soon as another
344 * delta slips from a period P to P+1, by definition
345 * it frees up its time T in P.
347 if (sample > period)
348 sample = period;
349 group->total_prev[s] += sample;
350 calc_avgs(group->avg[s], missed_periods, sample, period);
352 out:
353 mutex_unlock(&group->stat_lock);
354 return nonidle_total;
357 static void psi_update_work(struct work_struct *work)
359 struct delayed_work *dwork;
360 struct psi_group *group;
361 bool nonidle;
363 dwork = to_delayed_work(work);
364 group = container_of(dwork, struct psi_group, clock_work);
367 * If there is task activity, periodically fold the per-cpu
368 * times and feed samples into the running averages. If things
369 * are idle and there is no data to process, stop the clock.
370 * Once restarted, we'll catch up the running averages in one
371 * go - see calc_avgs() and missed_periods.
374 nonidle = update_stats(group);
376 if (nonidle) {
377 unsigned long delay = 0;
378 u64 now;
380 now = sched_clock();
381 if (group->next_update > now)
382 delay = nsecs_to_jiffies(group->next_update - now) + 1;
383 schedule_delayed_work(dwork, delay);
387 static void record_times(struct psi_group_cpu *groupc, int cpu,
388 bool memstall_tick)
390 u32 delta;
391 u64 now;
393 now = cpu_clock(cpu);
394 delta = now - groupc->state_start;
395 groupc->state_start = now;
397 if (test_state(groupc->tasks, PSI_IO_SOME)) {
398 groupc->times[PSI_IO_SOME] += delta;
399 if (test_state(groupc->tasks, PSI_IO_FULL))
400 groupc->times[PSI_IO_FULL] += delta;
403 if (test_state(groupc->tasks, PSI_MEM_SOME)) {
404 groupc->times[PSI_MEM_SOME] += delta;
405 if (test_state(groupc->tasks, PSI_MEM_FULL))
406 groupc->times[PSI_MEM_FULL] += delta;
407 else if (memstall_tick) {
408 u32 sample;
410 * Since we care about lost potential, a
411 * memstall is FULL when there are no other
412 * working tasks, but also when the CPU is
413 * actively reclaiming and nothing productive
414 * could run even if it were runnable.
416 * When the timer tick sees a reclaiming CPU,
417 * regardless of runnable tasks, sample a FULL
418 * tick (or less if it hasn't been a full tick
419 * since the last state change).
421 sample = min(delta, (u32)jiffies_to_nsecs(1));
422 groupc->times[PSI_MEM_FULL] += sample;
426 if (test_state(groupc->tasks, PSI_CPU_SOME))
427 groupc->times[PSI_CPU_SOME] += delta;
429 if (test_state(groupc->tasks, PSI_NONIDLE))
430 groupc->times[PSI_NONIDLE] += delta;
433 static void psi_group_change(struct psi_group *group, int cpu,
434 unsigned int clear, unsigned int set)
436 struct psi_group_cpu *groupc;
437 unsigned int t, m;
439 groupc = per_cpu_ptr(group->pcpu, cpu);
442 * First we assess the aggregate resource states this CPU's
443 * tasks have been in since the last change, and account any
444 * SOME and FULL time these may have resulted in.
446 * Then we update the task counts according to the state
447 * change requested through the @clear and @set bits.
449 write_seqcount_begin(&groupc->seq);
451 record_times(groupc, cpu, false);
453 for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
454 if (!(m & (1 << t)))
455 continue;
456 if (groupc->tasks[t] == 0 && !psi_bug) {
457 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u] clear=%x set=%x\n",
458 cpu, t, groupc->tasks[0],
459 groupc->tasks[1], groupc->tasks[2],
460 clear, set);
461 psi_bug = 1;
463 groupc->tasks[t]--;
466 for (t = 0; set; set &= ~(1 << t), t++)
467 if (set & (1 << t))
468 groupc->tasks[t]++;
470 write_seqcount_end(&groupc->seq);
472 if (!delayed_work_pending(&group->clock_work))
473 schedule_delayed_work(&group->clock_work, PSI_FREQ);
476 static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
478 #ifdef CONFIG_CGROUPS
479 struct cgroup *cgroup = NULL;
481 if (!*iter)
482 cgroup = task->cgroups->dfl_cgrp;
483 else if (*iter == &psi_system)
484 return NULL;
485 else
486 cgroup = cgroup_parent(*iter);
488 if (cgroup && cgroup_parent(cgroup)) {
489 *iter = cgroup;
490 return cgroup_psi(cgroup);
492 #else
493 if (*iter)
494 return NULL;
495 #endif
496 *iter = &psi_system;
497 return &psi_system;
500 void psi_task_change(struct task_struct *task, int clear, int set)
502 int cpu = task_cpu(task);
503 struct psi_group *group;
504 void *iter = NULL;
506 if (!task->pid)
507 return;
509 if (((task->psi_flags & set) ||
510 (task->psi_flags & clear) != clear) &&
511 !psi_bug) {
512 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
513 task->pid, task->comm, cpu,
514 task->psi_flags, clear, set);
515 psi_bug = 1;
518 task->psi_flags &= ~clear;
519 task->psi_flags |= set;
521 while ((group = iterate_groups(task, &iter)))
522 psi_group_change(group, cpu, clear, set);
525 void psi_memstall_tick(struct task_struct *task, int cpu)
527 struct psi_group *group;
528 void *iter = NULL;
530 while ((group = iterate_groups(task, &iter))) {
531 struct psi_group_cpu *groupc;
533 groupc = per_cpu_ptr(group->pcpu, cpu);
534 write_seqcount_begin(&groupc->seq);
535 record_times(groupc, cpu, true);
536 write_seqcount_end(&groupc->seq);
541 * psi_memstall_enter - mark the beginning of a memory stall section
542 * @flags: flags to handle nested sections
544 * Marks the calling task as being stalled due to a lack of memory,
545 * such as waiting for a refault or performing reclaim.
547 void psi_memstall_enter(unsigned long *flags)
549 struct rq_flags rf;
550 struct rq *rq;
552 if (psi_disabled)
553 return;
555 *flags = current->flags & PF_MEMSTALL;
556 if (*flags)
557 return;
559 * PF_MEMSTALL setting & accounting needs to be atomic wrt
560 * changes to the task's scheduling state, otherwise we can
561 * race with CPU migration.
563 rq = this_rq_lock_irq(&rf);
565 current->flags |= PF_MEMSTALL;
566 psi_task_change(current, 0, TSK_MEMSTALL);
568 rq_unlock_irq(rq, &rf);
572 * psi_memstall_leave - mark the end of an memory stall section
573 * @flags: flags to handle nested memdelay sections
575 * Marks the calling task as no longer stalled due to lack of memory.
577 void psi_memstall_leave(unsigned long *flags)
579 struct rq_flags rf;
580 struct rq *rq;
582 if (psi_disabled)
583 return;
585 if (*flags)
586 return;
588 * PF_MEMSTALL clearing & accounting needs to be atomic wrt
589 * changes to the task's scheduling state, otherwise we could
590 * race with CPU migration.
592 rq = this_rq_lock_irq(&rf);
594 current->flags &= ~PF_MEMSTALL;
595 psi_task_change(current, TSK_MEMSTALL, 0);
597 rq_unlock_irq(rq, &rf);
600 #ifdef CONFIG_CGROUPS
601 int psi_cgroup_alloc(struct cgroup *cgroup)
603 if (psi_disabled)
604 return 0;
606 cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
607 if (!cgroup->psi.pcpu)
608 return -ENOMEM;
609 group_init(&cgroup->psi);
610 return 0;
613 void psi_cgroup_free(struct cgroup *cgroup)
615 if (psi_disabled)
616 return;
618 cancel_delayed_work_sync(&cgroup->psi.clock_work);
619 free_percpu(cgroup->psi.pcpu);
623 * cgroup_move_task - move task to a different cgroup
624 * @task: the task
625 * @to: the target css_set
627 * Move task to a new cgroup and safely migrate its associated stall
628 * state between the different groups.
630 * This function acquires the task's rq lock to lock out concurrent
631 * changes to the task's scheduling state and - in case the task is
632 * running - concurrent changes to its stall state.
634 void cgroup_move_task(struct task_struct *task, struct css_set *to)
636 bool move_psi = !psi_disabled;
637 unsigned int task_flags = 0;
638 struct rq_flags rf;
639 struct rq *rq;
641 if (move_psi) {
642 rq = task_rq_lock(task, &rf);
644 if (task_on_rq_queued(task))
645 task_flags = TSK_RUNNING;
646 else if (task->in_iowait)
647 task_flags = TSK_IOWAIT;
649 if (task->flags & PF_MEMSTALL)
650 task_flags |= TSK_MEMSTALL;
652 if (task_flags)
653 psi_task_change(task, task_flags, 0);
657 * Lame to do this here, but the scheduler cannot be locked
658 * from the outside, so we move cgroups from inside sched/.
660 rcu_assign_pointer(task->cgroups, to);
662 if (move_psi) {
663 if (task_flags)
664 psi_task_change(task, 0, task_flags);
666 task_rq_unlock(rq, task, &rf);
669 #endif /* CONFIG_CGROUPS */
671 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
673 int full;
675 if (psi_disabled)
676 return -EOPNOTSUPP;
678 update_stats(group);
680 for (full = 0; full < 2 - (res == PSI_CPU); full++) {
681 unsigned long avg[3];
682 u64 total;
683 int w;
685 for (w = 0; w < 3; w++)
686 avg[w] = group->avg[res * 2 + full][w];
687 total = div_u64(group->total[res * 2 + full], NSEC_PER_USEC);
689 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
690 full ? "full" : "some",
691 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
692 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
693 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
694 total);
697 return 0;
700 static int psi_io_show(struct seq_file *m, void *v)
702 return psi_show(m, &psi_system, PSI_IO);
705 static int psi_memory_show(struct seq_file *m, void *v)
707 return psi_show(m, &psi_system, PSI_MEM);
710 static int psi_cpu_show(struct seq_file *m, void *v)
712 return psi_show(m, &psi_system, PSI_CPU);
715 static int psi_io_open(struct inode *inode, struct file *file)
717 return single_open(file, psi_io_show, NULL);
720 static int psi_memory_open(struct inode *inode, struct file *file)
722 return single_open(file, psi_memory_show, NULL);
725 static int psi_cpu_open(struct inode *inode, struct file *file)
727 return single_open(file, psi_cpu_show, NULL);
730 static const struct file_operations psi_io_fops = {
731 .open = psi_io_open,
732 .read = seq_read,
733 .llseek = seq_lseek,
734 .release = single_release,
737 static const struct file_operations psi_memory_fops = {
738 .open = psi_memory_open,
739 .read = seq_read,
740 .llseek = seq_lseek,
741 .release = single_release,
744 static const struct file_operations psi_cpu_fops = {
745 .open = psi_cpu_open,
746 .read = seq_read,
747 .llseek = seq_lseek,
748 .release = single_release,
751 static int __init psi_proc_init(void)
753 proc_mkdir("pressure", NULL);
754 proc_create("pressure/io", 0, NULL, &psi_io_fops);
755 proc_create("pressure/memory", 0, NULL, &psi_memory_fops);
756 proc_create("pressure/cpu", 0, NULL, &psi_cpu_fops);
757 return 0;
759 module_init(psi_proc_init);