2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/interrupt.h>
41 #include <linux/tick.h>
42 #include <linux/seq_file.h>
43 #include <linux/err.h>
44 #include <linux/debugobjects.h>
45 #include <linux/sched/signal.h>
46 #include <linux/sched/sysctl.h>
47 #include <linux/sched/rt.h>
48 #include <linux/sched/deadline.h>
49 #include <linux/sched/nohz.h>
50 #include <linux/sched/debug.h>
51 #include <linux/timer.h>
52 #include <linux/freezer.h>
53 #include <linux/compat.h>
55 #include <linux/uaccess.h>
57 #include <trace/events/timer.h>
59 #include "tick-internal.h"
62 * Masks for selecting the soft and hard context timers from
65 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
66 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
67 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
68 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
73 * There are more clockids than hrtimer bases. Thus, we index
74 * into the timer bases by the hrtimer_base_type enum. When trying
75 * to reach a base using a clockid, hrtimer_clockid_to_base()
76 * is used to convert from clockid to the proper hrtimer_base_type.
78 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
80 .lock
= __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases
.lock
),
84 .index
= HRTIMER_BASE_MONOTONIC
,
85 .clockid
= CLOCK_MONOTONIC
,
86 .get_time
= &ktime_get
,
89 .index
= HRTIMER_BASE_REALTIME
,
90 .clockid
= CLOCK_REALTIME
,
91 .get_time
= &ktime_get_real
,
94 .index
= HRTIMER_BASE_BOOTTIME
,
95 .clockid
= CLOCK_BOOTTIME
,
96 .get_time
= &ktime_get_boottime
,
99 .index
= HRTIMER_BASE_TAI
,
100 .clockid
= CLOCK_TAI
,
101 .get_time
= &ktime_get_clocktai
,
104 .index
= HRTIMER_BASE_MONOTONIC_SOFT
,
105 .clockid
= CLOCK_MONOTONIC
,
106 .get_time
= &ktime_get
,
109 .index
= HRTIMER_BASE_REALTIME_SOFT
,
110 .clockid
= CLOCK_REALTIME
,
111 .get_time
= &ktime_get_real
,
114 .index
= HRTIMER_BASE_BOOTTIME_SOFT
,
115 .clockid
= CLOCK_BOOTTIME
,
116 .get_time
= &ktime_get_boottime
,
119 .index
= HRTIMER_BASE_TAI_SOFT
,
120 .clockid
= CLOCK_TAI
,
121 .get_time
= &ktime_get_clocktai
,
126 static const int hrtimer_clock_to_base_table
[MAX_CLOCKS
] = {
127 /* Make sure we catch unsupported clockids */
128 [0 ... MAX_CLOCKS
- 1] = HRTIMER_MAX_CLOCK_BASES
,
130 [CLOCK_REALTIME
] = HRTIMER_BASE_REALTIME
,
131 [CLOCK_MONOTONIC
] = HRTIMER_BASE_MONOTONIC
,
132 [CLOCK_BOOTTIME
] = HRTIMER_BASE_BOOTTIME
,
133 [CLOCK_TAI
] = HRTIMER_BASE_TAI
,
137 * Functions and macros which are different for UP/SMP systems are kept in a
143 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
144 * such that hrtimer_callback_running() can unconditionally dereference
145 * timer->base->cpu_base
147 static struct hrtimer_cpu_base migration_cpu_base
= {
148 .clock_base
= { { .cpu_base
= &migration_cpu_base
, }, },
151 #define migration_base migration_cpu_base.clock_base[0]
154 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
155 * means that all timers which are tied to this base via timer->base are
156 * locked, and the base itself is locked too.
158 * So __run_timers/migrate_timers can safely modify all timers which could
159 * be found on the lists/queues.
161 * When the timer's base is locked, and the timer removed from list, it is
162 * possible to set timer->base = &migration_base and drop the lock: the timer
166 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
167 unsigned long *flags
)
169 struct hrtimer_clock_base
*base
;
173 if (likely(base
!= &migration_base
)) {
174 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
175 if (likely(base
== timer
->base
))
177 /* The timer has migrated to another CPU: */
178 raw_spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
185 * We do not migrate the timer when it is expiring before the next
186 * event on the target cpu. When high resolution is enabled, we cannot
187 * reprogram the target cpu hardware and we would cause it to fire
188 * late. To keep it simple, we handle the high resolution enabled and
189 * disabled case similar.
191 * Called with cpu_base->lock of target cpu held.
194 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
198 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
199 return expires
< new_base
->cpu_base
->expires_next
;
203 struct hrtimer_cpu_base
*get_target_base(struct hrtimer_cpu_base
*base
,
206 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
207 if (static_branch_likely(&timers_migration_enabled
) && !pinned
)
208 return &per_cpu(hrtimer_bases
, get_nohz_timer_target());
214 * We switch the timer base to a power-optimized selected CPU target,
216 * - NO_HZ_COMMON is enabled
217 * - timer migration is enabled
218 * - the timer callback is not running
219 * - the timer is not the first expiring timer on the new target
221 * If one of the above requirements is not fulfilled we move the timer
222 * to the current CPU or leave it on the previously assigned CPU if
223 * the timer callback is currently running.
225 static inline struct hrtimer_clock_base
*
226 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
229 struct hrtimer_cpu_base
*new_cpu_base
, *this_cpu_base
;
230 struct hrtimer_clock_base
*new_base
;
231 int basenum
= base
->index
;
233 this_cpu_base
= this_cpu_ptr(&hrtimer_bases
);
234 new_cpu_base
= get_target_base(this_cpu_base
, pinned
);
236 new_base
= &new_cpu_base
->clock_base
[basenum
];
238 if (base
!= new_base
) {
240 * We are trying to move timer to new_base.
241 * However we can't change timer's base while it is running,
242 * so we keep it on the same CPU. No hassle vs. reprogramming
243 * the event source in the high resolution case. The softirq
244 * code will take care of this when the timer function has
245 * completed. There is no conflict as we hold the lock until
246 * the timer is enqueued.
248 if (unlikely(hrtimer_callback_running(timer
)))
251 /* See the comment in lock_hrtimer_base() */
252 timer
->base
= &migration_base
;
253 raw_spin_unlock(&base
->cpu_base
->lock
);
254 raw_spin_lock(&new_base
->cpu_base
->lock
);
256 if (new_cpu_base
!= this_cpu_base
&&
257 hrtimer_check_target(timer
, new_base
)) {
258 raw_spin_unlock(&new_base
->cpu_base
->lock
);
259 raw_spin_lock(&base
->cpu_base
->lock
);
260 new_cpu_base
= this_cpu_base
;
264 timer
->base
= new_base
;
266 if (new_cpu_base
!= this_cpu_base
&&
267 hrtimer_check_target(timer
, new_base
)) {
268 new_cpu_base
= this_cpu_base
;
275 #else /* CONFIG_SMP */
277 static inline struct hrtimer_clock_base
*
278 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
280 struct hrtimer_clock_base
*base
= timer
->base
;
282 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
287 # define switch_hrtimer_base(t, b, p) (b)
289 #endif /* !CONFIG_SMP */
292 * Functions for the union type storage format of ktime_t which are
293 * too large for inlining:
295 #if BITS_PER_LONG < 64
297 * Divide a ktime value by a nanosecond value
299 s64
__ktime_divns(const ktime_t kt
, s64 div
)
305 dclc
= ktime_to_ns(kt
);
306 tmp
= dclc
< 0 ? -dclc
: dclc
;
308 /* Make sure the divisor is less than 2^32: */
314 do_div(tmp
, (unsigned long) div
);
315 return dclc
< 0 ? -tmp
: tmp
;
317 EXPORT_SYMBOL_GPL(__ktime_divns
);
318 #endif /* BITS_PER_LONG >= 64 */
321 * Add two ktime values and do a safety check for overflow:
323 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
325 ktime_t res
= ktime_add_unsafe(lhs
, rhs
);
328 * We use KTIME_SEC_MAX here, the maximum timeout which we can
329 * return to user space in a timespec:
331 if (res
< 0 || res
< lhs
|| res
< rhs
)
332 res
= ktime_set(KTIME_SEC_MAX
, 0);
337 EXPORT_SYMBOL_GPL(ktime_add_safe
);
339 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
341 static struct debug_obj_descr hrtimer_debug_descr
;
343 static void *hrtimer_debug_hint(void *addr
)
345 return ((struct hrtimer
*) addr
)->function
;
349 * fixup_init is called when:
350 * - an active object is initialized
352 static bool hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
354 struct hrtimer
*timer
= addr
;
357 case ODEBUG_STATE_ACTIVE
:
358 hrtimer_cancel(timer
);
359 debug_object_init(timer
, &hrtimer_debug_descr
);
367 * fixup_activate is called when:
368 * - an active object is activated
369 * - an unknown non-static object is activated
371 static bool hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
374 case ODEBUG_STATE_ACTIVE
:
383 * fixup_free is called when:
384 * - an active object is freed
386 static bool hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
388 struct hrtimer
*timer
= addr
;
391 case ODEBUG_STATE_ACTIVE
:
392 hrtimer_cancel(timer
);
393 debug_object_free(timer
, &hrtimer_debug_descr
);
400 static struct debug_obj_descr hrtimer_debug_descr
= {
402 .debug_hint
= hrtimer_debug_hint
,
403 .fixup_init
= hrtimer_fixup_init
,
404 .fixup_activate
= hrtimer_fixup_activate
,
405 .fixup_free
= hrtimer_fixup_free
,
408 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
410 debug_object_init(timer
, &hrtimer_debug_descr
);
413 static inline void debug_hrtimer_activate(struct hrtimer
*timer
,
414 enum hrtimer_mode mode
)
416 debug_object_activate(timer
, &hrtimer_debug_descr
);
419 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
421 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
424 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
426 debug_object_free(timer
, &hrtimer_debug_descr
);
429 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
430 enum hrtimer_mode mode
);
432 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
433 enum hrtimer_mode mode
)
435 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
436 __hrtimer_init(timer
, clock_id
, mode
);
438 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack
);
440 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
442 debug_object_free(timer
, &hrtimer_debug_descr
);
444 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack
);
448 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
449 static inline void debug_hrtimer_activate(struct hrtimer
*timer
,
450 enum hrtimer_mode mode
) { }
451 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
455 debug_init(struct hrtimer
*timer
, clockid_t clockid
,
456 enum hrtimer_mode mode
)
458 debug_hrtimer_init(timer
);
459 trace_hrtimer_init(timer
, clockid
, mode
);
462 static inline void debug_activate(struct hrtimer
*timer
,
463 enum hrtimer_mode mode
)
465 debug_hrtimer_activate(timer
, mode
);
466 trace_hrtimer_start(timer
, mode
);
469 static inline void debug_deactivate(struct hrtimer
*timer
)
471 debug_hrtimer_deactivate(timer
);
472 trace_hrtimer_cancel(timer
);
475 static struct hrtimer_clock_base
*
476 __next_base(struct hrtimer_cpu_base
*cpu_base
, unsigned int *active
)
483 idx
= __ffs(*active
);
484 *active
&= ~(1U << idx
);
486 return &cpu_base
->clock_base
[idx
];
489 #define for_each_active_base(base, cpu_base, active) \
490 while ((base = __next_base((cpu_base), &(active))))
492 static ktime_t
__hrtimer_next_event_base(struct hrtimer_cpu_base
*cpu_base
,
493 const struct hrtimer
*exclude
,
495 ktime_t expires_next
)
497 struct hrtimer_clock_base
*base
;
500 for_each_active_base(base
, cpu_base
, active
) {
501 struct timerqueue_node
*next
;
502 struct hrtimer
*timer
;
504 next
= timerqueue_getnext(&base
->active
);
505 timer
= container_of(next
, struct hrtimer
, node
);
506 if (timer
== exclude
) {
507 /* Get to the next timer in the queue. */
508 next
= timerqueue_iterate_next(next
);
512 timer
= container_of(next
, struct hrtimer
, node
);
514 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
515 if (expires
< expires_next
) {
516 expires_next
= expires
;
518 /* Skip cpu_base update if a timer is being excluded. */
523 cpu_base
->softirq_next_timer
= timer
;
525 cpu_base
->next_timer
= timer
;
529 * clock_was_set() might have changed base->offset of any of
530 * the clock bases so the result might be negative. Fix it up
531 * to prevent a false positive in clockevents_program_event().
533 if (expires_next
< 0)
539 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
540 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
542 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
543 * those timers will get run whenever the softirq gets handled, at the end of
544 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
546 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
547 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
548 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
550 * @active_mask must be one of:
551 * - HRTIMER_ACTIVE_ALL,
552 * - HRTIMER_ACTIVE_SOFT, or
553 * - HRTIMER_ACTIVE_HARD.
556 __hrtimer_get_next_event(struct hrtimer_cpu_base
*cpu_base
, unsigned int active_mask
)
559 struct hrtimer
*next_timer
= NULL
;
560 ktime_t expires_next
= KTIME_MAX
;
562 if (!cpu_base
->softirq_activated
&& (active_mask
& HRTIMER_ACTIVE_SOFT
)) {
563 active
= cpu_base
->active_bases
& HRTIMER_ACTIVE_SOFT
;
564 cpu_base
->softirq_next_timer
= NULL
;
565 expires_next
= __hrtimer_next_event_base(cpu_base
, NULL
,
568 next_timer
= cpu_base
->softirq_next_timer
;
571 if (active_mask
& HRTIMER_ACTIVE_HARD
) {
572 active
= cpu_base
->active_bases
& HRTIMER_ACTIVE_HARD
;
573 cpu_base
->next_timer
= next_timer
;
574 expires_next
= __hrtimer_next_event_base(cpu_base
, NULL
, active
,
581 static inline ktime_t
hrtimer_update_base(struct hrtimer_cpu_base
*base
)
583 ktime_t
*offs_real
= &base
->clock_base
[HRTIMER_BASE_REALTIME
].offset
;
584 ktime_t
*offs_boot
= &base
->clock_base
[HRTIMER_BASE_BOOTTIME
].offset
;
585 ktime_t
*offs_tai
= &base
->clock_base
[HRTIMER_BASE_TAI
].offset
;
587 ktime_t now
= ktime_get_update_offsets_now(&base
->clock_was_set_seq
,
588 offs_real
, offs_boot
, offs_tai
);
590 base
->clock_base
[HRTIMER_BASE_REALTIME_SOFT
].offset
= *offs_real
;
591 base
->clock_base
[HRTIMER_BASE_BOOTTIME_SOFT
].offset
= *offs_boot
;
592 base
->clock_base
[HRTIMER_BASE_TAI_SOFT
].offset
= *offs_tai
;
598 * Is the high resolution mode active ?
600 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base
*cpu_base
)
602 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS
) ?
603 cpu_base
->hres_active
: 0;
606 static inline int hrtimer_hres_active(void)
608 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases
));
612 * Reprogram the event source with checking both queues for the
614 * Called with interrupts disabled and base->lock held
617 hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
, int skip_equal
)
619 ktime_t expires_next
;
622 * Find the current next expiration time.
624 expires_next
= __hrtimer_get_next_event(cpu_base
, HRTIMER_ACTIVE_ALL
);
626 if (cpu_base
->next_timer
&& cpu_base
->next_timer
->is_soft
) {
628 * When the softirq is activated, hrtimer has to be
629 * programmed with the first hard hrtimer because soft
630 * timer interrupt could occur too late.
632 if (cpu_base
->softirq_activated
)
633 expires_next
= __hrtimer_get_next_event(cpu_base
,
634 HRTIMER_ACTIVE_HARD
);
636 cpu_base
->softirq_expires_next
= expires_next
;
639 if (skip_equal
&& expires_next
== cpu_base
->expires_next
)
642 cpu_base
->expires_next
= expires_next
;
645 * If hres is not active, hardware does not have to be
648 * If a hang was detected in the last timer interrupt then we
649 * leave the hang delay active in the hardware. We want the
650 * system to make progress. That also prevents the following
652 * T1 expires 50ms from now
653 * T2 expires 5s from now
655 * T1 is removed, so this code is called and would reprogram
656 * the hardware to 5s from now. Any hrtimer_start after that
657 * will not reprogram the hardware due to hang_detected being
658 * set. So we'd effectivly block all timers until the T2 event
661 if (!__hrtimer_hres_active(cpu_base
) || cpu_base
->hang_detected
)
664 tick_program_event(cpu_base
->expires_next
, 1);
667 /* High resolution timer related functions */
668 #ifdef CONFIG_HIGH_RES_TIMERS
671 * High resolution timer enabled ?
673 static bool hrtimer_hres_enabled __read_mostly
= true;
674 unsigned int hrtimer_resolution __read_mostly
= LOW_RES_NSEC
;
675 EXPORT_SYMBOL_GPL(hrtimer_resolution
);
678 * Enable / Disable high resolution mode
680 static int __init
setup_hrtimer_hres(char *str
)
682 return (kstrtobool(str
, &hrtimer_hres_enabled
) == 0);
685 __setup("highres=", setup_hrtimer_hres
);
688 * hrtimer_high_res_enabled - query, if the highres mode is enabled
690 static inline int hrtimer_is_hres_enabled(void)
692 return hrtimer_hres_enabled
;
696 * Retrigger next event is called after clock was set
698 * Called with interrupts disabled via on_each_cpu()
700 static void retrigger_next_event(void *arg
)
702 struct hrtimer_cpu_base
*base
= this_cpu_ptr(&hrtimer_bases
);
704 if (!__hrtimer_hres_active(base
))
707 raw_spin_lock(&base
->lock
);
708 hrtimer_update_base(base
);
709 hrtimer_force_reprogram(base
, 0);
710 raw_spin_unlock(&base
->lock
);
714 * Switch to high resolution mode
716 static void hrtimer_switch_to_hres(void)
718 struct hrtimer_cpu_base
*base
= this_cpu_ptr(&hrtimer_bases
);
720 if (tick_init_highres()) {
721 pr_warn("Could not switch to high resolution mode on CPU %u\n",
725 base
->hres_active
= 1;
726 hrtimer_resolution
= HIGH_RES_NSEC
;
728 tick_setup_sched_timer();
729 /* "Retrigger" the interrupt to get things going */
730 retrigger_next_event(NULL
);
733 static void clock_was_set_work(struct work_struct
*work
)
738 static DECLARE_WORK(hrtimer_work
, clock_was_set_work
);
741 * Called from timekeeping and resume code to reprogram the hrtimer
742 * interrupt device on all cpus.
744 void clock_was_set_delayed(void)
746 schedule_work(&hrtimer_work
);
751 static inline int hrtimer_is_hres_enabled(void) { return 0; }
752 static inline void hrtimer_switch_to_hres(void) { }
753 static inline void retrigger_next_event(void *arg
) { }
755 #endif /* CONFIG_HIGH_RES_TIMERS */
758 * When a timer is enqueued and expires earlier than the already enqueued
759 * timers, we have to check, whether it expires earlier than the timer for
760 * which the clock event device was armed.
762 * Called with interrupts disabled and base->cpu_base.lock held
764 static void hrtimer_reprogram(struct hrtimer
*timer
, bool reprogram
)
766 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
767 struct hrtimer_clock_base
*base
= timer
->base
;
768 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
770 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
773 * CLOCK_REALTIME timer might be requested with an absolute
774 * expiry time which is less than base->offset. Set it to 0.
779 if (timer
->is_soft
) {
781 * soft hrtimer could be started on a remote CPU. In this
782 * case softirq_expires_next needs to be updated on the
783 * remote CPU. The soft hrtimer will not expire before the
784 * first hard hrtimer on the remote CPU -
785 * hrtimer_check_target() prevents this case.
787 struct hrtimer_cpu_base
*timer_cpu_base
= base
->cpu_base
;
789 if (timer_cpu_base
->softirq_activated
)
792 if (!ktime_before(expires
, timer_cpu_base
->softirq_expires_next
))
795 timer_cpu_base
->softirq_next_timer
= timer
;
796 timer_cpu_base
->softirq_expires_next
= expires
;
798 if (!ktime_before(expires
, timer_cpu_base
->expires_next
) ||
804 * If the timer is not on the current cpu, we cannot reprogram
805 * the other cpus clock event device.
807 if (base
->cpu_base
!= cpu_base
)
811 * If the hrtimer interrupt is running, then it will
812 * reevaluate the clock bases and reprogram the clock event
813 * device. The callbacks are always executed in hard interrupt
814 * context so we don't need an extra check for a running
817 if (cpu_base
->in_hrtirq
)
820 if (expires
>= cpu_base
->expires_next
)
823 /* Update the pointer to the next expiring timer */
824 cpu_base
->next_timer
= timer
;
825 cpu_base
->expires_next
= expires
;
828 * If hres is not active, hardware does not have to be
831 * If a hang was detected in the last timer interrupt then we
832 * do not schedule a timer which is earlier than the expiry
833 * which we enforced in the hang detection. We want the system
836 if (!__hrtimer_hres_active(cpu_base
) || cpu_base
->hang_detected
)
840 * Program the timer hardware. We enforce the expiry for
841 * events which are already in the past.
843 tick_program_event(expires
, 1);
847 * Clock realtime was set
849 * Change the offset of the realtime clock vs. the monotonic
852 * We might have to reprogram the high resolution timer interrupt. On
853 * SMP we call the architecture specific code to retrigger _all_ high
854 * resolution timer interrupts. On UP we just disable interrupts and
855 * call the high resolution interrupt code.
857 void clock_was_set(void)
859 #ifdef CONFIG_HIGH_RES_TIMERS
860 /* Retrigger the CPU local events everywhere */
861 on_each_cpu(retrigger_next_event
, NULL
, 1);
863 timerfd_clock_was_set();
867 * During resume we might have to reprogram the high resolution timer
868 * interrupt on all online CPUs. However, all other CPUs will be
869 * stopped with IRQs interrupts disabled so the clock_was_set() call
872 void hrtimers_resume(void)
874 lockdep_assert_irqs_disabled();
875 /* Retrigger on the local CPU */
876 retrigger_next_event(NULL
);
877 /* And schedule a retrigger for all others */
878 clock_was_set_delayed();
882 * Counterpart to lock_hrtimer_base above:
885 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
887 raw_spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
891 * hrtimer_forward - forward the timer expiry
892 * @timer: hrtimer to forward
893 * @now: forward past this time
894 * @interval: the interval to forward
896 * Forward the timer expiry so it will expire in the future.
897 * Returns the number of overruns.
899 * Can be safely called from the callback function of @timer. If
900 * called from other contexts @timer must neither be enqueued nor
901 * running the callback and the caller needs to take care of
904 * Note: This only updates the timer expiry value and does not requeue
907 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
912 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
917 if (WARN_ON(timer
->state
& HRTIMER_STATE_ENQUEUED
))
920 if (interval
< hrtimer_resolution
)
921 interval
= hrtimer_resolution
;
923 if (unlikely(delta
>= interval
)) {
924 s64 incr
= ktime_to_ns(interval
);
926 orun
= ktime_divns(delta
, incr
);
927 hrtimer_add_expires_ns(timer
, incr
* orun
);
928 if (hrtimer_get_expires_tv64(timer
) > now
)
931 * This (and the ktime_add() below) is the
932 * correction for exact:
936 hrtimer_add_expires(timer
, interval
);
940 EXPORT_SYMBOL_GPL(hrtimer_forward
);
943 * enqueue_hrtimer - internal function to (re)start a timer
945 * The timer is inserted in expiry order. Insertion into the
946 * red black tree is O(log(n)). Must hold the base lock.
948 * Returns 1 when the new timer is the leftmost timer in the tree.
950 static int enqueue_hrtimer(struct hrtimer
*timer
,
951 struct hrtimer_clock_base
*base
,
952 enum hrtimer_mode mode
)
954 debug_activate(timer
, mode
);
956 base
->cpu_base
->active_bases
|= 1 << base
->index
;
958 timer
->state
= HRTIMER_STATE_ENQUEUED
;
960 return timerqueue_add(&base
->active
, &timer
->node
);
964 * __remove_hrtimer - internal function to remove a timer
966 * Caller must hold the base lock.
968 * High resolution timer mode reprograms the clock event device when the
969 * timer is the one which expires next. The caller can disable this by setting
970 * reprogram to zero. This is useful, when the context does a reprogramming
971 * anyway (e.g. timer interrupt)
973 static void __remove_hrtimer(struct hrtimer
*timer
,
974 struct hrtimer_clock_base
*base
,
975 u8 newstate
, int reprogram
)
977 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
978 u8 state
= timer
->state
;
980 timer
->state
= newstate
;
981 if (!(state
& HRTIMER_STATE_ENQUEUED
))
984 if (!timerqueue_del(&base
->active
, &timer
->node
))
985 cpu_base
->active_bases
&= ~(1 << base
->index
);
988 * Note: If reprogram is false we do not update
989 * cpu_base->next_timer. This happens when we remove the first
990 * timer on a remote cpu. No harm as we never dereference
991 * cpu_base->next_timer. So the worst thing what can happen is
992 * an superflous call to hrtimer_force_reprogram() on the
993 * remote cpu later on if the same timer gets enqueued again.
995 if (reprogram
&& timer
== cpu_base
->next_timer
)
996 hrtimer_force_reprogram(cpu_base
, 1);
1000 * remove hrtimer, called with base lock held
1003 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
, bool restart
)
1005 if (hrtimer_is_queued(timer
)) {
1006 u8 state
= timer
->state
;
1010 * Remove the timer and force reprogramming when high
1011 * resolution mode is active and the timer is on the current
1012 * CPU. If we remove a timer on another CPU, reprogramming is
1013 * skipped. The interrupt event on this CPU is fired and
1014 * reprogramming happens in the interrupt handler. This is a
1015 * rare case and less expensive than a smp call.
1017 debug_deactivate(timer
);
1018 reprogram
= base
->cpu_base
== this_cpu_ptr(&hrtimer_bases
);
1021 state
= HRTIMER_STATE_INACTIVE
;
1023 __remove_hrtimer(timer
, base
, state
, reprogram
);
1029 static inline ktime_t
hrtimer_update_lowres(struct hrtimer
*timer
, ktime_t tim
,
1030 const enum hrtimer_mode mode
)
1032 #ifdef CONFIG_TIME_LOW_RES
1034 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1035 * granular time values. For relative timers we add hrtimer_resolution
1036 * (i.e. one jiffie) to prevent short timeouts.
1038 timer
->is_rel
= mode
& HRTIMER_MODE_REL
;
1040 tim
= ktime_add_safe(tim
, hrtimer_resolution
);
1046 hrtimer_update_softirq_timer(struct hrtimer_cpu_base
*cpu_base
, bool reprogram
)
1051 * Find the next SOFT expiration.
1053 expires
= __hrtimer_get_next_event(cpu_base
, HRTIMER_ACTIVE_SOFT
);
1056 * reprogramming needs to be triggered, even if the next soft
1057 * hrtimer expires at the same time than the next hard
1058 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1060 if (expires
== KTIME_MAX
)
1064 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1065 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1067 hrtimer_reprogram(cpu_base
->softirq_next_timer
, reprogram
);
1070 static int __hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1071 u64 delta_ns
, const enum hrtimer_mode mode
,
1072 struct hrtimer_clock_base
*base
)
1074 struct hrtimer_clock_base
*new_base
;
1076 /* Remove an active timer from the queue: */
1077 remove_hrtimer(timer
, base
, true);
1079 if (mode
& HRTIMER_MODE_REL
)
1080 tim
= ktime_add_safe(tim
, base
->get_time());
1082 tim
= hrtimer_update_lowres(timer
, tim
, mode
);
1084 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
1086 /* Switch the timer base, if necessary: */
1087 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
1089 return enqueue_hrtimer(timer
, new_base
, mode
);
1093 * hrtimer_start_range_ns - (re)start an hrtimer
1094 * @timer: the timer to be added
1096 * @delta_ns: "slack" range for the timer
1097 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1098 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1099 * softirq based mode is considered for debug purpose only!
1101 void hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1102 u64 delta_ns
, const enum hrtimer_mode mode
)
1104 struct hrtimer_clock_base
*base
;
1105 unsigned long flags
;
1108 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1111 WARN_ON_ONCE(!(mode
& HRTIMER_MODE_SOFT
) ^ !timer
->is_soft
);
1113 base
= lock_hrtimer_base(timer
, &flags
);
1115 if (__hrtimer_start_range_ns(timer
, tim
, delta_ns
, mode
, base
))
1116 hrtimer_reprogram(timer
, true);
1118 unlock_hrtimer_base(timer
, &flags
);
1120 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1123 * hrtimer_try_to_cancel - try to deactivate a timer
1124 * @timer: hrtimer to stop
1127 * 0 when the timer was not active
1128 * 1 when the timer was active
1129 * -1 when the timer is currently executing the callback function and
1132 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1134 struct hrtimer_clock_base
*base
;
1135 unsigned long flags
;
1139 * Check lockless first. If the timer is not active (neither
1140 * enqueued nor running the callback, nothing to do here. The
1141 * base lock does not serialize against a concurrent enqueue,
1142 * so we can avoid taking it.
1144 if (!hrtimer_active(timer
))
1147 base
= lock_hrtimer_base(timer
, &flags
);
1149 if (!hrtimer_callback_running(timer
))
1150 ret
= remove_hrtimer(timer
, base
, false);
1152 unlock_hrtimer_base(timer
, &flags
);
1157 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1160 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1161 * @timer: the timer to be cancelled
1164 * 0 when the timer was not active
1165 * 1 when the timer was active
1167 int hrtimer_cancel(struct hrtimer
*timer
)
1170 int ret
= hrtimer_try_to_cancel(timer
);
1177 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1180 * hrtimer_get_remaining - get remaining time for the timer
1181 * @timer: the timer to read
1182 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1184 ktime_t
__hrtimer_get_remaining(const struct hrtimer
*timer
, bool adjust
)
1186 unsigned long flags
;
1189 lock_hrtimer_base(timer
, &flags
);
1190 if (IS_ENABLED(CONFIG_TIME_LOW_RES
) && adjust
)
1191 rem
= hrtimer_expires_remaining_adjusted(timer
);
1193 rem
= hrtimer_expires_remaining(timer
);
1194 unlock_hrtimer_base(timer
, &flags
);
1198 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining
);
1200 #ifdef CONFIG_NO_HZ_COMMON
1202 * hrtimer_get_next_event - get the time until next expiry event
1204 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1206 u64
hrtimer_get_next_event(void)
1208 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1209 u64 expires
= KTIME_MAX
;
1210 unsigned long flags
;
1212 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1214 if (!__hrtimer_hres_active(cpu_base
))
1215 expires
= __hrtimer_get_next_event(cpu_base
, HRTIMER_ACTIVE_ALL
);
1217 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1223 * hrtimer_next_event_without - time until next expiry event w/o one timer
1224 * @exclude: timer to exclude
1226 * Returns the next expiry time over all timers except for the @exclude one or
1227 * KTIME_MAX if none of them is pending.
1229 u64
hrtimer_next_event_without(const struct hrtimer
*exclude
)
1231 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1232 u64 expires
= KTIME_MAX
;
1233 unsigned long flags
;
1235 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1237 if (__hrtimer_hres_active(cpu_base
)) {
1238 unsigned int active
;
1240 if (!cpu_base
->softirq_activated
) {
1241 active
= cpu_base
->active_bases
& HRTIMER_ACTIVE_SOFT
;
1242 expires
= __hrtimer_next_event_base(cpu_base
, exclude
,
1245 active
= cpu_base
->active_bases
& HRTIMER_ACTIVE_HARD
;
1246 expires
= __hrtimer_next_event_base(cpu_base
, exclude
, active
,
1250 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1256 static inline int hrtimer_clockid_to_base(clockid_t clock_id
)
1258 if (likely(clock_id
< MAX_CLOCKS
)) {
1259 int base
= hrtimer_clock_to_base_table
[clock_id
];
1261 if (likely(base
!= HRTIMER_MAX_CLOCK_BASES
))
1264 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id
);
1265 return HRTIMER_BASE_MONOTONIC
;
1268 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1269 enum hrtimer_mode mode
)
1271 bool softtimer
= !!(mode
& HRTIMER_MODE_SOFT
);
1272 int base
= softtimer
? HRTIMER_MAX_CLOCK_BASES
/ 2 : 0;
1273 struct hrtimer_cpu_base
*cpu_base
;
1275 memset(timer
, 0, sizeof(struct hrtimer
));
1277 cpu_base
= raw_cpu_ptr(&hrtimer_bases
);
1280 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1281 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1282 * ensure POSIX compliance.
1284 if (clock_id
== CLOCK_REALTIME
&& mode
& HRTIMER_MODE_REL
)
1285 clock_id
= CLOCK_MONOTONIC
;
1287 base
+= hrtimer_clockid_to_base(clock_id
);
1288 timer
->is_soft
= softtimer
;
1289 timer
->base
= &cpu_base
->clock_base
[base
];
1290 timerqueue_init(&timer
->node
);
1294 * hrtimer_init - initialize a timer to the given clock
1295 * @timer: the timer to be initialized
1296 * @clock_id: the clock to be used
1297 * @mode: The modes which are relevant for intitialization:
1298 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1299 * HRTIMER_MODE_REL_SOFT
1301 * The PINNED variants of the above can be handed in,
1302 * but the PINNED bit is ignored as pinning happens
1303 * when the hrtimer is started
1305 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1306 enum hrtimer_mode mode
)
1308 debug_init(timer
, clock_id
, mode
);
1309 __hrtimer_init(timer
, clock_id
, mode
);
1311 EXPORT_SYMBOL_GPL(hrtimer_init
);
1314 * A timer is active, when it is enqueued into the rbtree or the
1315 * callback function is running or it's in the state of being migrated
1318 * It is important for this function to not return a false negative.
1320 bool hrtimer_active(const struct hrtimer
*timer
)
1322 struct hrtimer_clock_base
*base
;
1326 base
= READ_ONCE(timer
->base
);
1327 seq
= raw_read_seqcount_begin(&base
->seq
);
1329 if (timer
->state
!= HRTIMER_STATE_INACTIVE
||
1330 base
->running
== timer
)
1333 } while (read_seqcount_retry(&base
->seq
, seq
) ||
1334 base
!= READ_ONCE(timer
->base
));
1338 EXPORT_SYMBOL_GPL(hrtimer_active
);
1341 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1342 * distinct sections:
1344 * - queued: the timer is queued
1345 * - callback: the timer is being ran
1346 * - post: the timer is inactive or (re)queued
1348 * On the read side we ensure we observe timer->state and cpu_base->running
1349 * from the same section, if anything changed while we looked at it, we retry.
1350 * This includes timer->base changing because sequence numbers alone are
1351 * insufficient for that.
1353 * The sequence numbers are required because otherwise we could still observe
1354 * a false negative if the read side got smeared over multiple consequtive
1355 * __run_hrtimer() invocations.
1358 static void __run_hrtimer(struct hrtimer_cpu_base
*cpu_base
,
1359 struct hrtimer_clock_base
*base
,
1360 struct hrtimer
*timer
, ktime_t
*now
,
1361 unsigned long flags
)
1363 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1366 lockdep_assert_held(&cpu_base
->lock
);
1368 debug_deactivate(timer
);
1369 base
->running
= timer
;
1372 * Separate the ->running assignment from the ->state assignment.
1374 * As with a regular write barrier, this ensures the read side in
1375 * hrtimer_active() cannot observe base->running == NULL &&
1376 * timer->state == INACTIVE.
1378 raw_write_seqcount_barrier(&base
->seq
);
1380 __remove_hrtimer(timer
, base
, HRTIMER_STATE_INACTIVE
, 0);
1381 fn
= timer
->function
;
1384 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1385 * timer is restarted with a period then it becomes an absolute
1386 * timer. If its not restarted it does not matter.
1388 if (IS_ENABLED(CONFIG_TIME_LOW_RES
))
1389 timer
->is_rel
= false;
1392 * The timer is marked as running in the CPU base, so it is
1393 * protected against migration to a different CPU even if the lock
1396 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1397 trace_hrtimer_expire_entry(timer
, now
);
1398 restart
= fn(timer
);
1399 trace_hrtimer_expire_exit(timer
);
1400 raw_spin_lock_irq(&cpu_base
->lock
);
1403 * Note: We clear the running state after enqueue_hrtimer and
1404 * we do not reprogram the event hardware. Happens either in
1405 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1407 * Note: Because we dropped the cpu_base->lock above,
1408 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1411 if (restart
!= HRTIMER_NORESTART
&&
1412 !(timer
->state
& HRTIMER_STATE_ENQUEUED
))
1413 enqueue_hrtimer(timer
, base
, HRTIMER_MODE_ABS
);
1416 * Separate the ->running assignment from the ->state assignment.
1418 * As with a regular write barrier, this ensures the read side in
1419 * hrtimer_active() cannot observe base->running.timer == NULL &&
1420 * timer->state == INACTIVE.
1422 raw_write_seqcount_barrier(&base
->seq
);
1424 WARN_ON_ONCE(base
->running
!= timer
);
1425 base
->running
= NULL
;
1428 static void __hrtimer_run_queues(struct hrtimer_cpu_base
*cpu_base
, ktime_t now
,
1429 unsigned long flags
, unsigned int active_mask
)
1431 struct hrtimer_clock_base
*base
;
1432 unsigned int active
= cpu_base
->active_bases
& active_mask
;
1434 for_each_active_base(base
, cpu_base
, active
) {
1435 struct timerqueue_node
*node
;
1438 basenow
= ktime_add(now
, base
->offset
);
1440 while ((node
= timerqueue_getnext(&base
->active
))) {
1441 struct hrtimer
*timer
;
1443 timer
= container_of(node
, struct hrtimer
, node
);
1446 * The immediate goal for using the softexpires is
1447 * minimizing wakeups, not running timers at the
1448 * earliest interrupt after their soft expiration.
1449 * This allows us to avoid using a Priority Search
1450 * Tree, which can answer a stabbing querry for
1451 * overlapping intervals and instead use the simple
1452 * BST we already have.
1453 * We don't add extra wakeups by delaying timers that
1454 * are right-of a not yet expired timer, because that
1455 * timer will have to trigger a wakeup anyway.
1457 if (basenow
< hrtimer_get_softexpires_tv64(timer
))
1460 __run_hrtimer(cpu_base
, base
, timer
, &basenow
, flags
);
1465 static __latent_entropy
void hrtimer_run_softirq(struct softirq_action
*h
)
1467 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1468 unsigned long flags
;
1471 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1473 now
= hrtimer_update_base(cpu_base
);
1474 __hrtimer_run_queues(cpu_base
, now
, flags
, HRTIMER_ACTIVE_SOFT
);
1476 cpu_base
->softirq_activated
= 0;
1477 hrtimer_update_softirq_timer(cpu_base
, true);
1479 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1482 #ifdef CONFIG_HIGH_RES_TIMERS
1485 * High resolution timer interrupt
1486 * Called with interrupts disabled
1488 void hrtimer_interrupt(struct clock_event_device
*dev
)
1490 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1491 ktime_t expires_next
, now
, entry_time
, delta
;
1492 unsigned long flags
;
1495 BUG_ON(!cpu_base
->hres_active
);
1496 cpu_base
->nr_events
++;
1497 dev
->next_event
= KTIME_MAX
;
1499 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1500 entry_time
= now
= hrtimer_update_base(cpu_base
);
1502 cpu_base
->in_hrtirq
= 1;
1504 * We set expires_next to KTIME_MAX here with cpu_base->lock
1505 * held to prevent that a timer is enqueued in our queue via
1506 * the migration code. This does not affect enqueueing of
1507 * timers which run their callback and need to be requeued on
1510 cpu_base
->expires_next
= KTIME_MAX
;
1512 if (!ktime_before(now
, cpu_base
->softirq_expires_next
)) {
1513 cpu_base
->softirq_expires_next
= KTIME_MAX
;
1514 cpu_base
->softirq_activated
= 1;
1515 raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
1518 __hrtimer_run_queues(cpu_base
, now
, flags
, HRTIMER_ACTIVE_HARD
);
1520 /* Reevaluate the clock bases for the next expiry */
1521 expires_next
= __hrtimer_get_next_event(cpu_base
, HRTIMER_ACTIVE_ALL
);
1523 * Store the new expiry value so the migration code can verify
1526 cpu_base
->expires_next
= expires_next
;
1527 cpu_base
->in_hrtirq
= 0;
1528 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1530 /* Reprogramming necessary ? */
1531 if (!tick_program_event(expires_next
, 0)) {
1532 cpu_base
->hang_detected
= 0;
1537 * The next timer was already expired due to:
1539 * - long lasting callbacks
1540 * - being scheduled away when running in a VM
1542 * We need to prevent that we loop forever in the hrtimer
1543 * interrupt routine. We give it 3 attempts to avoid
1544 * overreacting on some spurious event.
1546 * Acquire base lock for updating the offsets and retrieving
1549 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1550 now
= hrtimer_update_base(cpu_base
);
1551 cpu_base
->nr_retries
++;
1555 * Give the system a chance to do something else than looping
1556 * here. We stored the entry time, so we know exactly how long
1557 * we spent here. We schedule the next event this amount of
1560 cpu_base
->nr_hangs
++;
1561 cpu_base
->hang_detected
= 1;
1562 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1564 delta
= ktime_sub(now
, entry_time
);
1565 if ((unsigned int)delta
> cpu_base
->max_hang_time
)
1566 cpu_base
->max_hang_time
= (unsigned int) delta
;
1568 * Limit it to a sensible value as we enforce a longer
1569 * delay. Give the CPU at least 100ms to catch up.
1571 if (delta
> 100 * NSEC_PER_MSEC
)
1572 expires_next
= ktime_add_ns(now
, 100 * NSEC_PER_MSEC
);
1574 expires_next
= ktime_add(now
, delta
);
1575 tick_program_event(expires_next
, 1);
1576 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta
));
1579 /* called with interrupts disabled */
1580 static inline void __hrtimer_peek_ahead_timers(void)
1582 struct tick_device
*td
;
1584 if (!hrtimer_hres_active())
1587 td
= this_cpu_ptr(&tick_cpu_device
);
1588 if (td
&& td
->evtdev
)
1589 hrtimer_interrupt(td
->evtdev
);
1592 #else /* CONFIG_HIGH_RES_TIMERS */
1594 static inline void __hrtimer_peek_ahead_timers(void) { }
1596 #endif /* !CONFIG_HIGH_RES_TIMERS */
1599 * Called from run_local_timers in hardirq context every jiffy
1601 void hrtimer_run_queues(void)
1603 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1604 unsigned long flags
;
1607 if (__hrtimer_hres_active(cpu_base
))
1611 * This _is_ ugly: We have to check periodically, whether we
1612 * can switch to highres and / or nohz mode. The clocksource
1613 * switch happens with xtime_lock held. Notification from
1614 * there only sets the check bit in the tick_oneshot code,
1615 * otherwise we might deadlock vs. xtime_lock.
1617 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1618 hrtimer_switch_to_hres();
1622 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1623 now
= hrtimer_update_base(cpu_base
);
1625 if (!ktime_before(now
, cpu_base
->softirq_expires_next
)) {
1626 cpu_base
->softirq_expires_next
= KTIME_MAX
;
1627 cpu_base
->softirq_activated
= 1;
1628 raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
1631 __hrtimer_run_queues(cpu_base
, now
, flags
, HRTIMER_ACTIVE_HARD
);
1632 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1636 * Sleep related functions:
1638 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1640 struct hrtimer_sleeper
*t
=
1641 container_of(timer
, struct hrtimer_sleeper
, timer
);
1642 struct task_struct
*task
= t
->task
;
1646 wake_up_process(task
);
1648 return HRTIMER_NORESTART
;
1651 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1653 sl
->timer
.function
= hrtimer_wakeup
;
1656 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper
);
1658 int nanosleep_copyout(struct restart_block
*restart
, struct timespec64
*ts
)
1660 switch(restart
->nanosleep
.type
) {
1661 #ifdef CONFIG_COMPAT_32BIT_TIME
1663 if (put_old_timespec32(ts
, restart
->nanosleep
.compat_rmtp
))
1668 if (put_timespec64(ts
, restart
->nanosleep
.rmtp
))
1674 return -ERESTART_RESTARTBLOCK
;
1677 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1679 struct restart_block
*restart
;
1681 hrtimer_init_sleeper(t
, current
);
1684 set_current_state(TASK_INTERRUPTIBLE
);
1685 hrtimer_start_expires(&t
->timer
, mode
);
1687 if (likely(t
->task
))
1688 freezable_schedule();
1690 hrtimer_cancel(&t
->timer
);
1691 mode
= HRTIMER_MODE_ABS
;
1693 } while (t
->task
&& !signal_pending(current
));
1695 __set_current_state(TASK_RUNNING
);
1700 restart
= ¤t
->restart_block
;
1701 if (restart
->nanosleep
.type
!= TT_NONE
) {
1702 ktime_t rem
= hrtimer_expires_remaining(&t
->timer
);
1703 struct timespec64 rmt
;
1707 rmt
= ktime_to_timespec64(rem
);
1709 return nanosleep_copyout(restart
, &rmt
);
1711 return -ERESTART_RESTARTBLOCK
;
1714 static long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1716 struct hrtimer_sleeper t
;
1719 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.clockid
,
1721 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1723 ret
= do_nanosleep(&t
, HRTIMER_MODE_ABS
);
1724 destroy_hrtimer_on_stack(&t
.timer
);
1728 long hrtimer_nanosleep(const struct timespec64
*rqtp
,
1729 const enum hrtimer_mode mode
, const clockid_t clockid
)
1731 struct restart_block
*restart
;
1732 struct hrtimer_sleeper t
;
1736 slack
= current
->timer_slack_ns
;
1737 if (dl_task(current
) || rt_task(current
))
1740 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1741 hrtimer_set_expires_range_ns(&t
.timer
, timespec64_to_ktime(*rqtp
), slack
);
1742 ret
= do_nanosleep(&t
, mode
);
1743 if (ret
!= -ERESTART_RESTARTBLOCK
)
1746 /* Absolute timers do not update the rmtp value and restart: */
1747 if (mode
== HRTIMER_MODE_ABS
) {
1748 ret
= -ERESTARTNOHAND
;
1752 restart
= ¤t
->restart_block
;
1753 restart
->fn
= hrtimer_nanosleep_restart
;
1754 restart
->nanosleep
.clockid
= t
.timer
.base
->clockid
;
1755 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1757 destroy_hrtimer_on_stack(&t
.timer
);
1761 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
1763 SYSCALL_DEFINE2(nanosleep
, struct __kernel_timespec __user
*, rqtp
,
1764 struct __kernel_timespec __user
*, rmtp
)
1766 struct timespec64 tu
;
1768 if (get_timespec64(&tu
, rqtp
))
1771 if (!timespec64_valid(&tu
))
1774 current
->restart_block
.nanosleep
.type
= rmtp
? TT_NATIVE
: TT_NONE
;
1775 current
->restart_block
.nanosleep
.rmtp
= rmtp
;
1776 return hrtimer_nanosleep(&tu
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1781 #ifdef CONFIG_COMPAT_32BIT_TIME
1783 COMPAT_SYSCALL_DEFINE2(nanosleep
, struct old_timespec32 __user
*, rqtp
,
1784 struct old_timespec32 __user
*, rmtp
)
1786 struct timespec64 tu
;
1788 if (get_old_timespec32(&tu
, rqtp
))
1791 if (!timespec64_valid(&tu
))
1794 current
->restart_block
.nanosleep
.type
= rmtp
? TT_COMPAT
: TT_NONE
;
1795 current
->restart_block
.nanosleep
.compat_rmtp
= rmtp
;
1796 return hrtimer_nanosleep(&tu
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1801 * Functions related to boot-time initialization:
1803 int hrtimers_prepare_cpu(unsigned int cpu
)
1805 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1808 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1809 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1810 timerqueue_init_head(&cpu_base
->clock_base
[i
].active
);
1813 cpu_base
->cpu
= cpu
;
1814 cpu_base
->active_bases
= 0;
1815 cpu_base
->hres_active
= 0;
1816 cpu_base
->hang_detected
= 0;
1817 cpu_base
->next_timer
= NULL
;
1818 cpu_base
->softirq_next_timer
= NULL
;
1819 cpu_base
->expires_next
= KTIME_MAX
;
1820 cpu_base
->softirq_expires_next
= KTIME_MAX
;
1824 #ifdef CONFIG_HOTPLUG_CPU
1826 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1827 struct hrtimer_clock_base
*new_base
)
1829 struct hrtimer
*timer
;
1830 struct timerqueue_node
*node
;
1832 while ((node
= timerqueue_getnext(&old_base
->active
))) {
1833 timer
= container_of(node
, struct hrtimer
, node
);
1834 BUG_ON(hrtimer_callback_running(timer
));
1835 debug_deactivate(timer
);
1838 * Mark it as ENQUEUED not INACTIVE otherwise the
1839 * timer could be seen as !active and just vanish away
1840 * under us on another CPU
1842 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_ENQUEUED
, 0);
1843 timer
->base
= new_base
;
1845 * Enqueue the timers on the new cpu. This does not
1846 * reprogram the event device in case the timer
1847 * expires before the earliest on this CPU, but we run
1848 * hrtimer_interrupt after we migrated everything to
1849 * sort out already expired timers and reprogram the
1852 enqueue_hrtimer(timer
, new_base
, HRTIMER_MODE_ABS
);
1856 int hrtimers_dead_cpu(unsigned int scpu
)
1858 struct hrtimer_cpu_base
*old_base
, *new_base
;
1861 BUG_ON(cpu_online(scpu
));
1862 tick_cancel_sched_timer(scpu
);
1865 * this BH disable ensures that raise_softirq_irqoff() does
1866 * not wakeup ksoftirqd (and acquire the pi-lock) while
1867 * holding the cpu_base lock
1870 local_irq_disable();
1871 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1872 new_base
= this_cpu_ptr(&hrtimer_bases
);
1874 * The caller is globally serialized and nobody else
1875 * takes two locks at once, deadlock is not possible.
1877 raw_spin_lock(&new_base
->lock
);
1878 raw_spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1880 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1881 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1882 &new_base
->clock_base
[i
]);
1886 * The migration might have changed the first expiring softirq
1887 * timer on this CPU. Update it.
1889 hrtimer_update_softirq_timer(new_base
, false);
1891 raw_spin_unlock(&old_base
->lock
);
1892 raw_spin_unlock(&new_base
->lock
);
1894 /* Check, if we got expired work to do */
1895 __hrtimer_peek_ahead_timers();
1901 #endif /* CONFIG_HOTPLUG_CPU */
1903 void __init
hrtimers_init(void)
1905 hrtimers_prepare_cpu(smp_processor_id());
1906 open_softirq(HRTIMER_SOFTIRQ
, hrtimer_run_softirq
);
1910 * schedule_hrtimeout_range_clock - sleep until timeout
1911 * @expires: timeout value (ktime_t)
1912 * @delta: slack in expires timeout (ktime_t)
1914 * @clock_id: timer clock to be used
1917 schedule_hrtimeout_range_clock(ktime_t
*expires
, u64 delta
,
1918 const enum hrtimer_mode mode
, clockid_t clock_id
)
1920 struct hrtimer_sleeper t
;
1923 * Optimize when a zero timeout value is given. It does not
1924 * matter whether this is an absolute or a relative time.
1926 if (expires
&& *expires
== 0) {
1927 __set_current_state(TASK_RUNNING
);
1932 * A NULL parameter means "infinite"
1939 hrtimer_init_on_stack(&t
.timer
, clock_id
, mode
);
1940 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1942 hrtimer_init_sleeper(&t
, current
);
1944 hrtimer_start_expires(&t
.timer
, mode
);
1949 hrtimer_cancel(&t
.timer
);
1950 destroy_hrtimer_on_stack(&t
.timer
);
1952 __set_current_state(TASK_RUNNING
);
1954 return !t
.task
? 0 : -EINTR
;
1958 * schedule_hrtimeout_range - sleep until timeout
1959 * @expires: timeout value (ktime_t)
1960 * @delta: slack in expires timeout (ktime_t)
1963 * Make the current task sleep until the given expiry time has
1964 * elapsed. The routine will return immediately unless
1965 * the current task state has been set (see set_current_state()).
1967 * The @delta argument gives the kernel the freedom to schedule the
1968 * actual wakeup to a time that is both power and performance friendly.
1969 * The kernel give the normal best effort behavior for "@expires+@delta",
1970 * but may decide to fire the timer earlier, but no earlier than @expires.
1972 * You can set the task state as follows -
1974 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1975 * pass before the routine returns unless the current task is explicitly
1976 * woken up, (e.g. by wake_up_process()).
1978 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1979 * delivered to the current task or the current task is explicitly woken
1982 * The current task state is guaranteed to be TASK_RUNNING when this
1985 * Returns 0 when the timer has expired. If the task was woken before the
1986 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1987 * by an explicit wakeup, it returns -EINTR.
1989 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, u64 delta
,
1990 const enum hrtimer_mode mode
)
1992 return schedule_hrtimeout_range_clock(expires
, delta
, mode
,
1995 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1998 * schedule_hrtimeout - sleep until timeout
1999 * @expires: timeout value (ktime_t)
2002 * Make the current task sleep until the given expiry time has
2003 * elapsed. The routine will return immediately unless
2004 * the current task state has been set (see set_current_state()).
2006 * You can set the task state as follows -
2008 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2009 * pass before the routine returns unless the current task is explicitly
2010 * woken up, (e.g. by wake_up_process()).
2012 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2013 * delivered to the current task or the current task is explicitly woken
2016 * The current task state is guaranteed to be TASK_RUNNING when this
2019 * Returns 0 when the timer has expired. If the task was woken before the
2020 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2021 * by an explicit wakeup, it returns -EINTR.
2023 int __sched
schedule_hrtimeout(ktime_t
*expires
,
2024 const enum hrtimer_mode mode
)
2026 return schedule_hrtimeout_range(expires
, 0, mode
);
2028 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);