1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/uaccess.h>
15 #include <linux/hardirq.h>
16 #include <linux/kthread.h> /* for self test */
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/oom.h>
28 #include <asm/local.h>
30 static void update_pages_handler(struct work_struct
*work
);
33 * The ring buffer header is special. We must manually up keep it.
35 int ring_buffer_print_entry_header(struct trace_seq
*s
)
37 trace_seq_puts(s
, "# compressed entry header\n");
38 trace_seq_puts(s
, "\ttype_len : 5 bits\n");
39 trace_seq_puts(s
, "\ttime_delta : 27 bits\n");
40 trace_seq_puts(s
, "\tarray : 32 bits\n");
41 trace_seq_putc(s
, '\n');
42 trace_seq_printf(s
, "\tpadding : type == %d\n",
43 RINGBUF_TYPE_PADDING
);
44 trace_seq_printf(s
, "\ttime_extend : type == %d\n",
45 RINGBUF_TYPE_TIME_EXTEND
);
46 trace_seq_printf(s
, "\ttime_stamp : type == %d\n",
47 RINGBUF_TYPE_TIME_STAMP
);
48 trace_seq_printf(s
, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
51 return !trace_seq_has_overflowed(s
);
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
68 * Here's some silly ASCII art.
71 * |reader| RING BUFFER
73 * +------+ +---+ +---+ +---+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
100 * +------------------------------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
108 * | New +---+ +---+ +---+
111 * +------------------------------+
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
118 * We will be using cmpxchg soon to make all this lockless.
122 /* Used for individual buffers (after the counter) */
123 #define RB_BUFFER_OFF (1 << 20)
125 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
127 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
128 #define RB_ALIGNMENT 4U
129 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
130 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
132 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
133 # define RB_FORCE_8BYTE_ALIGNMENT 0
134 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
136 # define RB_FORCE_8BYTE_ALIGNMENT 1
137 # define RB_ARCH_ALIGNMENT 8U
140 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
142 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
143 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
146 RB_LEN_TIME_EXTEND
= 8,
147 RB_LEN_TIME_STAMP
= 8,
150 #define skip_time_extend(event) \
151 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
153 #define extended_time(event) \
154 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
156 static inline int rb_null_event(struct ring_buffer_event
*event
)
158 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
161 static void rb_event_set_padding(struct ring_buffer_event
*event
)
163 /* padding has a NULL time_delta */
164 event
->type_len
= RINGBUF_TYPE_PADDING
;
165 event
->time_delta
= 0;
169 rb_event_data_length(struct ring_buffer_event
*event
)
174 length
= event
->type_len
* RB_ALIGNMENT
;
176 length
= event
->array
[0];
177 return length
+ RB_EVNT_HDR_SIZE
;
181 * Return the length of the given event. Will return
182 * the length of the time extend if the event is a
185 static inline unsigned
186 rb_event_length(struct ring_buffer_event
*event
)
188 switch (event
->type_len
) {
189 case RINGBUF_TYPE_PADDING
:
190 if (rb_null_event(event
))
193 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
195 case RINGBUF_TYPE_TIME_EXTEND
:
196 return RB_LEN_TIME_EXTEND
;
198 case RINGBUF_TYPE_TIME_STAMP
:
199 return RB_LEN_TIME_STAMP
;
201 case RINGBUF_TYPE_DATA
:
202 return rb_event_data_length(event
);
211 * Return total length of time extend and data,
212 * or just the event length for all other events.
214 static inline unsigned
215 rb_event_ts_length(struct ring_buffer_event
*event
)
219 if (extended_time(event
)) {
220 /* time extends include the data event after it */
221 len
= RB_LEN_TIME_EXTEND
;
222 event
= skip_time_extend(event
);
224 return len
+ rb_event_length(event
);
228 * ring_buffer_event_length - return the length of the event
229 * @event: the event to get the length of
231 * Returns the size of the data load of a data event.
232 * If the event is something other than a data event, it
233 * returns the size of the event itself. With the exception
234 * of a TIME EXTEND, where it still returns the size of the
235 * data load of the data event after it.
237 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
241 if (extended_time(event
))
242 event
= skip_time_extend(event
);
244 length
= rb_event_length(event
);
245 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
247 length
-= RB_EVNT_HDR_SIZE
;
248 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
249 length
-= sizeof(event
->array
[0]);
252 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
254 /* inline for ring buffer fast paths */
255 static __always_inline
void *
256 rb_event_data(struct ring_buffer_event
*event
)
258 if (extended_time(event
))
259 event
= skip_time_extend(event
);
260 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
261 /* If length is in len field, then array[0] has the data */
263 return (void *)&event
->array
[0];
264 /* Otherwise length is in array[0] and array[1] has the data */
265 return (void *)&event
->array
[1];
269 * ring_buffer_event_data - return the data of the event
270 * @event: the event to get the data from
272 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
274 return rb_event_data(event
);
276 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
278 #define for_each_buffer_cpu(buffer, cpu) \
279 for_each_cpu(cpu, buffer->cpumask)
282 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
283 #define TS_DELTA_TEST (~TS_MASK)
286 * ring_buffer_event_time_stamp - return the event's extended timestamp
287 * @event: the event to get the timestamp of
289 * Returns the extended timestamp associated with a data event.
290 * An extended time_stamp is a 64-bit timestamp represented
291 * internally in a special way that makes the best use of space
292 * contained within a ring buffer event. This function decodes
293 * it and maps it to a straight u64 value.
295 u64
ring_buffer_event_time_stamp(struct ring_buffer_event
*event
)
299 ts
= event
->array
[0];
301 ts
+= event
->time_delta
;
306 /* Flag when events were overwritten */
307 #define RB_MISSED_EVENTS (1 << 31)
308 /* Missed count stored at end */
309 #define RB_MISSED_STORED (1 << 30)
311 #define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED)
313 struct buffer_data_page
{
314 u64 time_stamp
; /* page time stamp */
315 local_t commit
; /* write committed index */
316 unsigned char data
[] RB_ALIGN_DATA
; /* data of buffer page */
320 * Note, the buffer_page list must be first. The buffer pages
321 * are allocated in cache lines, which means that each buffer
322 * page will be at the beginning of a cache line, and thus
323 * the least significant bits will be zero. We use this to
324 * add flags in the list struct pointers, to make the ring buffer
328 struct list_head list
; /* list of buffer pages */
329 local_t write
; /* index for next write */
330 unsigned read
; /* index for next read */
331 local_t entries
; /* entries on this page */
332 unsigned long real_end
; /* real end of data */
333 struct buffer_data_page
*page
; /* Actual data page */
337 * The buffer page counters, write and entries, must be reset
338 * atomically when crossing page boundaries. To synchronize this
339 * update, two counters are inserted into the number. One is
340 * the actual counter for the write position or count on the page.
342 * The other is a counter of updaters. Before an update happens
343 * the update partition of the counter is incremented. This will
344 * allow the updater to update the counter atomically.
346 * The counter is 20 bits, and the state data is 12.
348 #define RB_WRITE_MASK 0xfffff
349 #define RB_WRITE_INTCNT (1 << 20)
351 static void rb_init_page(struct buffer_data_page
*bpage
)
353 local_set(&bpage
->commit
, 0);
357 * ring_buffer_page_len - the size of data on the page.
358 * @page: The page to read
360 * Returns the amount of data on the page, including buffer page header.
362 size_t ring_buffer_page_len(void *page
)
364 struct buffer_data_page
*bpage
= page
;
366 return (local_read(&bpage
->commit
) & ~RB_MISSED_FLAGS
)
371 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
374 static void free_buffer_page(struct buffer_page
*bpage
)
376 free_page((unsigned long)bpage
->page
);
381 * We need to fit the time_stamp delta into 27 bits.
383 static inline int test_time_stamp(u64 delta
)
385 if (delta
& TS_DELTA_TEST
)
390 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
392 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
393 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
395 int ring_buffer_print_page_header(struct trace_seq
*s
)
397 struct buffer_data_page field
;
399 trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
400 "offset:0;\tsize:%u;\tsigned:%u;\n",
401 (unsigned int)sizeof(field
.time_stamp
),
402 (unsigned int)is_signed_type(u64
));
404 trace_seq_printf(s
, "\tfield: local_t commit;\t"
405 "offset:%u;\tsize:%u;\tsigned:%u;\n",
406 (unsigned int)offsetof(typeof(field
), commit
),
407 (unsigned int)sizeof(field
.commit
),
408 (unsigned int)is_signed_type(long));
410 trace_seq_printf(s
, "\tfield: int overwrite;\t"
411 "offset:%u;\tsize:%u;\tsigned:%u;\n",
412 (unsigned int)offsetof(typeof(field
), commit
),
414 (unsigned int)is_signed_type(long));
416 trace_seq_printf(s
, "\tfield: char data;\t"
417 "offset:%u;\tsize:%u;\tsigned:%u;\n",
418 (unsigned int)offsetof(typeof(field
), data
),
419 (unsigned int)BUF_PAGE_SIZE
,
420 (unsigned int)is_signed_type(char));
422 return !trace_seq_has_overflowed(s
);
426 struct irq_work work
;
427 wait_queue_head_t waiters
;
428 wait_queue_head_t full_waiters
;
429 bool waiters_pending
;
430 bool full_waiters_pending
;
435 * Structure to hold event state and handle nested events.
437 struct rb_event_info
{
440 unsigned long length
;
441 struct buffer_page
*tail_page
;
446 * Used for which event context the event is in.
452 * See trace_recursive_lock() comment below for more details.
463 * head_page == tail_page && head == tail then buffer is empty.
465 struct ring_buffer_per_cpu
{
467 atomic_t record_disabled
;
468 struct ring_buffer
*buffer
;
469 raw_spinlock_t reader_lock
; /* serialize readers */
470 arch_spinlock_t lock
;
471 struct lock_class_key lock_key
;
472 struct buffer_data_page
*free_page
;
473 unsigned long nr_pages
;
474 unsigned int current_context
;
475 struct list_head
*pages
;
476 struct buffer_page
*head_page
; /* read from head */
477 struct buffer_page
*tail_page
; /* write to tail */
478 struct buffer_page
*commit_page
; /* committed pages */
479 struct buffer_page
*reader_page
;
480 unsigned long lost_events
;
481 unsigned long last_overrun
;
483 local_t entries_bytes
;
486 local_t commit_overrun
;
487 local_t dropped_events
;
491 unsigned long read_bytes
;
494 /* ring buffer pages to update, > 0 to add, < 0 to remove */
495 long nr_pages_to_update
;
496 struct list_head new_pages
; /* new pages to add */
497 struct work_struct update_pages_work
;
498 struct completion update_done
;
500 struct rb_irq_work irq_work
;
506 atomic_t record_disabled
;
507 atomic_t resize_disabled
;
508 cpumask_var_t cpumask
;
510 struct lock_class_key
*reader_lock_key
;
514 struct ring_buffer_per_cpu
**buffers
;
516 struct hlist_node node
;
519 struct rb_irq_work irq_work
;
523 struct ring_buffer_iter
{
524 struct ring_buffer_per_cpu
*cpu_buffer
;
526 struct buffer_page
*head_page
;
527 struct buffer_page
*cache_reader_page
;
528 unsigned long cache_read
;
533 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
535 * Schedules a delayed work to wake up any task that is blocked on the
536 * ring buffer waiters queue.
538 static void rb_wake_up_waiters(struct irq_work
*work
)
540 struct rb_irq_work
*rbwork
= container_of(work
, struct rb_irq_work
, work
);
542 wake_up_all(&rbwork
->waiters
);
543 if (rbwork
->wakeup_full
) {
544 rbwork
->wakeup_full
= false;
545 wake_up_all(&rbwork
->full_waiters
);
550 * ring_buffer_wait - wait for input to the ring buffer
551 * @buffer: buffer to wait on
552 * @cpu: the cpu buffer to wait on
553 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
555 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
556 * as data is added to any of the @buffer's cpu buffers. Otherwise
557 * it will wait for data to be added to a specific cpu buffer.
559 int ring_buffer_wait(struct ring_buffer
*buffer
, int cpu
, bool full
)
561 struct ring_buffer_per_cpu
*uninitialized_var(cpu_buffer
);
563 struct rb_irq_work
*work
;
567 * Depending on what the caller is waiting for, either any
568 * data in any cpu buffer, or a specific buffer, put the
569 * caller on the appropriate wait queue.
571 if (cpu
== RING_BUFFER_ALL_CPUS
) {
572 work
= &buffer
->irq_work
;
573 /* Full only makes sense on per cpu reads */
576 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
578 cpu_buffer
= buffer
->buffers
[cpu
];
579 work
= &cpu_buffer
->irq_work
;
585 prepare_to_wait(&work
->full_waiters
, &wait
, TASK_INTERRUPTIBLE
);
587 prepare_to_wait(&work
->waiters
, &wait
, TASK_INTERRUPTIBLE
);
590 * The events can happen in critical sections where
591 * checking a work queue can cause deadlocks.
592 * After adding a task to the queue, this flag is set
593 * only to notify events to try to wake up the queue
596 * We don't clear it even if the buffer is no longer
597 * empty. The flag only causes the next event to run
598 * irq_work to do the work queue wake up. The worse
599 * that can happen if we race with !trace_empty() is that
600 * an event will cause an irq_work to try to wake up
603 * There's no reason to protect this flag either, as
604 * the work queue and irq_work logic will do the necessary
605 * synchronization for the wake ups. The only thing
606 * that is necessary is that the wake up happens after
607 * a task has been queued. It's OK for spurious wake ups.
610 work
->full_waiters_pending
= true;
612 work
->waiters_pending
= true;
614 if (signal_pending(current
)) {
619 if (cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
))
622 if (cpu
!= RING_BUFFER_ALL_CPUS
&&
623 !ring_buffer_empty_cpu(buffer
, cpu
)) {
630 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
631 pagebusy
= cpu_buffer
->reader_page
== cpu_buffer
->commit_page
;
632 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
642 finish_wait(&work
->full_waiters
, &wait
);
644 finish_wait(&work
->waiters
, &wait
);
650 * ring_buffer_poll_wait - poll on buffer input
651 * @buffer: buffer to wait on
652 * @cpu: the cpu buffer to wait on
653 * @filp: the file descriptor
654 * @poll_table: The poll descriptor
656 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
657 * as data is added to any of the @buffer's cpu buffers. Otherwise
658 * it will wait for data to be added to a specific cpu buffer.
660 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
663 __poll_t
ring_buffer_poll_wait(struct ring_buffer
*buffer
, int cpu
,
664 struct file
*filp
, poll_table
*poll_table
)
666 struct ring_buffer_per_cpu
*cpu_buffer
;
667 struct rb_irq_work
*work
;
669 if (cpu
== RING_BUFFER_ALL_CPUS
)
670 work
= &buffer
->irq_work
;
672 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
675 cpu_buffer
= buffer
->buffers
[cpu
];
676 work
= &cpu_buffer
->irq_work
;
679 poll_wait(filp
, &work
->waiters
, poll_table
);
680 work
->waiters_pending
= true;
682 * There's a tight race between setting the waiters_pending and
683 * checking if the ring buffer is empty. Once the waiters_pending bit
684 * is set, the next event will wake the task up, but we can get stuck
685 * if there's only a single event in.
687 * FIXME: Ideally, we need a memory barrier on the writer side as well,
688 * but adding a memory barrier to all events will cause too much of a
689 * performance hit in the fast path. We only need a memory barrier when
690 * the buffer goes from empty to having content. But as this race is
691 * extremely small, and it's not a problem if another event comes in, we
696 if ((cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
)) ||
697 (cpu
!= RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty_cpu(buffer
, cpu
)))
698 return EPOLLIN
| EPOLLRDNORM
;
702 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
703 #define RB_WARN_ON(b, cond) \
705 int _____ret = unlikely(cond); \
707 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
708 struct ring_buffer_per_cpu *__b = \
710 atomic_inc(&__b->buffer->record_disabled); \
712 atomic_inc(&b->record_disabled); \
718 /* Up this if you want to test the TIME_EXTENTS and normalization */
719 #define DEBUG_SHIFT 0
721 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
)
723 /* shift to debug/test normalization and TIME_EXTENTS */
724 return buffer
->clock() << DEBUG_SHIFT
;
727 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
731 preempt_disable_notrace();
732 time
= rb_time_stamp(buffer
);
733 preempt_enable_no_resched_notrace();
737 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
739 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
742 /* Just stupid testing the normalize function and deltas */
745 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
748 * Making the ring buffer lockless makes things tricky.
749 * Although writes only happen on the CPU that they are on,
750 * and they only need to worry about interrupts. Reads can
753 * The reader page is always off the ring buffer, but when the
754 * reader finishes with a page, it needs to swap its page with
755 * a new one from the buffer. The reader needs to take from
756 * the head (writes go to the tail). But if a writer is in overwrite
757 * mode and wraps, it must push the head page forward.
759 * Here lies the problem.
761 * The reader must be careful to replace only the head page, and
762 * not another one. As described at the top of the file in the
763 * ASCII art, the reader sets its old page to point to the next
764 * page after head. It then sets the page after head to point to
765 * the old reader page. But if the writer moves the head page
766 * during this operation, the reader could end up with the tail.
768 * We use cmpxchg to help prevent this race. We also do something
769 * special with the page before head. We set the LSB to 1.
771 * When the writer must push the page forward, it will clear the
772 * bit that points to the head page, move the head, and then set
773 * the bit that points to the new head page.
775 * We also don't want an interrupt coming in and moving the head
776 * page on another writer. Thus we use the second LSB to catch
779 * head->list->prev->next bit 1 bit 0
782 * Points to head page 0 1
785 * Note we can not trust the prev pointer of the head page, because:
787 * +----+ +-----+ +-----+
788 * | |------>| T |---X--->| N |
790 * +----+ +-----+ +-----+
793 * +----------| R |----------+ |
797 * Key: ---X--> HEAD flag set in pointer
802 * (see __rb_reserve_next() to see where this happens)
804 * What the above shows is that the reader just swapped out
805 * the reader page with a page in the buffer, but before it
806 * could make the new header point back to the new page added
807 * it was preempted by a writer. The writer moved forward onto
808 * the new page added by the reader and is about to move forward
811 * You can see, it is legitimate for the previous pointer of
812 * the head (or any page) not to point back to itself. But only
816 #define RB_PAGE_NORMAL 0UL
817 #define RB_PAGE_HEAD 1UL
818 #define RB_PAGE_UPDATE 2UL
821 #define RB_FLAG_MASK 3UL
823 /* PAGE_MOVED is not part of the mask */
824 #define RB_PAGE_MOVED 4UL
827 * rb_list_head - remove any bit
829 static struct list_head
*rb_list_head(struct list_head
*list
)
831 unsigned long val
= (unsigned long)list
;
833 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
837 * rb_is_head_page - test if the given page is the head page
839 * Because the reader may move the head_page pointer, we can
840 * not trust what the head page is (it may be pointing to
841 * the reader page). But if the next page is a header page,
842 * its flags will be non zero.
845 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
846 struct buffer_page
*page
, struct list_head
*list
)
850 val
= (unsigned long)list
->next
;
852 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
853 return RB_PAGE_MOVED
;
855 return val
& RB_FLAG_MASK
;
861 * The unique thing about the reader page, is that, if the
862 * writer is ever on it, the previous pointer never points
863 * back to the reader page.
865 static bool rb_is_reader_page(struct buffer_page
*page
)
867 struct list_head
*list
= page
->list
.prev
;
869 return rb_list_head(list
->next
) != &page
->list
;
873 * rb_set_list_to_head - set a list_head to be pointing to head.
875 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
876 struct list_head
*list
)
880 ptr
= (unsigned long *)&list
->next
;
881 *ptr
|= RB_PAGE_HEAD
;
882 *ptr
&= ~RB_PAGE_UPDATE
;
886 * rb_head_page_activate - sets up head page
888 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
890 struct buffer_page
*head
;
892 head
= cpu_buffer
->head_page
;
897 * Set the previous list pointer to have the HEAD flag.
899 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
902 static void rb_list_head_clear(struct list_head
*list
)
904 unsigned long *ptr
= (unsigned long *)&list
->next
;
906 *ptr
&= ~RB_FLAG_MASK
;
910 * rb_head_page_deactivate - clears head page ptr (for free list)
913 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
915 struct list_head
*hd
;
917 /* Go through the whole list and clear any pointers found. */
918 rb_list_head_clear(cpu_buffer
->pages
);
920 list_for_each(hd
, cpu_buffer
->pages
)
921 rb_list_head_clear(hd
);
924 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
925 struct buffer_page
*head
,
926 struct buffer_page
*prev
,
927 int old_flag
, int new_flag
)
929 struct list_head
*list
;
930 unsigned long val
= (unsigned long)&head
->list
;
935 val
&= ~RB_FLAG_MASK
;
937 ret
= cmpxchg((unsigned long *)&list
->next
,
938 val
| old_flag
, val
| new_flag
);
940 /* check if the reader took the page */
941 if ((ret
& ~RB_FLAG_MASK
) != val
)
942 return RB_PAGE_MOVED
;
944 return ret
& RB_FLAG_MASK
;
947 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
948 struct buffer_page
*head
,
949 struct buffer_page
*prev
,
952 return rb_head_page_set(cpu_buffer
, head
, prev
,
953 old_flag
, RB_PAGE_UPDATE
);
956 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
957 struct buffer_page
*head
,
958 struct buffer_page
*prev
,
961 return rb_head_page_set(cpu_buffer
, head
, prev
,
962 old_flag
, RB_PAGE_HEAD
);
965 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
966 struct buffer_page
*head
,
967 struct buffer_page
*prev
,
970 return rb_head_page_set(cpu_buffer
, head
, prev
,
971 old_flag
, RB_PAGE_NORMAL
);
974 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
975 struct buffer_page
**bpage
)
977 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
979 *bpage
= list_entry(p
, struct buffer_page
, list
);
982 static struct buffer_page
*
983 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
985 struct buffer_page
*head
;
986 struct buffer_page
*page
;
987 struct list_head
*list
;
990 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
994 list
= cpu_buffer
->pages
;
995 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
998 page
= head
= cpu_buffer
->head_page
;
1000 * It is possible that the writer moves the header behind
1001 * where we started, and we miss in one loop.
1002 * A second loop should grab the header, but we'll do
1003 * three loops just because I'm paranoid.
1005 for (i
= 0; i
< 3; i
++) {
1007 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
1008 cpu_buffer
->head_page
= page
;
1011 rb_inc_page(cpu_buffer
, &page
);
1012 } while (page
!= head
);
1015 RB_WARN_ON(cpu_buffer
, 1);
1020 static int rb_head_page_replace(struct buffer_page
*old
,
1021 struct buffer_page
*new)
1023 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
1027 val
= *ptr
& ~RB_FLAG_MASK
;
1028 val
|= RB_PAGE_HEAD
;
1030 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
1036 * rb_tail_page_update - move the tail page forward
1038 static void rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
1039 struct buffer_page
*tail_page
,
1040 struct buffer_page
*next_page
)
1042 unsigned long old_entries
;
1043 unsigned long old_write
;
1046 * The tail page now needs to be moved forward.
1048 * We need to reset the tail page, but without messing
1049 * with possible erasing of data brought in by interrupts
1050 * that have moved the tail page and are currently on it.
1052 * We add a counter to the write field to denote this.
1054 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
1055 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
1058 * Just make sure we have seen our old_write and synchronize
1059 * with any interrupts that come in.
1064 * If the tail page is still the same as what we think
1065 * it is, then it is up to us to update the tail
1068 if (tail_page
== READ_ONCE(cpu_buffer
->tail_page
)) {
1069 /* Zero the write counter */
1070 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
1071 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
1074 * This will only succeed if an interrupt did
1075 * not come in and change it. In which case, we
1076 * do not want to modify it.
1078 * We add (void) to let the compiler know that we do not care
1079 * about the return value of these functions. We use the
1080 * cmpxchg to only update if an interrupt did not already
1081 * do it for us. If the cmpxchg fails, we don't care.
1083 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
1084 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
1087 * No need to worry about races with clearing out the commit.
1088 * it only can increment when a commit takes place. But that
1089 * only happens in the outer most nested commit.
1091 local_set(&next_page
->page
->commit
, 0);
1093 /* Again, either we update tail_page or an interrupt does */
1094 (void)cmpxchg(&cpu_buffer
->tail_page
, tail_page
, next_page
);
1098 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
1099 struct buffer_page
*bpage
)
1101 unsigned long val
= (unsigned long)bpage
;
1103 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
1110 * rb_check_list - make sure a pointer to a list has the last bits zero
1112 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
1113 struct list_head
*list
)
1115 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
1117 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
1123 * rb_check_pages - integrity check of buffer pages
1124 * @cpu_buffer: CPU buffer with pages to test
1126 * As a safety measure we check to make sure the data pages have not
1129 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1131 struct list_head
*head
= cpu_buffer
->pages
;
1132 struct buffer_page
*bpage
, *tmp
;
1134 /* Reset the head page if it exists */
1135 if (cpu_buffer
->head_page
)
1136 rb_set_head_page(cpu_buffer
);
1138 rb_head_page_deactivate(cpu_buffer
);
1140 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
1142 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
1145 if (rb_check_list(cpu_buffer
, head
))
1148 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1149 if (RB_WARN_ON(cpu_buffer
,
1150 bpage
->list
.next
->prev
!= &bpage
->list
))
1152 if (RB_WARN_ON(cpu_buffer
,
1153 bpage
->list
.prev
->next
!= &bpage
->list
))
1155 if (rb_check_list(cpu_buffer
, &bpage
->list
))
1159 rb_head_page_activate(cpu_buffer
);
1164 static int __rb_allocate_pages(long nr_pages
, struct list_head
*pages
, int cpu
)
1166 struct buffer_page
*bpage
, *tmp
;
1167 bool user_thread
= current
->mm
!= NULL
;
1172 * Check if the available memory is there first.
1173 * Note, si_mem_available() only gives us a rough estimate of available
1174 * memory. It may not be accurate. But we don't care, we just want
1175 * to prevent doing any allocation when it is obvious that it is
1176 * not going to succeed.
1178 i
= si_mem_available();
1183 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1184 * gracefully without invoking oom-killer and the system is not
1187 mflags
= GFP_KERNEL
| __GFP_RETRY_MAYFAIL
;
1190 * If a user thread allocates too much, and si_mem_available()
1191 * reports there's enough memory, even though there is not.
1192 * Make sure the OOM killer kills this thread. This can happen
1193 * even with RETRY_MAYFAIL because another task may be doing
1194 * an allocation after this task has taken all memory.
1195 * This is the task the OOM killer needs to take out during this
1196 * loop, even if it was triggered by an allocation somewhere else.
1199 set_current_oom_origin();
1200 for (i
= 0; i
< nr_pages
; i
++) {
1203 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1204 mflags
, cpu_to_node(cpu
));
1208 list_add(&bpage
->list
, pages
);
1210 page
= alloc_pages_node(cpu_to_node(cpu
), mflags
, 0);
1213 bpage
->page
= page_address(page
);
1214 rb_init_page(bpage
->page
);
1216 if (user_thread
&& fatal_signal_pending(current
))
1220 clear_current_oom_origin();
1225 list_for_each_entry_safe(bpage
, tmp
, pages
, list
) {
1226 list_del_init(&bpage
->list
);
1227 free_buffer_page(bpage
);
1230 clear_current_oom_origin();
1235 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1236 unsigned long nr_pages
)
1242 if (__rb_allocate_pages(nr_pages
, &pages
, cpu_buffer
->cpu
))
1246 * The ring buffer page list is a circular list that does not
1247 * start and end with a list head. All page list items point to
1250 cpu_buffer
->pages
= pages
.next
;
1253 cpu_buffer
->nr_pages
= nr_pages
;
1255 rb_check_pages(cpu_buffer
);
1260 static struct ring_buffer_per_cpu
*
1261 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, long nr_pages
, int cpu
)
1263 struct ring_buffer_per_cpu
*cpu_buffer
;
1264 struct buffer_page
*bpage
;
1268 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
1269 GFP_KERNEL
, cpu_to_node(cpu
));
1273 cpu_buffer
->cpu
= cpu
;
1274 cpu_buffer
->buffer
= buffer
;
1275 raw_spin_lock_init(&cpu_buffer
->reader_lock
);
1276 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
1277 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
1278 INIT_WORK(&cpu_buffer
->update_pages_work
, update_pages_handler
);
1279 init_completion(&cpu_buffer
->update_done
);
1280 init_irq_work(&cpu_buffer
->irq_work
.work
, rb_wake_up_waiters
);
1281 init_waitqueue_head(&cpu_buffer
->irq_work
.waiters
);
1282 init_waitqueue_head(&cpu_buffer
->irq_work
.full_waiters
);
1284 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1285 GFP_KERNEL
, cpu_to_node(cpu
));
1287 goto fail_free_buffer
;
1289 rb_check_bpage(cpu_buffer
, bpage
);
1291 cpu_buffer
->reader_page
= bpage
;
1292 page
= alloc_pages_node(cpu_to_node(cpu
), GFP_KERNEL
, 0);
1294 goto fail_free_reader
;
1295 bpage
->page
= page_address(page
);
1296 rb_init_page(bpage
->page
);
1298 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1299 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1301 ret
= rb_allocate_pages(cpu_buffer
, nr_pages
);
1303 goto fail_free_reader
;
1305 cpu_buffer
->head_page
1306 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1307 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1309 rb_head_page_activate(cpu_buffer
);
1314 free_buffer_page(cpu_buffer
->reader_page
);
1321 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1323 struct list_head
*head
= cpu_buffer
->pages
;
1324 struct buffer_page
*bpage
, *tmp
;
1326 free_buffer_page(cpu_buffer
->reader_page
);
1328 rb_head_page_deactivate(cpu_buffer
);
1331 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1332 list_del_init(&bpage
->list
);
1333 free_buffer_page(bpage
);
1335 bpage
= list_entry(head
, struct buffer_page
, list
);
1336 free_buffer_page(bpage
);
1343 * __ring_buffer_alloc - allocate a new ring_buffer
1344 * @size: the size in bytes per cpu that is needed.
1345 * @flags: attributes to set for the ring buffer.
1347 * Currently the only flag that is available is the RB_FL_OVERWRITE
1348 * flag. This flag means that the buffer will overwrite old data
1349 * when the buffer wraps. If this flag is not set, the buffer will
1350 * drop data when the tail hits the head.
1352 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1353 struct lock_class_key
*key
)
1355 struct ring_buffer
*buffer
;
1361 /* keep it in its own cache line */
1362 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1367 if (!zalloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1368 goto fail_free_buffer
;
1370 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1371 buffer
->flags
= flags
;
1372 buffer
->clock
= trace_clock_local
;
1373 buffer
->reader_lock_key
= key
;
1375 init_irq_work(&buffer
->irq_work
.work
, rb_wake_up_waiters
);
1376 init_waitqueue_head(&buffer
->irq_work
.waiters
);
1378 /* need at least two pages */
1382 buffer
->cpus
= nr_cpu_ids
;
1384 bsize
= sizeof(void *) * nr_cpu_ids
;
1385 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1387 if (!buffer
->buffers
)
1388 goto fail_free_cpumask
;
1390 cpu
= raw_smp_processor_id();
1391 cpumask_set_cpu(cpu
, buffer
->cpumask
);
1392 buffer
->buffers
[cpu
] = rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
1393 if (!buffer
->buffers
[cpu
])
1394 goto fail_free_buffers
;
1396 ret
= cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE
, &buffer
->node
);
1398 goto fail_free_buffers
;
1400 mutex_init(&buffer
->mutex
);
1405 for_each_buffer_cpu(buffer
, cpu
) {
1406 if (buffer
->buffers
[cpu
])
1407 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1409 kfree(buffer
->buffers
);
1412 free_cpumask_var(buffer
->cpumask
);
1418 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1421 * ring_buffer_free - free a ring buffer.
1422 * @buffer: the buffer to free.
1425 ring_buffer_free(struct ring_buffer
*buffer
)
1429 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE
, &buffer
->node
);
1431 for_each_buffer_cpu(buffer
, cpu
)
1432 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1434 kfree(buffer
->buffers
);
1435 free_cpumask_var(buffer
->cpumask
);
1439 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1441 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1444 buffer
->clock
= clock
;
1447 void ring_buffer_set_time_stamp_abs(struct ring_buffer
*buffer
, bool abs
)
1449 buffer
->time_stamp_abs
= abs
;
1452 bool ring_buffer_time_stamp_abs(struct ring_buffer
*buffer
)
1454 return buffer
->time_stamp_abs
;
1457 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1459 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1461 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1464 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1466 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1470 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned long nr_pages
)
1472 struct list_head
*tail_page
, *to_remove
, *next_page
;
1473 struct buffer_page
*to_remove_page
, *tmp_iter_page
;
1474 struct buffer_page
*last_page
, *first_page
;
1475 unsigned long nr_removed
;
1476 unsigned long head_bit
;
1481 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1482 atomic_inc(&cpu_buffer
->record_disabled
);
1484 * We don't race with the readers since we have acquired the reader
1485 * lock. We also don't race with writers after disabling recording.
1486 * This makes it easy to figure out the first and the last page to be
1487 * removed from the list. We unlink all the pages in between including
1488 * the first and last pages. This is done in a busy loop so that we
1489 * lose the least number of traces.
1490 * The pages are freed after we restart recording and unlock readers.
1492 tail_page
= &cpu_buffer
->tail_page
->list
;
1495 * tail page might be on reader page, we remove the next page
1496 * from the ring buffer
1498 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
1499 tail_page
= rb_list_head(tail_page
->next
);
1500 to_remove
= tail_page
;
1502 /* start of pages to remove */
1503 first_page
= list_entry(rb_list_head(to_remove
->next
),
1504 struct buffer_page
, list
);
1506 for (nr_removed
= 0; nr_removed
< nr_pages
; nr_removed
++) {
1507 to_remove
= rb_list_head(to_remove
)->next
;
1508 head_bit
|= (unsigned long)to_remove
& RB_PAGE_HEAD
;
1511 next_page
= rb_list_head(to_remove
)->next
;
1514 * Now we remove all pages between tail_page and next_page.
1515 * Make sure that we have head_bit value preserved for the
1518 tail_page
->next
= (struct list_head
*)((unsigned long)next_page
|
1520 next_page
= rb_list_head(next_page
);
1521 next_page
->prev
= tail_page
;
1523 /* make sure pages points to a valid page in the ring buffer */
1524 cpu_buffer
->pages
= next_page
;
1526 /* update head page */
1528 cpu_buffer
->head_page
= list_entry(next_page
,
1529 struct buffer_page
, list
);
1532 * change read pointer to make sure any read iterators reset
1535 cpu_buffer
->read
= 0;
1537 /* pages are removed, resume tracing and then free the pages */
1538 atomic_dec(&cpu_buffer
->record_disabled
);
1539 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1541 RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
));
1543 /* last buffer page to remove */
1544 last_page
= list_entry(rb_list_head(to_remove
), struct buffer_page
,
1546 tmp_iter_page
= first_page
;
1551 to_remove_page
= tmp_iter_page
;
1552 rb_inc_page(cpu_buffer
, &tmp_iter_page
);
1554 /* update the counters */
1555 page_entries
= rb_page_entries(to_remove_page
);
1558 * If something was added to this page, it was full
1559 * since it is not the tail page. So we deduct the
1560 * bytes consumed in ring buffer from here.
1561 * Increment overrun to account for the lost events.
1563 local_add(page_entries
, &cpu_buffer
->overrun
);
1564 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1568 * We have already removed references to this list item, just
1569 * free up the buffer_page and its page
1571 free_buffer_page(to_remove_page
);
1574 } while (to_remove_page
!= last_page
);
1576 RB_WARN_ON(cpu_buffer
, nr_removed
);
1578 return nr_removed
== 0;
1582 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1584 struct list_head
*pages
= &cpu_buffer
->new_pages
;
1585 int retries
, success
;
1587 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1589 * We are holding the reader lock, so the reader page won't be swapped
1590 * in the ring buffer. Now we are racing with the writer trying to
1591 * move head page and the tail page.
1592 * We are going to adapt the reader page update process where:
1593 * 1. We first splice the start and end of list of new pages between
1594 * the head page and its previous page.
1595 * 2. We cmpxchg the prev_page->next to point from head page to the
1596 * start of new pages list.
1597 * 3. Finally, we update the head->prev to the end of new list.
1599 * We will try this process 10 times, to make sure that we don't keep
1605 struct list_head
*head_page
, *prev_page
, *r
;
1606 struct list_head
*last_page
, *first_page
;
1607 struct list_head
*head_page_with_bit
;
1609 head_page
= &rb_set_head_page(cpu_buffer
)->list
;
1612 prev_page
= head_page
->prev
;
1614 first_page
= pages
->next
;
1615 last_page
= pages
->prev
;
1617 head_page_with_bit
= (struct list_head
*)
1618 ((unsigned long)head_page
| RB_PAGE_HEAD
);
1620 last_page
->next
= head_page_with_bit
;
1621 first_page
->prev
= prev_page
;
1623 r
= cmpxchg(&prev_page
->next
, head_page_with_bit
, first_page
);
1625 if (r
== head_page_with_bit
) {
1627 * yay, we replaced the page pointer to our new list,
1628 * now, we just have to update to head page's prev
1629 * pointer to point to end of list
1631 head_page
->prev
= last_page
;
1638 INIT_LIST_HEAD(pages
);
1640 * If we weren't successful in adding in new pages, warn and stop
1643 RB_WARN_ON(cpu_buffer
, !success
);
1644 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1646 /* free pages if they weren't inserted */
1648 struct buffer_page
*bpage
, *tmp
;
1649 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1651 list_del_init(&bpage
->list
);
1652 free_buffer_page(bpage
);
1658 static void rb_update_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1662 if (cpu_buffer
->nr_pages_to_update
> 0)
1663 success
= rb_insert_pages(cpu_buffer
);
1665 success
= rb_remove_pages(cpu_buffer
,
1666 -cpu_buffer
->nr_pages_to_update
);
1669 cpu_buffer
->nr_pages
+= cpu_buffer
->nr_pages_to_update
;
1672 static void update_pages_handler(struct work_struct
*work
)
1674 struct ring_buffer_per_cpu
*cpu_buffer
= container_of(work
,
1675 struct ring_buffer_per_cpu
, update_pages_work
);
1676 rb_update_pages(cpu_buffer
);
1677 complete(&cpu_buffer
->update_done
);
1681 * ring_buffer_resize - resize the ring buffer
1682 * @buffer: the buffer to resize.
1683 * @size: the new size.
1684 * @cpu_id: the cpu buffer to resize
1686 * Minimum size is 2 * BUF_PAGE_SIZE.
1688 * Returns 0 on success and < 0 on failure.
1690 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
,
1693 struct ring_buffer_per_cpu
*cpu_buffer
;
1694 unsigned long nr_pages
;
1698 * Always succeed at resizing a non-existent buffer:
1703 /* Make sure the requested buffer exists */
1704 if (cpu_id
!= RING_BUFFER_ALL_CPUS
&&
1705 !cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1708 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1710 /* we need a minimum of two pages */
1714 size
= nr_pages
* BUF_PAGE_SIZE
;
1717 * Don't succeed if resizing is disabled, as a reader might be
1718 * manipulating the ring buffer and is expecting a sane state while
1721 if (atomic_read(&buffer
->resize_disabled
))
1724 /* prevent another thread from changing buffer sizes */
1725 mutex_lock(&buffer
->mutex
);
1727 if (cpu_id
== RING_BUFFER_ALL_CPUS
) {
1728 /* calculate the pages to update */
1729 for_each_buffer_cpu(buffer
, cpu
) {
1730 cpu_buffer
= buffer
->buffers
[cpu
];
1732 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1733 cpu_buffer
->nr_pages
;
1735 * nothing more to do for removing pages or no update
1737 if (cpu_buffer
->nr_pages_to_update
<= 0)
1740 * to add pages, make sure all new pages can be
1741 * allocated without receiving ENOMEM
1743 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1744 if (__rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1745 &cpu_buffer
->new_pages
, cpu
)) {
1746 /* not enough memory for new pages */
1754 * Fire off all the required work handlers
1755 * We can't schedule on offline CPUs, but it's not necessary
1756 * since we can change their buffer sizes without any race.
1758 for_each_buffer_cpu(buffer
, cpu
) {
1759 cpu_buffer
= buffer
->buffers
[cpu
];
1760 if (!cpu_buffer
->nr_pages_to_update
)
1763 /* Can't run something on an offline CPU. */
1764 if (!cpu_online(cpu
)) {
1765 rb_update_pages(cpu_buffer
);
1766 cpu_buffer
->nr_pages_to_update
= 0;
1768 schedule_work_on(cpu
,
1769 &cpu_buffer
->update_pages_work
);
1773 /* wait for all the updates to complete */
1774 for_each_buffer_cpu(buffer
, cpu
) {
1775 cpu_buffer
= buffer
->buffers
[cpu
];
1776 if (!cpu_buffer
->nr_pages_to_update
)
1779 if (cpu_online(cpu
))
1780 wait_for_completion(&cpu_buffer
->update_done
);
1781 cpu_buffer
->nr_pages_to_update
= 0;
1786 /* Make sure this CPU has been initialized */
1787 if (!cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1790 cpu_buffer
= buffer
->buffers
[cpu_id
];
1792 if (nr_pages
== cpu_buffer
->nr_pages
)
1795 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1796 cpu_buffer
->nr_pages
;
1798 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1799 if (cpu_buffer
->nr_pages_to_update
> 0 &&
1800 __rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1801 &cpu_buffer
->new_pages
, cpu_id
)) {
1808 /* Can't run something on an offline CPU. */
1809 if (!cpu_online(cpu_id
))
1810 rb_update_pages(cpu_buffer
);
1812 schedule_work_on(cpu_id
,
1813 &cpu_buffer
->update_pages_work
);
1814 wait_for_completion(&cpu_buffer
->update_done
);
1817 cpu_buffer
->nr_pages_to_update
= 0;
1823 * The ring buffer resize can happen with the ring buffer
1824 * enabled, so that the update disturbs the tracing as little
1825 * as possible. But if the buffer is disabled, we do not need
1826 * to worry about that, and we can take the time to verify
1827 * that the buffer is not corrupt.
1829 if (atomic_read(&buffer
->record_disabled
)) {
1830 atomic_inc(&buffer
->record_disabled
);
1832 * Even though the buffer was disabled, we must make sure
1833 * that it is truly disabled before calling rb_check_pages.
1834 * There could have been a race between checking
1835 * record_disable and incrementing it.
1837 synchronize_sched();
1838 for_each_buffer_cpu(buffer
, cpu
) {
1839 cpu_buffer
= buffer
->buffers
[cpu
];
1840 rb_check_pages(cpu_buffer
);
1842 atomic_dec(&buffer
->record_disabled
);
1845 mutex_unlock(&buffer
->mutex
);
1849 for_each_buffer_cpu(buffer
, cpu
) {
1850 struct buffer_page
*bpage
, *tmp
;
1852 cpu_buffer
= buffer
->buffers
[cpu
];
1853 cpu_buffer
->nr_pages_to_update
= 0;
1855 if (list_empty(&cpu_buffer
->new_pages
))
1858 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1860 list_del_init(&bpage
->list
);
1861 free_buffer_page(bpage
);
1864 mutex_unlock(&buffer
->mutex
);
1867 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1869 void ring_buffer_change_overwrite(struct ring_buffer
*buffer
, int val
)
1871 mutex_lock(&buffer
->mutex
);
1873 buffer
->flags
|= RB_FL_OVERWRITE
;
1875 buffer
->flags
&= ~RB_FL_OVERWRITE
;
1876 mutex_unlock(&buffer
->mutex
);
1878 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite
);
1880 static __always_inline
void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1882 return bpage
->page
->data
+ index
;
1885 static __always_inline
struct ring_buffer_event
*
1886 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1888 return __rb_page_index(cpu_buffer
->reader_page
,
1889 cpu_buffer
->reader_page
->read
);
1892 static __always_inline
struct ring_buffer_event
*
1893 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1895 return __rb_page_index(iter
->head_page
, iter
->head
);
1898 static __always_inline
unsigned rb_page_commit(struct buffer_page
*bpage
)
1900 return local_read(&bpage
->page
->commit
);
1903 /* Size is determined by what has been committed */
1904 static __always_inline
unsigned rb_page_size(struct buffer_page
*bpage
)
1906 return rb_page_commit(bpage
);
1909 static __always_inline
unsigned
1910 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1912 return rb_page_commit(cpu_buffer
->commit_page
);
1915 static __always_inline
unsigned
1916 rb_event_index(struct ring_buffer_event
*event
)
1918 unsigned long addr
= (unsigned long)event
;
1920 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1923 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1925 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1928 * The iterator could be on the reader page (it starts there).
1929 * But the head could have moved, since the reader was
1930 * found. Check for this case and assign the iterator
1931 * to the head page instead of next.
1933 if (iter
->head_page
== cpu_buffer
->reader_page
)
1934 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1936 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1938 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1943 * rb_handle_head_page - writer hit the head page
1945 * Returns: +1 to retry page
1950 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
1951 struct buffer_page
*tail_page
,
1952 struct buffer_page
*next_page
)
1954 struct buffer_page
*new_head
;
1959 entries
= rb_page_entries(next_page
);
1962 * The hard part is here. We need to move the head
1963 * forward, and protect against both readers on
1964 * other CPUs and writers coming in via interrupts.
1966 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
1970 * type can be one of four:
1971 * NORMAL - an interrupt already moved it for us
1972 * HEAD - we are the first to get here.
1973 * UPDATE - we are the interrupt interrupting
1975 * MOVED - a reader on another CPU moved the next
1976 * pointer to its reader page. Give up
1983 * We changed the head to UPDATE, thus
1984 * it is our responsibility to update
1987 local_add(entries
, &cpu_buffer
->overrun
);
1988 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1991 * The entries will be zeroed out when we move the
1995 /* still more to do */
1998 case RB_PAGE_UPDATE
:
2000 * This is an interrupt that interrupt the
2001 * previous update. Still more to do.
2004 case RB_PAGE_NORMAL
:
2006 * An interrupt came in before the update
2007 * and processed this for us.
2008 * Nothing left to do.
2013 * The reader is on another CPU and just did
2014 * a swap with our next_page.
2019 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
2024 * Now that we are here, the old head pointer is
2025 * set to UPDATE. This will keep the reader from
2026 * swapping the head page with the reader page.
2027 * The reader (on another CPU) will spin till
2030 * We just need to protect against interrupts
2031 * doing the job. We will set the next pointer
2032 * to HEAD. After that, we set the old pointer
2033 * to NORMAL, but only if it was HEAD before.
2034 * otherwise we are an interrupt, and only
2035 * want the outer most commit to reset it.
2037 new_head
= next_page
;
2038 rb_inc_page(cpu_buffer
, &new_head
);
2040 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
2044 * Valid returns are:
2045 * HEAD - an interrupt came in and already set it.
2046 * NORMAL - One of two things:
2047 * 1) We really set it.
2048 * 2) A bunch of interrupts came in and moved
2049 * the page forward again.
2053 case RB_PAGE_NORMAL
:
2057 RB_WARN_ON(cpu_buffer
, 1);
2062 * It is possible that an interrupt came in,
2063 * set the head up, then more interrupts came in
2064 * and moved it again. When we get back here,
2065 * the page would have been set to NORMAL but we
2066 * just set it back to HEAD.
2068 * How do you detect this? Well, if that happened
2069 * the tail page would have moved.
2071 if (ret
== RB_PAGE_NORMAL
) {
2072 struct buffer_page
*buffer_tail_page
;
2074 buffer_tail_page
= READ_ONCE(cpu_buffer
->tail_page
);
2076 * If the tail had moved passed next, then we need
2077 * to reset the pointer.
2079 if (buffer_tail_page
!= tail_page
&&
2080 buffer_tail_page
!= next_page
)
2081 rb_head_page_set_normal(cpu_buffer
, new_head
,
2087 * If this was the outer most commit (the one that
2088 * changed the original pointer from HEAD to UPDATE),
2089 * then it is up to us to reset it to NORMAL.
2091 if (type
== RB_PAGE_HEAD
) {
2092 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
2095 if (RB_WARN_ON(cpu_buffer
,
2096 ret
!= RB_PAGE_UPDATE
))
2104 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2105 unsigned long tail
, struct rb_event_info
*info
)
2107 struct buffer_page
*tail_page
= info
->tail_page
;
2108 struct ring_buffer_event
*event
;
2109 unsigned long length
= info
->length
;
2112 * Only the event that crossed the page boundary
2113 * must fill the old tail_page with padding.
2115 if (tail
>= BUF_PAGE_SIZE
) {
2117 * If the page was filled, then we still need
2118 * to update the real_end. Reset it to zero
2119 * and the reader will ignore it.
2121 if (tail
== BUF_PAGE_SIZE
)
2122 tail_page
->real_end
= 0;
2124 local_sub(length
, &tail_page
->write
);
2128 event
= __rb_page_index(tail_page
, tail
);
2130 /* account for padding bytes */
2131 local_add(BUF_PAGE_SIZE
- tail
, &cpu_buffer
->entries_bytes
);
2134 * Save the original length to the meta data.
2135 * This will be used by the reader to add lost event
2138 tail_page
->real_end
= tail
;
2141 * If this event is bigger than the minimum size, then
2142 * we need to be careful that we don't subtract the
2143 * write counter enough to allow another writer to slip
2145 * We put in a discarded commit instead, to make sure
2146 * that this space is not used again.
2148 * If we are less than the minimum size, we don't need to
2151 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
2152 /* No room for any events */
2154 /* Mark the rest of the page with padding */
2155 rb_event_set_padding(event
);
2157 /* Set the write back to the previous setting */
2158 local_sub(length
, &tail_page
->write
);
2162 /* Put in a discarded event */
2163 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
2164 event
->type_len
= RINGBUF_TYPE_PADDING
;
2165 /* time delta must be non zero */
2166 event
->time_delta
= 1;
2168 /* Set write to end of buffer */
2169 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
2170 local_sub(length
, &tail_page
->write
);
2173 static inline void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
);
2176 * This is the slow path, force gcc not to inline it.
2178 static noinline
struct ring_buffer_event
*
2179 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2180 unsigned long tail
, struct rb_event_info
*info
)
2182 struct buffer_page
*tail_page
= info
->tail_page
;
2183 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
2184 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
2185 struct buffer_page
*next_page
;
2188 next_page
= tail_page
;
2190 rb_inc_page(cpu_buffer
, &next_page
);
2193 * If for some reason, we had an interrupt storm that made
2194 * it all the way around the buffer, bail, and warn
2197 if (unlikely(next_page
== commit_page
)) {
2198 local_inc(&cpu_buffer
->commit_overrun
);
2203 * This is where the fun begins!
2205 * We are fighting against races between a reader that
2206 * could be on another CPU trying to swap its reader
2207 * page with the buffer head.
2209 * We are also fighting against interrupts coming in and
2210 * moving the head or tail on us as well.
2212 * If the next page is the head page then we have filled
2213 * the buffer, unless the commit page is still on the
2216 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
2219 * If the commit is not on the reader page, then
2220 * move the header page.
2222 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
2224 * If we are not in overwrite mode,
2225 * this is easy, just stop here.
2227 if (!(buffer
->flags
& RB_FL_OVERWRITE
)) {
2228 local_inc(&cpu_buffer
->dropped_events
);
2232 ret
= rb_handle_head_page(cpu_buffer
,
2241 * We need to be careful here too. The
2242 * commit page could still be on the reader
2243 * page. We could have a small buffer, and
2244 * have filled up the buffer with events
2245 * from interrupts and such, and wrapped.
2247 * Note, if the tail page is also the on the
2248 * reader_page, we let it move out.
2250 if (unlikely((cpu_buffer
->commit_page
!=
2251 cpu_buffer
->tail_page
) &&
2252 (cpu_buffer
->commit_page
==
2253 cpu_buffer
->reader_page
))) {
2254 local_inc(&cpu_buffer
->commit_overrun
);
2260 rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
2264 rb_reset_tail(cpu_buffer
, tail
, info
);
2266 /* Commit what we have for now. */
2267 rb_end_commit(cpu_buffer
);
2268 /* rb_end_commit() decs committing */
2269 local_inc(&cpu_buffer
->committing
);
2271 /* fail and let the caller try again */
2272 return ERR_PTR(-EAGAIN
);
2276 rb_reset_tail(cpu_buffer
, tail
, info
);
2281 /* Slow path, do not inline */
2282 static noinline
struct ring_buffer_event
*
2283 rb_add_time_stamp(struct ring_buffer_event
*event
, u64 delta
, bool abs
)
2286 event
->type_len
= RINGBUF_TYPE_TIME_STAMP
;
2288 event
->type_len
= RINGBUF_TYPE_TIME_EXTEND
;
2290 /* Not the first event on the page, or not delta? */
2291 if (abs
|| rb_event_index(event
)) {
2292 event
->time_delta
= delta
& TS_MASK
;
2293 event
->array
[0] = delta
>> TS_SHIFT
;
2295 /* nope, just zero it */
2296 event
->time_delta
= 0;
2297 event
->array
[0] = 0;
2300 return skip_time_extend(event
);
2303 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2304 struct ring_buffer_event
*event
);
2307 * rb_update_event - update event type and data
2308 * @event: the event to update
2309 * @type: the type of event
2310 * @length: the size of the event field in the ring buffer
2312 * Update the type and data fields of the event. The length
2313 * is the actual size that is written to the ring buffer,
2314 * and with this, we can determine what to place into the
2318 rb_update_event(struct ring_buffer_per_cpu
*cpu_buffer
,
2319 struct ring_buffer_event
*event
,
2320 struct rb_event_info
*info
)
2322 unsigned length
= info
->length
;
2323 u64 delta
= info
->delta
;
2325 /* Only a commit updates the timestamp */
2326 if (unlikely(!rb_event_is_commit(cpu_buffer
, event
)))
2330 * If we need to add a timestamp, then we
2331 * add it to the start of the reserved space.
2333 if (unlikely(info
->add_timestamp
)) {
2334 bool abs
= ring_buffer_time_stamp_abs(cpu_buffer
->buffer
);
2336 event
= rb_add_time_stamp(event
, info
->delta
, abs
);
2337 length
-= RB_LEN_TIME_EXTEND
;
2341 event
->time_delta
= delta
;
2342 length
-= RB_EVNT_HDR_SIZE
;
2343 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
) {
2344 event
->type_len
= 0;
2345 event
->array
[0] = length
;
2347 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
2350 static unsigned rb_calculate_event_length(unsigned length
)
2352 struct ring_buffer_event event
; /* Used only for sizeof array */
2354 /* zero length can cause confusions */
2358 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
)
2359 length
+= sizeof(event
.array
[0]);
2361 length
+= RB_EVNT_HDR_SIZE
;
2362 length
= ALIGN(length
, RB_ARCH_ALIGNMENT
);
2365 * In case the time delta is larger than the 27 bits for it
2366 * in the header, we need to add a timestamp. If another
2367 * event comes in when trying to discard this one to increase
2368 * the length, then the timestamp will be added in the allocated
2369 * space of this event. If length is bigger than the size needed
2370 * for the TIME_EXTEND, then padding has to be used. The events
2371 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2372 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2373 * As length is a multiple of 4, we only need to worry if it
2374 * is 12 (RB_LEN_TIME_EXTEND + 4).
2376 if (length
== RB_LEN_TIME_EXTEND
+ RB_ALIGNMENT
)
2377 length
+= RB_ALIGNMENT
;
2382 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2383 static inline bool sched_clock_stable(void)
2390 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
2391 struct ring_buffer_event
*event
)
2393 unsigned long new_index
, old_index
;
2394 struct buffer_page
*bpage
;
2395 unsigned long index
;
2398 new_index
= rb_event_index(event
);
2399 old_index
= new_index
+ rb_event_ts_length(event
);
2400 addr
= (unsigned long)event
;
2403 bpage
= READ_ONCE(cpu_buffer
->tail_page
);
2405 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
2406 unsigned long write_mask
=
2407 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
2408 unsigned long event_length
= rb_event_length(event
);
2410 * This is on the tail page. It is possible that
2411 * a write could come in and move the tail page
2412 * and write to the next page. That is fine
2413 * because we just shorten what is on this page.
2415 old_index
+= write_mask
;
2416 new_index
+= write_mask
;
2417 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
2418 if (index
== old_index
) {
2419 /* update counters */
2420 local_sub(event_length
, &cpu_buffer
->entries_bytes
);
2425 /* could not discard */
2429 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2431 local_inc(&cpu_buffer
->committing
);
2432 local_inc(&cpu_buffer
->commits
);
2435 static __always_inline
void
2436 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
2438 unsigned long max_count
;
2441 * We only race with interrupts and NMIs on this CPU.
2442 * If we own the commit event, then we can commit
2443 * all others that interrupted us, since the interruptions
2444 * are in stack format (they finish before they come
2445 * back to us). This allows us to do a simple loop to
2446 * assign the commit to the tail.
2449 max_count
= cpu_buffer
->nr_pages
* 100;
2451 while (cpu_buffer
->commit_page
!= READ_ONCE(cpu_buffer
->tail_page
)) {
2452 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
2454 if (RB_WARN_ON(cpu_buffer
,
2455 rb_is_reader_page(cpu_buffer
->tail_page
)))
2457 local_set(&cpu_buffer
->commit_page
->page
->commit
,
2458 rb_page_write(cpu_buffer
->commit_page
));
2459 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
2460 /* Only update the write stamp if the page has an event */
2461 if (rb_page_write(cpu_buffer
->commit_page
))
2462 cpu_buffer
->write_stamp
=
2463 cpu_buffer
->commit_page
->page
->time_stamp
;
2464 /* add barrier to keep gcc from optimizing too much */
2467 while (rb_commit_index(cpu_buffer
) !=
2468 rb_page_write(cpu_buffer
->commit_page
)) {
2470 local_set(&cpu_buffer
->commit_page
->page
->commit
,
2471 rb_page_write(cpu_buffer
->commit_page
));
2472 RB_WARN_ON(cpu_buffer
,
2473 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
2478 /* again, keep gcc from optimizing */
2482 * If an interrupt came in just after the first while loop
2483 * and pushed the tail page forward, we will be left with
2484 * a dangling commit that will never go forward.
2486 if (unlikely(cpu_buffer
->commit_page
!= READ_ONCE(cpu_buffer
->tail_page
)))
2490 static __always_inline
void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2492 unsigned long commits
;
2494 if (RB_WARN_ON(cpu_buffer
,
2495 !local_read(&cpu_buffer
->committing
)))
2499 commits
= local_read(&cpu_buffer
->commits
);
2500 /* synchronize with interrupts */
2502 if (local_read(&cpu_buffer
->committing
) == 1)
2503 rb_set_commit_to_write(cpu_buffer
);
2505 local_dec(&cpu_buffer
->committing
);
2507 /* synchronize with interrupts */
2511 * Need to account for interrupts coming in between the
2512 * updating of the commit page and the clearing of the
2513 * committing counter.
2515 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2516 !local_read(&cpu_buffer
->committing
)) {
2517 local_inc(&cpu_buffer
->committing
);
2522 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2524 if (extended_time(event
))
2525 event
= skip_time_extend(event
);
2527 /* array[0] holds the actual length for the discarded event */
2528 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2529 event
->type_len
= RINGBUF_TYPE_PADDING
;
2530 /* time delta must be non zero */
2531 if (!event
->time_delta
)
2532 event
->time_delta
= 1;
2535 static __always_inline
bool
2536 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2537 struct ring_buffer_event
*event
)
2539 unsigned long addr
= (unsigned long)event
;
2540 unsigned long index
;
2542 index
= rb_event_index(event
);
2545 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
2546 rb_commit_index(cpu_buffer
) == index
;
2549 static __always_inline
void
2550 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2551 struct ring_buffer_event
*event
)
2556 * The event first in the commit queue updates the
2559 if (rb_event_is_commit(cpu_buffer
, event
)) {
2561 * A commit event that is first on a page
2562 * updates the write timestamp with the page stamp
2564 if (!rb_event_index(event
))
2565 cpu_buffer
->write_stamp
=
2566 cpu_buffer
->commit_page
->page
->time_stamp
;
2567 else if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
2568 delta
= ring_buffer_event_time_stamp(event
);
2569 cpu_buffer
->write_stamp
+= delta
;
2570 } else if (event
->type_len
== RINGBUF_TYPE_TIME_STAMP
) {
2571 delta
= ring_buffer_event_time_stamp(event
);
2572 cpu_buffer
->write_stamp
= delta
;
2574 cpu_buffer
->write_stamp
+= event
->time_delta
;
2578 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2579 struct ring_buffer_event
*event
)
2581 local_inc(&cpu_buffer
->entries
);
2582 rb_update_write_stamp(cpu_buffer
, event
);
2583 rb_end_commit(cpu_buffer
);
2586 static __always_inline
void
2587 rb_wakeups(struct ring_buffer
*buffer
, struct ring_buffer_per_cpu
*cpu_buffer
)
2591 if (buffer
->irq_work
.waiters_pending
) {
2592 buffer
->irq_work
.waiters_pending
= false;
2593 /* irq_work_queue() supplies it's own memory barriers */
2594 irq_work_queue(&buffer
->irq_work
.work
);
2597 if (cpu_buffer
->irq_work
.waiters_pending
) {
2598 cpu_buffer
->irq_work
.waiters_pending
= false;
2599 /* irq_work_queue() supplies it's own memory barriers */
2600 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2603 pagebusy
= cpu_buffer
->reader_page
== cpu_buffer
->commit_page
;
2605 if (!pagebusy
&& cpu_buffer
->irq_work
.full_waiters_pending
) {
2606 cpu_buffer
->irq_work
.wakeup_full
= true;
2607 cpu_buffer
->irq_work
.full_waiters_pending
= false;
2608 /* irq_work_queue() supplies it's own memory barriers */
2609 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2614 * The lock and unlock are done within a preempt disable section.
2615 * The current_context per_cpu variable can only be modified
2616 * by the current task between lock and unlock. But it can
2617 * be modified more than once via an interrupt. To pass this
2618 * information from the lock to the unlock without having to
2619 * access the 'in_interrupt()' functions again (which do show
2620 * a bit of overhead in something as critical as function tracing,
2621 * we use a bitmask trick.
2623 * bit 0 = NMI context
2624 * bit 1 = IRQ context
2625 * bit 2 = SoftIRQ context
2626 * bit 3 = normal context.
2628 * This works because this is the order of contexts that can
2629 * preempt other contexts. A SoftIRQ never preempts an IRQ
2632 * When the context is determined, the corresponding bit is
2633 * checked and set (if it was set, then a recursion of that context
2636 * On unlock, we need to clear this bit. To do so, just subtract
2637 * 1 from the current_context and AND it to itself.
2641 * 101 & 100 = 100 (clearing bit zero)
2644 * 1010 & 1001 = 1000 (clearing bit 1)
2646 * The least significant bit can be cleared this way, and it
2647 * just so happens that it is the same bit corresponding to
2648 * the current context.
2651 static __always_inline
int
2652 trace_recursive_lock(struct ring_buffer_per_cpu
*cpu_buffer
)
2654 unsigned int val
= cpu_buffer
->current_context
;
2655 unsigned long pc
= preempt_count();
2658 if (!(pc
& (NMI_MASK
| HARDIRQ_MASK
| SOFTIRQ_OFFSET
)))
2659 bit
= RB_CTX_NORMAL
;
2661 bit
= pc
& NMI_MASK
? RB_CTX_NMI
:
2662 pc
& HARDIRQ_MASK
? RB_CTX_IRQ
: RB_CTX_SOFTIRQ
;
2664 if (unlikely(val
& (1 << (bit
+ cpu_buffer
->nest
))))
2667 val
|= (1 << (bit
+ cpu_buffer
->nest
));
2668 cpu_buffer
->current_context
= val
;
2673 static __always_inline
void
2674 trace_recursive_unlock(struct ring_buffer_per_cpu
*cpu_buffer
)
2676 cpu_buffer
->current_context
&=
2677 cpu_buffer
->current_context
- (1 << cpu_buffer
->nest
);
2680 /* The recursive locking above uses 4 bits */
2681 #define NESTED_BITS 4
2684 * ring_buffer_nest_start - Allow to trace while nested
2685 * @buffer: The ring buffer to modify
2687 * The ring buffer has a safety mechanism to prevent recursion.
2688 * But there may be a case where a trace needs to be done while
2689 * tracing something else. In this case, calling this function
2690 * will allow this function to nest within a currently active
2691 * ring_buffer_lock_reserve().
2693 * Call this function before calling another ring_buffer_lock_reserve() and
2694 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2696 void ring_buffer_nest_start(struct ring_buffer
*buffer
)
2698 struct ring_buffer_per_cpu
*cpu_buffer
;
2701 /* Enabled by ring_buffer_nest_end() */
2702 preempt_disable_notrace();
2703 cpu
= raw_smp_processor_id();
2704 cpu_buffer
= buffer
->buffers
[cpu
];
2705 /* This is the shift value for the above recursive locking */
2706 cpu_buffer
->nest
+= NESTED_BITS
;
2710 * ring_buffer_nest_end - Allow to trace while nested
2711 * @buffer: The ring buffer to modify
2713 * Must be called after ring_buffer_nest_start() and after the
2714 * ring_buffer_unlock_commit().
2716 void ring_buffer_nest_end(struct ring_buffer
*buffer
)
2718 struct ring_buffer_per_cpu
*cpu_buffer
;
2721 /* disabled by ring_buffer_nest_start() */
2722 cpu
= raw_smp_processor_id();
2723 cpu_buffer
= buffer
->buffers
[cpu
];
2724 /* This is the shift value for the above recursive locking */
2725 cpu_buffer
->nest
-= NESTED_BITS
;
2726 preempt_enable_notrace();
2730 * ring_buffer_unlock_commit - commit a reserved
2731 * @buffer: The buffer to commit to
2732 * @event: The event pointer to commit.
2734 * This commits the data to the ring buffer, and releases any locks held.
2736 * Must be paired with ring_buffer_lock_reserve.
2738 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2739 struct ring_buffer_event
*event
)
2741 struct ring_buffer_per_cpu
*cpu_buffer
;
2742 int cpu
= raw_smp_processor_id();
2744 cpu_buffer
= buffer
->buffers
[cpu
];
2746 rb_commit(cpu_buffer
, event
);
2748 rb_wakeups(buffer
, cpu_buffer
);
2750 trace_recursive_unlock(cpu_buffer
);
2752 preempt_enable_notrace();
2756 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2758 static noinline
void
2759 rb_handle_timestamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2760 struct rb_event_info
*info
)
2762 WARN_ONCE(info
->delta
> (1ULL << 59),
2763 KERN_WARNING
"Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2764 (unsigned long long)info
->delta
,
2765 (unsigned long long)info
->ts
,
2766 (unsigned long long)cpu_buffer
->write_stamp
,
2767 sched_clock_stable() ? "" :
2768 "If you just came from a suspend/resume,\n"
2769 "please switch to the trace global clock:\n"
2770 " echo global > /sys/kernel/debug/tracing/trace_clock\n"
2771 "or add trace_clock=global to the kernel command line\n");
2772 info
->add_timestamp
= 1;
2775 static struct ring_buffer_event
*
2776 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
2777 struct rb_event_info
*info
)
2779 struct ring_buffer_event
*event
;
2780 struct buffer_page
*tail_page
;
2781 unsigned long tail
, write
;
2784 * If the time delta since the last event is too big to
2785 * hold in the time field of the event, then we append a
2786 * TIME EXTEND event ahead of the data event.
2788 if (unlikely(info
->add_timestamp
))
2789 info
->length
+= RB_LEN_TIME_EXTEND
;
2791 /* Don't let the compiler play games with cpu_buffer->tail_page */
2792 tail_page
= info
->tail_page
= READ_ONCE(cpu_buffer
->tail_page
);
2793 write
= local_add_return(info
->length
, &tail_page
->write
);
2795 /* set write to only the index of the write */
2796 write
&= RB_WRITE_MASK
;
2797 tail
= write
- info
->length
;
2800 * If this is the first commit on the page, then it has the same
2801 * timestamp as the page itself.
2803 if (!tail
&& !ring_buffer_time_stamp_abs(cpu_buffer
->buffer
))
2806 /* See if we shot pass the end of this buffer page */
2807 if (unlikely(write
> BUF_PAGE_SIZE
))
2808 return rb_move_tail(cpu_buffer
, tail
, info
);
2810 /* We reserved something on the buffer */
2812 event
= __rb_page_index(tail_page
, tail
);
2813 rb_update_event(cpu_buffer
, event
, info
);
2815 local_inc(&tail_page
->entries
);
2818 * If this is the first commit on the page, then update
2822 tail_page
->page
->time_stamp
= info
->ts
;
2824 /* account for these added bytes */
2825 local_add(info
->length
, &cpu_buffer
->entries_bytes
);
2830 static __always_inline
struct ring_buffer_event
*
2831 rb_reserve_next_event(struct ring_buffer
*buffer
,
2832 struct ring_buffer_per_cpu
*cpu_buffer
,
2833 unsigned long length
)
2835 struct ring_buffer_event
*event
;
2836 struct rb_event_info info
;
2840 rb_start_commit(cpu_buffer
);
2842 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2844 * Due to the ability to swap a cpu buffer from a buffer
2845 * it is possible it was swapped before we committed.
2846 * (committing stops a swap). We check for it here and
2847 * if it happened, we have to fail the write.
2850 if (unlikely(READ_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2851 local_dec(&cpu_buffer
->committing
);
2852 local_dec(&cpu_buffer
->commits
);
2857 info
.length
= rb_calculate_event_length(length
);
2859 info
.add_timestamp
= 0;
2863 * We allow for interrupts to reenter here and do a trace.
2864 * If one does, it will cause this original code to loop
2865 * back here. Even with heavy interrupts happening, this
2866 * should only happen a few times in a row. If this happens
2867 * 1000 times in a row, there must be either an interrupt
2868 * storm or we have something buggy.
2871 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2874 info
.ts
= rb_time_stamp(cpu_buffer
->buffer
);
2875 diff
= info
.ts
- cpu_buffer
->write_stamp
;
2877 /* make sure this diff is calculated here */
2880 if (ring_buffer_time_stamp_abs(buffer
)) {
2881 info
.delta
= info
.ts
;
2882 rb_handle_timestamp(cpu_buffer
, &info
);
2883 } else /* Did the write stamp get updated already? */
2884 if (likely(info
.ts
>= cpu_buffer
->write_stamp
)) {
2886 if (unlikely(test_time_stamp(info
.delta
)))
2887 rb_handle_timestamp(cpu_buffer
, &info
);
2890 event
= __rb_reserve_next(cpu_buffer
, &info
);
2892 if (unlikely(PTR_ERR(event
) == -EAGAIN
)) {
2893 if (info
.add_timestamp
)
2894 info
.length
-= RB_LEN_TIME_EXTEND
;
2904 rb_end_commit(cpu_buffer
);
2909 * ring_buffer_lock_reserve - reserve a part of the buffer
2910 * @buffer: the ring buffer to reserve from
2911 * @length: the length of the data to reserve (excluding event header)
2913 * Returns a reserved event on the ring buffer to copy directly to.
2914 * The user of this interface will need to get the body to write into
2915 * and can use the ring_buffer_event_data() interface.
2917 * The length is the length of the data needed, not the event length
2918 * which also includes the event header.
2920 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2921 * If NULL is returned, then nothing has been allocated or locked.
2923 struct ring_buffer_event
*
2924 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2926 struct ring_buffer_per_cpu
*cpu_buffer
;
2927 struct ring_buffer_event
*event
;
2930 /* If we are tracing schedule, we don't want to recurse */
2931 preempt_disable_notrace();
2933 if (unlikely(atomic_read(&buffer
->record_disabled
)))
2936 cpu
= raw_smp_processor_id();
2938 if (unlikely(!cpumask_test_cpu(cpu
, buffer
->cpumask
)))
2941 cpu_buffer
= buffer
->buffers
[cpu
];
2943 if (unlikely(atomic_read(&cpu_buffer
->record_disabled
)))
2946 if (unlikely(length
> BUF_MAX_DATA_SIZE
))
2949 if (unlikely(trace_recursive_lock(cpu_buffer
)))
2952 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2959 trace_recursive_unlock(cpu_buffer
);
2961 preempt_enable_notrace();
2964 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
2967 * Decrement the entries to the page that an event is on.
2968 * The event does not even need to exist, only the pointer
2969 * to the page it is on. This may only be called before the commit
2973 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
2974 struct ring_buffer_event
*event
)
2976 unsigned long addr
= (unsigned long)event
;
2977 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
2978 struct buffer_page
*start
;
2982 /* Do the likely case first */
2983 if (likely(bpage
->page
== (void *)addr
)) {
2984 local_dec(&bpage
->entries
);
2989 * Because the commit page may be on the reader page we
2990 * start with the next page and check the end loop there.
2992 rb_inc_page(cpu_buffer
, &bpage
);
2995 if (bpage
->page
== (void *)addr
) {
2996 local_dec(&bpage
->entries
);
2999 rb_inc_page(cpu_buffer
, &bpage
);
3000 } while (bpage
!= start
);
3002 /* commit not part of this buffer?? */
3003 RB_WARN_ON(cpu_buffer
, 1);
3007 * ring_buffer_commit_discard - discard an event that has not been committed
3008 * @buffer: the ring buffer
3009 * @event: non committed event to discard
3011 * Sometimes an event that is in the ring buffer needs to be ignored.
3012 * This function lets the user discard an event in the ring buffer
3013 * and then that event will not be read later.
3015 * This function only works if it is called before the item has been
3016 * committed. It will try to free the event from the ring buffer
3017 * if another event has not been added behind it.
3019 * If another event has been added behind it, it will set the event
3020 * up as discarded, and perform the commit.
3022 * If this function is called, do not call ring_buffer_unlock_commit on
3025 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
3026 struct ring_buffer_event
*event
)
3028 struct ring_buffer_per_cpu
*cpu_buffer
;
3031 /* The event is discarded regardless */
3032 rb_event_discard(event
);
3034 cpu
= smp_processor_id();
3035 cpu_buffer
= buffer
->buffers
[cpu
];
3038 * This must only be called if the event has not been
3039 * committed yet. Thus we can assume that preemption
3040 * is still disabled.
3042 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
3044 rb_decrement_entry(cpu_buffer
, event
);
3045 if (rb_try_to_discard(cpu_buffer
, event
))
3049 * The commit is still visible by the reader, so we
3050 * must still update the timestamp.
3052 rb_update_write_stamp(cpu_buffer
, event
);
3054 rb_end_commit(cpu_buffer
);
3056 trace_recursive_unlock(cpu_buffer
);
3058 preempt_enable_notrace();
3061 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
3064 * ring_buffer_write - write data to the buffer without reserving
3065 * @buffer: The ring buffer to write to.
3066 * @length: The length of the data being written (excluding the event header)
3067 * @data: The data to write to the buffer.
3069 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3070 * one function. If you already have the data to write to the buffer, it
3071 * may be easier to simply call this function.
3073 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3074 * and not the length of the event which would hold the header.
3076 int ring_buffer_write(struct ring_buffer
*buffer
,
3077 unsigned long length
,
3080 struct ring_buffer_per_cpu
*cpu_buffer
;
3081 struct ring_buffer_event
*event
;
3086 preempt_disable_notrace();
3088 if (atomic_read(&buffer
->record_disabled
))
3091 cpu
= raw_smp_processor_id();
3093 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3096 cpu_buffer
= buffer
->buffers
[cpu
];
3098 if (atomic_read(&cpu_buffer
->record_disabled
))
3101 if (length
> BUF_MAX_DATA_SIZE
)
3104 if (unlikely(trace_recursive_lock(cpu_buffer
)))
3107 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
3111 body
= rb_event_data(event
);
3113 memcpy(body
, data
, length
);
3115 rb_commit(cpu_buffer
, event
);
3117 rb_wakeups(buffer
, cpu_buffer
);
3122 trace_recursive_unlock(cpu_buffer
);
3125 preempt_enable_notrace();
3129 EXPORT_SYMBOL_GPL(ring_buffer_write
);
3131 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
3133 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
3134 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
3135 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
3137 /* In case of error, head will be NULL */
3138 if (unlikely(!head
))
3141 return reader
->read
== rb_page_commit(reader
) &&
3142 (commit
== reader
||
3144 head
->read
== rb_page_commit(commit
)));
3148 * ring_buffer_record_disable - stop all writes into the buffer
3149 * @buffer: The ring buffer to stop writes to.
3151 * This prevents all writes to the buffer. Any attempt to write
3152 * to the buffer after this will fail and return NULL.
3154 * The caller should call synchronize_sched() after this.
3156 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
3158 atomic_inc(&buffer
->record_disabled
);
3160 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
3163 * ring_buffer_record_enable - enable writes to the buffer
3164 * @buffer: The ring buffer to enable writes
3166 * Note, multiple disables will need the same number of enables
3167 * to truly enable the writing (much like preempt_disable).
3169 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
3171 atomic_dec(&buffer
->record_disabled
);
3173 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
3176 * ring_buffer_record_off - stop all writes into the buffer
3177 * @buffer: The ring buffer to stop writes to.
3179 * This prevents all writes to the buffer. Any attempt to write
3180 * to the buffer after this will fail and return NULL.
3182 * This is different than ring_buffer_record_disable() as
3183 * it works like an on/off switch, where as the disable() version
3184 * must be paired with a enable().
3186 void ring_buffer_record_off(struct ring_buffer
*buffer
)
3189 unsigned int new_rd
;
3192 rd
= atomic_read(&buffer
->record_disabled
);
3193 new_rd
= rd
| RB_BUFFER_OFF
;
3194 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3196 EXPORT_SYMBOL_GPL(ring_buffer_record_off
);
3199 * ring_buffer_record_on - restart writes into the buffer
3200 * @buffer: The ring buffer to start writes to.
3202 * This enables all writes to the buffer that was disabled by
3203 * ring_buffer_record_off().
3205 * This is different than ring_buffer_record_enable() as
3206 * it works like an on/off switch, where as the enable() version
3207 * must be paired with a disable().
3209 void ring_buffer_record_on(struct ring_buffer
*buffer
)
3212 unsigned int new_rd
;
3215 rd
= atomic_read(&buffer
->record_disabled
);
3216 new_rd
= rd
& ~RB_BUFFER_OFF
;
3217 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3219 EXPORT_SYMBOL_GPL(ring_buffer_record_on
);
3222 * ring_buffer_record_is_on - return true if the ring buffer can write
3223 * @buffer: The ring buffer to see if write is enabled
3225 * Returns true if the ring buffer is in a state that it accepts writes.
3227 bool ring_buffer_record_is_on(struct ring_buffer
*buffer
)
3229 return !atomic_read(&buffer
->record_disabled
);
3233 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3234 * @buffer: The ring buffer to see if write is set enabled
3236 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3237 * Note that this does NOT mean it is in a writable state.
3239 * It may return true when the ring buffer has been disabled by
3240 * ring_buffer_record_disable(), as that is a temporary disabling of
3243 bool ring_buffer_record_is_set_on(struct ring_buffer
*buffer
)
3245 return !(atomic_read(&buffer
->record_disabled
) & RB_BUFFER_OFF
);
3249 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3250 * @buffer: The ring buffer to stop writes to.
3251 * @cpu: The CPU buffer to stop
3253 * This prevents all writes to the buffer. Any attempt to write
3254 * to the buffer after this will fail and return NULL.
3256 * The caller should call synchronize_sched() after this.
3258 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
3260 struct ring_buffer_per_cpu
*cpu_buffer
;
3262 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3265 cpu_buffer
= buffer
->buffers
[cpu
];
3266 atomic_inc(&cpu_buffer
->record_disabled
);
3268 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
3271 * ring_buffer_record_enable_cpu - enable writes to the buffer
3272 * @buffer: The ring buffer to enable writes
3273 * @cpu: The CPU to enable.
3275 * Note, multiple disables will need the same number of enables
3276 * to truly enable the writing (much like preempt_disable).
3278 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
3280 struct ring_buffer_per_cpu
*cpu_buffer
;
3282 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3285 cpu_buffer
= buffer
->buffers
[cpu
];
3286 atomic_dec(&cpu_buffer
->record_disabled
);
3288 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
3291 * The total entries in the ring buffer is the running counter
3292 * of entries entered into the ring buffer, minus the sum of
3293 * the entries read from the ring buffer and the number of
3294 * entries that were overwritten.
3296 static inline unsigned long
3297 rb_num_of_entries(struct ring_buffer_per_cpu
*cpu_buffer
)
3299 return local_read(&cpu_buffer
->entries
) -
3300 (local_read(&cpu_buffer
->overrun
) + cpu_buffer
->read
);
3304 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3305 * @buffer: The ring buffer
3306 * @cpu: The per CPU buffer to read from.
3308 u64
ring_buffer_oldest_event_ts(struct ring_buffer
*buffer
, int cpu
)
3310 unsigned long flags
;
3311 struct ring_buffer_per_cpu
*cpu_buffer
;
3312 struct buffer_page
*bpage
;
3315 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3318 cpu_buffer
= buffer
->buffers
[cpu
];
3319 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3321 * if the tail is on reader_page, oldest time stamp is on the reader
3324 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
3325 bpage
= cpu_buffer
->reader_page
;
3327 bpage
= rb_set_head_page(cpu_buffer
);
3329 ret
= bpage
->page
->time_stamp
;
3330 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3334 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts
);
3337 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3338 * @buffer: The ring buffer
3339 * @cpu: The per CPU buffer to read from.
3341 unsigned long ring_buffer_bytes_cpu(struct ring_buffer
*buffer
, int cpu
)
3343 struct ring_buffer_per_cpu
*cpu_buffer
;
3346 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3349 cpu_buffer
= buffer
->buffers
[cpu
];
3350 ret
= local_read(&cpu_buffer
->entries_bytes
) - cpu_buffer
->read_bytes
;
3354 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu
);
3357 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3358 * @buffer: The ring buffer
3359 * @cpu: The per CPU buffer to get the entries from.
3361 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
3363 struct ring_buffer_per_cpu
*cpu_buffer
;
3365 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3368 cpu_buffer
= buffer
->buffers
[cpu
];
3370 return rb_num_of_entries(cpu_buffer
);
3372 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
3375 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3376 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3377 * @buffer: The ring buffer
3378 * @cpu: The per CPU buffer to get the number of overruns from
3380 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3382 struct ring_buffer_per_cpu
*cpu_buffer
;
3385 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3388 cpu_buffer
= buffer
->buffers
[cpu
];
3389 ret
= local_read(&cpu_buffer
->overrun
);
3393 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
3396 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3397 * commits failing due to the buffer wrapping around while there are uncommitted
3398 * events, such as during an interrupt storm.
3399 * @buffer: The ring buffer
3400 * @cpu: The per CPU buffer to get the number of overruns from
3403 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3405 struct ring_buffer_per_cpu
*cpu_buffer
;
3408 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3411 cpu_buffer
= buffer
->buffers
[cpu
];
3412 ret
= local_read(&cpu_buffer
->commit_overrun
);
3416 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
3419 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3420 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3421 * @buffer: The ring buffer
3422 * @cpu: The per CPU buffer to get the number of overruns from
3425 ring_buffer_dropped_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3427 struct ring_buffer_per_cpu
*cpu_buffer
;
3430 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3433 cpu_buffer
= buffer
->buffers
[cpu
];
3434 ret
= local_read(&cpu_buffer
->dropped_events
);
3438 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu
);
3441 * ring_buffer_read_events_cpu - get the number of events successfully read
3442 * @buffer: The ring buffer
3443 * @cpu: The per CPU buffer to get the number of events read
3446 ring_buffer_read_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3448 struct ring_buffer_per_cpu
*cpu_buffer
;
3450 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3453 cpu_buffer
= buffer
->buffers
[cpu
];
3454 return cpu_buffer
->read
;
3456 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu
);
3459 * ring_buffer_entries - get the number of entries in a buffer
3460 * @buffer: The ring buffer
3462 * Returns the total number of entries in the ring buffer
3465 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
3467 struct ring_buffer_per_cpu
*cpu_buffer
;
3468 unsigned long entries
= 0;
3471 /* if you care about this being correct, lock the buffer */
3472 for_each_buffer_cpu(buffer
, cpu
) {
3473 cpu_buffer
= buffer
->buffers
[cpu
];
3474 entries
+= rb_num_of_entries(cpu_buffer
);
3479 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
3482 * ring_buffer_overruns - get the number of overruns in buffer
3483 * @buffer: The ring buffer
3485 * Returns the total number of overruns in the ring buffer
3488 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
3490 struct ring_buffer_per_cpu
*cpu_buffer
;
3491 unsigned long overruns
= 0;
3494 /* if you care about this being correct, lock the buffer */
3495 for_each_buffer_cpu(buffer
, cpu
) {
3496 cpu_buffer
= buffer
->buffers
[cpu
];
3497 overruns
+= local_read(&cpu_buffer
->overrun
);
3502 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
3504 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
3506 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3508 /* Iterator usage is expected to have record disabled */
3509 iter
->head_page
= cpu_buffer
->reader_page
;
3510 iter
->head
= cpu_buffer
->reader_page
->read
;
3512 iter
->cache_reader_page
= iter
->head_page
;
3513 iter
->cache_read
= cpu_buffer
->read
;
3516 iter
->read_stamp
= cpu_buffer
->read_stamp
;
3518 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
3522 * ring_buffer_iter_reset - reset an iterator
3523 * @iter: The iterator to reset
3525 * Resets the iterator, so that it will start from the beginning
3528 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
3530 struct ring_buffer_per_cpu
*cpu_buffer
;
3531 unsigned long flags
;
3536 cpu_buffer
= iter
->cpu_buffer
;
3538 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3539 rb_iter_reset(iter
);
3540 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3542 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
3545 * ring_buffer_iter_empty - check if an iterator has no more to read
3546 * @iter: The iterator to check
3548 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
3550 struct ring_buffer_per_cpu
*cpu_buffer
;
3551 struct buffer_page
*reader
;
3552 struct buffer_page
*head_page
;
3553 struct buffer_page
*commit_page
;
3556 cpu_buffer
= iter
->cpu_buffer
;
3558 /* Remember, trace recording is off when iterator is in use */
3559 reader
= cpu_buffer
->reader_page
;
3560 head_page
= cpu_buffer
->head_page
;
3561 commit_page
= cpu_buffer
->commit_page
;
3562 commit
= rb_page_commit(commit_page
);
3564 return ((iter
->head_page
== commit_page
&& iter
->head
== commit
) ||
3565 (iter
->head_page
== reader
&& commit_page
== head_page
&&
3566 head_page
->read
== commit
&&
3567 iter
->head
== rb_page_commit(cpu_buffer
->reader_page
)));
3569 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
3572 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
3573 struct ring_buffer_event
*event
)
3577 switch (event
->type_len
) {
3578 case RINGBUF_TYPE_PADDING
:
3581 case RINGBUF_TYPE_TIME_EXTEND
:
3582 delta
= ring_buffer_event_time_stamp(event
);
3583 cpu_buffer
->read_stamp
+= delta
;
3586 case RINGBUF_TYPE_TIME_STAMP
:
3587 delta
= ring_buffer_event_time_stamp(event
);
3588 cpu_buffer
->read_stamp
= delta
;
3591 case RINGBUF_TYPE_DATA
:
3592 cpu_buffer
->read_stamp
+= event
->time_delta
;
3602 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
3603 struct ring_buffer_event
*event
)
3607 switch (event
->type_len
) {
3608 case RINGBUF_TYPE_PADDING
:
3611 case RINGBUF_TYPE_TIME_EXTEND
:
3612 delta
= ring_buffer_event_time_stamp(event
);
3613 iter
->read_stamp
+= delta
;
3616 case RINGBUF_TYPE_TIME_STAMP
:
3617 delta
= ring_buffer_event_time_stamp(event
);
3618 iter
->read_stamp
= delta
;
3621 case RINGBUF_TYPE_DATA
:
3622 iter
->read_stamp
+= event
->time_delta
;
3631 static struct buffer_page
*
3632 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
3634 struct buffer_page
*reader
= NULL
;
3635 unsigned long overwrite
;
3636 unsigned long flags
;
3640 local_irq_save(flags
);
3641 arch_spin_lock(&cpu_buffer
->lock
);
3645 * This should normally only loop twice. But because the
3646 * start of the reader inserts an empty page, it causes
3647 * a case where we will loop three times. There should be no
3648 * reason to loop four times (that I know of).
3650 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
3655 reader
= cpu_buffer
->reader_page
;
3657 /* If there's more to read, return this page */
3658 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
3661 /* Never should we have an index greater than the size */
3662 if (RB_WARN_ON(cpu_buffer
,
3663 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
3666 /* check if we caught up to the tail */
3668 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
3671 /* Don't bother swapping if the ring buffer is empty */
3672 if (rb_num_of_entries(cpu_buffer
) == 0)
3676 * Reset the reader page to size zero.
3678 local_set(&cpu_buffer
->reader_page
->write
, 0);
3679 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3680 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3681 cpu_buffer
->reader_page
->real_end
= 0;
3685 * Splice the empty reader page into the list around the head.
3687 reader
= rb_set_head_page(cpu_buffer
);
3690 cpu_buffer
->reader_page
->list
.next
= rb_list_head(reader
->list
.next
);
3691 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
3694 * cpu_buffer->pages just needs to point to the buffer, it
3695 * has no specific buffer page to point to. Lets move it out
3696 * of our way so we don't accidentally swap it.
3698 cpu_buffer
->pages
= reader
->list
.prev
;
3700 /* The reader page will be pointing to the new head */
3701 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
3704 * We want to make sure we read the overruns after we set up our
3705 * pointers to the next object. The writer side does a
3706 * cmpxchg to cross pages which acts as the mb on the writer
3707 * side. Note, the reader will constantly fail the swap
3708 * while the writer is updating the pointers, so this
3709 * guarantees that the overwrite recorded here is the one we
3710 * want to compare with the last_overrun.
3713 overwrite
= local_read(&(cpu_buffer
->overrun
));
3716 * Here's the tricky part.
3718 * We need to move the pointer past the header page.
3719 * But we can only do that if a writer is not currently
3720 * moving it. The page before the header page has the
3721 * flag bit '1' set if it is pointing to the page we want.
3722 * but if the writer is in the process of moving it
3723 * than it will be '2' or already moved '0'.
3726 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
3729 * If we did not convert it, then we must try again.
3735 * Yeah! We succeeded in replacing the page.
3737 * Now make the new head point back to the reader page.
3739 rb_list_head(reader
->list
.next
)->prev
= &cpu_buffer
->reader_page
->list
;
3740 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
3742 /* Finally update the reader page to the new head */
3743 cpu_buffer
->reader_page
= reader
;
3744 cpu_buffer
->reader_page
->read
= 0;
3746 if (overwrite
!= cpu_buffer
->last_overrun
) {
3747 cpu_buffer
->lost_events
= overwrite
- cpu_buffer
->last_overrun
;
3748 cpu_buffer
->last_overrun
= overwrite
;
3754 /* Update the read_stamp on the first event */
3755 if (reader
&& reader
->read
== 0)
3756 cpu_buffer
->read_stamp
= reader
->page
->time_stamp
;
3758 arch_spin_unlock(&cpu_buffer
->lock
);
3759 local_irq_restore(flags
);
3764 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
3766 struct ring_buffer_event
*event
;
3767 struct buffer_page
*reader
;
3770 reader
= rb_get_reader_page(cpu_buffer
);
3772 /* This function should not be called when buffer is empty */
3773 if (RB_WARN_ON(cpu_buffer
, !reader
))
3776 event
= rb_reader_event(cpu_buffer
);
3778 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
3781 rb_update_read_stamp(cpu_buffer
, event
);
3783 length
= rb_event_length(event
);
3784 cpu_buffer
->reader_page
->read
+= length
;
3787 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
3789 struct ring_buffer_per_cpu
*cpu_buffer
;
3790 struct ring_buffer_event
*event
;
3793 cpu_buffer
= iter
->cpu_buffer
;
3796 * Check if we are at the end of the buffer.
3798 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3799 /* discarded commits can make the page empty */
3800 if (iter
->head_page
== cpu_buffer
->commit_page
)
3806 event
= rb_iter_head_event(iter
);
3808 length
= rb_event_length(event
);
3811 * This should not be called to advance the header if we are
3812 * at the tail of the buffer.
3814 if (RB_WARN_ON(cpu_buffer
,
3815 (iter
->head_page
== cpu_buffer
->commit_page
) &&
3816 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
3819 rb_update_iter_read_stamp(iter
, event
);
3821 iter
->head
+= length
;
3823 /* check for end of page padding */
3824 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
3825 (iter
->head_page
!= cpu_buffer
->commit_page
))
3829 static int rb_lost_events(struct ring_buffer_per_cpu
*cpu_buffer
)
3831 return cpu_buffer
->lost_events
;
3834 static struct ring_buffer_event
*
3835 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
,
3836 unsigned long *lost_events
)
3838 struct ring_buffer_event
*event
;
3839 struct buffer_page
*reader
;
3846 * We repeat when a time extend is encountered.
3847 * Since the time extend is always attached to a data event,
3848 * we should never loop more than once.
3849 * (We never hit the following condition more than twice).
3851 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3854 reader
= rb_get_reader_page(cpu_buffer
);
3858 event
= rb_reader_event(cpu_buffer
);
3860 switch (event
->type_len
) {
3861 case RINGBUF_TYPE_PADDING
:
3862 if (rb_null_event(event
))
3863 RB_WARN_ON(cpu_buffer
, 1);
3865 * Because the writer could be discarding every
3866 * event it creates (which would probably be bad)
3867 * if we were to go back to "again" then we may never
3868 * catch up, and will trigger the warn on, or lock
3869 * the box. Return the padding, and we will release
3870 * the current locks, and try again.
3874 case RINGBUF_TYPE_TIME_EXTEND
:
3875 /* Internal data, OK to advance */
3876 rb_advance_reader(cpu_buffer
);
3879 case RINGBUF_TYPE_TIME_STAMP
:
3881 *ts
= ring_buffer_event_time_stamp(event
);
3882 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3883 cpu_buffer
->cpu
, ts
);
3885 /* Internal data, OK to advance */
3886 rb_advance_reader(cpu_buffer
);
3889 case RINGBUF_TYPE_DATA
:
3891 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3892 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3893 cpu_buffer
->cpu
, ts
);
3896 *lost_events
= rb_lost_events(cpu_buffer
);
3905 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3907 static struct ring_buffer_event
*
3908 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3910 struct ring_buffer
*buffer
;
3911 struct ring_buffer_per_cpu
*cpu_buffer
;
3912 struct ring_buffer_event
*event
;
3918 cpu_buffer
= iter
->cpu_buffer
;
3919 buffer
= cpu_buffer
->buffer
;
3922 * Check if someone performed a consuming read to
3923 * the buffer. A consuming read invalidates the iterator
3924 * and we need to reset the iterator in this case.
3926 if (unlikely(iter
->cache_read
!= cpu_buffer
->read
||
3927 iter
->cache_reader_page
!= cpu_buffer
->reader_page
))
3928 rb_iter_reset(iter
);
3931 if (ring_buffer_iter_empty(iter
))
3935 * We repeat when a time extend is encountered or we hit
3936 * the end of the page. Since the time extend is always attached
3937 * to a data event, we should never loop more than three times.
3938 * Once for going to next page, once on time extend, and
3939 * finally once to get the event.
3940 * (We never hit the following condition more than thrice).
3942 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3))
3945 if (rb_per_cpu_empty(cpu_buffer
))
3948 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3953 event
= rb_iter_head_event(iter
);
3955 switch (event
->type_len
) {
3956 case RINGBUF_TYPE_PADDING
:
3957 if (rb_null_event(event
)) {
3961 rb_advance_iter(iter
);
3964 case RINGBUF_TYPE_TIME_EXTEND
:
3965 /* Internal data, OK to advance */
3966 rb_advance_iter(iter
);
3969 case RINGBUF_TYPE_TIME_STAMP
:
3971 *ts
= ring_buffer_event_time_stamp(event
);
3972 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3973 cpu_buffer
->cpu
, ts
);
3975 /* Internal data, OK to advance */
3976 rb_advance_iter(iter
);
3979 case RINGBUF_TYPE_DATA
:
3981 *ts
= iter
->read_stamp
+ event
->time_delta
;
3982 ring_buffer_normalize_time_stamp(buffer
,
3983 cpu_buffer
->cpu
, ts
);
3993 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
3995 static inline bool rb_reader_lock(struct ring_buffer_per_cpu
*cpu_buffer
)
3997 if (likely(!in_nmi())) {
3998 raw_spin_lock(&cpu_buffer
->reader_lock
);
4003 * If an NMI die dumps out the content of the ring buffer
4004 * trylock must be used to prevent a deadlock if the NMI
4005 * preempted a task that holds the ring buffer locks. If
4006 * we get the lock then all is fine, if not, then continue
4007 * to do the read, but this can corrupt the ring buffer,
4008 * so it must be permanently disabled from future writes.
4009 * Reading from NMI is a oneshot deal.
4011 if (raw_spin_trylock(&cpu_buffer
->reader_lock
))
4014 /* Continue without locking, but disable the ring buffer */
4015 atomic_inc(&cpu_buffer
->record_disabled
);
4020 rb_reader_unlock(struct ring_buffer_per_cpu
*cpu_buffer
, bool locked
)
4023 raw_spin_unlock(&cpu_buffer
->reader_lock
);
4028 * ring_buffer_peek - peek at the next event to be read
4029 * @buffer: The ring buffer to read
4030 * @cpu: The cpu to peak at
4031 * @ts: The timestamp counter of this event.
4032 * @lost_events: a variable to store if events were lost (may be NULL)
4034 * This will return the event that will be read next, but does
4035 * not consume the data.
4037 struct ring_buffer_event
*
4038 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
4039 unsigned long *lost_events
)
4041 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4042 struct ring_buffer_event
*event
;
4043 unsigned long flags
;
4046 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4050 local_irq_save(flags
);
4051 dolock
= rb_reader_lock(cpu_buffer
);
4052 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
4053 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
4054 rb_advance_reader(cpu_buffer
);
4055 rb_reader_unlock(cpu_buffer
, dolock
);
4056 local_irq_restore(flags
);
4058 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
4065 * ring_buffer_iter_peek - peek at the next event to be read
4066 * @iter: The ring buffer iterator
4067 * @ts: The timestamp counter of this event.
4069 * This will return the event that will be read next, but does
4070 * not increment the iterator.
4072 struct ring_buffer_event
*
4073 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
4075 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4076 struct ring_buffer_event
*event
;
4077 unsigned long flags
;
4080 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4081 event
= rb_iter_peek(iter
, ts
);
4082 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4084 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
4091 * ring_buffer_consume - return an event and consume it
4092 * @buffer: The ring buffer to get the next event from
4093 * @cpu: the cpu to read the buffer from
4094 * @ts: a variable to store the timestamp (may be NULL)
4095 * @lost_events: a variable to store if events were lost (may be NULL)
4097 * Returns the next event in the ring buffer, and that event is consumed.
4098 * Meaning, that sequential reads will keep returning a different event,
4099 * and eventually empty the ring buffer if the producer is slower.
4101 struct ring_buffer_event
*
4102 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
4103 unsigned long *lost_events
)
4105 struct ring_buffer_per_cpu
*cpu_buffer
;
4106 struct ring_buffer_event
*event
= NULL
;
4107 unsigned long flags
;
4111 /* might be called in atomic */
4114 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4117 cpu_buffer
= buffer
->buffers
[cpu
];
4118 local_irq_save(flags
);
4119 dolock
= rb_reader_lock(cpu_buffer
);
4121 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
4123 cpu_buffer
->lost_events
= 0;
4124 rb_advance_reader(cpu_buffer
);
4127 rb_reader_unlock(cpu_buffer
, dolock
);
4128 local_irq_restore(flags
);
4133 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
4138 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
4141 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4142 * @buffer: The ring buffer to read from
4143 * @cpu: The cpu buffer to iterate over
4145 * This performs the initial preparations necessary to iterate
4146 * through the buffer. Memory is allocated, buffer recording
4147 * is disabled, and the iterator pointer is returned to the caller.
4149 * Disabling buffer recording prevents the reading from being
4150 * corrupted. This is not a consuming read, so a producer is not
4153 * After a sequence of ring_buffer_read_prepare calls, the user is
4154 * expected to make at least one call to ring_buffer_read_prepare_sync.
4155 * Afterwards, ring_buffer_read_start is invoked to get things going
4158 * This overall must be paired with ring_buffer_read_finish.
4160 struct ring_buffer_iter
*
4161 ring_buffer_read_prepare(struct ring_buffer
*buffer
, int cpu
)
4163 struct ring_buffer_per_cpu
*cpu_buffer
;
4164 struct ring_buffer_iter
*iter
;
4166 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4169 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
4173 cpu_buffer
= buffer
->buffers
[cpu
];
4175 iter
->cpu_buffer
= cpu_buffer
;
4177 atomic_inc(&buffer
->resize_disabled
);
4178 atomic_inc(&cpu_buffer
->record_disabled
);
4182 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare
);
4185 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4187 * All previously invoked ring_buffer_read_prepare calls to prepare
4188 * iterators will be synchronized. Afterwards, read_buffer_read_start
4189 * calls on those iterators are allowed.
4192 ring_buffer_read_prepare_sync(void)
4194 synchronize_sched();
4196 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync
);
4199 * ring_buffer_read_start - start a non consuming read of the buffer
4200 * @iter: The iterator returned by ring_buffer_read_prepare
4202 * This finalizes the startup of an iteration through the buffer.
4203 * The iterator comes from a call to ring_buffer_read_prepare and
4204 * an intervening ring_buffer_read_prepare_sync must have been
4207 * Must be paired with ring_buffer_read_finish.
4210 ring_buffer_read_start(struct ring_buffer_iter
*iter
)
4212 struct ring_buffer_per_cpu
*cpu_buffer
;
4213 unsigned long flags
;
4218 cpu_buffer
= iter
->cpu_buffer
;
4220 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4221 arch_spin_lock(&cpu_buffer
->lock
);
4222 rb_iter_reset(iter
);
4223 arch_spin_unlock(&cpu_buffer
->lock
);
4224 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4226 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
4229 * ring_buffer_read_finish - finish reading the iterator of the buffer
4230 * @iter: The iterator retrieved by ring_buffer_start
4232 * This re-enables the recording to the buffer, and frees the
4236 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
4238 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4239 unsigned long flags
;
4242 * Ring buffer is disabled from recording, here's a good place
4243 * to check the integrity of the ring buffer.
4244 * Must prevent readers from trying to read, as the check
4245 * clears the HEAD page and readers require it.
4247 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4248 rb_check_pages(cpu_buffer
);
4249 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4251 atomic_dec(&cpu_buffer
->record_disabled
);
4252 atomic_dec(&cpu_buffer
->buffer
->resize_disabled
);
4255 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
4258 * ring_buffer_read - read the next item in the ring buffer by the iterator
4259 * @iter: The ring buffer iterator
4260 * @ts: The time stamp of the event read.
4262 * This reads the next event in the ring buffer and increments the iterator.
4264 struct ring_buffer_event
*
4265 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
4267 struct ring_buffer_event
*event
;
4268 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4269 unsigned long flags
;
4271 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4273 event
= rb_iter_peek(iter
, ts
);
4277 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
4280 rb_advance_iter(iter
);
4282 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4286 EXPORT_SYMBOL_GPL(ring_buffer_read
);
4289 * ring_buffer_size - return the size of the ring buffer (in bytes)
4290 * @buffer: The ring buffer.
4292 unsigned long ring_buffer_size(struct ring_buffer
*buffer
, int cpu
)
4295 * Earlier, this method returned
4296 * BUF_PAGE_SIZE * buffer->nr_pages
4297 * Since the nr_pages field is now removed, we have converted this to
4298 * return the per cpu buffer value.
4300 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4303 return BUF_PAGE_SIZE
* buffer
->buffers
[cpu
]->nr_pages
;
4305 EXPORT_SYMBOL_GPL(ring_buffer_size
);
4308 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
4310 rb_head_page_deactivate(cpu_buffer
);
4312 cpu_buffer
->head_page
4313 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
4314 local_set(&cpu_buffer
->head_page
->write
, 0);
4315 local_set(&cpu_buffer
->head_page
->entries
, 0);
4316 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
4318 cpu_buffer
->head_page
->read
= 0;
4320 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
4321 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
4323 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
4324 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
4325 local_set(&cpu_buffer
->reader_page
->write
, 0);
4326 local_set(&cpu_buffer
->reader_page
->entries
, 0);
4327 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
4328 cpu_buffer
->reader_page
->read
= 0;
4330 local_set(&cpu_buffer
->entries_bytes
, 0);
4331 local_set(&cpu_buffer
->overrun
, 0);
4332 local_set(&cpu_buffer
->commit_overrun
, 0);
4333 local_set(&cpu_buffer
->dropped_events
, 0);
4334 local_set(&cpu_buffer
->entries
, 0);
4335 local_set(&cpu_buffer
->committing
, 0);
4336 local_set(&cpu_buffer
->commits
, 0);
4337 cpu_buffer
->read
= 0;
4338 cpu_buffer
->read_bytes
= 0;
4340 cpu_buffer
->write_stamp
= 0;
4341 cpu_buffer
->read_stamp
= 0;
4343 cpu_buffer
->lost_events
= 0;
4344 cpu_buffer
->last_overrun
= 0;
4346 rb_head_page_activate(cpu_buffer
);
4350 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4351 * @buffer: The ring buffer to reset a per cpu buffer of
4352 * @cpu: The CPU buffer to be reset
4354 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
4356 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4357 unsigned long flags
;
4359 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4362 atomic_inc(&buffer
->resize_disabled
);
4363 atomic_inc(&cpu_buffer
->record_disabled
);
4365 /* Make sure all commits have finished */
4366 synchronize_sched();
4368 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4370 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
4373 arch_spin_lock(&cpu_buffer
->lock
);
4375 rb_reset_cpu(cpu_buffer
);
4377 arch_spin_unlock(&cpu_buffer
->lock
);
4380 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4382 atomic_dec(&cpu_buffer
->record_disabled
);
4383 atomic_dec(&buffer
->resize_disabled
);
4385 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
4388 * ring_buffer_reset - reset a ring buffer
4389 * @buffer: The ring buffer to reset all cpu buffers
4391 void ring_buffer_reset(struct ring_buffer
*buffer
)
4395 for_each_buffer_cpu(buffer
, cpu
)
4396 ring_buffer_reset_cpu(buffer
, cpu
);
4398 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
4401 * rind_buffer_empty - is the ring buffer empty?
4402 * @buffer: The ring buffer to test
4404 bool ring_buffer_empty(struct ring_buffer
*buffer
)
4406 struct ring_buffer_per_cpu
*cpu_buffer
;
4407 unsigned long flags
;
4412 /* yes this is racy, but if you don't like the race, lock the buffer */
4413 for_each_buffer_cpu(buffer
, cpu
) {
4414 cpu_buffer
= buffer
->buffers
[cpu
];
4415 local_irq_save(flags
);
4416 dolock
= rb_reader_lock(cpu_buffer
);
4417 ret
= rb_per_cpu_empty(cpu_buffer
);
4418 rb_reader_unlock(cpu_buffer
, dolock
);
4419 local_irq_restore(flags
);
4427 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
4430 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4431 * @buffer: The ring buffer
4432 * @cpu: The CPU buffer to test
4434 bool ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
4436 struct ring_buffer_per_cpu
*cpu_buffer
;
4437 unsigned long flags
;
4441 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4444 cpu_buffer
= buffer
->buffers
[cpu
];
4445 local_irq_save(flags
);
4446 dolock
= rb_reader_lock(cpu_buffer
);
4447 ret
= rb_per_cpu_empty(cpu_buffer
);
4448 rb_reader_unlock(cpu_buffer
, dolock
);
4449 local_irq_restore(flags
);
4453 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
4455 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4457 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4458 * @buffer_a: One buffer to swap with
4459 * @buffer_b: The other buffer to swap with
4461 * This function is useful for tracers that want to take a "snapshot"
4462 * of a CPU buffer and has another back up buffer lying around.
4463 * it is expected that the tracer handles the cpu buffer not being
4464 * used at the moment.
4466 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
4467 struct ring_buffer
*buffer_b
, int cpu
)
4469 struct ring_buffer_per_cpu
*cpu_buffer_a
;
4470 struct ring_buffer_per_cpu
*cpu_buffer_b
;
4473 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
4474 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
4477 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
4478 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
4480 /* At least make sure the two buffers are somewhat the same */
4481 if (cpu_buffer_a
->nr_pages
!= cpu_buffer_b
->nr_pages
)
4486 if (atomic_read(&buffer_a
->record_disabled
))
4489 if (atomic_read(&buffer_b
->record_disabled
))
4492 if (atomic_read(&cpu_buffer_a
->record_disabled
))
4495 if (atomic_read(&cpu_buffer_b
->record_disabled
))
4499 * We can't do a synchronize_sched here because this
4500 * function can be called in atomic context.
4501 * Normally this will be called from the same CPU as cpu.
4502 * If not it's up to the caller to protect this.
4504 atomic_inc(&cpu_buffer_a
->record_disabled
);
4505 atomic_inc(&cpu_buffer_b
->record_disabled
);
4508 if (local_read(&cpu_buffer_a
->committing
))
4510 if (local_read(&cpu_buffer_b
->committing
))
4513 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
4514 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
4516 cpu_buffer_b
->buffer
= buffer_a
;
4517 cpu_buffer_a
->buffer
= buffer_b
;
4522 atomic_dec(&cpu_buffer_a
->record_disabled
);
4523 atomic_dec(&cpu_buffer_b
->record_disabled
);
4527 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
4528 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4531 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4532 * @buffer: the buffer to allocate for.
4533 * @cpu: the cpu buffer to allocate.
4535 * This function is used in conjunction with ring_buffer_read_page.
4536 * When reading a full page from the ring buffer, these functions
4537 * can be used to speed up the process. The calling function should
4538 * allocate a few pages first with this function. Then when it
4539 * needs to get pages from the ring buffer, it passes the result
4540 * of this function into ring_buffer_read_page, which will swap
4541 * the page that was allocated, with the read page of the buffer.
4544 * The page allocated, or ERR_PTR
4546 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
, int cpu
)
4548 struct ring_buffer_per_cpu
*cpu_buffer
;
4549 struct buffer_data_page
*bpage
= NULL
;
4550 unsigned long flags
;
4553 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4554 return ERR_PTR(-ENODEV
);
4556 cpu_buffer
= buffer
->buffers
[cpu
];
4557 local_irq_save(flags
);
4558 arch_spin_lock(&cpu_buffer
->lock
);
4560 if (cpu_buffer
->free_page
) {
4561 bpage
= cpu_buffer
->free_page
;
4562 cpu_buffer
->free_page
= NULL
;
4565 arch_spin_unlock(&cpu_buffer
->lock
);
4566 local_irq_restore(flags
);
4571 page
= alloc_pages_node(cpu_to_node(cpu
),
4572 GFP_KERNEL
| __GFP_NORETRY
, 0);
4574 return ERR_PTR(-ENOMEM
);
4576 bpage
= page_address(page
);
4579 rb_init_page(bpage
);
4583 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
4586 * ring_buffer_free_read_page - free an allocated read page
4587 * @buffer: the buffer the page was allocate for
4588 * @cpu: the cpu buffer the page came from
4589 * @data: the page to free
4591 * Free a page allocated from ring_buffer_alloc_read_page.
4593 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, int cpu
, void *data
)
4595 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4596 struct buffer_data_page
*bpage
= data
;
4597 struct page
*page
= virt_to_page(bpage
);
4598 unsigned long flags
;
4600 /* If the page is still in use someplace else, we can't reuse it */
4601 if (page_ref_count(page
) > 1)
4604 local_irq_save(flags
);
4605 arch_spin_lock(&cpu_buffer
->lock
);
4607 if (!cpu_buffer
->free_page
) {
4608 cpu_buffer
->free_page
= bpage
;
4612 arch_spin_unlock(&cpu_buffer
->lock
);
4613 local_irq_restore(flags
);
4616 free_page((unsigned long)bpage
);
4618 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
4621 * ring_buffer_read_page - extract a page from the ring buffer
4622 * @buffer: buffer to extract from
4623 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4624 * @len: amount to extract
4625 * @cpu: the cpu of the buffer to extract
4626 * @full: should the extraction only happen when the page is full.
4628 * This function will pull out a page from the ring buffer and consume it.
4629 * @data_page must be the address of the variable that was returned
4630 * from ring_buffer_alloc_read_page. This is because the page might be used
4631 * to swap with a page in the ring buffer.
4634 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4635 * if (IS_ERR(rpage))
4636 * return PTR_ERR(rpage);
4637 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4639 * process_page(rpage, ret);
4641 * When @full is set, the function will not return true unless
4642 * the writer is off the reader page.
4644 * Note: it is up to the calling functions to handle sleeps and wakeups.
4645 * The ring buffer can be used anywhere in the kernel and can not
4646 * blindly call wake_up. The layer that uses the ring buffer must be
4647 * responsible for that.
4650 * >=0 if data has been transferred, returns the offset of consumed data.
4651 * <0 if no data has been transferred.
4653 int ring_buffer_read_page(struct ring_buffer
*buffer
,
4654 void **data_page
, size_t len
, int cpu
, int full
)
4656 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4657 struct ring_buffer_event
*event
;
4658 struct buffer_data_page
*bpage
;
4659 struct buffer_page
*reader
;
4660 unsigned long missed_events
;
4661 unsigned long flags
;
4662 unsigned int commit
;
4667 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4671 * If len is not big enough to hold the page header, then
4672 * we can not copy anything.
4674 if (len
<= BUF_PAGE_HDR_SIZE
)
4677 len
-= BUF_PAGE_HDR_SIZE
;
4686 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4688 reader
= rb_get_reader_page(cpu_buffer
);
4692 event
= rb_reader_event(cpu_buffer
);
4694 read
= reader
->read
;
4695 commit
= rb_page_commit(reader
);
4697 /* Check if any events were dropped */
4698 missed_events
= cpu_buffer
->lost_events
;
4701 * If this page has been partially read or
4702 * if len is not big enough to read the rest of the page or
4703 * a writer is still on the page, then
4704 * we must copy the data from the page to the buffer.
4705 * Otherwise, we can simply swap the page with the one passed in.
4707 if (read
|| (len
< (commit
- read
)) ||
4708 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
4709 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
4710 unsigned int rpos
= read
;
4711 unsigned int pos
= 0;
4717 if (len
> (commit
- read
))
4718 len
= (commit
- read
);
4720 /* Always keep the time extend and data together */
4721 size
= rb_event_ts_length(event
);
4726 /* save the current timestamp, since the user will need it */
4727 save_timestamp
= cpu_buffer
->read_stamp
;
4729 /* Need to copy one event at a time */
4731 /* We need the size of one event, because
4732 * rb_advance_reader only advances by one event,
4733 * whereas rb_event_ts_length may include the size of
4734 * one or two events.
4735 * We have already ensured there's enough space if this
4736 * is a time extend. */
4737 size
= rb_event_length(event
);
4738 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
4742 rb_advance_reader(cpu_buffer
);
4743 rpos
= reader
->read
;
4749 event
= rb_reader_event(cpu_buffer
);
4750 /* Always keep the time extend and data together */
4751 size
= rb_event_ts_length(event
);
4752 } while (len
>= size
);
4755 local_set(&bpage
->commit
, pos
);
4756 bpage
->time_stamp
= save_timestamp
;
4758 /* we copied everything to the beginning */
4761 /* update the entry counter */
4762 cpu_buffer
->read
+= rb_page_entries(reader
);
4763 cpu_buffer
->read_bytes
+= BUF_PAGE_SIZE
;
4765 /* swap the pages */
4766 rb_init_page(bpage
);
4767 bpage
= reader
->page
;
4768 reader
->page
= *data_page
;
4769 local_set(&reader
->write
, 0);
4770 local_set(&reader
->entries
, 0);
4775 * Use the real_end for the data size,
4776 * This gives us a chance to store the lost events
4779 if (reader
->real_end
)
4780 local_set(&bpage
->commit
, reader
->real_end
);
4784 cpu_buffer
->lost_events
= 0;
4786 commit
= local_read(&bpage
->commit
);
4788 * Set a flag in the commit field if we lost events
4790 if (missed_events
) {
4791 /* If there is room at the end of the page to save the
4792 * missed events, then record it there.
4794 if (BUF_PAGE_SIZE
- commit
>= sizeof(missed_events
)) {
4795 memcpy(&bpage
->data
[commit
], &missed_events
,
4796 sizeof(missed_events
));
4797 local_add(RB_MISSED_STORED
, &bpage
->commit
);
4798 commit
+= sizeof(missed_events
);
4800 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
4804 * This page may be off to user land. Zero it out here.
4806 if (commit
< BUF_PAGE_SIZE
)
4807 memset(&bpage
->data
[commit
], 0, BUF_PAGE_SIZE
- commit
);
4810 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4815 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
4818 * We only allocate new buffers, never free them if the CPU goes down.
4819 * If we were to free the buffer, then the user would lose any trace that was in
4822 int trace_rb_cpu_prepare(unsigned int cpu
, struct hlist_node
*node
)
4824 struct ring_buffer
*buffer
;
4827 unsigned long nr_pages
;
4829 buffer
= container_of(node
, struct ring_buffer
, node
);
4830 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
4835 /* check if all cpu sizes are same */
4836 for_each_buffer_cpu(buffer
, cpu_i
) {
4837 /* fill in the size from first enabled cpu */
4839 nr_pages
= buffer
->buffers
[cpu_i
]->nr_pages
;
4840 if (nr_pages
!= buffer
->buffers
[cpu_i
]->nr_pages
) {
4845 /* allocate minimum pages, user can later expand it */
4848 buffer
->buffers
[cpu
] =
4849 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
4850 if (!buffer
->buffers
[cpu
]) {
4851 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4856 cpumask_set_cpu(cpu
, buffer
->cpumask
);
4860 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4862 * This is a basic integrity check of the ring buffer.
4863 * Late in the boot cycle this test will run when configured in.
4864 * It will kick off a thread per CPU that will go into a loop
4865 * writing to the per cpu ring buffer various sizes of data.
4866 * Some of the data will be large items, some small.
4868 * Another thread is created that goes into a spin, sending out
4869 * IPIs to the other CPUs to also write into the ring buffer.
4870 * this is to test the nesting ability of the buffer.
4872 * Basic stats are recorded and reported. If something in the
4873 * ring buffer should happen that's not expected, a big warning
4874 * is displayed and all ring buffers are disabled.
4876 static struct task_struct
*rb_threads
[NR_CPUS
] __initdata
;
4878 struct rb_test_data
{
4879 struct ring_buffer
*buffer
;
4880 unsigned long events
;
4881 unsigned long bytes_written
;
4882 unsigned long bytes_alloc
;
4883 unsigned long bytes_dropped
;
4884 unsigned long events_nested
;
4885 unsigned long bytes_written_nested
;
4886 unsigned long bytes_alloc_nested
;
4887 unsigned long bytes_dropped_nested
;
4888 int min_size_nested
;
4889 int max_size_nested
;
4896 static struct rb_test_data rb_data
[NR_CPUS
] __initdata
;
4899 #define RB_TEST_BUFFER_SIZE 1048576
4901 static char rb_string
[] __initdata
=
4902 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4903 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4904 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4906 static bool rb_test_started __initdata
;
4913 static __init
int rb_write_something(struct rb_test_data
*data
, bool nested
)
4915 struct ring_buffer_event
*event
;
4916 struct rb_item
*item
;
4923 /* Have nested writes different that what is written */
4924 cnt
= data
->cnt
+ (nested
? 27 : 0);
4926 /* Multiply cnt by ~e, to make some unique increment */
4927 size
= (data
->cnt
* 68 / 25) % (sizeof(rb_string
) - 1);
4929 len
= size
+ sizeof(struct rb_item
);
4931 started
= rb_test_started
;
4932 /* read rb_test_started before checking buffer enabled */
4935 event
= ring_buffer_lock_reserve(data
->buffer
, len
);
4937 /* Ignore dropped events before test starts. */
4940 data
->bytes_dropped
+= len
;
4942 data
->bytes_dropped_nested
+= len
;
4947 event_len
= ring_buffer_event_length(event
);
4949 if (RB_WARN_ON(data
->buffer
, event_len
< len
))
4952 item
= ring_buffer_event_data(event
);
4954 memcpy(item
->str
, rb_string
, size
);
4957 data
->bytes_alloc_nested
+= event_len
;
4958 data
->bytes_written_nested
+= len
;
4959 data
->events_nested
++;
4960 if (!data
->min_size_nested
|| len
< data
->min_size_nested
)
4961 data
->min_size_nested
= len
;
4962 if (len
> data
->max_size_nested
)
4963 data
->max_size_nested
= len
;
4965 data
->bytes_alloc
+= event_len
;
4966 data
->bytes_written
+= len
;
4968 if (!data
->min_size
|| len
< data
->min_size
)
4969 data
->max_size
= len
;
4970 if (len
> data
->max_size
)
4971 data
->max_size
= len
;
4975 ring_buffer_unlock_commit(data
->buffer
, event
);
4980 static __init
int rb_test(void *arg
)
4982 struct rb_test_data
*data
= arg
;
4984 while (!kthread_should_stop()) {
4985 rb_write_something(data
, false);
4988 set_current_state(TASK_INTERRUPTIBLE
);
4989 /* Now sleep between a min of 100-300us and a max of 1ms */
4990 usleep_range(((data
->cnt
% 3) + 1) * 100, 1000);
4996 static __init
void rb_ipi(void *ignore
)
4998 struct rb_test_data
*data
;
4999 int cpu
= smp_processor_id();
5001 data
= &rb_data
[cpu
];
5002 rb_write_something(data
, true);
5005 static __init
int rb_hammer_test(void *arg
)
5007 while (!kthread_should_stop()) {
5009 /* Send an IPI to all cpus to write data! */
5010 smp_call_function(rb_ipi
, NULL
, 1);
5011 /* No sleep, but for non preempt, let others run */
5018 static __init
int test_ringbuffer(void)
5020 struct task_struct
*rb_hammer
;
5021 struct ring_buffer
*buffer
;
5025 pr_info("Running ring buffer tests...\n");
5027 buffer
= ring_buffer_alloc(RB_TEST_BUFFER_SIZE
, RB_FL_OVERWRITE
);
5028 if (WARN_ON(!buffer
))
5031 /* Disable buffer so that threads can't write to it yet */
5032 ring_buffer_record_off(buffer
);
5034 for_each_online_cpu(cpu
) {
5035 rb_data
[cpu
].buffer
= buffer
;
5036 rb_data
[cpu
].cpu
= cpu
;
5037 rb_data
[cpu
].cnt
= cpu
;
5038 rb_threads
[cpu
] = kthread_create(rb_test
, &rb_data
[cpu
],
5039 "rbtester/%d", cpu
);
5040 if (WARN_ON(IS_ERR(rb_threads
[cpu
]))) {
5041 pr_cont("FAILED\n");
5042 ret
= PTR_ERR(rb_threads
[cpu
]);
5046 kthread_bind(rb_threads
[cpu
], cpu
);
5047 wake_up_process(rb_threads
[cpu
]);
5050 /* Now create the rb hammer! */
5051 rb_hammer
= kthread_run(rb_hammer_test
, NULL
, "rbhammer");
5052 if (WARN_ON(IS_ERR(rb_hammer
))) {
5053 pr_cont("FAILED\n");
5054 ret
= PTR_ERR(rb_hammer
);
5058 ring_buffer_record_on(buffer
);
5060 * Show buffer is enabled before setting rb_test_started.
5061 * Yes there's a small race window where events could be
5062 * dropped and the thread wont catch it. But when a ring
5063 * buffer gets enabled, there will always be some kind of
5064 * delay before other CPUs see it. Thus, we don't care about
5065 * those dropped events. We care about events dropped after
5066 * the threads see that the buffer is active.
5069 rb_test_started
= true;
5071 set_current_state(TASK_INTERRUPTIBLE
);
5072 /* Just run for 10 seconds */;
5073 schedule_timeout(10 * HZ
);
5075 kthread_stop(rb_hammer
);
5078 for_each_online_cpu(cpu
) {
5079 if (!rb_threads
[cpu
])
5081 kthread_stop(rb_threads
[cpu
]);
5084 ring_buffer_free(buffer
);
5089 pr_info("finished\n");
5090 for_each_online_cpu(cpu
) {
5091 struct ring_buffer_event
*event
;
5092 struct rb_test_data
*data
= &rb_data
[cpu
];
5093 struct rb_item
*item
;
5094 unsigned long total_events
;
5095 unsigned long total_dropped
;
5096 unsigned long total_written
;
5097 unsigned long total_alloc
;
5098 unsigned long total_read
= 0;
5099 unsigned long total_size
= 0;
5100 unsigned long total_len
= 0;
5101 unsigned long total_lost
= 0;
5104 int small_event_size
;
5108 total_events
= data
->events
+ data
->events_nested
;
5109 total_written
= data
->bytes_written
+ data
->bytes_written_nested
;
5110 total_alloc
= data
->bytes_alloc
+ data
->bytes_alloc_nested
;
5111 total_dropped
= data
->bytes_dropped
+ data
->bytes_dropped_nested
;
5113 big_event_size
= data
->max_size
+ data
->max_size_nested
;
5114 small_event_size
= data
->min_size
+ data
->min_size_nested
;
5116 pr_info("CPU %d:\n", cpu
);
5117 pr_info(" events: %ld\n", total_events
);
5118 pr_info(" dropped bytes: %ld\n", total_dropped
);
5119 pr_info(" alloced bytes: %ld\n", total_alloc
);
5120 pr_info(" written bytes: %ld\n", total_written
);
5121 pr_info(" biggest event: %d\n", big_event_size
);
5122 pr_info(" smallest event: %d\n", small_event_size
);
5124 if (RB_WARN_ON(buffer
, total_dropped
))
5129 while ((event
= ring_buffer_consume(buffer
, cpu
, NULL
, &lost
))) {
5131 item
= ring_buffer_event_data(event
);
5132 total_len
+= ring_buffer_event_length(event
);
5133 total_size
+= item
->size
+ sizeof(struct rb_item
);
5134 if (memcmp(&item
->str
[0], rb_string
, item
->size
) != 0) {
5135 pr_info("FAILED!\n");
5136 pr_info("buffer had: %.*s\n", item
->size
, item
->str
);
5137 pr_info("expected: %.*s\n", item
->size
, rb_string
);
5138 RB_WARN_ON(buffer
, 1);
5149 pr_info(" read events: %ld\n", total_read
);
5150 pr_info(" lost events: %ld\n", total_lost
);
5151 pr_info(" total events: %ld\n", total_lost
+ total_read
);
5152 pr_info(" recorded len bytes: %ld\n", total_len
);
5153 pr_info(" recorded size bytes: %ld\n", total_size
);
5155 pr_info(" With dropped events, record len and size may not match\n"
5156 " alloced and written from above\n");
5158 if (RB_WARN_ON(buffer
, total_len
!= total_alloc
||
5159 total_size
!= total_written
))
5162 if (RB_WARN_ON(buffer
, total_lost
+ total_read
!= total_events
))
5168 pr_info("Ring buffer PASSED!\n");
5170 ring_buffer_free(buffer
);
5174 late_initcall(test_ringbuffer
);
5175 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */