4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/export.h>
31 #include <linux/kernel.h>
32 #include <linux/timex.h>
33 #include <linux/capability.h>
34 #include <linux/timekeeper_internal.h>
35 #include <linux/errno.h>
36 #include <linux/syscalls.h>
37 #include <linux/security.h>
39 #include <linux/math64.h>
40 #include <linux/ptrace.h>
42 #include <linux/uaccess.h>
43 #include <linux/compat.h>
44 #include <asm/unistd.h>
46 #include <generated/timeconst.h>
47 #include "timekeeping.h"
50 * The timezone where the local system is located. Used as a default by some
51 * programs who obtain this value by using gettimeofday.
53 struct timezone sys_tz
;
55 EXPORT_SYMBOL(sys_tz
);
57 #ifdef __ARCH_WANT_SYS_TIME
60 * sys_time() can be implemented in user-level using
61 * sys_gettimeofday(). Is this for backwards compatibility? If so,
62 * why not move it into the appropriate arch directory (for those
63 * architectures that need it).
65 SYSCALL_DEFINE1(time
, time_t __user
*, tloc
)
67 time_t i
= (time_t)ktime_get_real_seconds();
73 force_successful_syscall_return();
78 * sys_stime() can be implemented in user-level using
79 * sys_settimeofday(). Is this for backwards compatibility? If so,
80 * why not move it into the appropriate arch directory (for those
81 * architectures that need it).
84 SYSCALL_DEFINE1(stime
, time_t __user
*, tptr
)
89 if (get_user(tv
.tv_sec
, tptr
))
94 err
= security_settime64(&tv
, NULL
);
98 do_settimeofday64(&tv
);
102 #endif /* __ARCH_WANT_SYS_TIME */
105 #ifdef __ARCH_WANT_COMPAT_SYS_TIME
107 /* old_time32_t is a 32 bit "long" and needs to get converted. */
108 COMPAT_SYSCALL_DEFINE1(time
, old_time32_t __user
*, tloc
)
112 i
= (old_time32_t
)ktime_get_real_seconds();
115 if (put_user(i
,tloc
))
118 force_successful_syscall_return();
122 COMPAT_SYSCALL_DEFINE1(stime
, old_time32_t __user
*, tptr
)
124 struct timespec64 tv
;
127 if (get_user(tv
.tv_sec
, tptr
))
132 err
= security_settime64(&tv
, NULL
);
136 do_settimeofday64(&tv
);
140 #endif /* __ARCH_WANT_COMPAT_SYS_TIME */
143 SYSCALL_DEFINE2(gettimeofday
, struct timeval __user
*, tv
,
144 struct timezone __user
*, tz
)
146 if (likely(tv
!= NULL
)) {
147 struct timespec64 ts
;
149 ktime_get_real_ts64(&ts
);
150 if (put_user(ts
.tv_sec
, &tv
->tv_sec
) ||
151 put_user(ts
.tv_nsec
/ 1000, &tv
->tv_usec
))
154 if (unlikely(tz
!= NULL
)) {
155 if (copy_to_user(tz
, &sys_tz
, sizeof(sys_tz
)))
162 * In case for some reason the CMOS clock has not already been running
163 * in UTC, but in some local time: The first time we set the timezone,
164 * we will warp the clock so that it is ticking UTC time instead of
165 * local time. Presumably, if someone is setting the timezone then we
166 * are running in an environment where the programs understand about
167 * timezones. This should be done at boot time in the /etc/rc script,
168 * as soon as possible, so that the clock can be set right. Otherwise,
169 * various programs will get confused when the clock gets warped.
172 int do_sys_settimeofday64(const struct timespec64
*tv
, const struct timezone
*tz
)
174 static int firsttime
= 1;
177 if (tv
&& !timespec64_valid(tv
))
180 error
= security_settime64(tv
, tz
);
185 /* Verify we're witin the +-15 hrs range */
186 if (tz
->tz_minuteswest
> 15*60 || tz
->tz_minuteswest
< -15*60)
190 update_vsyscall_tz();
194 timekeeping_warp_clock();
198 return do_settimeofday64(tv
);
202 SYSCALL_DEFINE2(settimeofday
, struct timeval __user
*, tv
,
203 struct timezone __user
*, tz
)
205 struct timespec64 new_ts
;
206 struct timeval user_tv
;
207 struct timezone new_tz
;
210 if (copy_from_user(&user_tv
, tv
, sizeof(*tv
)))
213 if (!timeval_valid(&user_tv
))
216 new_ts
.tv_sec
= user_tv
.tv_sec
;
217 new_ts
.tv_nsec
= user_tv
.tv_usec
* NSEC_PER_USEC
;
220 if (copy_from_user(&new_tz
, tz
, sizeof(*tz
)))
224 return do_sys_settimeofday64(tv
? &new_ts
: NULL
, tz
? &new_tz
: NULL
);
228 COMPAT_SYSCALL_DEFINE2(gettimeofday
, struct old_timeval32 __user
*, tv
,
229 struct timezone __user
*, tz
)
232 struct timespec64 ts
;
234 ktime_get_real_ts64(&ts
);
235 if (put_user(ts
.tv_sec
, &tv
->tv_sec
) ||
236 put_user(ts
.tv_nsec
/ 1000, &tv
->tv_usec
))
240 if (copy_to_user(tz
, &sys_tz
, sizeof(sys_tz
)))
247 COMPAT_SYSCALL_DEFINE2(settimeofday
, struct old_timeval32 __user
*, tv
,
248 struct timezone __user
*, tz
)
250 struct timespec64 new_ts
;
251 struct timeval user_tv
;
252 struct timezone new_tz
;
255 if (compat_get_timeval(&user_tv
, tv
))
257 new_ts
.tv_sec
= user_tv
.tv_sec
;
258 new_ts
.tv_nsec
= user_tv
.tv_usec
* NSEC_PER_USEC
;
261 if (copy_from_user(&new_tz
, tz
, sizeof(*tz
)))
265 return do_sys_settimeofday64(tv
? &new_ts
: NULL
, tz
? &new_tz
: NULL
);
269 SYSCALL_DEFINE1(adjtimex
, struct timex __user
*, txc_p
)
271 struct timex txc
; /* Local copy of parameter */
274 /* Copy the user data space into the kernel copy
275 * structure. But bear in mind that the structures
278 if (copy_from_user(&txc
, txc_p
, sizeof(struct timex
)))
280 ret
= do_adjtimex(&txc
);
281 return copy_to_user(txc_p
, &txc
, sizeof(struct timex
)) ? -EFAULT
: ret
;
286 COMPAT_SYSCALL_DEFINE1(adjtimex
, struct compat_timex __user
*, utp
)
291 err
= compat_get_timex(&txc
, utp
);
295 ret
= do_adjtimex(&txc
);
297 err
= compat_put_timex(utp
, &txc
);
306 * Convert jiffies to milliseconds and back.
308 * Avoid unnecessary multiplications/divisions in the
309 * two most common HZ cases:
311 unsigned int jiffies_to_msecs(const unsigned long j
)
313 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
314 return (MSEC_PER_SEC
/ HZ
) * j
;
315 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
316 return (j
+ (HZ
/ MSEC_PER_SEC
) - 1)/(HZ
/ MSEC_PER_SEC
);
318 # if BITS_PER_LONG == 32
319 return (HZ_TO_MSEC_MUL32
* j
+ (1ULL << HZ_TO_MSEC_SHR32
) - 1) >>
322 return DIV_ROUND_UP(j
* HZ_TO_MSEC_NUM
, HZ_TO_MSEC_DEN
);
326 EXPORT_SYMBOL(jiffies_to_msecs
);
328 unsigned int jiffies_to_usecs(const unsigned long j
)
331 * Hz usually doesn't go much further MSEC_PER_SEC.
332 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
334 BUILD_BUG_ON(HZ
> USEC_PER_SEC
);
336 #if !(USEC_PER_SEC % HZ)
337 return (USEC_PER_SEC
/ HZ
) * j
;
339 # if BITS_PER_LONG == 32
340 return (HZ_TO_USEC_MUL32
* j
) >> HZ_TO_USEC_SHR32
;
342 return (j
* HZ_TO_USEC_NUM
) / HZ_TO_USEC_DEN
;
346 EXPORT_SYMBOL(jiffies_to_usecs
);
349 * mktime64 - Converts date to seconds.
350 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
351 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
352 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
354 * [For the Julian calendar (which was used in Russia before 1917,
355 * Britain & colonies before 1752, anywhere else before 1582,
356 * and is still in use by some communities) leave out the
357 * -year/100+year/400 terms, and add 10.]
359 * This algorithm was first published by Gauss (I think).
361 * A leap second can be indicated by calling this function with sec as
362 * 60 (allowable under ISO 8601). The leap second is treated the same
363 * as the following second since they don't exist in UNIX time.
365 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
366 * tomorrow - (allowable under ISO 8601) is supported.
368 time64_t
mktime64(const unsigned int year0
, const unsigned int mon0
,
369 const unsigned int day
, const unsigned int hour
,
370 const unsigned int min
, const unsigned int sec
)
372 unsigned int mon
= mon0
, year
= year0
;
374 /* 1..12 -> 11,12,1..10 */
375 if (0 >= (int) (mon
-= 2)) {
376 mon
+= 12; /* Puts Feb last since it has leap day */
381 (year
/4 - year
/100 + year
/400 + 367*mon
/12 + day
) +
383 )*24 + hour
/* now have hours - midnight tomorrow handled here */
384 )*60 + min
/* now have minutes */
385 )*60 + sec
; /* finally seconds */
387 EXPORT_SYMBOL(mktime64
);
390 * set_normalized_timespec - set timespec sec and nsec parts and normalize
392 * @ts: pointer to timespec variable to be set
393 * @sec: seconds to set
394 * @nsec: nanoseconds to set
396 * Set seconds and nanoseconds field of a timespec variable and
397 * normalize to the timespec storage format
399 * Note: The tv_nsec part is always in the range of
400 * 0 <= tv_nsec < NSEC_PER_SEC
401 * For negative values only the tv_sec field is negative !
403 void set_normalized_timespec(struct timespec
*ts
, time_t sec
, s64 nsec
)
405 while (nsec
>= NSEC_PER_SEC
) {
407 * The following asm() prevents the compiler from
408 * optimising this loop into a modulo operation. See
409 * also __iter_div_u64_rem() in include/linux/time.h
411 asm("" : "+rm"(nsec
));
412 nsec
-= NSEC_PER_SEC
;
416 asm("" : "+rm"(nsec
));
417 nsec
+= NSEC_PER_SEC
;
423 EXPORT_SYMBOL(set_normalized_timespec
);
426 * ns_to_timespec - Convert nanoseconds to timespec
427 * @nsec: the nanoseconds value to be converted
429 * Returns the timespec representation of the nsec parameter.
431 struct timespec
ns_to_timespec(const s64 nsec
)
437 return (struct timespec
) {0, 0};
439 ts
.tv_sec
= div_s64_rem(nsec
, NSEC_PER_SEC
, &rem
);
440 if (unlikely(rem
< 0)) {
448 EXPORT_SYMBOL(ns_to_timespec
);
451 * ns_to_timeval - Convert nanoseconds to timeval
452 * @nsec: the nanoseconds value to be converted
454 * Returns the timeval representation of the nsec parameter.
456 struct timeval
ns_to_timeval(const s64 nsec
)
458 struct timespec ts
= ns_to_timespec(nsec
);
461 tv
.tv_sec
= ts
.tv_sec
;
462 tv
.tv_usec
= (suseconds_t
) ts
.tv_nsec
/ 1000;
466 EXPORT_SYMBOL(ns_to_timeval
);
468 struct __kernel_old_timeval
ns_to_kernel_old_timeval(const s64 nsec
)
470 struct timespec64 ts
= ns_to_timespec64(nsec
);
471 struct __kernel_old_timeval tv
;
473 tv
.tv_sec
= ts
.tv_sec
;
474 tv
.tv_usec
= (suseconds_t
)ts
.tv_nsec
/ 1000;
478 EXPORT_SYMBOL(ns_to_kernel_old_timeval
);
481 * set_normalized_timespec - set timespec sec and nsec parts and normalize
483 * @ts: pointer to timespec variable to be set
484 * @sec: seconds to set
485 * @nsec: nanoseconds to set
487 * Set seconds and nanoseconds field of a timespec variable and
488 * normalize to the timespec storage format
490 * Note: The tv_nsec part is always in the range of
491 * 0 <= tv_nsec < NSEC_PER_SEC
492 * For negative values only the tv_sec field is negative !
494 void set_normalized_timespec64(struct timespec64
*ts
, time64_t sec
, s64 nsec
)
496 while (nsec
>= NSEC_PER_SEC
) {
498 * The following asm() prevents the compiler from
499 * optimising this loop into a modulo operation. See
500 * also __iter_div_u64_rem() in include/linux/time.h
502 asm("" : "+rm"(nsec
));
503 nsec
-= NSEC_PER_SEC
;
507 asm("" : "+rm"(nsec
));
508 nsec
+= NSEC_PER_SEC
;
514 EXPORT_SYMBOL(set_normalized_timespec64
);
517 * ns_to_timespec64 - Convert nanoseconds to timespec64
518 * @nsec: the nanoseconds value to be converted
520 * Returns the timespec64 representation of the nsec parameter.
522 struct timespec64
ns_to_timespec64(const s64 nsec
)
524 struct timespec64 ts
;
528 return (struct timespec64
) {0, 0};
530 ts
.tv_sec
= div_s64_rem(nsec
, NSEC_PER_SEC
, &rem
);
531 if (unlikely(rem
< 0)) {
539 EXPORT_SYMBOL(ns_to_timespec64
);
542 * msecs_to_jiffies: - convert milliseconds to jiffies
543 * @m: time in milliseconds
545 * conversion is done as follows:
547 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
549 * - 'too large' values [that would result in larger than
550 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
552 * - all other values are converted to jiffies by either multiplying
553 * the input value by a factor or dividing it with a factor and
554 * handling any 32-bit overflows.
555 * for the details see __msecs_to_jiffies()
557 * msecs_to_jiffies() checks for the passed in value being a constant
558 * via __builtin_constant_p() allowing gcc to eliminate most of the
559 * code, __msecs_to_jiffies() is called if the value passed does not
560 * allow constant folding and the actual conversion must be done at
562 * the _msecs_to_jiffies helpers are the HZ dependent conversion
563 * routines found in include/linux/jiffies.h
565 unsigned long __msecs_to_jiffies(const unsigned int m
)
568 * Negative value, means infinite timeout:
571 return MAX_JIFFY_OFFSET
;
572 return _msecs_to_jiffies(m
);
574 EXPORT_SYMBOL(__msecs_to_jiffies
);
576 unsigned long __usecs_to_jiffies(const unsigned int u
)
578 if (u
> jiffies_to_usecs(MAX_JIFFY_OFFSET
))
579 return MAX_JIFFY_OFFSET
;
580 return _usecs_to_jiffies(u
);
582 EXPORT_SYMBOL(__usecs_to_jiffies
);
585 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
586 * that a remainder subtract here would not do the right thing as the
587 * resolution values don't fall on second boundries. I.e. the line:
588 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
589 * Note that due to the small error in the multiplier here, this
590 * rounding is incorrect for sufficiently large values of tv_nsec, but
591 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
594 * Rather, we just shift the bits off the right.
596 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
597 * value to a scaled second value.
600 __timespec64_to_jiffies(u64 sec
, long nsec
)
602 nsec
= nsec
+ TICK_NSEC
- 1;
604 if (sec
>= MAX_SEC_IN_JIFFIES
){
605 sec
= MAX_SEC_IN_JIFFIES
;
608 return ((sec
* SEC_CONVERSION
) +
609 (((u64
)nsec
* NSEC_CONVERSION
) >>
610 (NSEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
615 __timespec_to_jiffies(unsigned long sec
, long nsec
)
617 return __timespec64_to_jiffies((u64
)sec
, nsec
);
621 timespec64_to_jiffies(const struct timespec64
*value
)
623 return __timespec64_to_jiffies(value
->tv_sec
, value
->tv_nsec
);
625 EXPORT_SYMBOL(timespec64_to_jiffies
);
628 jiffies_to_timespec64(const unsigned long jiffies
, struct timespec64
*value
)
631 * Convert jiffies to nanoseconds and separate with
635 value
->tv_sec
= div_u64_rem((u64
)jiffies
* TICK_NSEC
,
637 value
->tv_nsec
= rem
;
639 EXPORT_SYMBOL(jiffies_to_timespec64
);
642 * We could use a similar algorithm to timespec_to_jiffies (with a
643 * different multiplier for usec instead of nsec). But this has a
644 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
645 * usec value, since it's not necessarily integral.
647 * We could instead round in the intermediate scaled representation
648 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
649 * perilous: the scaling introduces a small positive error, which
650 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
651 * units to the intermediate before shifting) leads to accidental
652 * overflow and overestimates.
654 * At the cost of one additional multiplication by a constant, just
655 * use the timespec implementation.
658 timeval_to_jiffies(const struct timeval
*value
)
660 return __timespec_to_jiffies(value
->tv_sec
,
661 value
->tv_usec
* NSEC_PER_USEC
);
663 EXPORT_SYMBOL(timeval_to_jiffies
);
665 void jiffies_to_timeval(const unsigned long jiffies
, struct timeval
*value
)
668 * Convert jiffies to nanoseconds and separate with
673 value
->tv_sec
= div_u64_rem((u64
)jiffies
* TICK_NSEC
,
675 value
->tv_usec
= rem
/ NSEC_PER_USEC
;
677 EXPORT_SYMBOL(jiffies_to_timeval
);
680 * Convert jiffies/jiffies_64 to clock_t and back.
682 clock_t jiffies_to_clock_t(unsigned long x
)
684 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
686 return x
* (USER_HZ
/ HZ
);
688 return x
/ (HZ
/ USER_HZ
);
691 return div_u64((u64
)x
* TICK_NSEC
, NSEC_PER_SEC
/ USER_HZ
);
694 EXPORT_SYMBOL(jiffies_to_clock_t
);
696 unsigned long clock_t_to_jiffies(unsigned long x
)
698 #if (HZ % USER_HZ)==0
699 if (x
>= ~0UL / (HZ
/ USER_HZ
))
701 return x
* (HZ
/ USER_HZ
);
703 /* Don't worry about loss of precision here .. */
704 if (x
>= ~0UL / HZ
* USER_HZ
)
707 /* .. but do try to contain it here */
708 return div_u64((u64
)x
* HZ
, USER_HZ
);
711 EXPORT_SYMBOL(clock_t_to_jiffies
);
713 u64
jiffies_64_to_clock_t(u64 x
)
715 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
717 x
= div_u64(x
* USER_HZ
, HZ
);
719 x
= div_u64(x
, HZ
/ USER_HZ
);
725 * There are better ways that don't overflow early,
726 * but even this doesn't overflow in hundreds of years
729 x
= div_u64(x
* TICK_NSEC
, (NSEC_PER_SEC
/ USER_HZ
));
733 EXPORT_SYMBOL(jiffies_64_to_clock_t
);
735 u64
nsec_to_clock_t(u64 x
)
737 #if (NSEC_PER_SEC % USER_HZ) == 0
738 return div_u64(x
, NSEC_PER_SEC
/ USER_HZ
);
739 #elif (USER_HZ % 512) == 0
740 return div_u64(x
* USER_HZ
/ 512, NSEC_PER_SEC
/ 512);
743 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
744 * overflow after 64.99 years.
745 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
747 return div_u64(x
* 9, (9ull * NSEC_PER_SEC
+ (USER_HZ
/ 2)) / USER_HZ
);
751 u64
jiffies64_to_nsecs(u64 j
)
753 #if !(NSEC_PER_SEC % HZ)
754 return (NSEC_PER_SEC
/ HZ
) * j
;
756 return div_u64(j
* HZ_TO_NSEC_NUM
, HZ_TO_NSEC_DEN
);
759 EXPORT_SYMBOL(jiffies64_to_nsecs
);
762 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
766 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
767 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
768 * for scheduler, not for use in device drivers to calculate timeout value.
771 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
772 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
774 u64
nsecs_to_jiffies64(u64 n
)
776 #if (NSEC_PER_SEC % HZ) == 0
777 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
778 return div_u64(n
, NSEC_PER_SEC
/ HZ
);
779 #elif (HZ % 512) == 0
780 /* overflow after 292 years if HZ = 1024 */
781 return div_u64(n
* HZ
/ 512, NSEC_PER_SEC
/ 512);
784 * Generic case - optimized for cases where HZ is a multiple of 3.
785 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
787 return div_u64(n
* 9, (9ull * NSEC_PER_SEC
+ HZ
/ 2) / HZ
);
790 EXPORT_SYMBOL(nsecs_to_jiffies64
);
793 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
797 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
798 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
799 * for scheduler, not for use in device drivers to calculate timeout value.
802 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
803 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
805 unsigned long nsecs_to_jiffies(u64 n
)
807 return (unsigned long)nsecs_to_jiffies64(n
);
809 EXPORT_SYMBOL_GPL(nsecs_to_jiffies
);
812 * Add two timespec64 values and do a safety check for overflow.
813 * It's assumed that both values are valid (>= 0).
814 * And, each timespec64 is in normalized form.
816 struct timespec64
timespec64_add_safe(const struct timespec64 lhs
,
817 const struct timespec64 rhs
)
819 struct timespec64 res
;
821 set_normalized_timespec64(&res
, (timeu64_t
) lhs
.tv_sec
+ rhs
.tv_sec
,
822 lhs
.tv_nsec
+ rhs
.tv_nsec
);
824 if (unlikely(res
.tv_sec
< lhs
.tv_sec
|| res
.tv_sec
< rhs
.tv_sec
)) {
825 res
.tv_sec
= TIME64_MAX
;
832 int get_timespec64(struct timespec64
*ts
,
833 const struct __kernel_timespec __user
*uts
)
835 struct __kernel_timespec kts
;
838 ret
= copy_from_user(&kts
, uts
, sizeof(kts
));
842 ts
->tv_sec
= kts
.tv_sec
;
844 /* Zero out the padding for 32 bit systems or in compat mode */
845 if (IS_ENABLED(CONFIG_64BIT_TIME
) && (!IS_ENABLED(CONFIG_64BIT
) || in_compat_syscall()))
846 kts
.tv_nsec
&= 0xFFFFFFFFUL
;
848 ts
->tv_nsec
= kts
.tv_nsec
;
852 EXPORT_SYMBOL_GPL(get_timespec64
);
854 int put_timespec64(const struct timespec64
*ts
,
855 struct __kernel_timespec __user
*uts
)
857 struct __kernel_timespec kts
= {
858 .tv_sec
= ts
->tv_sec
,
859 .tv_nsec
= ts
->tv_nsec
862 return copy_to_user(uts
, &kts
, sizeof(kts
)) ? -EFAULT
: 0;
864 EXPORT_SYMBOL_GPL(put_timespec64
);
866 static int __get_old_timespec32(struct timespec64
*ts64
,
867 const struct old_timespec32 __user
*cts
)
869 struct old_timespec32 ts
;
872 ret
= copy_from_user(&ts
, cts
, sizeof(ts
));
876 ts64
->tv_sec
= ts
.tv_sec
;
877 ts64
->tv_nsec
= ts
.tv_nsec
;
882 static int __put_old_timespec32(const struct timespec64
*ts64
,
883 struct old_timespec32 __user
*cts
)
885 struct old_timespec32 ts
= {
886 .tv_sec
= ts64
->tv_sec
,
887 .tv_nsec
= ts64
->tv_nsec
889 return copy_to_user(cts
, &ts
, sizeof(ts
)) ? -EFAULT
: 0;
892 int get_old_timespec32(struct timespec64
*ts
, const void __user
*uts
)
894 if (COMPAT_USE_64BIT_TIME
)
895 return copy_from_user(ts
, uts
, sizeof(*ts
)) ? -EFAULT
: 0;
897 return __get_old_timespec32(ts
, uts
);
899 EXPORT_SYMBOL_GPL(get_old_timespec32
);
901 int put_old_timespec32(const struct timespec64
*ts
, void __user
*uts
)
903 if (COMPAT_USE_64BIT_TIME
)
904 return copy_to_user(uts
, ts
, sizeof(*ts
)) ? -EFAULT
: 0;
906 return __put_old_timespec32(ts
, uts
);
908 EXPORT_SYMBOL_GPL(put_old_timespec32
);
910 int get_itimerspec64(struct itimerspec64
*it
,
911 const struct __kernel_itimerspec __user
*uit
)
915 ret
= get_timespec64(&it
->it_interval
, &uit
->it_interval
);
919 ret
= get_timespec64(&it
->it_value
, &uit
->it_value
);
923 EXPORT_SYMBOL_GPL(get_itimerspec64
);
925 int put_itimerspec64(const struct itimerspec64
*it
,
926 struct __kernel_itimerspec __user
*uit
)
930 ret
= put_timespec64(&it
->it_interval
, &uit
->it_interval
);
934 ret
= put_timespec64(&it
->it_value
, &uit
->it_value
);
938 EXPORT_SYMBOL_GPL(put_itimerspec64
);
940 int get_old_itimerspec32(struct itimerspec64
*its
,
941 const struct old_itimerspec32 __user
*uits
)
944 if (__get_old_timespec32(&its
->it_interval
, &uits
->it_interval
) ||
945 __get_old_timespec32(&its
->it_value
, &uits
->it_value
))
949 EXPORT_SYMBOL_GPL(get_old_itimerspec32
);
951 int put_old_itimerspec32(const struct itimerspec64
*its
,
952 struct old_itimerspec32 __user
*uits
)
954 if (__put_old_timespec32(&its
->it_interval
, &uits
->it_interval
) ||
955 __put_old_timespec32(&its
->it_value
, &uits
->it_value
))
959 EXPORT_SYMBOL_GPL(put_old_itimerspec32
);