perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / kernel / time / tick-broadcast.c
blobbe0aac2b4300f96c23f7789ede8a0cc8053040cc
1 /*
2 * linux/kernel/time/tick-broadcast.c
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
24 #include "tick-internal.h"
27 * Broadcast support for broken x86 hardware, where the local apic
28 * timer stops in C3 state.
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
33 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
34 static cpumask_var_t tmpmask __cpumask_var_read_mostly;
35 static int tick_broadcast_forced;
37 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
39 #ifdef CONFIG_TICK_ONESHOT
40 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
41 static void tick_broadcast_clear_oneshot(int cpu);
42 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
43 #else
44 static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
45 static inline void tick_broadcast_clear_oneshot(int cpu) { }
46 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
47 #endif
50 * Debugging: see timer_list.c
52 struct tick_device *tick_get_broadcast_device(void)
54 return &tick_broadcast_device;
57 struct cpumask *tick_get_broadcast_mask(void)
59 return tick_broadcast_mask;
63 * Start the device in periodic mode
65 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
67 if (bc)
68 tick_setup_periodic(bc, 1);
72 * Check, if the device can be utilized as broadcast device:
74 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
75 struct clock_event_device *newdev)
77 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
78 (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
79 (newdev->features & CLOCK_EVT_FEAT_C3STOP))
80 return false;
82 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
83 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
84 return false;
86 return !curdev || newdev->rating > curdev->rating;
90 * Conditionally install/replace broadcast device
92 void tick_install_broadcast_device(struct clock_event_device *dev)
94 struct clock_event_device *cur = tick_broadcast_device.evtdev;
96 if (!tick_check_broadcast_device(cur, dev))
97 return;
99 if (!try_module_get(dev->owner))
100 return;
102 clockevents_exchange_device(cur, dev);
103 if (cur)
104 cur->event_handler = clockevents_handle_noop;
105 tick_broadcast_device.evtdev = dev;
106 if (!cpumask_empty(tick_broadcast_mask))
107 tick_broadcast_start_periodic(dev);
109 * Inform all cpus about this. We might be in a situation
110 * where we did not switch to oneshot mode because the per cpu
111 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
112 * of a oneshot capable broadcast device. Without that
113 * notification the systems stays stuck in periodic mode
114 * forever.
116 if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
117 tick_clock_notify();
121 * Check, if the device is the broadcast device
123 int tick_is_broadcast_device(struct clock_event_device *dev)
125 return (dev && tick_broadcast_device.evtdev == dev);
128 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
130 int ret = -ENODEV;
132 if (tick_is_broadcast_device(dev)) {
133 raw_spin_lock(&tick_broadcast_lock);
134 ret = __clockevents_update_freq(dev, freq);
135 raw_spin_unlock(&tick_broadcast_lock);
137 return ret;
141 static void err_broadcast(const struct cpumask *mask)
143 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
146 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
148 if (!dev->broadcast)
149 dev->broadcast = tick_broadcast;
150 if (!dev->broadcast) {
151 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
152 dev->name);
153 dev->broadcast = err_broadcast;
158 * Check, if the device is disfunctional and a place holder, which
159 * needs to be handled by the broadcast device.
161 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
163 struct clock_event_device *bc = tick_broadcast_device.evtdev;
164 unsigned long flags;
165 int ret = 0;
167 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
170 * Devices might be registered with both periodic and oneshot
171 * mode disabled. This signals, that the device needs to be
172 * operated from the broadcast device and is a placeholder for
173 * the cpu local device.
175 if (!tick_device_is_functional(dev)) {
176 dev->event_handler = tick_handle_periodic;
177 tick_device_setup_broadcast_func(dev);
178 cpumask_set_cpu(cpu, tick_broadcast_mask);
179 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
180 tick_broadcast_start_periodic(bc);
181 else
182 tick_broadcast_setup_oneshot(bc);
183 ret = 1;
184 } else {
186 * Clear the broadcast bit for this cpu if the
187 * device is not power state affected.
189 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
190 cpumask_clear_cpu(cpu, tick_broadcast_mask);
191 else
192 tick_device_setup_broadcast_func(dev);
195 * Clear the broadcast bit if the CPU is not in
196 * periodic broadcast on state.
198 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
199 cpumask_clear_cpu(cpu, tick_broadcast_mask);
201 switch (tick_broadcast_device.mode) {
202 case TICKDEV_MODE_ONESHOT:
204 * If the system is in oneshot mode we can
205 * unconditionally clear the oneshot mask bit,
206 * because the CPU is running and therefore
207 * not in an idle state which causes the power
208 * state affected device to stop. Let the
209 * caller initialize the device.
211 tick_broadcast_clear_oneshot(cpu);
212 ret = 0;
213 break;
215 case TICKDEV_MODE_PERIODIC:
217 * If the system is in periodic mode, check
218 * whether the broadcast device can be
219 * switched off now.
221 if (cpumask_empty(tick_broadcast_mask) && bc)
222 clockevents_shutdown(bc);
224 * If we kept the cpu in the broadcast mask,
225 * tell the caller to leave the per cpu device
226 * in shutdown state. The periodic interrupt
227 * is delivered by the broadcast device, if
228 * the broadcast device exists and is not
229 * hrtimer based.
231 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
232 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
233 break;
234 default:
235 break;
238 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
239 return ret;
242 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
243 int tick_receive_broadcast(void)
245 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
246 struct clock_event_device *evt = td->evtdev;
248 if (!evt)
249 return -ENODEV;
251 if (!evt->event_handler)
252 return -EINVAL;
254 evt->event_handler(evt);
255 return 0;
257 #endif
260 * Broadcast the event to the cpus, which are set in the mask (mangled).
262 static bool tick_do_broadcast(struct cpumask *mask)
264 int cpu = smp_processor_id();
265 struct tick_device *td;
266 bool local = false;
269 * Check, if the current cpu is in the mask
271 if (cpumask_test_cpu(cpu, mask)) {
272 struct clock_event_device *bc = tick_broadcast_device.evtdev;
274 cpumask_clear_cpu(cpu, mask);
276 * We only run the local handler, if the broadcast
277 * device is not hrtimer based. Otherwise we run into
278 * a hrtimer recursion.
280 * local timer_interrupt()
281 * local_handler()
282 * expire_hrtimers()
283 * bc_handler()
284 * local_handler()
285 * expire_hrtimers()
287 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
290 if (!cpumask_empty(mask)) {
292 * It might be necessary to actually check whether the devices
293 * have different broadcast functions. For now, just use the
294 * one of the first device. This works as long as we have this
295 * misfeature only on x86 (lapic)
297 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
298 td->evtdev->broadcast(mask);
300 return local;
304 * Periodic broadcast:
305 * - invoke the broadcast handlers
307 static bool tick_do_periodic_broadcast(void)
309 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
310 return tick_do_broadcast(tmpmask);
314 * Event handler for periodic broadcast ticks
316 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
318 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
319 bool bc_local;
321 raw_spin_lock(&tick_broadcast_lock);
323 /* Handle spurious interrupts gracefully */
324 if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
325 raw_spin_unlock(&tick_broadcast_lock);
326 return;
329 bc_local = tick_do_periodic_broadcast();
331 if (clockevent_state_oneshot(dev)) {
332 ktime_t next = ktime_add(dev->next_event, tick_period);
334 clockevents_program_event(dev, next, true);
336 raw_spin_unlock(&tick_broadcast_lock);
339 * We run the handler of the local cpu after dropping
340 * tick_broadcast_lock because the handler might deadlock when
341 * trying to switch to oneshot mode.
343 if (bc_local)
344 td->evtdev->event_handler(td->evtdev);
348 * tick_broadcast_control - Enable/disable or force broadcast mode
349 * @mode: The selected broadcast mode
351 * Called when the system enters a state where affected tick devices
352 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
354 void tick_broadcast_control(enum tick_broadcast_mode mode)
356 struct clock_event_device *bc, *dev;
357 struct tick_device *td;
358 int cpu, bc_stopped;
359 unsigned long flags;
361 /* Protects also the local clockevent device. */
362 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
363 td = this_cpu_ptr(&tick_cpu_device);
364 dev = td->evtdev;
367 * Is the device not affected by the powerstate ?
369 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
370 goto out;
372 if (!tick_device_is_functional(dev))
373 goto out;
375 cpu = smp_processor_id();
376 bc = tick_broadcast_device.evtdev;
377 bc_stopped = cpumask_empty(tick_broadcast_mask);
379 switch (mode) {
380 case TICK_BROADCAST_FORCE:
381 tick_broadcast_forced = 1;
382 case TICK_BROADCAST_ON:
383 cpumask_set_cpu(cpu, tick_broadcast_on);
384 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
386 * Only shutdown the cpu local device, if:
388 * - the broadcast device exists
389 * - the broadcast device is not a hrtimer based one
390 * - the broadcast device is in periodic mode to
391 * avoid a hickup during switch to oneshot mode
393 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
394 tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
395 clockevents_shutdown(dev);
397 break;
399 case TICK_BROADCAST_OFF:
400 if (tick_broadcast_forced)
401 break;
402 cpumask_clear_cpu(cpu, tick_broadcast_on);
403 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
404 if (tick_broadcast_device.mode ==
405 TICKDEV_MODE_PERIODIC)
406 tick_setup_periodic(dev, 0);
408 break;
411 if (bc) {
412 if (cpumask_empty(tick_broadcast_mask)) {
413 if (!bc_stopped)
414 clockevents_shutdown(bc);
415 } else if (bc_stopped) {
416 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
417 tick_broadcast_start_periodic(bc);
418 else
419 tick_broadcast_setup_oneshot(bc);
422 out:
423 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
425 EXPORT_SYMBOL_GPL(tick_broadcast_control);
428 * Set the periodic handler depending on broadcast on/off
430 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
432 if (!broadcast)
433 dev->event_handler = tick_handle_periodic;
434 else
435 dev->event_handler = tick_handle_periodic_broadcast;
438 #ifdef CONFIG_HOTPLUG_CPU
440 * Remove a CPU from broadcasting
442 void tick_shutdown_broadcast(unsigned int cpu)
444 struct clock_event_device *bc;
445 unsigned long flags;
447 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
449 bc = tick_broadcast_device.evtdev;
450 cpumask_clear_cpu(cpu, tick_broadcast_mask);
451 cpumask_clear_cpu(cpu, tick_broadcast_on);
453 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
454 if (bc && cpumask_empty(tick_broadcast_mask))
455 clockevents_shutdown(bc);
458 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
460 #endif
462 void tick_suspend_broadcast(void)
464 struct clock_event_device *bc;
465 unsigned long flags;
467 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
469 bc = tick_broadcast_device.evtdev;
470 if (bc)
471 clockevents_shutdown(bc);
473 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
477 * This is called from tick_resume_local() on a resuming CPU. That's
478 * called from the core resume function, tick_unfreeze() and the magic XEN
479 * resume hackery.
481 * In none of these cases the broadcast device mode can change and the
482 * bit of the resuming CPU in the broadcast mask is safe as well.
484 bool tick_resume_check_broadcast(void)
486 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
487 return false;
488 else
489 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
492 void tick_resume_broadcast(void)
494 struct clock_event_device *bc;
495 unsigned long flags;
497 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
499 bc = tick_broadcast_device.evtdev;
501 if (bc) {
502 clockevents_tick_resume(bc);
504 switch (tick_broadcast_device.mode) {
505 case TICKDEV_MODE_PERIODIC:
506 if (!cpumask_empty(tick_broadcast_mask))
507 tick_broadcast_start_periodic(bc);
508 break;
509 case TICKDEV_MODE_ONESHOT:
510 if (!cpumask_empty(tick_broadcast_mask))
511 tick_resume_broadcast_oneshot(bc);
512 break;
515 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
518 #ifdef CONFIG_TICK_ONESHOT
520 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
521 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
522 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
525 * Exposed for debugging: see timer_list.c
527 struct cpumask *tick_get_broadcast_oneshot_mask(void)
529 return tick_broadcast_oneshot_mask;
533 * Called before going idle with interrupts disabled. Checks whether a
534 * broadcast event from the other core is about to happen. We detected
535 * that in tick_broadcast_oneshot_control(). The callsite can use this
536 * to avoid a deep idle transition as we are about to get the
537 * broadcast IPI right away.
539 int tick_check_broadcast_expired(void)
541 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
545 * Set broadcast interrupt affinity
547 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
548 const struct cpumask *cpumask)
550 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
551 return;
553 if (cpumask_equal(bc->cpumask, cpumask))
554 return;
556 bc->cpumask = cpumask;
557 irq_set_affinity(bc->irq, bc->cpumask);
560 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
561 ktime_t expires)
563 if (!clockevent_state_oneshot(bc))
564 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
566 clockevents_program_event(bc, expires, 1);
567 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
570 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
572 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
576 * Called from irq_enter() when idle was interrupted to reenable the
577 * per cpu device.
579 void tick_check_oneshot_broadcast_this_cpu(void)
581 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
582 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
585 * We might be in the middle of switching over from
586 * periodic to oneshot. If the CPU has not yet
587 * switched over, leave the device alone.
589 if (td->mode == TICKDEV_MODE_ONESHOT) {
590 clockevents_switch_state(td->evtdev,
591 CLOCK_EVT_STATE_ONESHOT);
597 * Handle oneshot mode broadcasting
599 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
601 struct tick_device *td;
602 ktime_t now, next_event;
603 int cpu, next_cpu = 0;
604 bool bc_local;
606 raw_spin_lock(&tick_broadcast_lock);
607 dev->next_event = KTIME_MAX;
608 next_event = KTIME_MAX;
609 cpumask_clear(tmpmask);
610 now = ktime_get();
611 /* Find all expired events */
612 for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
614 * Required for !SMP because for_each_cpu() reports
615 * unconditionally CPU0 as set on UP kernels.
617 if (!IS_ENABLED(CONFIG_SMP) &&
618 cpumask_empty(tick_broadcast_oneshot_mask))
619 break;
621 td = &per_cpu(tick_cpu_device, cpu);
622 if (td->evtdev->next_event <= now) {
623 cpumask_set_cpu(cpu, tmpmask);
625 * Mark the remote cpu in the pending mask, so
626 * it can avoid reprogramming the cpu local
627 * timer in tick_broadcast_oneshot_control().
629 cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
630 } else if (td->evtdev->next_event < next_event) {
631 next_event = td->evtdev->next_event;
632 next_cpu = cpu;
637 * Remove the current cpu from the pending mask. The event is
638 * delivered immediately in tick_do_broadcast() !
640 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
642 /* Take care of enforced broadcast requests */
643 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
644 cpumask_clear(tick_broadcast_force_mask);
647 * Sanity check. Catch the case where we try to broadcast to
648 * offline cpus.
650 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
651 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
654 * Wakeup the cpus which have an expired event.
656 bc_local = tick_do_broadcast(tmpmask);
659 * Two reasons for reprogram:
661 * - The global event did not expire any CPU local
662 * events. This happens in dyntick mode, as the maximum PIT
663 * delta is quite small.
665 * - There are pending events on sleeping CPUs which were not
666 * in the event mask
668 if (next_event != KTIME_MAX)
669 tick_broadcast_set_event(dev, next_cpu, next_event);
671 raw_spin_unlock(&tick_broadcast_lock);
673 if (bc_local) {
674 td = this_cpu_ptr(&tick_cpu_device);
675 td->evtdev->event_handler(td->evtdev);
679 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
681 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
682 return 0;
683 if (bc->next_event == KTIME_MAX)
684 return 0;
685 return bc->bound_on == cpu ? -EBUSY : 0;
688 static void broadcast_shutdown_local(struct clock_event_device *bc,
689 struct clock_event_device *dev)
692 * For hrtimer based broadcasting we cannot shutdown the cpu
693 * local device if our own event is the first one to expire or
694 * if we own the broadcast timer.
696 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
697 if (broadcast_needs_cpu(bc, smp_processor_id()))
698 return;
699 if (dev->next_event < bc->next_event)
700 return;
702 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
705 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
707 struct clock_event_device *bc, *dev;
708 int cpu, ret = 0;
709 ktime_t now;
712 * If there is no broadcast device, tell the caller not to go
713 * into deep idle.
715 if (!tick_broadcast_device.evtdev)
716 return -EBUSY;
718 dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
720 raw_spin_lock(&tick_broadcast_lock);
721 bc = tick_broadcast_device.evtdev;
722 cpu = smp_processor_id();
724 if (state == TICK_BROADCAST_ENTER) {
726 * If the current CPU owns the hrtimer broadcast
727 * mechanism, it cannot go deep idle and we do not add
728 * the CPU to the broadcast mask. We don't have to go
729 * through the EXIT path as the local timer is not
730 * shutdown.
732 ret = broadcast_needs_cpu(bc, cpu);
733 if (ret)
734 goto out;
737 * If the broadcast device is in periodic mode, we
738 * return.
740 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
741 /* If it is a hrtimer based broadcast, return busy */
742 if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
743 ret = -EBUSY;
744 goto out;
747 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
748 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
750 /* Conditionally shut down the local timer. */
751 broadcast_shutdown_local(bc, dev);
754 * We only reprogram the broadcast timer if we
755 * did not mark ourself in the force mask and
756 * if the cpu local event is earlier than the
757 * broadcast event. If the current CPU is in
758 * the force mask, then we are going to be
759 * woken by the IPI right away; we return
760 * busy, so the CPU does not try to go deep
761 * idle.
763 if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
764 ret = -EBUSY;
765 } else if (dev->next_event < bc->next_event) {
766 tick_broadcast_set_event(bc, cpu, dev->next_event);
768 * In case of hrtimer broadcasts the
769 * programming might have moved the
770 * timer to this cpu. If yes, remove
771 * us from the broadcast mask and
772 * return busy.
774 ret = broadcast_needs_cpu(bc, cpu);
775 if (ret) {
776 cpumask_clear_cpu(cpu,
777 tick_broadcast_oneshot_mask);
781 } else {
782 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
783 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
785 * The cpu which was handling the broadcast
786 * timer marked this cpu in the broadcast
787 * pending mask and fired the broadcast
788 * IPI. So we are going to handle the expired
789 * event anyway via the broadcast IPI
790 * handler. No need to reprogram the timer
791 * with an already expired event.
793 if (cpumask_test_and_clear_cpu(cpu,
794 tick_broadcast_pending_mask))
795 goto out;
798 * Bail out if there is no next event.
800 if (dev->next_event == KTIME_MAX)
801 goto out;
803 * If the pending bit is not set, then we are
804 * either the CPU handling the broadcast
805 * interrupt or we got woken by something else.
807 * We are not longer in the broadcast mask, so
808 * if the cpu local expiry time is already
809 * reached, we would reprogram the cpu local
810 * timer with an already expired event.
812 * This can lead to a ping-pong when we return
813 * to idle and therefor rearm the broadcast
814 * timer before the cpu local timer was able
815 * to fire. This happens because the forced
816 * reprogramming makes sure that the event
817 * will happen in the future and depending on
818 * the min_delta setting this might be far
819 * enough out that the ping-pong starts.
821 * If the cpu local next_event has expired
822 * then we know that the broadcast timer
823 * next_event has expired as well and
824 * broadcast is about to be handled. So we
825 * avoid reprogramming and enforce that the
826 * broadcast handler, which did not run yet,
827 * will invoke the cpu local handler.
829 * We cannot call the handler directly from
830 * here, because we might be in a NOHZ phase
831 * and we did not go through the irq_enter()
832 * nohz fixups.
834 now = ktime_get();
835 if (dev->next_event <= now) {
836 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
837 goto out;
840 * We got woken by something else. Reprogram
841 * the cpu local timer device.
843 tick_program_event(dev->next_event, 1);
846 out:
847 raw_spin_unlock(&tick_broadcast_lock);
848 return ret;
852 * Reset the one shot broadcast for a cpu
854 * Called with tick_broadcast_lock held
856 static void tick_broadcast_clear_oneshot(int cpu)
858 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
859 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
862 static void tick_broadcast_init_next_event(struct cpumask *mask,
863 ktime_t expires)
865 struct tick_device *td;
866 int cpu;
868 for_each_cpu(cpu, mask) {
869 td = &per_cpu(tick_cpu_device, cpu);
870 if (td->evtdev)
871 td->evtdev->next_event = expires;
876 * tick_broadcast_setup_oneshot - setup the broadcast device
878 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
880 int cpu = smp_processor_id();
882 if (!bc)
883 return;
885 /* Set it up only once ! */
886 if (bc->event_handler != tick_handle_oneshot_broadcast) {
887 int was_periodic = clockevent_state_periodic(bc);
889 bc->event_handler = tick_handle_oneshot_broadcast;
892 * We must be careful here. There might be other CPUs
893 * waiting for periodic broadcast. We need to set the
894 * oneshot_mask bits for those and program the
895 * broadcast device to fire.
897 cpumask_copy(tmpmask, tick_broadcast_mask);
898 cpumask_clear_cpu(cpu, tmpmask);
899 cpumask_or(tick_broadcast_oneshot_mask,
900 tick_broadcast_oneshot_mask, tmpmask);
902 if (was_periodic && !cpumask_empty(tmpmask)) {
903 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
904 tick_broadcast_init_next_event(tmpmask,
905 tick_next_period);
906 tick_broadcast_set_event(bc, cpu, tick_next_period);
907 } else
908 bc->next_event = KTIME_MAX;
909 } else {
911 * The first cpu which switches to oneshot mode sets
912 * the bit for all other cpus which are in the general
913 * (periodic) broadcast mask. So the bit is set and
914 * would prevent the first broadcast enter after this
915 * to program the bc device.
917 tick_broadcast_clear_oneshot(cpu);
922 * Select oneshot operating mode for the broadcast device
924 void tick_broadcast_switch_to_oneshot(void)
926 struct clock_event_device *bc;
927 unsigned long flags;
929 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
931 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
932 bc = tick_broadcast_device.evtdev;
933 if (bc)
934 tick_broadcast_setup_oneshot(bc);
936 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
939 #ifdef CONFIG_HOTPLUG_CPU
940 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
942 struct clock_event_device *bc;
943 unsigned long flags;
945 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
946 bc = tick_broadcast_device.evtdev;
948 if (bc && broadcast_needs_cpu(bc, deadcpu)) {
949 /* This moves the broadcast assignment to this CPU: */
950 clockevents_program_event(bc, bc->next_event, 1);
952 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
956 * Remove a dead CPU from broadcasting
958 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
960 unsigned long flags;
962 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
965 * Clear the broadcast masks for the dead cpu, but do not stop
966 * the broadcast device!
968 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
969 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
970 cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
972 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
974 #endif
977 * Check, whether the broadcast device is in one shot mode
979 int tick_broadcast_oneshot_active(void)
981 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
985 * Check whether the broadcast device supports oneshot.
987 bool tick_broadcast_oneshot_available(void)
989 struct clock_event_device *bc = tick_broadcast_device.evtdev;
991 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
994 #else
995 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
997 struct clock_event_device *bc = tick_broadcast_device.evtdev;
999 if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
1000 return -EBUSY;
1002 return 0;
1004 #endif
1006 void __init tick_broadcast_init(void)
1008 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1009 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1010 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1011 #ifdef CONFIG_TICK_ONESHOT
1012 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1013 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1014 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1015 #endif