perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / mm / huge_memory.c
blob25ef59b7ee3482d797a21f9a69bb916bbfc67ebb
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60 static struct shrinker deferred_split_shrinker;
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
65 static struct page *get_huge_zero_page(void)
67 struct page *zero_page;
68 retry:
69 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70 return READ_ONCE(huge_zero_page);
72 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73 HPAGE_PMD_ORDER);
74 if (!zero_page) {
75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76 return NULL;
78 count_vm_event(THP_ZERO_PAGE_ALLOC);
79 preempt_disable();
80 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81 preempt_enable();
82 __free_pages(zero_page, compound_order(zero_page));
83 goto retry;
86 /* We take additional reference here. It will be put back by shrinker */
87 atomic_set(&huge_zero_refcount, 2);
88 preempt_enable();
89 return READ_ONCE(huge_zero_page);
92 static void put_huge_zero_page(void)
95 * Counter should never go to zero here. Only shrinker can put
96 * last reference.
98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
101 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
103 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 return READ_ONCE(huge_zero_page);
106 if (!get_huge_zero_page())
107 return NULL;
109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 put_huge_zero_page();
112 return READ_ONCE(huge_zero_page);
115 void mm_put_huge_zero_page(struct mm_struct *mm)
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 put_huge_zero_page();
121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 struct shrink_control *sc)
124 /* we can free zero page only if last reference remains */
125 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 struct shrink_control *sc)
131 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 struct page *zero_page = xchg(&huge_zero_page, NULL);
133 BUG_ON(zero_page == NULL);
134 __free_pages(zero_page, compound_order(zero_page));
135 return HPAGE_PMD_NR;
138 return 0;
141 static struct shrinker huge_zero_page_shrinker = {
142 .count_objects = shrink_huge_zero_page_count,
143 .scan_objects = shrink_huge_zero_page_scan,
144 .seeks = DEFAULT_SEEKS,
147 #ifdef CONFIG_SYSFS
148 static ssize_t enabled_show(struct kobject *kobj,
149 struct kobj_attribute *attr, char *buf)
151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 return sprintf(buf, "[always] madvise never\n");
153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 return sprintf(buf, "always [madvise] never\n");
155 else
156 return sprintf(buf, "always madvise [never]\n");
159 static ssize_t enabled_store(struct kobject *kobj,
160 struct kobj_attribute *attr,
161 const char *buf, size_t count)
163 ssize_t ret = count;
165 if (!memcmp("always", buf,
166 min(sizeof("always")-1, count))) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 } else if (!memcmp("madvise", buf,
170 min(sizeof("madvise")-1, count))) {
171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 } else if (!memcmp("never", buf,
174 min(sizeof("never")-1, count))) {
175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 } else
178 ret = -EINVAL;
180 if (ret > 0) {
181 int err = start_stop_khugepaged();
182 if (err)
183 ret = err;
185 return ret;
187 static struct kobj_attribute enabled_attr =
188 __ATTR(enabled, 0644, enabled_show, enabled_store);
190 ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 struct kobj_attribute *attr, char *buf,
192 enum transparent_hugepage_flag flag)
194 return sprintf(buf, "%d\n",
195 !!test_bit(flag, &transparent_hugepage_flags));
198 ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 struct kobj_attribute *attr,
200 const char *buf, size_t count,
201 enum transparent_hugepage_flag flag)
203 unsigned long value;
204 int ret;
206 ret = kstrtoul(buf, 10, &value);
207 if (ret < 0)
208 return ret;
209 if (value > 1)
210 return -EINVAL;
212 if (value)
213 set_bit(flag, &transparent_hugepage_flags);
214 else
215 clear_bit(flag, &transparent_hugepage_flags);
217 return count;
220 static ssize_t defrag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf)
223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
234 static ssize_t defrag_store(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 const char *buf, size_t count)
238 if (!memcmp("always", buf,
239 min(sizeof("always")-1, count))) {
240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 } else if (!memcmp("defer+madvise", buf,
245 min(sizeof("defer+madvise")-1, count))) {
246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 } else if (!memcmp("defer", buf,
251 min(sizeof("defer")-1, count))) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 } else if (!memcmp("madvise", buf,
257 min(sizeof("madvise")-1, count))) {
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 } else if (!memcmp("never", buf,
263 min(sizeof("never")-1, count))) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
271 return count;
273 static struct kobj_attribute defrag_attr =
274 __ATTR(defrag, 0644, defrag_show, defrag_store);
276 static ssize_t use_zero_page_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
279 return single_hugepage_flag_show(kobj, attr, buf,
280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
282 static ssize_t use_zero_page_store(struct kobject *kobj,
283 struct kobj_attribute *attr, const char *buf, size_t count)
285 return single_hugepage_flag_store(kobj, attr, buf, count,
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 static struct kobj_attribute use_zero_page_attr =
289 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
291 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
294 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
296 static struct kobj_attribute hpage_pmd_size_attr =
297 __ATTR_RO(hpage_pmd_size);
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t debug_cow_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
303 return single_hugepage_flag_show(kobj, attr, buf,
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
306 static ssize_t debug_cow_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
310 return single_hugepage_flag_store(kobj, attr, buf, count,
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
313 static struct kobj_attribute debug_cow_attr =
314 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315 #endif /* CONFIG_DEBUG_VM */
317 static struct attribute *hugepage_attr[] = {
318 &enabled_attr.attr,
319 &defrag_attr.attr,
320 &use_zero_page_attr.attr,
321 &hpage_pmd_size_attr.attr,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 &shmem_enabled_attr.attr,
324 #endif
325 #ifdef CONFIG_DEBUG_VM
326 &debug_cow_attr.attr,
327 #endif
328 NULL,
331 static const struct attribute_group hugepage_attr_group = {
332 .attrs = hugepage_attr,
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
337 int err;
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
341 pr_err("failed to create transparent hugepage kobject\n");
342 return -ENOMEM;
345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 if (err) {
347 pr_err("failed to register transparent hugepage group\n");
348 goto delete_obj;
351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 if (err) {
353 pr_err("failed to register transparent hugepage group\n");
354 goto remove_hp_group;
357 return 0;
359 remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
375 return 0;
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
381 #endif /* CONFIG_SYSFS */
383 static int __init hugepage_init(void)
385 int err;
386 struct kobject *hugepage_kobj;
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
394 * hugepages can't be allocated by the buddy allocator
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
405 goto err_sysfs;
407 err = khugepaged_init();
408 if (err)
409 goto err_slab;
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
423 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424 transparent_hugepage_flags = 0;
425 return 0;
428 err = start_stop_khugepaged();
429 if (err)
430 goto err_khugepaged;
432 return 0;
433 err_khugepaged:
434 unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436 unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438 khugepaged_destroy();
439 err_slab:
440 hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442 return err;
444 subsys_initcall(hugepage_init);
446 static int __init setup_transparent_hugepage(char *str)
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
470 out:
471 if (!ret)
472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 return ret;
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
479 if (likely(vma->vm_flags & VM_WRITE))
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
484 static inline struct list_head *page_deferred_list(struct page *page)
486 /* ->lru in the tail pages is occupied by compound_head. */
487 return &page[2].deferred_list;
490 void prep_transhuge_page(struct page *page)
493 * we use page->mapping and page->indexlru in second tail page
494 * as list_head: assuming THP order >= 2
497 INIT_LIST_HEAD(page_deferred_list(page));
498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
501 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
502 loff_t off, unsigned long flags, unsigned long size)
504 unsigned long addr;
505 loff_t off_end = off + len;
506 loff_t off_align = round_up(off, size);
507 unsigned long len_pad;
509 if (off_end <= off_align || (off_end - off_align) < size)
510 return 0;
512 len_pad = len + size;
513 if (len_pad < len || (off + len_pad) < off)
514 return 0;
516 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
517 off >> PAGE_SHIFT, flags);
518 if (IS_ERR_VALUE(addr))
519 return 0;
521 addr += (off - addr) & (size - 1);
522 return addr;
525 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
526 unsigned long len, unsigned long pgoff, unsigned long flags)
528 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
530 if (addr)
531 goto out;
532 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
533 goto out;
535 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
536 if (addr)
537 return addr;
539 out:
540 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
542 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
544 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
545 struct page *page, gfp_t gfp)
547 struct vm_area_struct *vma = vmf->vma;
548 struct mem_cgroup *memcg;
549 pgtable_t pgtable;
550 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
551 vm_fault_t ret = 0;
553 VM_BUG_ON_PAGE(!PageCompound(page), page);
555 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
556 put_page(page);
557 count_vm_event(THP_FAULT_FALLBACK);
558 return VM_FAULT_FALLBACK;
561 pgtable = pte_alloc_one(vma->vm_mm, haddr);
562 if (unlikely(!pgtable)) {
563 ret = VM_FAULT_OOM;
564 goto release;
567 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
569 * The memory barrier inside __SetPageUptodate makes sure that
570 * clear_huge_page writes become visible before the set_pmd_at()
571 * write.
573 __SetPageUptodate(page);
575 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
576 if (unlikely(!pmd_none(*vmf->pmd))) {
577 goto unlock_release;
578 } else {
579 pmd_t entry;
581 ret = check_stable_address_space(vma->vm_mm);
582 if (ret)
583 goto unlock_release;
585 /* Deliver the page fault to userland */
586 if (userfaultfd_missing(vma)) {
587 vm_fault_t ret2;
589 spin_unlock(vmf->ptl);
590 mem_cgroup_cancel_charge(page, memcg, true);
591 put_page(page);
592 pte_free(vma->vm_mm, pgtable);
593 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
594 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
595 return ret2;
598 entry = mk_huge_pmd(page, vma->vm_page_prot);
599 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
600 page_add_new_anon_rmap(page, vma, haddr, true);
601 mem_cgroup_commit_charge(page, memcg, false, true);
602 lru_cache_add_active_or_unevictable(page, vma);
603 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
604 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
605 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
606 mm_inc_nr_ptes(vma->vm_mm);
607 spin_unlock(vmf->ptl);
608 count_vm_event(THP_FAULT_ALLOC);
611 return 0;
612 unlock_release:
613 spin_unlock(vmf->ptl);
614 release:
615 if (pgtable)
616 pte_free(vma->vm_mm, pgtable);
617 mem_cgroup_cancel_charge(page, memcg, true);
618 put_page(page);
619 return ret;
624 * always: directly stall for all thp allocations
625 * defer: wake kswapd and fail if not immediately available
626 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
627 * fail if not immediately available
628 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
629 * available
630 * never: never stall for any thp allocation
632 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
634 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
636 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
637 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
638 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
639 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
640 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
641 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
642 __GFP_KSWAPD_RECLAIM);
643 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
644 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
646 return GFP_TRANSHUGE_LIGHT;
649 /* Caller must hold page table lock. */
650 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
651 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
652 struct page *zero_page)
654 pmd_t entry;
655 if (!pmd_none(*pmd))
656 return false;
657 entry = mk_pmd(zero_page, vma->vm_page_prot);
658 entry = pmd_mkhuge(entry);
659 if (pgtable)
660 pgtable_trans_huge_deposit(mm, pmd, pgtable);
661 set_pmd_at(mm, haddr, pmd, entry);
662 mm_inc_nr_ptes(mm);
663 return true;
666 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
668 struct vm_area_struct *vma = vmf->vma;
669 gfp_t gfp;
670 struct page *page;
671 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
673 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
674 return VM_FAULT_FALLBACK;
675 if (unlikely(anon_vma_prepare(vma)))
676 return VM_FAULT_OOM;
677 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
678 return VM_FAULT_OOM;
679 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
680 !mm_forbids_zeropage(vma->vm_mm) &&
681 transparent_hugepage_use_zero_page()) {
682 pgtable_t pgtable;
683 struct page *zero_page;
684 bool set;
685 vm_fault_t ret;
686 pgtable = pte_alloc_one(vma->vm_mm, haddr);
687 if (unlikely(!pgtable))
688 return VM_FAULT_OOM;
689 zero_page = mm_get_huge_zero_page(vma->vm_mm);
690 if (unlikely(!zero_page)) {
691 pte_free(vma->vm_mm, pgtable);
692 count_vm_event(THP_FAULT_FALLBACK);
693 return VM_FAULT_FALLBACK;
695 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
696 ret = 0;
697 set = false;
698 if (pmd_none(*vmf->pmd)) {
699 ret = check_stable_address_space(vma->vm_mm);
700 if (ret) {
701 spin_unlock(vmf->ptl);
702 } else if (userfaultfd_missing(vma)) {
703 spin_unlock(vmf->ptl);
704 ret = handle_userfault(vmf, VM_UFFD_MISSING);
705 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
706 } else {
707 set_huge_zero_page(pgtable, vma->vm_mm, vma,
708 haddr, vmf->pmd, zero_page);
709 spin_unlock(vmf->ptl);
710 set = true;
712 } else
713 spin_unlock(vmf->ptl);
714 if (!set)
715 pte_free(vma->vm_mm, pgtable);
716 return ret;
718 gfp = alloc_hugepage_direct_gfpmask(vma);
719 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
720 if (unlikely(!page)) {
721 count_vm_event(THP_FAULT_FALLBACK);
722 return VM_FAULT_FALLBACK;
724 prep_transhuge_page(page);
725 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
728 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
729 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
730 pgtable_t pgtable)
732 struct mm_struct *mm = vma->vm_mm;
733 pmd_t entry;
734 spinlock_t *ptl;
736 ptl = pmd_lock(mm, pmd);
737 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
738 if (pfn_t_devmap(pfn))
739 entry = pmd_mkdevmap(entry);
740 if (write) {
741 entry = pmd_mkyoung(pmd_mkdirty(entry));
742 entry = maybe_pmd_mkwrite(entry, vma);
745 if (pgtable) {
746 pgtable_trans_huge_deposit(mm, pmd, pgtable);
747 mm_inc_nr_ptes(mm);
750 set_pmd_at(mm, addr, pmd, entry);
751 update_mmu_cache_pmd(vma, addr, pmd);
752 spin_unlock(ptl);
755 vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
756 pmd_t *pmd, pfn_t pfn, bool write)
758 pgprot_t pgprot = vma->vm_page_prot;
759 pgtable_t pgtable = NULL;
761 * If we had pmd_special, we could avoid all these restrictions,
762 * but we need to be consistent with PTEs and architectures that
763 * can't support a 'special' bit.
765 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
766 !pfn_t_devmap(pfn));
767 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
768 (VM_PFNMAP|VM_MIXEDMAP));
769 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
771 if (addr < vma->vm_start || addr >= vma->vm_end)
772 return VM_FAULT_SIGBUS;
774 if (arch_needs_pgtable_deposit()) {
775 pgtable = pte_alloc_one(vma->vm_mm, addr);
776 if (!pgtable)
777 return VM_FAULT_OOM;
780 track_pfn_insert(vma, &pgprot, pfn);
782 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
783 return VM_FAULT_NOPAGE;
785 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
787 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
788 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
790 if (likely(vma->vm_flags & VM_WRITE))
791 pud = pud_mkwrite(pud);
792 return pud;
795 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
796 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
798 struct mm_struct *mm = vma->vm_mm;
799 pud_t entry;
800 spinlock_t *ptl;
802 ptl = pud_lock(mm, pud);
803 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
804 if (pfn_t_devmap(pfn))
805 entry = pud_mkdevmap(entry);
806 if (write) {
807 entry = pud_mkyoung(pud_mkdirty(entry));
808 entry = maybe_pud_mkwrite(entry, vma);
810 set_pud_at(mm, addr, pud, entry);
811 update_mmu_cache_pud(vma, addr, pud);
812 spin_unlock(ptl);
815 vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
816 pud_t *pud, pfn_t pfn, bool write)
818 pgprot_t pgprot = vma->vm_page_prot;
820 * If we had pud_special, we could avoid all these restrictions,
821 * but we need to be consistent with PTEs and architectures that
822 * can't support a 'special' bit.
824 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
825 !pfn_t_devmap(pfn));
826 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
827 (VM_PFNMAP|VM_MIXEDMAP));
828 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
830 if (addr < vma->vm_start || addr >= vma->vm_end)
831 return VM_FAULT_SIGBUS;
833 track_pfn_insert(vma, &pgprot, pfn);
835 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
836 return VM_FAULT_NOPAGE;
838 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
839 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
841 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
842 pmd_t *pmd, int flags)
844 pmd_t _pmd;
846 _pmd = pmd_mkyoung(*pmd);
847 if (flags & FOLL_WRITE)
848 _pmd = pmd_mkdirty(_pmd);
849 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
850 pmd, _pmd, flags & FOLL_WRITE))
851 update_mmu_cache_pmd(vma, addr, pmd);
854 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
855 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
857 unsigned long pfn = pmd_pfn(*pmd);
858 struct mm_struct *mm = vma->vm_mm;
859 struct page *page;
861 assert_spin_locked(pmd_lockptr(mm, pmd));
864 * When we COW a devmap PMD entry, we split it into PTEs, so we should
865 * not be in this function with `flags & FOLL_COW` set.
867 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
869 if (flags & FOLL_WRITE && !pmd_write(*pmd))
870 return NULL;
872 if (pmd_present(*pmd) && pmd_devmap(*pmd))
873 /* pass */;
874 else
875 return NULL;
877 if (flags & FOLL_TOUCH)
878 touch_pmd(vma, addr, pmd, flags);
881 * device mapped pages can only be returned if the
882 * caller will manage the page reference count.
884 if (!(flags & FOLL_GET))
885 return ERR_PTR(-EEXIST);
887 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
888 *pgmap = get_dev_pagemap(pfn, *pgmap);
889 if (!*pgmap)
890 return ERR_PTR(-EFAULT);
891 page = pfn_to_page(pfn);
892 get_page(page);
894 return page;
897 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
898 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
899 struct vm_area_struct *vma)
901 spinlock_t *dst_ptl, *src_ptl;
902 struct page *src_page;
903 pmd_t pmd;
904 pgtable_t pgtable = NULL;
905 int ret = -ENOMEM;
907 /* Skip if can be re-fill on fault */
908 if (!vma_is_anonymous(vma))
909 return 0;
911 pgtable = pte_alloc_one(dst_mm, addr);
912 if (unlikely(!pgtable))
913 goto out;
915 dst_ptl = pmd_lock(dst_mm, dst_pmd);
916 src_ptl = pmd_lockptr(src_mm, src_pmd);
917 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
919 ret = -EAGAIN;
920 pmd = *src_pmd;
922 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
923 if (unlikely(is_swap_pmd(pmd))) {
924 swp_entry_t entry = pmd_to_swp_entry(pmd);
926 VM_BUG_ON(!is_pmd_migration_entry(pmd));
927 if (is_write_migration_entry(entry)) {
928 make_migration_entry_read(&entry);
929 pmd = swp_entry_to_pmd(entry);
930 if (pmd_swp_soft_dirty(*src_pmd))
931 pmd = pmd_swp_mksoft_dirty(pmd);
932 set_pmd_at(src_mm, addr, src_pmd, pmd);
934 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
935 mm_inc_nr_ptes(dst_mm);
936 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
937 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
938 ret = 0;
939 goto out_unlock;
941 #endif
943 if (unlikely(!pmd_trans_huge(pmd))) {
944 pte_free(dst_mm, pgtable);
945 goto out_unlock;
948 * When page table lock is held, the huge zero pmd should not be
949 * under splitting since we don't split the page itself, only pmd to
950 * a page table.
952 if (is_huge_zero_pmd(pmd)) {
953 struct page *zero_page;
955 * get_huge_zero_page() will never allocate a new page here,
956 * since we already have a zero page to copy. It just takes a
957 * reference.
959 zero_page = mm_get_huge_zero_page(dst_mm);
960 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
961 zero_page);
962 ret = 0;
963 goto out_unlock;
966 src_page = pmd_page(pmd);
967 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
968 get_page(src_page);
969 page_dup_rmap(src_page, true);
970 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
971 mm_inc_nr_ptes(dst_mm);
972 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
974 pmdp_set_wrprotect(src_mm, addr, src_pmd);
975 pmd = pmd_mkold(pmd_wrprotect(pmd));
976 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
978 ret = 0;
979 out_unlock:
980 spin_unlock(src_ptl);
981 spin_unlock(dst_ptl);
982 out:
983 return ret;
986 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
987 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
988 pud_t *pud, int flags)
990 pud_t _pud;
992 _pud = pud_mkyoung(*pud);
993 if (flags & FOLL_WRITE)
994 _pud = pud_mkdirty(_pud);
995 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
996 pud, _pud, flags & FOLL_WRITE))
997 update_mmu_cache_pud(vma, addr, pud);
1000 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1001 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1003 unsigned long pfn = pud_pfn(*pud);
1004 struct mm_struct *mm = vma->vm_mm;
1005 struct page *page;
1007 assert_spin_locked(pud_lockptr(mm, pud));
1009 if (flags & FOLL_WRITE && !pud_write(*pud))
1010 return NULL;
1012 if (pud_present(*pud) && pud_devmap(*pud))
1013 /* pass */;
1014 else
1015 return NULL;
1017 if (flags & FOLL_TOUCH)
1018 touch_pud(vma, addr, pud, flags);
1021 * device mapped pages can only be returned if the
1022 * caller will manage the page reference count.
1024 if (!(flags & FOLL_GET))
1025 return ERR_PTR(-EEXIST);
1027 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1028 *pgmap = get_dev_pagemap(pfn, *pgmap);
1029 if (!*pgmap)
1030 return ERR_PTR(-EFAULT);
1031 page = pfn_to_page(pfn);
1032 get_page(page);
1034 return page;
1037 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1038 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1039 struct vm_area_struct *vma)
1041 spinlock_t *dst_ptl, *src_ptl;
1042 pud_t pud;
1043 int ret;
1045 dst_ptl = pud_lock(dst_mm, dst_pud);
1046 src_ptl = pud_lockptr(src_mm, src_pud);
1047 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1049 ret = -EAGAIN;
1050 pud = *src_pud;
1051 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1052 goto out_unlock;
1055 * When page table lock is held, the huge zero pud should not be
1056 * under splitting since we don't split the page itself, only pud to
1057 * a page table.
1059 if (is_huge_zero_pud(pud)) {
1060 /* No huge zero pud yet */
1063 pudp_set_wrprotect(src_mm, addr, src_pud);
1064 pud = pud_mkold(pud_wrprotect(pud));
1065 set_pud_at(dst_mm, addr, dst_pud, pud);
1067 ret = 0;
1068 out_unlock:
1069 spin_unlock(src_ptl);
1070 spin_unlock(dst_ptl);
1071 return ret;
1074 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1076 pud_t entry;
1077 unsigned long haddr;
1078 bool write = vmf->flags & FAULT_FLAG_WRITE;
1080 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1081 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1082 goto unlock;
1084 entry = pud_mkyoung(orig_pud);
1085 if (write)
1086 entry = pud_mkdirty(entry);
1087 haddr = vmf->address & HPAGE_PUD_MASK;
1088 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1089 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1091 unlock:
1092 spin_unlock(vmf->ptl);
1094 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1096 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1098 pmd_t entry;
1099 unsigned long haddr;
1100 bool write = vmf->flags & FAULT_FLAG_WRITE;
1102 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1103 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1104 goto unlock;
1106 entry = pmd_mkyoung(orig_pmd);
1107 if (write)
1108 entry = pmd_mkdirty(entry);
1109 haddr = vmf->address & HPAGE_PMD_MASK;
1110 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1111 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1113 unlock:
1114 spin_unlock(vmf->ptl);
1117 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1118 pmd_t orig_pmd, struct page *page)
1120 struct vm_area_struct *vma = vmf->vma;
1121 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1122 struct mem_cgroup *memcg;
1123 pgtable_t pgtable;
1124 pmd_t _pmd;
1125 int i;
1126 vm_fault_t ret = 0;
1127 struct page **pages;
1128 unsigned long mmun_start; /* For mmu_notifiers */
1129 unsigned long mmun_end; /* For mmu_notifiers */
1131 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1132 GFP_KERNEL);
1133 if (unlikely(!pages)) {
1134 ret |= VM_FAULT_OOM;
1135 goto out;
1138 for (i = 0; i < HPAGE_PMD_NR; i++) {
1139 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1140 vmf->address, page_to_nid(page));
1141 if (unlikely(!pages[i] ||
1142 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1143 GFP_KERNEL, &memcg, false))) {
1144 if (pages[i])
1145 put_page(pages[i]);
1146 while (--i >= 0) {
1147 memcg = (void *)page_private(pages[i]);
1148 set_page_private(pages[i], 0);
1149 mem_cgroup_cancel_charge(pages[i], memcg,
1150 false);
1151 put_page(pages[i]);
1153 kfree(pages);
1154 ret |= VM_FAULT_OOM;
1155 goto out;
1157 set_page_private(pages[i], (unsigned long)memcg);
1160 for (i = 0; i < HPAGE_PMD_NR; i++) {
1161 copy_user_highpage(pages[i], page + i,
1162 haddr + PAGE_SIZE * i, vma);
1163 __SetPageUptodate(pages[i]);
1164 cond_resched();
1167 mmun_start = haddr;
1168 mmun_end = haddr + HPAGE_PMD_SIZE;
1169 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1171 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1172 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1173 goto out_free_pages;
1174 VM_BUG_ON_PAGE(!PageHead(page), page);
1177 * Leave pmd empty until pte is filled note we must notify here as
1178 * concurrent CPU thread might write to new page before the call to
1179 * mmu_notifier_invalidate_range_end() happens which can lead to a
1180 * device seeing memory write in different order than CPU.
1182 * See Documentation/vm/mmu_notifier.rst
1184 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1186 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1187 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1189 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1190 pte_t entry;
1191 entry = mk_pte(pages[i], vma->vm_page_prot);
1192 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1193 memcg = (void *)page_private(pages[i]);
1194 set_page_private(pages[i], 0);
1195 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1196 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1197 lru_cache_add_active_or_unevictable(pages[i], vma);
1198 vmf->pte = pte_offset_map(&_pmd, haddr);
1199 VM_BUG_ON(!pte_none(*vmf->pte));
1200 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1201 pte_unmap(vmf->pte);
1203 kfree(pages);
1205 smp_wmb(); /* make pte visible before pmd */
1206 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1207 page_remove_rmap(page, true);
1208 spin_unlock(vmf->ptl);
1211 * No need to double call mmu_notifier->invalidate_range() callback as
1212 * the above pmdp_huge_clear_flush_notify() did already call it.
1214 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1215 mmun_end);
1217 ret |= VM_FAULT_WRITE;
1218 put_page(page);
1220 out:
1221 return ret;
1223 out_free_pages:
1224 spin_unlock(vmf->ptl);
1225 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1226 for (i = 0; i < HPAGE_PMD_NR; i++) {
1227 memcg = (void *)page_private(pages[i]);
1228 set_page_private(pages[i], 0);
1229 mem_cgroup_cancel_charge(pages[i], memcg, false);
1230 put_page(pages[i]);
1232 kfree(pages);
1233 goto out;
1236 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1238 struct vm_area_struct *vma = vmf->vma;
1239 struct page *page = NULL, *new_page;
1240 struct mem_cgroup *memcg;
1241 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1242 unsigned long mmun_start; /* For mmu_notifiers */
1243 unsigned long mmun_end; /* For mmu_notifiers */
1244 gfp_t huge_gfp; /* for allocation and charge */
1245 vm_fault_t ret = 0;
1247 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1248 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1249 if (is_huge_zero_pmd(orig_pmd))
1250 goto alloc;
1251 spin_lock(vmf->ptl);
1252 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1253 goto out_unlock;
1255 page = pmd_page(orig_pmd);
1256 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1258 * We can only reuse the page if nobody else maps the huge page or it's
1259 * part.
1261 if (!trylock_page(page)) {
1262 get_page(page);
1263 spin_unlock(vmf->ptl);
1264 lock_page(page);
1265 spin_lock(vmf->ptl);
1266 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1267 unlock_page(page);
1268 put_page(page);
1269 goto out_unlock;
1271 put_page(page);
1273 if (reuse_swap_page(page, NULL)) {
1274 pmd_t entry;
1275 entry = pmd_mkyoung(orig_pmd);
1276 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1277 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1278 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1279 ret |= VM_FAULT_WRITE;
1280 unlock_page(page);
1281 goto out_unlock;
1283 unlock_page(page);
1284 get_page(page);
1285 spin_unlock(vmf->ptl);
1286 alloc:
1287 if (transparent_hugepage_enabled(vma) &&
1288 !transparent_hugepage_debug_cow()) {
1289 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1290 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1291 } else
1292 new_page = NULL;
1294 if (likely(new_page)) {
1295 prep_transhuge_page(new_page);
1296 } else {
1297 if (!page) {
1298 split_huge_pmd(vma, vmf->pmd, vmf->address);
1299 ret |= VM_FAULT_FALLBACK;
1300 } else {
1301 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1302 if (ret & VM_FAULT_OOM) {
1303 split_huge_pmd(vma, vmf->pmd, vmf->address);
1304 ret |= VM_FAULT_FALLBACK;
1306 put_page(page);
1308 count_vm_event(THP_FAULT_FALLBACK);
1309 goto out;
1312 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1313 huge_gfp, &memcg, true))) {
1314 put_page(new_page);
1315 split_huge_pmd(vma, vmf->pmd, vmf->address);
1316 if (page)
1317 put_page(page);
1318 ret |= VM_FAULT_FALLBACK;
1319 count_vm_event(THP_FAULT_FALLBACK);
1320 goto out;
1323 count_vm_event(THP_FAULT_ALLOC);
1325 if (!page)
1326 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1327 else
1328 copy_user_huge_page(new_page, page, vmf->address,
1329 vma, HPAGE_PMD_NR);
1330 __SetPageUptodate(new_page);
1332 mmun_start = haddr;
1333 mmun_end = haddr + HPAGE_PMD_SIZE;
1334 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1336 spin_lock(vmf->ptl);
1337 if (page)
1338 put_page(page);
1339 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1340 spin_unlock(vmf->ptl);
1341 mem_cgroup_cancel_charge(new_page, memcg, true);
1342 put_page(new_page);
1343 goto out_mn;
1344 } else {
1345 pmd_t entry;
1346 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1347 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1348 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1349 page_add_new_anon_rmap(new_page, vma, haddr, true);
1350 mem_cgroup_commit_charge(new_page, memcg, false, true);
1351 lru_cache_add_active_or_unevictable(new_page, vma);
1352 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1353 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1354 if (!page) {
1355 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1356 } else {
1357 VM_BUG_ON_PAGE(!PageHead(page), page);
1358 page_remove_rmap(page, true);
1359 put_page(page);
1361 ret |= VM_FAULT_WRITE;
1363 spin_unlock(vmf->ptl);
1364 out_mn:
1366 * No need to double call mmu_notifier->invalidate_range() callback as
1367 * the above pmdp_huge_clear_flush_notify() did already call it.
1369 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1370 mmun_end);
1371 out:
1372 return ret;
1373 out_unlock:
1374 spin_unlock(vmf->ptl);
1375 return ret;
1379 * FOLL_FORCE can write to even unwritable pmd's, but only
1380 * after we've gone through a COW cycle and they are dirty.
1382 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1384 return pmd_write(pmd) ||
1385 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1388 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1389 unsigned long addr,
1390 pmd_t *pmd,
1391 unsigned int flags)
1393 struct mm_struct *mm = vma->vm_mm;
1394 struct page *page = NULL;
1396 assert_spin_locked(pmd_lockptr(mm, pmd));
1398 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1399 goto out;
1401 /* Avoid dumping huge zero page */
1402 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1403 return ERR_PTR(-EFAULT);
1405 /* Full NUMA hinting faults to serialise migration in fault paths */
1406 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1407 goto out;
1409 page = pmd_page(*pmd);
1410 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1411 if (flags & FOLL_TOUCH)
1412 touch_pmd(vma, addr, pmd, flags);
1413 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1415 * We don't mlock() pte-mapped THPs. This way we can avoid
1416 * leaking mlocked pages into non-VM_LOCKED VMAs.
1418 * For anon THP:
1420 * In most cases the pmd is the only mapping of the page as we
1421 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1422 * writable private mappings in populate_vma_page_range().
1424 * The only scenario when we have the page shared here is if we
1425 * mlocking read-only mapping shared over fork(). We skip
1426 * mlocking such pages.
1428 * For file THP:
1430 * We can expect PageDoubleMap() to be stable under page lock:
1431 * for file pages we set it in page_add_file_rmap(), which
1432 * requires page to be locked.
1435 if (PageAnon(page) && compound_mapcount(page) != 1)
1436 goto skip_mlock;
1437 if (PageDoubleMap(page) || !page->mapping)
1438 goto skip_mlock;
1439 if (!trylock_page(page))
1440 goto skip_mlock;
1441 lru_add_drain();
1442 if (page->mapping && !PageDoubleMap(page))
1443 mlock_vma_page(page);
1444 unlock_page(page);
1446 skip_mlock:
1447 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1448 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1449 if (flags & FOLL_GET)
1450 get_page(page);
1452 out:
1453 return page;
1456 /* NUMA hinting page fault entry point for trans huge pmds */
1457 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1459 struct vm_area_struct *vma = vmf->vma;
1460 struct anon_vma *anon_vma = NULL;
1461 struct page *page;
1462 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1463 int page_nid = -1, this_nid = numa_node_id();
1464 int target_nid, last_cpupid = -1;
1465 bool page_locked;
1466 bool migrated = false;
1467 bool was_writable;
1468 int flags = 0;
1470 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1471 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1472 goto out_unlock;
1475 * If there are potential migrations, wait for completion and retry
1476 * without disrupting NUMA hinting information. Do not relock and
1477 * check_same as the page may no longer be mapped.
1479 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1480 page = pmd_page(*vmf->pmd);
1481 if (!get_page_unless_zero(page))
1482 goto out_unlock;
1483 spin_unlock(vmf->ptl);
1484 wait_on_page_locked(page);
1485 put_page(page);
1486 goto out;
1489 page = pmd_page(pmd);
1490 BUG_ON(is_huge_zero_page(page));
1491 page_nid = page_to_nid(page);
1492 last_cpupid = page_cpupid_last(page);
1493 count_vm_numa_event(NUMA_HINT_FAULTS);
1494 if (page_nid == this_nid) {
1495 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1496 flags |= TNF_FAULT_LOCAL;
1499 /* See similar comment in do_numa_page for explanation */
1500 if (!pmd_savedwrite(pmd))
1501 flags |= TNF_NO_GROUP;
1504 * Acquire the page lock to serialise THP migrations but avoid dropping
1505 * page_table_lock if at all possible
1507 page_locked = trylock_page(page);
1508 target_nid = mpol_misplaced(page, vma, haddr);
1509 if (target_nid == -1) {
1510 /* If the page was locked, there are no parallel migrations */
1511 if (page_locked)
1512 goto clear_pmdnuma;
1515 /* Migration could have started since the pmd_trans_migrating check */
1516 if (!page_locked) {
1517 page_nid = -1;
1518 if (!get_page_unless_zero(page))
1519 goto out_unlock;
1520 spin_unlock(vmf->ptl);
1521 wait_on_page_locked(page);
1522 put_page(page);
1523 goto out;
1527 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1528 * to serialises splits
1530 get_page(page);
1531 spin_unlock(vmf->ptl);
1532 anon_vma = page_lock_anon_vma_read(page);
1534 /* Confirm the PMD did not change while page_table_lock was released */
1535 spin_lock(vmf->ptl);
1536 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1537 unlock_page(page);
1538 put_page(page);
1539 page_nid = -1;
1540 goto out_unlock;
1543 /* Bail if we fail to protect against THP splits for any reason */
1544 if (unlikely(!anon_vma)) {
1545 put_page(page);
1546 page_nid = -1;
1547 goto clear_pmdnuma;
1551 * Since we took the NUMA fault, we must have observed the !accessible
1552 * bit. Make sure all other CPUs agree with that, to avoid them
1553 * modifying the page we're about to migrate.
1555 * Must be done under PTL such that we'll observe the relevant
1556 * inc_tlb_flush_pending().
1558 * We are not sure a pending tlb flush here is for a huge page
1559 * mapping or not. Hence use the tlb range variant
1561 if (mm_tlb_flush_pending(vma->vm_mm)) {
1562 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1564 * change_huge_pmd() released the pmd lock before
1565 * invalidating the secondary MMUs sharing the primary
1566 * MMU pagetables (with ->invalidate_range()). The
1567 * mmu_notifier_invalidate_range_end() (which
1568 * internally calls ->invalidate_range()) in
1569 * change_pmd_range() will run after us, so we can't
1570 * rely on it here and we need an explicit invalidate.
1572 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1573 haddr + HPAGE_PMD_SIZE);
1577 * Migrate the THP to the requested node, returns with page unlocked
1578 * and access rights restored.
1580 spin_unlock(vmf->ptl);
1582 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1583 vmf->pmd, pmd, vmf->address, page, target_nid);
1584 if (migrated) {
1585 flags |= TNF_MIGRATED;
1586 page_nid = target_nid;
1587 } else
1588 flags |= TNF_MIGRATE_FAIL;
1590 goto out;
1591 clear_pmdnuma:
1592 BUG_ON(!PageLocked(page));
1593 was_writable = pmd_savedwrite(pmd);
1594 pmd = pmd_modify(pmd, vma->vm_page_prot);
1595 pmd = pmd_mkyoung(pmd);
1596 if (was_writable)
1597 pmd = pmd_mkwrite(pmd);
1598 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1599 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1600 unlock_page(page);
1601 out_unlock:
1602 spin_unlock(vmf->ptl);
1604 out:
1605 if (anon_vma)
1606 page_unlock_anon_vma_read(anon_vma);
1608 if (page_nid != -1)
1609 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1610 flags);
1612 return 0;
1616 * Return true if we do MADV_FREE successfully on entire pmd page.
1617 * Otherwise, return false.
1619 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1620 pmd_t *pmd, unsigned long addr, unsigned long next)
1622 spinlock_t *ptl;
1623 pmd_t orig_pmd;
1624 struct page *page;
1625 struct mm_struct *mm = tlb->mm;
1626 bool ret = false;
1628 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1630 ptl = pmd_trans_huge_lock(pmd, vma);
1631 if (!ptl)
1632 goto out_unlocked;
1634 orig_pmd = *pmd;
1635 if (is_huge_zero_pmd(orig_pmd))
1636 goto out;
1638 if (unlikely(!pmd_present(orig_pmd))) {
1639 VM_BUG_ON(thp_migration_supported() &&
1640 !is_pmd_migration_entry(orig_pmd));
1641 goto out;
1644 page = pmd_page(orig_pmd);
1646 * If other processes are mapping this page, we couldn't discard
1647 * the page unless they all do MADV_FREE so let's skip the page.
1649 if (page_mapcount(page) != 1)
1650 goto out;
1652 if (!trylock_page(page))
1653 goto out;
1656 * If user want to discard part-pages of THP, split it so MADV_FREE
1657 * will deactivate only them.
1659 if (next - addr != HPAGE_PMD_SIZE) {
1660 get_page(page);
1661 spin_unlock(ptl);
1662 split_huge_page(page);
1663 unlock_page(page);
1664 put_page(page);
1665 goto out_unlocked;
1668 if (PageDirty(page))
1669 ClearPageDirty(page);
1670 unlock_page(page);
1672 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1673 pmdp_invalidate(vma, addr, pmd);
1674 orig_pmd = pmd_mkold(orig_pmd);
1675 orig_pmd = pmd_mkclean(orig_pmd);
1677 set_pmd_at(mm, addr, pmd, orig_pmd);
1678 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1681 mark_page_lazyfree(page);
1682 ret = true;
1683 out:
1684 spin_unlock(ptl);
1685 out_unlocked:
1686 return ret;
1689 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1691 pgtable_t pgtable;
1693 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1694 pte_free(mm, pgtable);
1695 mm_dec_nr_ptes(mm);
1698 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1699 pmd_t *pmd, unsigned long addr)
1701 pmd_t orig_pmd;
1702 spinlock_t *ptl;
1704 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1706 ptl = __pmd_trans_huge_lock(pmd, vma);
1707 if (!ptl)
1708 return 0;
1710 * For architectures like ppc64 we look at deposited pgtable
1711 * when calling pmdp_huge_get_and_clear. So do the
1712 * pgtable_trans_huge_withdraw after finishing pmdp related
1713 * operations.
1715 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1716 tlb->fullmm);
1717 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1718 if (vma_is_dax(vma)) {
1719 if (arch_needs_pgtable_deposit())
1720 zap_deposited_table(tlb->mm, pmd);
1721 spin_unlock(ptl);
1722 if (is_huge_zero_pmd(orig_pmd))
1723 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1724 } else if (is_huge_zero_pmd(orig_pmd)) {
1725 zap_deposited_table(tlb->mm, pmd);
1726 spin_unlock(ptl);
1727 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1728 } else {
1729 struct page *page = NULL;
1730 int flush_needed = 1;
1732 if (pmd_present(orig_pmd)) {
1733 page = pmd_page(orig_pmd);
1734 page_remove_rmap(page, true);
1735 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1736 VM_BUG_ON_PAGE(!PageHead(page), page);
1737 } else if (thp_migration_supported()) {
1738 swp_entry_t entry;
1740 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1741 entry = pmd_to_swp_entry(orig_pmd);
1742 page = pfn_to_page(swp_offset(entry));
1743 flush_needed = 0;
1744 } else
1745 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1747 if (PageAnon(page)) {
1748 zap_deposited_table(tlb->mm, pmd);
1749 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1750 } else {
1751 if (arch_needs_pgtable_deposit())
1752 zap_deposited_table(tlb->mm, pmd);
1753 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1756 spin_unlock(ptl);
1757 if (flush_needed)
1758 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1760 return 1;
1763 #ifndef pmd_move_must_withdraw
1764 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1765 spinlock_t *old_pmd_ptl,
1766 struct vm_area_struct *vma)
1769 * With split pmd lock we also need to move preallocated
1770 * PTE page table if new_pmd is on different PMD page table.
1772 * We also don't deposit and withdraw tables for file pages.
1774 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1776 #endif
1778 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1780 #ifdef CONFIG_MEM_SOFT_DIRTY
1781 if (unlikely(is_pmd_migration_entry(pmd)))
1782 pmd = pmd_swp_mksoft_dirty(pmd);
1783 else if (pmd_present(pmd))
1784 pmd = pmd_mksoft_dirty(pmd);
1785 #endif
1786 return pmd;
1789 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1790 unsigned long new_addr, unsigned long old_end,
1791 pmd_t *old_pmd, pmd_t *new_pmd)
1793 spinlock_t *old_ptl, *new_ptl;
1794 pmd_t pmd;
1795 struct mm_struct *mm = vma->vm_mm;
1796 bool force_flush = false;
1798 if ((old_addr & ~HPAGE_PMD_MASK) ||
1799 (new_addr & ~HPAGE_PMD_MASK) ||
1800 old_end - old_addr < HPAGE_PMD_SIZE)
1801 return false;
1804 * The destination pmd shouldn't be established, free_pgtables()
1805 * should have release it.
1807 if (WARN_ON(!pmd_none(*new_pmd))) {
1808 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1809 return false;
1813 * We don't have to worry about the ordering of src and dst
1814 * ptlocks because exclusive mmap_sem prevents deadlock.
1816 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1817 if (old_ptl) {
1818 new_ptl = pmd_lockptr(mm, new_pmd);
1819 if (new_ptl != old_ptl)
1820 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1821 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1822 if (pmd_present(pmd))
1823 force_flush = true;
1824 VM_BUG_ON(!pmd_none(*new_pmd));
1826 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1827 pgtable_t pgtable;
1828 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1829 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1831 pmd = move_soft_dirty_pmd(pmd);
1832 set_pmd_at(mm, new_addr, new_pmd, pmd);
1833 if (force_flush)
1834 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1835 if (new_ptl != old_ptl)
1836 spin_unlock(new_ptl);
1837 spin_unlock(old_ptl);
1838 return true;
1840 return false;
1844 * Returns
1845 * - 0 if PMD could not be locked
1846 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1847 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1849 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1850 unsigned long addr, pgprot_t newprot, int prot_numa)
1852 struct mm_struct *mm = vma->vm_mm;
1853 spinlock_t *ptl;
1854 pmd_t entry;
1855 bool preserve_write;
1856 int ret;
1858 ptl = __pmd_trans_huge_lock(pmd, vma);
1859 if (!ptl)
1860 return 0;
1862 preserve_write = prot_numa && pmd_write(*pmd);
1863 ret = 1;
1865 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1866 if (is_swap_pmd(*pmd)) {
1867 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1869 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1870 if (is_write_migration_entry(entry)) {
1871 pmd_t newpmd;
1873 * A protection check is difficult so
1874 * just be safe and disable write
1876 make_migration_entry_read(&entry);
1877 newpmd = swp_entry_to_pmd(entry);
1878 if (pmd_swp_soft_dirty(*pmd))
1879 newpmd = pmd_swp_mksoft_dirty(newpmd);
1880 set_pmd_at(mm, addr, pmd, newpmd);
1882 goto unlock;
1884 #endif
1887 * Avoid trapping faults against the zero page. The read-only
1888 * data is likely to be read-cached on the local CPU and
1889 * local/remote hits to the zero page are not interesting.
1891 if (prot_numa && is_huge_zero_pmd(*pmd))
1892 goto unlock;
1894 if (prot_numa && pmd_protnone(*pmd))
1895 goto unlock;
1898 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1899 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1900 * which is also under down_read(mmap_sem):
1902 * CPU0: CPU1:
1903 * change_huge_pmd(prot_numa=1)
1904 * pmdp_huge_get_and_clear_notify()
1905 * madvise_dontneed()
1906 * zap_pmd_range()
1907 * pmd_trans_huge(*pmd) == 0 (without ptl)
1908 * // skip the pmd
1909 * set_pmd_at();
1910 * // pmd is re-established
1912 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1913 * which may break userspace.
1915 * pmdp_invalidate() is required to make sure we don't miss
1916 * dirty/young flags set by hardware.
1918 entry = pmdp_invalidate(vma, addr, pmd);
1920 entry = pmd_modify(entry, newprot);
1921 if (preserve_write)
1922 entry = pmd_mk_savedwrite(entry);
1923 ret = HPAGE_PMD_NR;
1924 set_pmd_at(mm, addr, pmd, entry);
1925 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1926 unlock:
1927 spin_unlock(ptl);
1928 return ret;
1932 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1934 * Note that if it returns page table lock pointer, this routine returns without
1935 * unlocking page table lock. So callers must unlock it.
1937 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1939 spinlock_t *ptl;
1940 ptl = pmd_lock(vma->vm_mm, pmd);
1941 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1942 pmd_devmap(*pmd)))
1943 return ptl;
1944 spin_unlock(ptl);
1945 return NULL;
1949 * Returns true if a given pud maps a thp, false otherwise.
1951 * Note that if it returns true, this routine returns without unlocking page
1952 * table lock. So callers must unlock it.
1954 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1956 spinlock_t *ptl;
1958 ptl = pud_lock(vma->vm_mm, pud);
1959 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1960 return ptl;
1961 spin_unlock(ptl);
1962 return NULL;
1965 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1966 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1967 pud_t *pud, unsigned long addr)
1969 pud_t orig_pud;
1970 spinlock_t *ptl;
1972 ptl = __pud_trans_huge_lock(pud, vma);
1973 if (!ptl)
1974 return 0;
1976 * For architectures like ppc64 we look at deposited pgtable
1977 * when calling pudp_huge_get_and_clear. So do the
1978 * pgtable_trans_huge_withdraw after finishing pudp related
1979 * operations.
1981 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1982 tlb->fullmm);
1983 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1984 if (vma_is_dax(vma)) {
1985 spin_unlock(ptl);
1986 /* No zero page support yet */
1987 } else {
1988 /* No support for anonymous PUD pages yet */
1989 BUG();
1991 return 1;
1994 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1995 unsigned long haddr)
1997 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1998 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1999 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2000 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2002 count_vm_event(THP_SPLIT_PUD);
2004 pudp_huge_clear_flush_notify(vma, haddr, pud);
2007 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2008 unsigned long address)
2010 spinlock_t *ptl;
2011 struct mm_struct *mm = vma->vm_mm;
2012 unsigned long haddr = address & HPAGE_PUD_MASK;
2014 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2015 ptl = pud_lock(mm, pud);
2016 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2017 goto out;
2018 __split_huge_pud_locked(vma, pud, haddr);
2020 out:
2021 spin_unlock(ptl);
2023 * No need to double call mmu_notifier->invalidate_range() callback as
2024 * the above pudp_huge_clear_flush_notify() did already call it.
2026 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2027 HPAGE_PUD_SIZE);
2029 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2031 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2032 unsigned long haddr, pmd_t *pmd)
2034 struct mm_struct *mm = vma->vm_mm;
2035 pgtable_t pgtable;
2036 pmd_t _pmd;
2037 int i;
2040 * Leave pmd empty until pte is filled note that it is fine to delay
2041 * notification until mmu_notifier_invalidate_range_end() as we are
2042 * replacing a zero pmd write protected page with a zero pte write
2043 * protected page.
2045 * See Documentation/vm/mmu_notifier.rst
2047 pmdp_huge_clear_flush(vma, haddr, pmd);
2049 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2050 pmd_populate(mm, &_pmd, pgtable);
2052 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2053 pte_t *pte, entry;
2054 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2055 entry = pte_mkspecial(entry);
2056 pte = pte_offset_map(&_pmd, haddr);
2057 VM_BUG_ON(!pte_none(*pte));
2058 set_pte_at(mm, haddr, pte, entry);
2059 pte_unmap(pte);
2061 smp_wmb(); /* make pte visible before pmd */
2062 pmd_populate(mm, pmd, pgtable);
2065 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2066 unsigned long haddr, bool freeze)
2068 struct mm_struct *mm = vma->vm_mm;
2069 struct page *page;
2070 pgtable_t pgtable;
2071 pmd_t old_pmd, _pmd;
2072 bool young, write, soft_dirty, pmd_migration = false;
2073 unsigned long addr;
2074 int i;
2076 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2077 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2078 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2079 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2080 && !pmd_devmap(*pmd));
2082 count_vm_event(THP_SPLIT_PMD);
2084 if (!vma_is_anonymous(vma)) {
2085 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2087 * We are going to unmap this huge page. So
2088 * just go ahead and zap it
2090 if (arch_needs_pgtable_deposit())
2091 zap_deposited_table(mm, pmd);
2092 if (vma_is_dax(vma))
2093 return;
2094 page = pmd_page(_pmd);
2095 if (!PageDirty(page) && pmd_dirty(_pmd))
2096 set_page_dirty(page);
2097 if (!PageReferenced(page) && pmd_young(_pmd))
2098 SetPageReferenced(page);
2099 page_remove_rmap(page, true);
2100 put_page(page);
2101 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2102 return;
2103 } else if (is_huge_zero_pmd(*pmd)) {
2105 * FIXME: Do we want to invalidate secondary mmu by calling
2106 * mmu_notifier_invalidate_range() see comments below inside
2107 * __split_huge_pmd() ?
2109 * We are going from a zero huge page write protected to zero
2110 * small page also write protected so it does not seems useful
2111 * to invalidate secondary mmu at this time.
2113 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2117 * Up to this point the pmd is present and huge and userland has the
2118 * whole access to the hugepage during the split (which happens in
2119 * place). If we overwrite the pmd with the not-huge version pointing
2120 * to the pte here (which of course we could if all CPUs were bug
2121 * free), userland could trigger a small page size TLB miss on the
2122 * small sized TLB while the hugepage TLB entry is still established in
2123 * the huge TLB. Some CPU doesn't like that.
2124 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2125 * 383 on page 93. Intel should be safe but is also warns that it's
2126 * only safe if the permission and cache attributes of the two entries
2127 * loaded in the two TLB is identical (which should be the case here).
2128 * But it is generally safer to never allow small and huge TLB entries
2129 * for the same virtual address to be loaded simultaneously. So instead
2130 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2131 * current pmd notpresent (atomically because here the pmd_trans_huge
2132 * must remain set at all times on the pmd until the split is complete
2133 * for this pmd), then we flush the SMP TLB and finally we write the
2134 * non-huge version of the pmd entry with pmd_populate.
2136 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2138 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2139 pmd_migration = is_pmd_migration_entry(old_pmd);
2140 if (pmd_migration) {
2141 swp_entry_t entry;
2143 entry = pmd_to_swp_entry(old_pmd);
2144 page = pfn_to_page(swp_offset(entry));
2145 } else
2146 #endif
2147 page = pmd_page(old_pmd);
2148 VM_BUG_ON_PAGE(!page_count(page), page);
2149 page_ref_add(page, HPAGE_PMD_NR - 1);
2150 if (pmd_dirty(old_pmd))
2151 SetPageDirty(page);
2152 write = pmd_write(old_pmd);
2153 young = pmd_young(old_pmd);
2154 soft_dirty = pmd_soft_dirty(old_pmd);
2157 * Withdraw the table only after we mark the pmd entry invalid.
2158 * This's critical for some architectures (Power).
2160 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2161 pmd_populate(mm, &_pmd, pgtable);
2163 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2164 pte_t entry, *pte;
2166 * Note that NUMA hinting access restrictions are not
2167 * transferred to avoid any possibility of altering
2168 * permissions across VMAs.
2170 if (freeze || pmd_migration) {
2171 swp_entry_t swp_entry;
2172 swp_entry = make_migration_entry(page + i, write);
2173 entry = swp_entry_to_pte(swp_entry);
2174 if (soft_dirty)
2175 entry = pte_swp_mksoft_dirty(entry);
2176 } else {
2177 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2178 entry = maybe_mkwrite(entry, vma);
2179 if (!write)
2180 entry = pte_wrprotect(entry);
2181 if (!young)
2182 entry = pte_mkold(entry);
2183 if (soft_dirty)
2184 entry = pte_mksoft_dirty(entry);
2186 pte = pte_offset_map(&_pmd, addr);
2187 BUG_ON(!pte_none(*pte));
2188 set_pte_at(mm, addr, pte, entry);
2189 atomic_inc(&page[i]._mapcount);
2190 pte_unmap(pte);
2194 * Set PG_double_map before dropping compound_mapcount to avoid
2195 * false-negative page_mapped().
2197 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2198 for (i = 0; i < HPAGE_PMD_NR; i++)
2199 atomic_inc(&page[i]._mapcount);
2202 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2203 /* Last compound_mapcount is gone. */
2204 __dec_node_page_state(page, NR_ANON_THPS);
2205 if (TestClearPageDoubleMap(page)) {
2206 /* No need in mapcount reference anymore */
2207 for (i = 0; i < HPAGE_PMD_NR; i++)
2208 atomic_dec(&page[i]._mapcount);
2212 smp_wmb(); /* make pte visible before pmd */
2213 pmd_populate(mm, pmd, pgtable);
2215 if (freeze) {
2216 for (i = 0; i < HPAGE_PMD_NR; i++) {
2217 page_remove_rmap(page + i, false);
2218 put_page(page + i);
2223 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2224 unsigned long address, bool freeze, struct page *page)
2226 spinlock_t *ptl;
2227 struct mm_struct *mm = vma->vm_mm;
2228 unsigned long haddr = address & HPAGE_PMD_MASK;
2230 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2231 ptl = pmd_lock(mm, pmd);
2234 * If caller asks to setup a migration entries, we need a page to check
2235 * pmd against. Otherwise we can end up replacing wrong page.
2237 VM_BUG_ON(freeze && !page);
2238 if (page && page != pmd_page(*pmd))
2239 goto out;
2241 if (pmd_trans_huge(*pmd)) {
2242 page = pmd_page(*pmd);
2243 if (PageMlocked(page))
2244 clear_page_mlock(page);
2245 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2246 goto out;
2247 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2248 out:
2249 spin_unlock(ptl);
2251 * No need to double call mmu_notifier->invalidate_range() callback.
2252 * They are 3 cases to consider inside __split_huge_pmd_locked():
2253 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2254 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2255 * fault will trigger a flush_notify before pointing to a new page
2256 * (it is fine if the secondary mmu keeps pointing to the old zero
2257 * page in the meantime)
2258 * 3) Split a huge pmd into pte pointing to the same page. No need
2259 * to invalidate secondary tlb entry they are all still valid.
2260 * any further changes to individual pte will notify. So no need
2261 * to call mmu_notifier->invalidate_range()
2263 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2264 HPAGE_PMD_SIZE);
2267 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2268 bool freeze, struct page *page)
2270 pgd_t *pgd;
2271 p4d_t *p4d;
2272 pud_t *pud;
2273 pmd_t *pmd;
2275 pgd = pgd_offset(vma->vm_mm, address);
2276 if (!pgd_present(*pgd))
2277 return;
2279 p4d = p4d_offset(pgd, address);
2280 if (!p4d_present(*p4d))
2281 return;
2283 pud = pud_offset(p4d, address);
2284 if (!pud_present(*pud))
2285 return;
2287 pmd = pmd_offset(pud, address);
2289 __split_huge_pmd(vma, pmd, address, freeze, page);
2292 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2293 unsigned long start,
2294 unsigned long end,
2295 long adjust_next)
2298 * If the new start address isn't hpage aligned and it could
2299 * previously contain an hugepage: check if we need to split
2300 * an huge pmd.
2302 if (start & ~HPAGE_PMD_MASK &&
2303 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2304 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2305 split_huge_pmd_address(vma, start, false, NULL);
2308 * If the new end address isn't hpage aligned and it could
2309 * previously contain an hugepage: check if we need to split
2310 * an huge pmd.
2312 if (end & ~HPAGE_PMD_MASK &&
2313 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2314 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2315 split_huge_pmd_address(vma, end, false, NULL);
2318 * If we're also updating the vma->vm_next->vm_start, if the new
2319 * vm_next->vm_start isn't page aligned and it could previously
2320 * contain an hugepage: check if we need to split an huge pmd.
2322 if (adjust_next > 0) {
2323 struct vm_area_struct *next = vma->vm_next;
2324 unsigned long nstart = next->vm_start;
2325 nstart += adjust_next << PAGE_SHIFT;
2326 if (nstart & ~HPAGE_PMD_MASK &&
2327 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2328 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2329 split_huge_pmd_address(next, nstart, false, NULL);
2333 static void freeze_page(struct page *page)
2335 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2336 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2337 bool unmap_success;
2339 VM_BUG_ON_PAGE(!PageHead(page), page);
2341 if (PageAnon(page))
2342 ttu_flags |= TTU_SPLIT_FREEZE;
2344 unmap_success = try_to_unmap(page, ttu_flags);
2345 VM_BUG_ON_PAGE(!unmap_success, page);
2348 static void unfreeze_page(struct page *page)
2350 int i;
2351 if (PageTransHuge(page)) {
2352 remove_migration_ptes(page, page, true);
2353 } else {
2354 for (i = 0; i < HPAGE_PMD_NR; i++)
2355 remove_migration_ptes(page + i, page + i, true);
2359 static void __split_huge_page_tail(struct page *head, int tail,
2360 struct lruvec *lruvec, struct list_head *list)
2362 struct page *page_tail = head + tail;
2364 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2367 * Clone page flags before unfreezing refcount.
2369 * After successful get_page_unless_zero() might follow flags change,
2370 * for exmaple lock_page() which set PG_waiters.
2372 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2373 page_tail->flags |= (head->flags &
2374 ((1L << PG_referenced) |
2375 (1L << PG_swapbacked) |
2376 (1L << PG_swapcache) |
2377 (1L << PG_mlocked) |
2378 (1L << PG_uptodate) |
2379 (1L << PG_active) |
2380 (1L << PG_workingset) |
2381 (1L << PG_locked) |
2382 (1L << PG_unevictable) |
2383 (1L << PG_dirty)));
2385 /* Page flags must be visible before we make the page non-compound. */
2386 smp_wmb();
2389 * Clear PageTail before unfreezing page refcount.
2391 * After successful get_page_unless_zero() might follow put_page()
2392 * which needs correct compound_head().
2394 clear_compound_head(page_tail);
2396 /* Finally unfreeze refcount. Additional reference from page cache. */
2397 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2398 PageSwapCache(head)));
2400 if (page_is_young(head))
2401 set_page_young(page_tail);
2402 if (page_is_idle(head))
2403 set_page_idle(page_tail);
2405 /* ->mapping in first tail page is compound_mapcount */
2406 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2407 page_tail);
2408 page_tail->mapping = head->mapping;
2410 page_tail->index = head->index + tail;
2411 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2414 * always add to the tail because some iterators expect new
2415 * pages to show after the currently processed elements - e.g.
2416 * migrate_pages
2418 lru_add_page_tail(head, page_tail, lruvec, list);
2421 static void __split_huge_page(struct page *page, struct list_head *list,
2422 unsigned long flags)
2424 struct page *head = compound_head(page);
2425 struct zone *zone = page_zone(head);
2426 struct lruvec *lruvec;
2427 pgoff_t end = -1;
2428 int i;
2430 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2432 /* complete memcg works before add pages to LRU */
2433 mem_cgroup_split_huge_fixup(head);
2435 if (!PageAnon(page))
2436 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2438 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2439 __split_huge_page_tail(head, i, lruvec, list);
2440 /* Some pages can be beyond i_size: drop them from page cache */
2441 if (head[i].index >= end) {
2442 ClearPageDirty(head + i);
2443 __delete_from_page_cache(head + i, NULL);
2444 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2445 shmem_uncharge(head->mapping->host, 1);
2446 put_page(head + i);
2450 ClearPageCompound(head);
2451 /* See comment in __split_huge_page_tail() */
2452 if (PageAnon(head)) {
2453 /* Additional pin to radix tree of swap cache */
2454 if (PageSwapCache(head))
2455 page_ref_add(head, 2);
2456 else
2457 page_ref_inc(head);
2458 } else {
2459 /* Additional pin to radix tree */
2460 page_ref_add(head, 2);
2461 xa_unlock(&head->mapping->i_pages);
2464 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2466 unfreeze_page(head);
2468 for (i = 0; i < HPAGE_PMD_NR; i++) {
2469 struct page *subpage = head + i;
2470 if (subpage == page)
2471 continue;
2472 unlock_page(subpage);
2475 * Subpages may be freed if there wasn't any mapping
2476 * like if add_to_swap() is running on a lru page that
2477 * had its mapping zapped. And freeing these pages
2478 * requires taking the lru_lock so we do the put_page
2479 * of the tail pages after the split is complete.
2481 put_page(subpage);
2485 int total_mapcount(struct page *page)
2487 int i, compound, ret;
2489 VM_BUG_ON_PAGE(PageTail(page), page);
2491 if (likely(!PageCompound(page)))
2492 return atomic_read(&page->_mapcount) + 1;
2494 compound = compound_mapcount(page);
2495 if (PageHuge(page))
2496 return compound;
2497 ret = compound;
2498 for (i = 0; i < HPAGE_PMD_NR; i++)
2499 ret += atomic_read(&page[i]._mapcount) + 1;
2500 /* File pages has compound_mapcount included in _mapcount */
2501 if (!PageAnon(page))
2502 return ret - compound * HPAGE_PMD_NR;
2503 if (PageDoubleMap(page))
2504 ret -= HPAGE_PMD_NR;
2505 return ret;
2509 * This calculates accurately how many mappings a transparent hugepage
2510 * has (unlike page_mapcount() which isn't fully accurate). This full
2511 * accuracy is primarily needed to know if copy-on-write faults can
2512 * reuse the page and change the mapping to read-write instead of
2513 * copying them. At the same time this returns the total_mapcount too.
2515 * The function returns the highest mapcount any one of the subpages
2516 * has. If the return value is one, even if different processes are
2517 * mapping different subpages of the transparent hugepage, they can
2518 * all reuse it, because each process is reusing a different subpage.
2520 * The total_mapcount is instead counting all virtual mappings of the
2521 * subpages. If the total_mapcount is equal to "one", it tells the
2522 * caller all mappings belong to the same "mm" and in turn the
2523 * anon_vma of the transparent hugepage can become the vma->anon_vma
2524 * local one as no other process may be mapping any of the subpages.
2526 * It would be more accurate to replace page_mapcount() with
2527 * page_trans_huge_mapcount(), however we only use
2528 * page_trans_huge_mapcount() in the copy-on-write faults where we
2529 * need full accuracy to avoid breaking page pinning, because
2530 * page_trans_huge_mapcount() is slower than page_mapcount().
2532 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2534 int i, ret, _total_mapcount, mapcount;
2536 /* hugetlbfs shouldn't call it */
2537 VM_BUG_ON_PAGE(PageHuge(page), page);
2539 if (likely(!PageTransCompound(page))) {
2540 mapcount = atomic_read(&page->_mapcount) + 1;
2541 if (total_mapcount)
2542 *total_mapcount = mapcount;
2543 return mapcount;
2546 page = compound_head(page);
2548 _total_mapcount = ret = 0;
2549 for (i = 0; i < HPAGE_PMD_NR; i++) {
2550 mapcount = atomic_read(&page[i]._mapcount) + 1;
2551 ret = max(ret, mapcount);
2552 _total_mapcount += mapcount;
2554 if (PageDoubleMap(page)) {
2555 ret -= 1;
2556 _total_mapcount -= HPAGE_PMD_NR;
2558 mapcount = compound_mapcount(page);
2559 ret += mapcount;
2560 _total_mapcount += mapcount;
2561 if (total_mapcount)
2562 *total_mapcount = _total_mapcount;
2563 return ret;
2566 /* Racy check whether the huge page can be split */
2567 bool can_split_huge_page(struct page *page, int *pextra_pins)
2569 int extra_pins;
2571 /* Additional pins from radix tree */
2572 if (PageAnon(page))
2573 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2574 else
2575 extra_pins = HPAGE_PMD_NR;
2576 if (pextra_pins)
2577 *pextra_pins = extra_pins;
2578 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2582 * This function splits huge page into normal pages. @page can point to any
2583 * subpage of huge page to split. Split doesn't change the position of @page.
2585 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2586 * The huge page must be locked.
2588 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2590 * Both head page and tail pages will inherit mapping, flags, and so on from
2591 * the hugepage.
2593 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2594 * they are not mapped.
2596 * Returns 0 if the hugepage is split successfully.
2597 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2598 * us.
2600 int split_huge_page_to_list(struct page *page, struct list_head *list)
2602 struct page *head = compound_head(page);
2603 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2604 struct anon_vma *anon_vma = NULL;
2605 struct address_space *mapping = NULL;
2606 int count, mapcount, extra_pins, ret;
2607 bool mlocked;
2608 unsigned long flags;
2610 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2611 VM_BUG_ON_PAGE(!PageLocked(page), page);
2612 VM_BUG_ON_PAGE(!PageCompound(page), page);
2614 if (PageWriteback(page))
2615 return -EBUSY;
2617 if (PageAnon(head)) {
2619 * The caller does not necessarily hold an mmap_sem that would
2620 * prevent the anon_vma disappearing so we first we take a
2621 * reference to it and then lock the anon_vma for write. This
2622 * is similar to page_lock_anon_vma_read except the write lock
2623 * is taken to serialise against parallel split or collapse
2624 * operations.
2626 anon_vma = page_get_anon_vma(head);
2627 if (!anon_vma) {
2628 ret = -EBUSY;
2629 goto out;
2631 mapping = NULL;
2632 anon_vma_lock_write(anon_vma);
2633 } else {
2634 mapping = head->mapping;
2636 /* Truncated ? */
2637 if (!mapping) {
2638 ret = -EBUSY;
2639 goto out;
2642 anon_vma = NULL;
2643 i_mmap_lock_read(mapping);
2647 * Racy check if we can split the page, before freeze_page() will
2648 * split PMDs
2650 if (!can_split_huge_page(head, &extra_pins)) {
2651 ret = -EBUSY;
2652 goto out_unlock;
2655 mlocked = PageMlocked(page);
2656 freeze_page(head);
2657 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2659 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2660 if (mlocked)
2661 lru_add_drain();
2663 /* prevent PageLRU to go away from under us, and freeze lru stats */
2664 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2666 if (mapping) {
2667 void **pslot;
2669 xa_lock(&mapping->i_pages);
2670 pslot = radix_tree_lookup_slot(&mapping->i_pages,
2671 page_index(head));
2673 * Check if the head page is present in radix tree.
2674 * We assume all tail are present too, if head is there.
2676 if (radix_tree_deref_slot_protected(pslot,
2677 &mapping->i_pages.xa_lock) != head)
2678 goto fail;
2681 /* Prevent deferred_split_scan() touching ->_refcount */
2682 spin_lock(&pgdata->split_queue_lock);
2683 count = page_count(head);
2684 mapcount = total_mapcount(head);
2685 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2686 if (!list_empty(page_deferred_list(head))) {
2687 pgdata->split_queue_len--;
2688 list_del(page_deferred_list(head));
2690 if (mapping)
2691 __dec_node_page_state(page, NR_SHMEM_THPS);
2692 spin_unlock(&pgdata->split_queue_lock);
2693 __split_huge_page(page, list, flags);
2694 if (PageSwapCache(head)) {
2695 swp_entry_t entry = { .val = page_private(head) };
2697 ret = split_swap_cluster(entry);
2698 } else
2699 ret = 0;
2700 } else {
2701 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2702 pr_alert("total_mapcount: %u, page_count(): %u\n",
2703 mapcount, count);
2704 if (PageTail(page))
2705 dump_page(head, NULL);
2706 dump_page(page, "total_mapcount(head) > 0");
2707 BUG();
2709 spin_unlock(&pgdata->split_queue_lock);
2710 fail: if (mapping)
2711 xa_unlock(&mapping->i_pages);
2712 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2713 unfreeze_page(head);
2714 ret = -EBUSY;
2717 out_unlock:
2718 if (anon_vma) {
2719 anon_vma_unlock_write(anon_vma);
2720 put_anon_vma(anon_vma);
2722 if (mapping)
2723 i_mmap_unlock_read(mapping);
2724 out:
2725 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2726 return ret;
2729 void free_transhuge_page(struct page *page)
2731 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2732 unsigned long flags;
2734 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2735 if (!list_empty(page_deferred_list(page))) {
2736 pgdata->split_queue_len--;
2737 list_del(page_deferred_list(page));
2739 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2740 free_compound_page(page);
2743 void deferred_split_huge_page(struct page *page)
2745 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2746 unsigned long flags;
2748 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2750 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2751 if (list_empty(page_deferred_list(page))) {
2752 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2753 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2754 pgdata->split_queue_len++;
2756 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2759 static unsigned long deferred_split_count(struct shrinker *shrink,
2760 struct shrink_control *sc)
2762 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2763 return READ_ONCE(pgdata->split_queue_len);
2766 static unsigned long deferred_split_scan(struct shrinker *shrink,
2767 struct shrink_control *sc)
2769 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2770 unsigned long flags;
2771 LIST_HEAD(list), *pos, *next;
2772 struct page *page;
2773 int split = 0;
2775 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2776 /* Take pin on all head pages to avoid freeing them under us */
2777 list_for_each_safe(pos, next, &pgdata->split_queue) {
2778 page = list_entry((void *)pos, struct page, mapping);
2779 page = compound_head(page);
2780 if (get_page_unless_zero(page)) {
2781 list_move(page_deferred_list(page), &list);
2782 } else {
2783 /* We lost race with put_compound_page() */
2784 list_del_init(page_deferred_list(page));
2785 pgdata->split_queue_len--;
2787 if (!--sc->nr_to_scan)
2788 break;
2790 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2792 list_for_each_safe(pos, next, &list) {
2793 page = list_entry((void *)pos, struct page, mapping);
2794 if (!trylock_page(page))
2795 goto next;
2796 /* split_huge_page() removes page from list on success */
2797 if (!split_huge_page(page))
2798 split++;
2799 unlock_page(page);
2800 next:
2801 put_page(page);
2804 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2805 list_splice_tail(&list, &pgdata->split_queue);
2806 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2809 * Stop shrinker if we didn't split any page, but the queue is empty.
2810 * This can happen if pages were freed under us.
2812 if (!split && list_empty(&pgdata->split_queue))
2813 return SHRINK_STOP;
2814 return split;
2817 static struct shrinker deferred_split_shrinker = {
2818 .count_objects = deferred_split_count,
2819 .scan_objects = deferred_split_scan,
2820 .seeks = DEFAULT_SEEKS,
2821 .flags = SHRINKER_NUMA_AWARE,
2824 #ifdef CONFIG_DEBUG_FS
2825 static int split_huge_pages_set(void *data, u64 val)
2827 struct zone *zone;
2828 struct page *page;
2829 unsigned long pfn, max_zone_pfn;
2830 unsigned long total = 0, split = 0;
2832 if (val != 1)
2833 return -EINVAL;
2835 for_each_populated_zone(zone) {
2836 max_zone_pfn = zone_end_pfn(zone);
2837 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2838 if (!pfn_valid(pfn))
2839 continue;
2841 page = pfn_to_page(pfn);
2842 if (!get_page_unless_zero(page))
2843 continue;
2845 if (zone != page_zone(page))
2846 goto next;
2848 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2849 goto next;
2851 total++;
2852 lock_page(page);
2853 if (!split_huge_page(page))
2854 split++;
2855 unlock_page(page);
2856 next:
2857 put_page(page);
2861 pr_info("%lu of %lu THP split\n", split, total);
2863 return 0;
2865 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2866 "%llu\n");
2868 static int __init split_huge_pages_debugfs(void)
2870 void *ret;
2872 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2873 &split_huge_pages_fops);
2874 if (!ret)
2875 pr_warn("Failed to create split_huge_pages in debugfs");
2876 return 0;
2878 late_initcall(split_huge_pages_debugfs);
2879 #endif
2881 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2882 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2883 struct page *page)
2885 struct vm_area_struct *vma = pvmw->vma;
2886 struct mm_struct *mm = vma->vm_mm;
2887 unsigned long address = pvmw->address;
2888 pmd_t pmdval;
2889 swp_entry_t entry;
2890 pmd_t pmdswp;
2892 if (!(pvmw->pmd && !pvmw->pte))
2893 return;
2895 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2896 pmdval = *pvmw->pmd;
2897 pmdp_invalidate(vma, address, pvmw->pmd);
2898 if (pmd_dirty(pmdval))
2899 set_page_dirty(page);
2900 entry = make_migration_entry(page, pmd_write(pmdval));
2901 pmdswp = swp_entry_to_pmd(entry);
2902 if (pmd_soft_dirty(pmdval))
2903 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2904 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2905 page_remove_rmap(page, true);
2906 put_page(page);
2909 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2911 struct vm_area_struct *vma = pvmw->vma;
2912 struct mm_struct *mm = vma->vm_mm;
2913 unsigned long address = pvmw->address;
2914 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2915 pmd_t pmde;
2916 swp_entry_t entry;
2918 if (!(pvmw->pmd && !pvmw->pte))
2919 return;
2921 entry = pmd_to_swp_entry(*pvmw->pmd);
2922 get_page(new);
2923 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2924 if (pmd_swp_soft_dirty(*pvmw->pmd))
2925 pmde = pmd_mksoft_dirty(pmde);
2926 if (is_write_migration_entry(entry))
2927 pmde = maybe_pmd_mkwrite(pmde, vma);
2929 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2930 if (PageAnon(new))
2931 page_add_anon_rmap(new, vma, mmun_start, true);
2932 else
2933 page_add_file_rmap(new, true);
2934 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2935 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2936 mlock_vma_page(new);
2937 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2939 #endif