1 /* SPDX-License-Identifier: GPL-2.0 */
3 #ifdef CONFIG_SCHEDSTATS
6 * Expects runqueue lock to be held for atomicity of update
9 rq_sched_info_arrive(struct rq
*rq
, unsigned long long delta
)
12 rq
->rq_sched_info
.run_delay
+= delta
;
13 rq
->rq_sched_info
.pcount
++;
18 * Expects runqueue lock to be held for atomicity of update
21 rq_sched_info_depart(struct rq
*rq
, unsigned long long delta
)
24 rq
->rq_cpu_time
+= delta
;
28 rq_sched_info_dequeued(struct rq
*rq
, unsigned long long delta
)
31 rq
->rq_sched_info
.run_delay
+= delta
;
33 #define schedstat_enabled() static_branch_unlikely(&sched_schedstats)
34 #define __schedstat_inc(var) do { var++; } while (0)
35 #define schedstat_inc(var) do { if (schedstat_enabled()) { var++; } } while (0)
36 #define __schedstat_add(var, amt) do { var += (amt); } while (0)
37 #define schedstat_add(var, amt) do { if (schedstat_enabled()) { var += (amt); } } while (0)
38 #define __schedstat_set(var, val) do { var = (val); } while (0)
39 #define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0)
40 #define schedstat_val(var) (var)
41 #define schedstat_val_or_zero(var) ((schedstat_enabled()) ? (var) : 0)
43 #else /* !CONFIG_SCHEDSTATS: */
44 static inline void rq_sched_info_arrive (struct rq
*rq
, unsigned long long delta
) { }
45 static inline void rq_sched_info_dequeued(struct rq
*rq
, unsigned long long delta
) { }
46 static inline void rq_sched_info_depart (struct rq
*rq
, unsigned long long delta
) { }
47 # define schedstat_enabled() 0
48 # define __schedstat_inc(var) do { } while (0)
49 # define schedstat_inc(var) do { } while (0)
50 # define __schedstat_add(var, amt) do { } while (0)
51 # define schedstat_add(var, amt) do { } while (0)
52 # define __schedstat_set(var, val) do { } while (0)
53 # define schedstat_set(var, val) do { } while (0)
54 # define schedstat_val(var) 0
55 # define schedstat_val_or_zero(var) 0
56 #endif /* CONFIG_SCHEDSTATS */
60 * PSI tracks state that persists across sleeps, such as iowaits and
61 * memory stalls. As a result, it has to distinguish between sleeps,
62 * where a task's runnable state changes, and requeues, where a task
63 * and its state are being moved between CPUs and runqueues.
65 static inline void psi_enqueue(struct task_struct
*p
, bool wakeup
)
67 int clear
= 0, set
= TSK_RUNNING
;
72 if (!wakeup
|| p
->sched_psi_wake_requeue
) {
73 if (p
->flags
& PF_MEMSTALL
)
75 if (p
->sched_psi_wake_requeue
)
76 p
->sched_psi_wake_requeue
= 0;
82 psi_task_change(p
, clear
, set
);
85 static inline void psi_dequeue(struct task_struct
*p
, bool sleep
)
87 int clear
= TSK_RUNNING
, set
= 0;
93 if (p
->flags
& PF_MEMSTALL
)
94 clear
|= TSK_MEMSTALL
;
100 psi_task_change(p
, clear
, set
);
103 static inline void psi_ttwu_dequeue(struct task_struct
*p
)
108 * Is the task being migrated during a wakeup? Make sure to
109 * deregister its sleep-persistent psi states from the old
110 * queue, and let psi_enqueue() know it has to requeue.
112 if (unlikely(p
->in_iowait
|| (p
->flags
& PF_MEMSTALL
))) {
119 if (p
->flags
& PF_MEMSTALL
)
120 clear
|= TSK_MEMSTALL
;
122 rq
= __task_rq_lock(p
, &rf
);
123 psi_task_change(p
, clear
, 0);
124 p
->sched_psi_wake_requeue
= 1;
125 __task_rq_unlock(rq
, &rf
);
129 static inline void psi_task_tick(struct rq
*rq
)
134 if (unlikely(rq
->curr
->flags
& PF_MEMSTALL
))
135 psi_memstall_tick(rq
->curr
, cpu_of(rq
));
137 #else /* CONFIG_PSI */
138 static inline void psi_enqueue(struct task_struct
*p
, bool wakeup
) {}
139 static inline void psi_dequeue(struct task_struct
*p
, bool sleep
) {}
140 static inline void psi_ttwu_dequeue(struct task_struct
*p
) {}
141 static inline void psi_task_tick(struct rq
*rq
) {}
142 #endif /* CONFIG_PSI */
144 #ifdef CONFIG_SCHED_INFO
145 static inline void sched_info_reset_dequeued(struct task_struct
*t
)
147 t
->sched_info
.last_queued
= 0;
151 * We are interested in knowing how long it was from the *first* time a
152 * task was queued to the time that it finally hit a CPU, we call this routine
153 * from dequeue_task() to account for possible rq->clock skew across CPUs. The
154 * delta taken on each CPU would annul the skew.
156 static inline void sched_info_dequeued(struct rq
*rq
, struct task_struct
*t
)
158 unsigned long long now
= rq_clock(rq
), delta
= 0;
160 if (unlikely(sched_info_on()))
161 if (t
->sched_info
.last_queued
)
162 delta
= now
- t
->sched_info
.last_queued
;
163 sched_info_reset_dequeued(t
);
164 t
->sched_info
.run_delay
+= delta
;
166 rq_sched_info_dequeued(rq
, delta
);
170 * Called when a task finally hits the CPU. We can now calculate how
171 * long it was waiting to run. We also note when it began so that we
172 * can keep stats on how long its timeslice is.
174 static void sched_info_arrive(struct rq
*rq
, struct task_struct
*t
)
176 unsigned long long now
= rq_clock(rq
), delta
= 0;
178 if (t
->sched_info
.last_queued
)
179 delta
= now
- t
->sched_info
.last_queued
;
180 sched_info_reset_dequeued(t
);
181 t
->sched_info
.run_delay
+= delta
;
182 t
->sched_info
.last_arrival
= now
;
183 t
->sched_info
.pcount
++;
185 rq_sched_info_arrive(rq
, delta
);
189 * This function is only called from enqueue_task(), but also only updates
190 * the timestamp if it is already not set. It's assumed that
191 * sched_info_dequeued() will clear that stamp when appropriate.
193 static inline void sched_info_queued(struct rq
*rq
, struct task_struct
*t
)
195 if (unlikely(sched_info_on())) {
196 if (!t
->sched_info
.last_queued
)
197 t
->sched_info
.last_queued
= rq_clock(rq
);
202 * Called when a process ceases being the active-running process involuntarily
203 * due, typically, to expiring its time slice (this may also be called when
204 * switching to the idle task). Now we can calculate how long we ran.
205 * Also, if the process is still in the TASK_RUNNING state, call
206 * sched_info_queued() to mark that it has now again started waiting on
209 static inline void sched_info_depart(struct rq
*rq
, struct task_struct
*t
)
211 unsigned long long delta
= rq_clock(rq
) - t
->sched_info
.last_arrival
;
213 rq_sched_info_depart(rq
, delta
);
215 if (t
->state
== TASK_RUNNING
)
216 sched_info_queued(rq
, t
);
220 * Called when tasks are switched involuntarily due, typically, to expiring
221 * their time slice. (This may also be called when switching to or from
222 * the idle task.) We are only called when prev != next.
225 __sched_info_switch(struct rq
*rq
, struct task_struct
*prev
, struct task_struct
*next
)
228 * prev now departs the CPU. It's not interesting to record
229 * stats about how efficient we were at scheduling the idle
232 if (prev
!= rq
->idle
)
233 sched_info_depart(rq
, prev
);
235 if (next
!= rq
->idle
)
236 sched_info_arrive(rq
, next
);
240 sched_info_switch(struct rq
*rq
, struct task_struct
*prev
, struct task_struct
*next
)
242 if (unlikely(sched_info_on()))
243 __sched_info_switch(rq
, prev
, next
);
246 #else /* !CONFIG_SCHED_INFO: */
247 # define sched_info_queued(rq, t) do { } while (0)
248 # define sched_info_reset_dequeued(t) do { } while (0)
249 # define sched_info_dequeued(rq, t) do { } while (0)
250 # define sched_info_depart(rq, t) do { } while (0)
251 # define sched_info_arrive(rq, next) do { } while (0)
252 # define sched_info_switch(rq, t, next) do { } while (0)
253 #endif /* CONFIG_SCHED_INFO */