4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr
;
90 EXPORT_SYMBOL(max_mapnr
);
93 EXPORT_SYMBOL(mem_map
);
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
104 EXPORT_SYMBOL(high_memory
);
107 * Randomize the address space (stacks, mmaps, brk, etc.).
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
112 int randomize_va_space __read_mostly
=
113 #ifdef CONFIG_COMPAT_BRK
119 static int __init
disable_randmaps(char *s
)
121 randomize_va_space
= 0;
124 __setup("norandmaps", disable_randmaps
);
126 unsigned long zero_pfn __read_mostly
;
127 EXPORT_SYMBOL(zero_pfn
);
129 unsigned long highest_memmap_pfn __read_mostly
;
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134 static int __init
init_zero_pfn(void)
136 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
139 core_initcall(init_zero_pfn
);
142 #if defined(SPLIT_RSS_COUNTING)
144 void sync_mm_rss(struct mm_struct
*mm
)
148 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
149 if (current
->rss_stat
.count
[i
]) {
150 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
151 current
->rss_stat
.count
[i
] = 0;
154 current
->rss_stat
.events
= 0;
157 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
159 struct task_struct
*task
= current
;
161 if (likely(task
->mm
== mm
))
162 task
->rss_stat
.count
[member
] += val
;
164 add_mm_counter(mm
, member
, val
);
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH (64)
171 static void check_sync_rss_stat(struct task_struct
*task
)
173 if (unlikely(task
!= current
))
175 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
176 sync_mm_rss(task
->mm
);
178 #else /* SPLIT_RSS_COUNTING */
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183 static void check_sync_rss_stat(struct task_struct
*task
)
187 #endif /* SPLIT_RSS_COUNTING */
190 * Note: this doesn't free the actual pages themselves. That
191 * has been handled earlier when unmapping all the memory regions.
193 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
196 pgtable_t token
= pmd_pgtable(*pmd
);
198 pte_free_tlb(tlb
, token
, addr
);
199 mm_dec_nr_ptes(tlb
->mm
);
202 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
203 unsigned long addr
, unsigned long end
,
204 unsigned long floor
, unsigned long ceiling
)
211 pmd
= pmd_offset(pud
, addr
);
213 next
= pmd_addr_end(addr
, end
);
214 if (pmd_none_or_clear_bad(pmd
))
216 free_pte_range(tlb
, pmd
, addr
);
217 } while (pmd
++, addr
= next
, addr
!= end
);
227 if (end
- 1 > ceiling
- 1)
230 pmd
= pmd_offset(pud
, start
);
232 pmd_free_tlb(tlb
, pmd
, start
);
233 mm_dec_nr_pmds(tlb
->mm
);
236 static inline void free_pud_range(struct mmu_gather
*tlb
, p4d_t
*p4d
,
237 unsigned long addr
, unsigned long end
,
238 unsigned long floor
, unsigned long ceiling
)
245 pud
= pud_offset(p4d
, addr
);
247 next
= pud_addr_end(addr
, end
);
248 if (pud_none_or_clear_bad(pud
))
250 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
251 } while (pud
++, addr
= next
, addr
!= end
);
261 if (end
- 1 > ceiling
- 1)
264 pud
= pud_offset(p4d
, start
);
266 pud_free_tlb(tlb
, pud
, start
);
267 mm_dec_nr_puds(tlb
->mm
);
270 static inline void free_p4d_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
271 unsigned long addr
, unsigned long end
,
272 unsigned long floor
, unsigned long ceiling
)
279 p4d
= p4d_offset(pgd
, addr
);
281 next
= p4d_addr_end(addr
, end
);
282 if (p4d_none_or_clear_bad(p4d
))
284 free_pud_range(tlb
, p4d
, addr
, next
, floor
, ceiling
);
285 } while (p4d
++, addr
= next
, addr
!= end
);
291 ceiling
&= PGDIR_MASK
;
295 if (end
- 1 > ceiling
- 1)
298 p4d
= p4d_offset(pgd
, start
);
300 p4d_free_tlb(tlb
, p4d
, start
);
304 * This function frees user-level page tables of a process.
306 void free_pgd_range(struct mmu_gather
*tlb
,
307 unsigned long addr
, unsigned long end
,
308 unsigned long floor
, unsigned long ceiling
)
314 * The next few lines have given us lots of grief...
316 * Why are we testing PMD* at this top level? Because often
317 * there will be no work to do at all, and we'd prefer not to
318 * go all the way down to the bottom just to discover that.
320 * Why all these "- 1"s? Because 0 represents both the bottom
321 * of the address space and the top of it (using -1 for the
322 * top wouldn't help much: the masks would do the wrong thing).
323 * The rule is that addr 0 and floor 0 refer to the bottom of
324 * the address space, but end 0 and ceiling 0 refer to the top
325 * Comparisons need to use "end - 1" and "ceiling - 1" (though
326 * that end 0 case should be mythical).
328 * Wherever addr is brought up or ceiling brought down, we must
329 * be careful to reject "the opposite 0" before it confuses the
330 * subsequent tests. But what about where end is brought down
331 * by PMD_SIZE below? no, end can't go down to 0 there.
333 * Whereas we round start (addr) and ceiling down, by different
334 * masks at different levels, in order to test whether a table
335 * now has no other vmas using it, so can be freed, we don't
336 * bother to round floor or end up - the tests don't need that.
350 if (end
- 1 > ceiling
- 1)
355 * We add page table cache pages with PAGE_SIZE,
356 * (see pte_free_tlb()), flush the tlb if we need
358 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
359 pgd
= pgd_offset(tlb
->mm
, addr
);
361 next
= pgd_addr_end(addr
, end
);
362 if (pgd_none_or_clear_bad(pgd
))
364 free_p4d_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
365 } while (pgd
++, addr
= next
, addr
!= end
);
368 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
369 unsigned long floor
, unsigned long ceiling
)
372 struct vm_area_struct
*next
= vma
->vm_next
;
373 unsigned long addr
= vma
->vm_start
;
376 * Hide vma from rmap and truncate_pagecache before freeing
379 unlink_anon_vmas(vma
);
380 unlink_file_vma(vma
);
382 if (is_vm_hugetlb_page(vma
)) {
383 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
384 floor
, next
? next
->vm_start
: ceiling
);
387 * Optimization: gather nearby vmas into one call down
389 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
390 && !is_vm_hugetlb_page(next
)) {
393 unlink_anon_vmas(vma
);
394 unlink_file_vma(vma
);
396 free_pgd_range(tlb
, addr
, vma
->vm_end
,
397 floor
, next
? next
->vm_start
: ceiling
);
403 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
406 pgtable_t
new = pte_alloc_one(mm
, address
);
411 * Ensure all pte setup (eg. pte page lock and page clearing) are
412 * visible before the pte is made visible to other CPUs by being
413 * put into page tables.
415 * The other side of the story is the pointer chasing in the page
416 * table walking code (when walking the page table without locking;
417 * ie. most of the time). Fortunately, these data accesses consist
418 * of a chain of data-dependent loads, meaning most CPUs (alpha
419 * being the notable exception) will already guarantee loads are
420 * seen in-order. See the alpha page table accessors for the
421 * smp_read_barrier_depends() barriers in page table walking code.
423 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
425 ptl
= pmd_lock(mm
, pmd
);
426 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
428 pmd_populate(mm
, pmd
, new);
437 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
439 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
443 smp_wmb(); /* See comment in __pte_alloc */
445 spin_lock(&init_mm
.page_table_lock
);
446 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
447 pmd_populate_kernel(&init_mm
, pmd
, new);
450 spin_unlock(&init_mm
.page_table_lock
);
452 pte_free_kernel(&init_mm
, new);
456 static inline void init_rss_vec(int *rss
)
458 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
461 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
465 if (current
->mm
== mm
)
467 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
469 add_mm_counter(mm
, i
, rss
[i
]);
473 * This function is called to print an error when a bad pte
474 * is found. For example, we might have a PFN-mapped pte in
475 * a region that doesn't allow it.
477 * The calling function must still handle the error.
479 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
480 pte_t pte
, struct page
*page
)
482 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
483 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
484 pud_t
*pud
= pud_offset(p4d
, addr
);
485 pmd_t
*pmd
= pmd_offset(pud
, addr
);
486 struct address_space
*mapping
;
488 static unsigned long resume
;
489 static unsigned long nr_shown
;
490 static unsigned long nr_unshown
;
493 * Allow a burst of 60 reports, then keep quiet for that minute;
494 * or allow a steady drip of one report per second.
496 if (nr_shown
== 60) {
497 if (time_before(jiffies
, resume
)) {
502 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
509 resume
= jiffies
+ 60 * HZ
;
511 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
512 index
= linear_page_index(vma
, addr
);
514 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
516 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
518 dump_page(page
, "bad pte");
519 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
520 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
521 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
523 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
524 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
525 mapping
? mapping
->a_ops
->readpage
: NULL
);
527 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
531 * vm_normal_page -- This function gets the "struct page" associated with a pte.
533 * "Special" mappings do not wish to be associated with a "struct page" (either
534 * it doesn't exist, or it exists but they don't want to touch it). In this
535 * case, NULL is returned here. "Normal" mappings do have a struct page.
537 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
538 * pte bit, in which case this function is trivial. Secondly, an architecture
539 * may not have a spare pte bit, which requires a more complicated scheme,
542 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
543 * special mapping (even if there are underlying and valid "struct pages").
544 * COWed pages of a VM_PFNMAP are always normal.
546 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
547 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
548 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
549 * mapping will always honor the rule
551 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
553 * And for normal mappings this is false.
555 * This restricts such mappings to be a linear translation from virtual address
556 * to pfn. To get around this restriction, we allow arbitrary mappings so long
557 * as the vma is not a COW mapping; in that case, we know that all ptes are
558 * special (because none can have been COWed).
561 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
563 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
564 * page" backing, however the difference is that _all_ pages with a struct
565 * page (that is, those where pfn_valid is true) are refcounted and considered
566 * normal pages by the VM. The disadvantage is that pages are refcounted
567 * (which can be slower and simply not an option for some PFNMAP users). The
568 * advantage is that we don't have to follow the strict linearity rule of
569 * PFNMAP mappings in order to support COWable mappings.
572 struct page
*_vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
573 pte_t pte
, bool with_public_device
)
575 unsigned long pfn
= pte_pfn(pte
);
577 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
)) {
578 if (likely(!pte_special(pte
)))
580 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
581 return vma
->vm_ops
->find_special_page(vma
, addr
);
582 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
584 if (is_zero_pfn(pfn
))
588 * Device public pages are special pages (they are ZONE_DEVICE
589 * pages but different from persistent memory). They behave
590 * allmost like normal pages. The difference is that they are
591 * not on the lru and thus should never be involve with any-
592 * thing that involve lru manipulation (mlock, numa balancing,
595 * This is why we still want to return NULL for such page from
596 * vm_normal_page() so that we do not have to special case all
597 * call site of vm_normal_page().
599 if (likely(pfn
<= highest_memmap_pfn
)) {
600 struct page
*page
= pfn_to_page(pfn
);
602 if (is_device_public_page(page
)) {
603 if (with_public_device
)
612 print_bad_pte(vma
, addr
, pte
, NULL
);
616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
618 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
619 if (vma
->vm_flags
& VM_MIXEDMAP
) {
625 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
626 if (pfn
== vma
->vm_pgoff
+ off
)
628 if (!is_cow_mapping(vma
->vm_flags
))
633 if (is_zero_pfn(pfn
))
637 if (unlikely(pfn
> highest_memmap_pfn
)) {
638 print_bad_pte(vma
, addr
, pte
, NULL
);
643 * NOTE! We still have PageReserved() pages in the page tables.
644 * eg. VDSO mappings can cause them to exist.
647 return pfn_to_page(pfn
);
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
651 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
654 unsigned long pfn
= pmd_pfn(pmd
);
657 * There is no pmd_special() but there may be special pmds, e.g.
658 * in a direct-access (dax) mapping, so let's just replicate the
659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
661 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
662 if (vma
->vm_flags
& VM_MIXEDMAP
) {
668 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
669 if (pfn
== vma
->vm_pgoff
+ off
)
671 if (!is_cow_mapping(vma
->vm_flags
))
678 if (is_zero_pfn(pfn
))
680 if (unlikely(pfn
> highest_memmap_pfn
))
684 * NOTE! We still have PageReserved() pages in the page tables.
685 * eg. VDSO mappings can cause them to exist.
688 return pfn_to_page(pfn
);
693 * copy one vm_area from one task to the other. Assumes the page tables
694 * already present in the new task to be cleared in the whole range
695 * covered by this vma.
698 static inline unsigned long
699 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
700 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
701 unsigned long addr
, int *rss
)
703 unsigned long vm_flags
= vma
->vm_flags
;
704 pte_t pte
= *src_pte
;
707 /* pte contains position in swap or file, so copy. */
708 if (unlikely(!pte_present(pte
))) {
709 swp_entry_t entry
= pte_to_swp_entry(pte
);
711 if (likely(!non_swap_entry(entry
))) {
712 if (swap_duplicate(entry
) < 0)
715 /* make sure dst_mm is on swapoff's mmlist. */
716 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
717 spin_lock(&mmlist_lock
);
718 if (list_empty(&dst_mm
->mmlist
))
719 list_add(&dst_mm
->mmlist
,
721 spin_unlock(&mmlist_lock
);
724 } else if (is_migration_entry(entry
)) {
725 page
= migration_entry_to_page(entry
);
727 rss
[mm_counter(page
)]++;
729 if (is_write_migration_entry(entry
) &&
730 is_cow_mapping(vm_flags
)) {
732 * COW mappings require pages in both
733 * parent and child to be set to read.
735 make_migration_entry_read(&entry
);
736 pte
= swp_entry_to_pte(entry
);
737 if (pte_swp_soft_dirty(*src_pte
))
738 pte
= pte_swp_mksoft_dirty(pte
);
739 set_pte_at(src_mm
, addr
, src_pte
, pte
);
741 } else if (is_device_private_entry(entry
)) {
742 page
= device_private_entry_to_page(entry
);
745 * Update rss count even for unaddressable pages, as
746 * they should treated just like normal pages in this
749 * We will likely want to have some new rss counters
750 * for unaddressable pages, at some point. But for now
751 * keep things as they are.
754 rss
[mm_counter(page
)]++;
755 page_dup_rmap(page
, false);
758 * We do not preserve soft-dirty information, because so
759 * far, checkpoint/restore is the only feature that
760 * requires that. And checkpoint/restore does not work
761 * when a device driver is involved (you cannot easily
762 * save and restore device driver state).
764 if (is_write_device_private_entry(entry
) &&
765 is_cow_mapping(vm_flags
)) {
766 make_device_private_entry_read(&entry
);
767 pte
= swp_entry_to_pte(entry
);
768 set_pte_at(src_mm
, addr
, src_pte
, pte
);
775 * If it's a COW mapping, write protect it both
776 * in the parent and the child
778 if (is_cow_mapping(vm_flags
) && pte_write(pte
)) {
779 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
780 pte
= pte_wrprotect(pte
);
784 * If it's a shared mapping, mark it clean in
787 if (vm_flags
& VM_SHARED
)
788 pte
= pte_mkclean(pte
);
789 pte
= pte_mkold(pte
);
791 page
= vm_normal_page(vma
, addr
, pte
);
794 page_dup_rmap(page
, false);
795 rss
[mm_counter(page
)]++;
796 } else if (pte_devmap(pte
)) {
797 page
= pte_page(pte
);
800 * Cache coherent device memory behave like regular page and
801 * not like persistent memory page. For more informations see
802 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
804 if (is_device_public_page(page
)) {
806 page_dup_rmap(page
, false);
807 rss
[mm_counter(page
)]++;
812 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
816 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
817 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
818 unsigned long addr
, unsigned long end
)
820 pte_t
*orig_src_pte
, *orig_dst_pte
;
821 pte_t
*src_pte
, *dst_pte
;
822 spinlock_t
*src_ptl
, *dst_ptl
;
824 int rss
[NR_MM_COUNTERS
];
825 swp_entry_t entry
= (swp_entry_t
){0};
830 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
833 src_pte
= pte_offset_map(src_pmd
, addr
);
834 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
835 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
836 orig_src_pte
= src_pte
;
837 orig_dst_pte
= dst_pte
;
838 arch_enter_lazy_mmu_mode();
842 * We are holding two locks at this point - either of them
843 * could generate latencies in another task on another CPU.
845 if (progress
>= 32) {
847 if (need_resched() ||
848 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
851 if (pte_none(*src_pte
)) {
855 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
860 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
862 arch_leave_lazy_mmu_mode();
863 spin_unlock(src_ptl
);
864 pte_unmap(orig_src_pte
);
865 add_mm_rss_vec(dst_mm
, rss
);
866 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
870 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
879 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
880 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
881 unsigned long addr
, unsigned long end
)
883 pmd_t
*src_pmd
, *dst_pmd
;
886 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
889 src_pmd
= pmd_offset(src_pud
, addr
);
891 next
= pmd_addr_end(addr
, end
);
892 if (is_swap_pmd(*src_pmd
) || pmd_trans_huge(*src_pmd
)
893 || pmd_devmap(*src_pmd
)) {
895 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PMD_SIZE
, vma
);
896 err
= copy_huge_pmd(dst_mm
, src_mm
,
897 dst_pmd
, src_pmd
, addr
, vma
);
904 if (pmd_none_or_clear_bad(src_pmd
))
906 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
909 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
913 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
914 p4d_t
*dst_p4d
, p4d_t
*src_p4d
, struct vm_area_struct
*vma
,
915 unsigned long addr
, unsigned long end
)
917 pud_t
*src_pud
, *dst_pud
;
920 dst_pud
= pud_alloc(dst_mm
, dst_p4d
, addr
);
923 src_pud
= pud_offset(src_p4d
, addr
);
925 next
= pud_addr_end(addr
, end
);
926 if (pud_trans_huge(*src_pud
) || pud_devmap(*src_pud
)) {
929 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PUD_SIZE
, vma
);
930 err
= copy_huge_pud(dst_mm
, src_mm
,
931 dst_pud
, src_pud
, addr
, vma
);
938 if (pud_none_or_clear_bad(src_pud
))
940 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
943 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
947 static inline int copy_p4d_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
948 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
949 unsigned long addr
, unsigned long end
)
951 p4d_t
*src_p4d
, *dst_p4d
;
954 dst_p4d
= p4d_alloc(dst_mm
, dst_pgd
, addr
);
957 src_p4d
= p4d_offset(src_pgd
, addr
);
959 next
= p4d_addr_end(addr
, end
);
960 if (p4d_none_or_clear_bad(src_p4d
))
962 if (copy_pud_range(dst_mm
, src_mm
, dst_p4d
, src_p4d
,
965 } while (dst_p4d
++, src_p4d
++, addr
= next
, addr
!= end
);
969 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
970 struct vm_area_struct
*vma
)
972 pgd_t
*src_pgd
, *dst_pgd
;
974 unsigned long addr
= vma
->vm_start
;
975 unsigned long end
= vma
->vm_end
;
976 unsigned long mmun_start
; /* For mmu_notifiers */
977 unsigned long mmun_end
; /* For mmu_notifiers */
982 * Don't copy ptes where a page fault will fill them correctly.
983 * Fork becomes much lighter when there are big shared or private
984 * readonly mappings. The tradeoff is that copy_page_range is more
985 * efficient than faulting.
987 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
991 if (is_vm_hugetlb_page(vma
))
992 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
994 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
996 * We do not free on error cases below as remove_vma
997 * gets called on error from higher level routine
999 ret
= track_pfn_copy(vma
);
1005 * We need to invalidate the secondary MMU mappings only when
1006 * there could be a permission downgrade on the ptes of the
1007 * parent mm. And a permission downgrade will only happen if
1008 * is_cow_mapping() returns true.
1010 is_cow
= is_cow_mapping(vma
->vm_flags
);
1014 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1018 dst_pgd
= pgd_offset(dst_mm
, addr
);
1019 src_pgd
= pgd_offset(src_mm
, addr
);
1021 next
= pgd_addr_end(addr
, end
);
1022 if (pgd_none_or_clear_bad(src_pgd
))
1024 if (unlikely(copy_p4d_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1025 vma
, addr
, next
))) {
1029 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1032 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1036 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1037 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1038 unsigned long addr
, unsigned long end
,
1039 struct zap_details
*details
)
1041 struct mm_struct
*mm
= tlb
->mm
;
1042 int force_flush
= 0;
1043 int rss
[NR_MM_COUNTERS
];
1049 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
1052 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1054 flush_tlb_batched_pending(mm
);
1055 arch_enter_lazy_mmu_mode();
1058 if (pte_none(ptent
))
1061 if (pte_present(ptent
)) {
1064 page
= _vm_normal_page(vma
, addr
, ptent
, true);
1065 if (unlikely(details
) && page
) {
1067 * unmap_shared_mapping_pages() wants to
1068 * invalidate cache without truncating:
1069 * unmap shared but keep private pages.
1071 if (details
->check_mapping
&&
1072 details
->check_mapping
!= page_rmapping(page
))
1075 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1077 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1078 if (unlikely(!page
))
1081 if (!PageAnon(page
)) {
1082 if (pte_dirty(ptent
)) {
1084 set_page_dirty(page
);
1086 if (pte_young(ptent
) &&
1087 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1088 mark_page_accessed(page
);
1090 rss
[mm_counter(page
)]--;
1091 page_remove_rmap(page
, false);
1092 if (unlikely(page_mapcount(page
) < 0))
1093 print_bad_pte(vma
, addr
, ptent
, page
);
1094 if (unlikely(__tlb_remove_page(tlb
, page
))) {
1102 entry
= pte_to_swp_entry(ptent
);
1103 if (non_swap_entry(entry
) && is_device_private_entry(entry
)) {
1104 struct page
*page
= device_private_entry_to_page(entry
);
1106 if (unlikely(details
&& details
->check_mapping
)) {
1108 * unmap_shared_mapping_pages() wants to
1109 * invalidate cache without truncating:
1110 * unmap shared but keep private pages.
1112 if (details
->check_mapping
!=
1113 page_rmapping(page
))
1117 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1118 rss
[mm_counter(page
)]--;
1119 page_remove_rmap(page
, false);
1124 /* If details->check_mapping, we leave swap entries. */
1125 if (unlikely(details
))
1128 entry
= pte_to_swp_entry(ptent
);
1129 if (!non_swap_entry(entry
))
1131 else if (is_migration_entry(entry
)) {
1134 page
= migration_entry_to_page(entry
);
1135 rss
[mm_counter(page
)]--;
1137 if (unlikely(!free_swap_and_cache(entry
)))
1138 print_bad_pte(vma
, addr
, ptent
, NULL
);
1139 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1140 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1142 add_mm_rss_vec(mm
, rss
);
1143 arch_leave_lazy_mmu_mode();
1145 /* Do the actual TLB flush before dropping ptl */
1147 tlb_flush_mmu_tlbonly(tlb
);
1148 pte_unmap_unlock(start_pte
, ptl
);
1151 * If we forced a TLB flush (either due to running out of
1152 * batch buffers or because we needed to flush dirty TLB
1153 * entries before releasing the ptl), free the batched
1154 * memory too. Restart if we didn't do everything.
1158 tlb_flush_mmu_free(tlb
);
1166 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1167 struct vm_area_struct
*vma
, pud_t
*pud
,
1168 unsigned long addr
, unsigned long end
,
1169 struct zap_details
*details
)
1174 pmd
= pmd_offset(pud
, addr
);
1176 next
= pmd_addr_end(addr
, end
);
1177 if (is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1178 if (next
- addr
!= HPAGE_PMD_SIZE
)
1179 __split_huge_pmd(vma
, pmd
, addr
, false, NULL
);
1180 else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1185 * Here there can be other concurrent MADV_DONTNEED or
1186 * trans huge page faults running, and if the pmd is
1187 * none or trans huge it can change under us. This is
1188 * because MADV_DONTNEED holds the mmap_sem in read
1191 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1193 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1196 } while (pmd
++, addr
= next
, addr
!= end
);
1201 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1202 struct vm_area_struct
*vma
, p4d_t
*p4d
,
1203 unsigned long addr
, unsigned long end
,
1204 struct zap_details
*details
)
1209 pud
= pud_offset(p4d
, addr
);
1211 next
= pud_addr_end(addr
, end
);
1212 if (pud_trans_huge(*pud
) || pud_devmap(*pud
)) {
1213 if (next
- addr
!= HPAGE_PUD_SIZE
) {
1214 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1215 split_huge_pud(vma
, pud
, addr
);
1216 } else if (zap_huge_pud(tlb
, vma
, pud
, addr
))
1220 if (pud_none_or_clear_bad(pud
))
1222 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1225 } while (pud
++, addr
= next
, addr
!= end
);
1230 static inline unsigned long zap_p4d_range(struct mmu_gather
*tlb
,
1231 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1232 unsigned long addr
, unsigned long end
,
1233 struct zap_details
*details
)
1238 p4d
= p4d_offset(pgd
, addr
);
1240 next
= p4d_addr_end(addr
, end
);
1241 if (p4d_none_or_clear_bad(p4d
))
1243 next
= zap_pud_range(tlb
, vma
, p4d
, addr
, next
, details
);
1244 } while (p4d
++, addr
= next
, addr
!= end
);
1249 void unmap_page_range(struct mmu_gather
*tlb
,
1250 struct vm_area_struct
*vma
,
1251 unsigned long addr
, unsigned long end
,
1252 struct zap_details
*details
)
1257 BUG_ON(addr
>= end
);
1258 tlb_start_vma(tlb
, vma
);
1259 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1261 next
= pgd_addr_end(addr
, end
);
1262 if (pgd_none_or_clear_bad(pgd
))
1264 next
= zap_p4d_range(tlb
, vma
, pgd
, addr
, next
, details
);
1265 } while (pgd
++, addr
= next
, addr
!= end
);
1266 tlb_end_vma(tlb
, vma
);
1270 static void unmap_single_vma(struct mmu_gather
*tlb
,
1271 struct vm_area_struct
*vma
, unsigned long start_addr
,
1272 unsigned long end_addr
,
1273 struct zap_details
*details
)
1275 unsigned long start
= max(vma
->vm_start
, start_addr
);
1278 if (start
>= vma
->vm_end
)
1280 end
= min(vma
->vm_end
, end_addr
);
1281 if (end
<= vma
->vm_start
)
1285 uprobe_munmap(vma
, start
, end
);
1287 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1288 untrack_pfn(vma
, 0, 0);
1291 if (unlikely(is_vm_hugetlb_page(vma
))) {
1293 * It is undesirable to test vma->vm_file as it
1294 * should be non-null for valid hugetlb area.
1295 * However, vm_file will be NULL in the error
1296 * cleanup path of mmap_region. When
1297 * hugetlbfs ->mmap method fails,
1298 * mmap_region() nullifies vma->vm_file
1299 * before calling this function to clean up.
1300 * Since no pte has actually been setup, it is
1301 * safe to do nothing in this case.
1304 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1305 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1306 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1309 unmap_page_range(tlb
, vma
, start
, end
, details
);
1314 * unmap_vmas - unmap a range of memory covered by a list of vma's
1315 * @tlb: address of the caller's struct mmu_gather
1316 * @vma: the starting vma
1317 * @start_addr: virtual address at which to start unmapping
1318 * @end_addr: virtual address at which to end unmapping
1320 * Unmap all pages in the vma list.
1322 * Only addresses between `start' and `end' will be unmapped.
1324 * The VMA list must be sorted in ascending virtual address order.
1326 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327 * range after unmap_vmas() returns. So the only responsibility here is to
1328 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329 * drops the lock and schedules.
1331 void unmap_vmas(struct mmu_gather
*tlb
,
1332 struct vm_area_struct
*vma
, unsigned long start_addr
,
1333 unsigned long end_addr
)
1335 struct mm_struct
*mm
= vma
->vm_mm
;
1337 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1338 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1339 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1340 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1344 * zap_page_range - remove user pages in a given range
1345 * @vma: vm_area_struct holding the applicable pages
1346 * @start: starting address of pages to zap
1347 * @size: number of bytes to zap
1349 * Caller must protect the VMA list
1351 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1354 struct mm_struct
*mm
= vma
->vm_mm
;
1355 struct mmu_gather tlb
;
1356 unsigned long end
= start
+ size
;
1359 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1360 update_hiwater_rss(mm
);
1361 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1362 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1363 unmap_single_vma(&tlb
, vma
, start
, end
, NULL
);
1364 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1365 tlb_finish_mmu(&tlb
, start
, end
);
1369 * zap_page_range_single - remove user pages in a given range
1370 * @vma: vm_area_struct holding the applicable pages
1371 * @address: starting address of pages to zap
1372 * @size: number of bytes to zap
1373 * @details: details of shared cache invalidation
1375 * The range must fit into one VMA.
1377 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1378 unsigned long size
, struct zap_details
*details
)
1380 struct mm_struct
*mm
= vma
->vm_mm
;
1381 struct mmu_gather tlb
;
1382 unsigned long end
= address
+ size
;
1385 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1386 update_hiwater_rss(mm
);
1387 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1388 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1389 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1390 tlb_finish_mmu(&tlb
, address
, end
);
1394 * zap_vma_ptes - remove ptes mapping the vma
1395 * @vma: vm_area_struct holding ptes to be zapped
1396 * @address: starting address of pages to zap
1397 * @size: number of bytes to zap
1399 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1401 * The entire address range must be fully contained within the vma.
1404 void zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1407 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1408 !(vma
->vm_flags
& VM_PFNMAP
))
1411 zap_page_range_single(vma
, address
, size
, NULL
);
1413 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1415 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1423 pgd
= pgd_offset(mm
, addr
);
1424 p4d
= p4d_alloc(mm
, pgd
, addr
);
1427 pud
= pud_alloc(mm
, p4d
, addr
);
1430 pmd
= pmd_alloc(mm
, pud
, addr
);
1434 VM_BUG_ON(pmd_trans_huge(*pmd
));
1435 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1439 * This is the old fallback for page remapping.
1441 * For historical reasons, it only allows reserved pages. Only
1442 * old drivers should use this, and they needed to mark their
1443 * pages reserved for the old functions anyway.
1445 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1446 struct page
*page
, pgprot_t prot
)
1448 struct mm_struct
*mm
= vma
->vm_mm
;
1457 flush_dcache_page(page
);
1458 pte
= get_locked_pte(mm
, addr
, &ptl
);
1462 if (!pte_none(*pte
))
1465 /* Ok, finally just insert the thing.. */
1467 inc_mm_counter_fast(mm
, mm_counter_file(page
));
1468 page_add_file_rmap(page
, false);
1469 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1472 pte_unmap_unlock(pte
, ptl
);
1475 pte_unmap_unlock(pte
, ptl
);
1481 * vm_insert_page - insert single page into user vma
1482 * @vma: user vma to map to
1483 * @addr: target user address of this page
1484 * @page: source kernel page
1486 * This allows drivers to insert individual pages they've allocated
1489 * The page has to be a nice clean _individual_ kernel allocation.
1490 * If you allocate a compound page, you need to have marked it as
1491 * such (__GFP_COMP), or manually just split the page up yourself
1492 * (see split_page()).
1494 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1495 * took an arbitrary page protection parameter. This doesn't allow
1496 * that. Your vma protection will have to be set up correctly, which
1497 * means that if you want a shared writable mapping, you'd better
1498 * ask for a shared writable mapping!
1500 * The page does not need to be reserved.
1502 * Usually this function is called from f_op->mmap() handler
1503 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1504 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1505 * function from other places, for example from page-fault handler.
1507 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1510 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1512 if (!page_count(page
))
1514 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1515 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1516 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1517 vma
->vm_flags
|= VM_MIXEDMAP
;
1519 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1521 EXPORT_SYMBOL(vm_insert_page
);
1523 static vm_fault_t
insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1524 pfn_t pfn
, pgprot_t prot
, bool mkwrite
)
1526 struct mm_struct
*mm
= vma
->vm_mm
;
1530 pte
= get_locked_pte(mm
, addr
, &ptl
);
1532 return VM_FAULT_OOM
;
1533 if (!pte_none(*pte
)) {
1536 * For read faults on private mappings the PFN passed
1537 * in may not match the PFN we have mapped if the
1538 * mapped PFN is a writeable COW page. In the mkwrite
1539 * case we are creating a writable PTE for a shared
1540 * mapping and we expect the PFNs to match.
1542 if (WARN_ON_ONCE(pte_pfn(*pte
) != pfn_t_to_pfn(pfn
)))
1550 /* Ok, finally just insert the thing.. */
1551 if (pfn_t_devmap(pfn
))
1552 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
1554 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
1558 entry
= pte_mkyoung(entry
);
1559 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1562 set_pte_at(mm
, addr
, pte
, entry
);
1563 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1566 pte_unmap_unlock(pte
, ptl
);
1567 return VM_FAULT_NOPAGE
;
1571 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1572 * @vma: user vma to map to
1573 * @addr: target user address of this page
1574 * @pfn: source kernel pfn
1575 * @pgprot: pgprot flags for the inserted page
1577 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1578 * to override pgprot on a per-page basis.
1580 * This only makes sense for IO mappings, and it makes no sense for
1581 * COW mappings. In general, using multiple vmas is preferable;
1582 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1585 * Context: Process context. May allocate using %GFP_KERNEL.
1586 * Return: vm_fault_t value.
1588 vm_fault_t
vmf_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1589 unsigned long pfn
, pgprot_t pgprot
)
1592 * Technically, architectures with pte_special can avoid all these
1593 * restrictions (same for remap_pfn_range). However we would like
1594 * consistency in testing and feature parity among all, so we should
1595 * try to keep these invariants in place for everybody.
1597 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1598 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1599 (VM_PFNMAP
|VM_MIXEDMAP
));
1600 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1601 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1603 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1604 return VM_FAULT_SIGBUS
;
1606 if (!pfn_modify_allowed(pfn
, pgprot
))
1607 return VM_FAULT_SIGBUS
;
1609 track_pfn_insert(vma
, &pgprot
, __pfn_to_pfn_t(pfn
, PFN_DEV
));
1611 return insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
,
1614 EXPORT_SYMBOL(vmf_insert_pfn_prot
);
1617 * vmf_insert_pfn - insert single pfn into user vma
1618 * @vma: user vma to map to
1619 * @addr: target user address of this page
1620 * @pfn: source kernel pfn
1622 * Similar to vm_insert_page, this allows drivers to insert individual pages
1623 * they've allocated into a user vma. Same comments apply.
1625 * This function should only be called from a vm_ops->fault handler, and
1626 * in that case the handler should return the result of this function.
1628 * vma cannot be a COW mapping.
1630 * As this is called only for pages that do not currently exist, we
1631 * do not need to flush old virtual caches or the TLB.
1633 * Context: Process context. May allocate using %GFP_KERNEL.
1634 * Return: vm_fault_t value.
1636 vm_fault_t
vmf_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1639 return vmf_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
1641 EXPORT_SYMBOL(vmf_insert_pfn
);
1643 static bool vm_mixed_ok(struct vm_area_struct
*vma
, pfn_t pfn
)
1645 /* these checks mirror the abort conditions in vm_normal_page */
1646 if (vma
->vm_flags
& VM_MIXEDMAP
)
1648 if (pfn_t_devmap(pfn
))
1650 if (pfn_t_special(pfn
))
1652 if (is_zero_pfn(pfn_t_to_pfn(pfn
)))
1657 static vm_fault_t
__vm_insert_mixed(struct vm_area_struct
*vma
,
1658 unsigned long addr
, pfn_t pfn
, bool mkwrite
)
1660 pgprot_t pgprot
= vma
->vm_page_prot
;
1663 BUG_ON(!vm_mixed_ok(vma
, pfn
));
1665 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1666 return VM_FAULT_SIGBUS
;
1668 track_pfn_insert(vma
, &pgprot
, pfn
);
1670 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn
), pgprot
))
1671 return VM_FAULT_SIGBUS
;
1674 * If we don't have pte special, then we have to use the pfn_valid()
1675 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1676 * refcount the page if pfn_valid is true (hence insert_page rather
1677 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1678 * without pte special, it would there be refcounted as a normal page.
1680 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
) &&
1681 !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
1685 * At this point we are committed to insert_page()
1686 * regardless of whether the caller specified flags that
1687 * result in pfn_t_has_page() == false.
1689 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
1690 err
= insert_page(vma
, addr
, page
, pgprot
);
1692 return insert_pfn(vma
, addr
, pfn
, pgprot
, mkwrite
);
1696 return VM_FAULT_OOM
;
1697 if (err
< 0 && err
!= -EBUSY
)
1698 return VM_FAULT_SIGBUS
;
1700 return VM_FAULT_NOPAGE
;
1703 vm_fault_t
vmf_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1706 return __vm_insert_mixed(vma
, addr
, pfn
, false);
1708 EXPORT_SYMBOL(vmf_insert_mixed
);
1711 * If the insertion of PTE failed because someone else already added a
1712 * different entry in the mean time, we treat that as success as we assume
1713 * the same entry was actually inserted.
1715 vm_fault_t
vmf_insert_mixed_mkwrite(struct vm_area_struct
*vma
,
1716 unsigned long addr
, pfn_t pfn
)
1718 return __vm_insert_mixed(vma
, addr
, pfn
, true);
1720 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite
);
1723 * maps a range of physical memory into the requested pages. the old
1724 * mappings are removed. any references to nonexistent pages results
1725 * in null mappings (currently treated as "copy-on-access")
1727 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1728 unsigned long addr
, unsigned long end
,
1729 unsigned long pfn
, pgprot_t prot
)
1735 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1738 arch_enter_lazy_mmu_mode();
1740 BUG_ON(!pte_none(*pte
));
1741 if (!pfn_modify_allowed(pfn
, prot
)) {
1745 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1747 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1748 arch_leave_lazy_mmu_mode();
1749 pte_unmap_unlock(pte
- 1, ptl
);
1753 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1754 unsigned long addr
, unsigned long end
,
1755 unsigned long pfn
, pgprot_t prot
)
1761 pfn
-= addr
>> PAGE_SHIFT
;
1762 pmd
= pmd_alloc(mm
, pud
, addr
);
1765 VM_BUG_ON(pmd_trans_huge(*pmd
));
1767 next
= pmd_addr_end(addr
, end
);
1768 err
= remap_pte_range(mm
, pmd
, addr
, next
,
1769 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1772 } while (pmd
++, addr
= next
, addr
!= end
);
1776 static inline int remap_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
1777 unsigned long addr
, unsigned long end
,
1778 unsigned long pfn
, pgprot_t prot
)
1784 pfn
-= addr
>> PAGE_SHIFT
;
1785 pud
= pud_alloc(mm
, p4d
, addr
);
1789 next
= pud_addr_end(addr
, end
);
1790 err
= remap_pmd_range(mm
, pud
, addr
, next
,
1791 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1794 } while (pud
++, addr
= next
, addr
!= end
);
1798 static inline int remap_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1799 unsigned long addr
, unsigned long end
,
1800 unsigned long pfn
, pgprot_t prot
)
1806 pfn
-= addr
>> PAGE_SHIFT
;
1807 p4d
= p4d_alloc(mm
, pgd
, addr
);
1811 next
= p4d_addr_end(addr
, end
);
1812 err
= remap_pud_range(mm
, p4d
, addr
, next
,
1813 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1816 } while (p4d
++, addr
= next
, addr
!= end
);
1821 * remap_pfn_range - remap kernel memory to userspace
1822 * @vma: user vma to map to
1823 * @addr: target user address to start at
1824 * @pfn: physical address of kernel memory
1825 * @size: size of map area
1826 * @prot: page protection flags for this mapping
1828 * Note: this is only safe if the mm semaphore is held when called.
1830 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1831 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1835 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1836 struct mm_struct
*mm
= vma
->vm_mm
;
1837 unsigned long remap_pfn
= pfn
;
1841 * Physically remapped pages are special. Tell the
1842 * rest of the world about it:
1843 * VM_IO tells people not to look at these pages
1844 * (accesses can have side effects).
1845 * VM_PFNMAP tells the core MM that the base pages are just
1846 * raw PFN mappings, and do not have a "struct page" associated
1849 * Disable vma merging and expanding with mremap().
1851 * Omit vma from core dump, even when VM_IO turned off.
1853 * There's a horrible special case to handle copy-on-write
1854 * behaviour that some programs depend on. We mark the "original"
1855 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1856 * See vm_normal_page() for details.
1858 if (is_cow_mapping(vma
->vm_flags
)) {
1859 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1861 vma
->vm_pgoff
= pfn
;
1864 err
= track_pfn_remap(vma
, &prot
, remap_pfn
, addr
, PAGE_ALIGN(size
));
1868 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1870 BUG_ON(addr
>= end
);
1871 pfn
-= addr
>> PAGE_SHIFT
;
1872 pgd
= pgd_offset(mm
, addr
);
1873 flush_cache_range(vma
, addr
, end
);
1875 next
= pgd_addr_end(addr
, end
);
1876 err
= remap_p4d_range(mm
, pgd
, addr
, next
,
1877 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1880 } while (pgd
++, addr
= next
, addr
!= end
);
1883 untrack_pfn(vma
, remap_pfn
, PAGE_ALIGN(size
));
1887 EXPORT_SYMBOL(remap_pfn_range
);
1890 * vm_iomap_memory - remap memory to userspace
1891 * @vma: user vma to map to
1892 * @start: start of area
1893 * @len: size of area
1895 * This is a simplified io_remap_pfn_range() for common driver use. The
1896 * driver just needs to give us the physical memory range to be mapped,
1897 * we'll figure out the rest from the vma information.
1899 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1900 * whatever write-combining details or similar.
1902 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1904 unsigned long vm_len
, pfn
, pages
;
1906 /* Check that the physical memory area passed in looks valid */
1907 if (start
+ len
< start
)
1910 * You *really* shouldn't map things that aren't page-aligned,
1911 * but we've historically allowed it because IO memory might
1912 * just have smaller alignment.
1914 len
+= start
& ~PAGE_MASK
;
1915 pfn
= start
>> PAGE_SHIFT
;
1916 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
1917 if (pfn
+ pages
< pfn
)
1920 /* We start the mapping 'vm_pgoff' pages into the area */
1921 if (vma
->vm_pgoff
> pages
)
1923 pfn
+= vma
->vm_pgoff
;
1924 pages
-= vma
->vm_pgoff
;
1926 /* Can we fit all of the mapping? */
1927 vm_len
= vma
->vm_end
- vma
->vm_start
;
1928 if (vm_len
>> PAGE_SHIFT
> pages
)
1931 /* Ok, let it rip */
1932 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1934 EXPORT_SYMBOL(vm_iomap_memory
);
1936 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1937 unsigned long addr
, unsigned long end
,
1938 pte_fn_t fn
, void *data
)
1943 spinlock_t
*uninitialized_var(ptl
);
1945 pte
= (mm
== &init_mm
) ?
1946 pte_alloc_kernel(pmd
, addr
) :
1947 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1951 BUG_ON(pmd_huge(*pmd
));
1953 arch_enter_lazy_mmu_mode();
1955 token
= pmd_pgtable(*pmd
);
1958 err
= fn(pte
++, token
, addr
, data
);
1961 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1963 arch_leave_lazy_mmu_mode();
1966 pte_unmap_unlock(pte
-1, ptl
);
1970 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1971 unsigned long addr
, unsigned long end
,
1972 pte_fn_t fn
, void *data
)
1978 BUG_ON(pud_huge(*pud
));
1980 pmd
= pmd_alloc(mm
, pud
, addr
);
1984 next
= pmd_addr_end(addr
, end
);
1985 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1988 } while (pmd
++, addr
= next
, addr
!= end
);
1992 static int apply_to_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
1993 unsigned long addr
, unsigned long end
,
1994 pte_fn_t fn
, void *data
)
2000 pud
= pud_alloc(mm
, p4d
, addr
);
2004 next
= pud_addr_end(addr
, end
);
2005 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
2008 } while (pud
++, addr
= next
, addr
!= end
);
2012 static int apply_to_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2013 unsigned long addr
, unsigned long end
,
2014 pte_fn_t fn
, void *data
)
2020 p4d
= p4d_alloc(mm
, pgd
, addr
);
2024 next
= p4d_addr_end(addr
, end
);
2025 err
= apply_to_pud_range(mm
, p4d
, addr
, next
, fn
, data
);
2028 } while (p4d
++, addr
= next
, addr
!= end
);
2033 * Scan a region of virtual memory, filling in page tables as necessary
2034 * and calling a provided function on each leaf page table.
2036 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2037 unsigned long size
, pte_fn_t fn
, void *data
)
2041 unsigned long end
= addr
+ size
;
2044 if (WARN_ON(addr
>= end
))
2047 pgd
= pgd_offset(mm
, addr
);
2049 next
= pgd_addr_end(addr
, end
);
2050 err
= apply_to_p4d_range(mm
, pgd
, addr
, next
, fn
, data
);
2053 } while (pgd
++, addr
= next
, addr
!= end
);
2057 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2060 * handle_pte_fault chooses page fault handler according to an entry which was
2061 * read non-atomically. Before making any commitment, on those architectures
2062 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2063 * parts, do_swap_page must check under lock before unmapping the pte and
2064 * proceeding (but do_wp_page is only called after already making such a check;
2065 * and do_anonymous_page can safely check later on).
2067 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2068 pte_t
*page_table
, pte_t orig_pte
)
2071 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2072 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2073 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2075 same
= pte_same(*page_table
, orig_pte
);
2079 pte_unmap(page_table
);
2083 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2085 debug_dma_assert_idle(src
);
2088 * If the source page was a PFN mapping, we don't have
2089 * a "struct page" for it. We do a best-effort copy by
2090 * just copying from the original user address. If that
2091 * fails, we just zero-fill it. Live with it.
2093 if (unlikely(!src
)) {
2094 void *kaddr
= kmap_atomic(dst
);
2095 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2098 * This really shouldn't fail, because the page is there
2099 * in the page tables. But it might just be unreadable,
2100 * in which case we just give up and fill the result with
2103 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2105 kunmap_atomic(kaddr
);
2106 flush_dcache_page(dst
);
2108 copy_user_highpage(dst
, src
, va
, vma
);
2111 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
2113 struct file
*vm_file
= vma
->vm_file
;
2116 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
2119 * Special mappings (e.g. VDSO) do not have any file so fake
2120 * a default GFP_KERNEL for them.
2126 * Notify the address space that the page is about to become writable so that
2127 * it can prohibit this or wait for the page to get into an appropriate state.
2129 * We do this without the lock held, so that it can sleep if it needs to.
2131 static vm_fault_t
do_page_mkwrite(struct vm_fault
*vmf
)
2134 struct page
*page
= vmf
->page
;
2135 unsigned int old_flags
= vmf
->flags
;
2137 vmf
->flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2139 ret
= vmf
->vma
->vm_ops
->page_mkwrite(vmf
);
2140 /* Restore original flags so that caller is not surprised */
2141 vmf
->flags
= old_flags
;
2142 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2144 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2146 if (!page
->mapping
) {
2148 return 0; /* retry */
2150 ret
|= VM_FAULT_LOCKED
;
2152 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2157 * Handle dirtying of a page in shared file mapping on a write fault.
2159 * The function expects the page to be locked and unlocks it.
2161 static void fault_dirty_shared_page(struct vm_area_struct
*vma
,
2164 struct address_space
*mapping
;
2166 bool page_mkwrite
= vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
;
2168 dirtied
= set_page_dirty(page
);
2169 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2171 * Take a local copy of the address_space - page.mapping may be zeroed
2172 * by truncate after unlock_page(). The address_space itself remains
2173 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2174 * release semantics to prevent the compiler from undoing this copying.
2176 mapping
= page_rmapping(page
);
2179 if ((dirtied
|| page_mkwrite
) && mapping
) {
2181 * Some device drivers do not set page.mapping
2182 * but still dirty their pages
2184 balance_dirty_pages_ratelimited(mapping
);
2188 file_update_time(vma
->vm_file
);
2192 * Handle write page faults for pages that can be reused in the current vma
2194 * This can happen either due to the mapping being with the VM_SHARED flag,
2195 * or due to us being the last reference standing to the page. In either
2196 * case, all we need to do here is to mark the page as writable and update
2197 * any related book-keeping.
2199 static inline void wp_page_reuse(struct vm_fault
*vmf
)
2200 __releases(vmf
->ptl
)
2202 struct vm_area_struct
*vma
= vmf
->vma
;
2203 struct page
*page
= vmf
->page
;
2206 * Clear the pages cpupid information as the existing
2207 * information potentially belongs to a now completely
2208 * unrelated process.
2211 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2213 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2214 entry
= pte_mkyoung(vmf
->orig_pte
);
2215 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2216 if (ptep_set_access_flags(vma
, vmf
->address
, vmf
->pte
, entry
, 1))
2217 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2218 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2222 * Handle the case of a page which we actually need to copy to a new page.
2224 * Called with mmap_sem locked and the old page referenced, but
2225 * without the ptl held.
2227 * High level logic flow:
2229 * - Allocate a page, copy the content of the old page to the new one.
2230 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2231 * - Take the PTL. If the pte changed, bail out and release the allocated page
2232 * - If the pte is still the way we remember it, update the page table and all
2233 * relevant references. This includes dropping the reference the page-table
2234 * held to the old page, as well as updating the rmap.
2235 * - In any case, unlock the PTL and drop the reference we took to the old page.
2237 static vm_fault_t
wp_page_copy(struct vm_fault
*vmf
)
2239 struct vm_area_struct
*vma
= vmf
->vma
;
2240 struct mm_struct
*mm
= vma
->vm_mm
;
2241 struct page
*old_page
= vmf
->page
;
2242 struct page
*new_page
= NULL
;
2244 int page_copied
= 0;
2245 const unsigned long mmun_start
= vmf
->address
& PAGE_MASK
;
2246 const unsigned long mmun_end
= mmun_start
+ PAGE_SIZE
;
2247 struct mem_cgroup
*memcg
;
2249 if (unlikely(anon_vma_prepare(vma
)))
2252 if (is_zero_pfn(pte_pfn(vmf
->orig_pte
))) {
2253 new_page
= alloc_zeroed_user_highpage_movable(vma
,
2258 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2262 cow_user_page(new_page
, old_page
, vmf
->address
, vma
);
2265 if (mem_cgroup_try_charge_delay(new_page
, mm
, GFP_KERNEL
, &memcg
, false))
2268 __SetPageUptodate(new_page
);
2270 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2273 * Re-check the pte - we dropped the lock
2275 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, vmf
->address
, &vmf
->ptl
);
2276 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2278 if (!PageAnon(old_page
)) {
2279 dec_mm_counter_fast(mm
,
2280 mm_counter_file(old_page
));
2281 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2284 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2286 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2287 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2288 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2290 * Clear the pte entry and flush it first, before updating the
2291 * pte with the new entry. This will avoid a race condition
2292 * seen in the presence of one thread doing SMC and another
2295 ptep_clear_flush_notify(vma
, vmf
->address
, vmf
->pte
);
2296 page_add_new_anon_rmap(new_page
, vma
, vmf
->address
, false);
2297 mem_cgroup_commit_charge(new_page
, memcg
, false, false);
2298 lru_cache_add_active_or_unevictable(new_page
, vma
);
2300 * We call the notify macro here because, when using secondary
2301 * mmu page tables (such as kvm shadow page tables), we want the
2302 * new page to be mapped directly into the secondary page table.
2304 set_pte_at_notify(mm
, vmf
->address
, vmf
->pte
, entry
);
2305 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2308 * Only after switching the pte to the new page may
2309 * we remove the mapcount here. Otherwise another
2310 * process may come and find the rmap count decremented
2311 * before the pte is switched to the new page, and
2312 * "reuse" the old page writing into it while our pte
2313 * here still points into it and can be read by other
2316 * The critical issue is to order this
2317 * page_remove_rmap with the ptp_clear_flush above.
2318 * Those stores are ordered by (if nothing else,)
2319 * the barrier present in the atomic_add_negative
2320 * in page_remove_rmap.
2322 * Then the TLB flush in ptep_clear_flush ensures that
2323 * no process can access the old page before the
2324 * decremented mapcount is visible. And the old page
2325 * cannot be reused until after the decremented
2326 * mapcount is visible. So transitively, TLBs to
2327 * old page will be flushed before it can be reused.
2329 page_remove_rmap(old_page
, false);
2332 /* Free the old page.. */
2333 new_page
= old_page
;
2336 mem_cgroup_cancel_charge(new_page
, memcg
, false);
2342 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2344 * No need to double call mmu_notifier->invalidate_range() callback as
2345 * the above ptep_clear_flush_notify() did already call it.
2347 mmu_notifier_invalidate_range_only_end(mm
, mmun_start
, mmun_end
);
2350 * Don't let another task, with possibly unlocked vma,
2351 * keep the mlocked page.
2353 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2354 lock_page(old_page
); /* LRU manipulation */
2355 if (PageMlocked(old_page
))
2356 munlock_vma_page(old_page
);
2357 unlock_page(old_page
);
2361 return page_copied
? VM_FAULT_WRITE
: 0;
2367 return VM_FAULT_OOM
;
2371 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2372 * writeable once the page is prepared
2374 * @vmf: structure describing the fault
2376 * This function handles all that is needed to finish a write page fault in a
2377 * shared mapping due to PTE being read-only once the mapped page is prepared.
2378 * It handles locking of PTE and modifying it. The function returns
2379 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2382 * The function expects the page to be locked or other protection against
2383 * concurrent faults / writeback (such as DAX radix tree locks).
2385 vm_fault_t
finish_mkwrite_fault(struct vm_fault
*vmf
)
2387 WARN_ON_ONCE(!(vmf
->vma
->vm_flags
& VM_SHARED
));
2388 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2391 * We might have raced with another page fault while we released the
2392 * pte_offset_map_lock.
2394 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2395 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2396 return VM_FAULT_NOPAGE
;
2403 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2406 static vm_fault_t
wp_pfn_shared(struct vm_fault
*vmf
)
2408 struct vm_area_struct
*vma
= vmf
->vma
;
2410 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2413 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2414 vmf
->flags
|= FAULT_FLAG_MKWRITE
;
2415 ret
= vma
->vm_ops
->pfn_mkwrite(vmf
);
2416 if (ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))
2418 return finish_mkwrite_fault(vmf
);
2421 return VM_FAULT_WRITE
;
2424 static vm_fault_t
wp_page_shared(struct vm_fault
*vmf
)
2425 __releases(vmf
->ptl
)
2427 struct vm_area_struct
*vma
= vmf
->vma
;
2429 get_page(vmf
->page
);
2431 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2434 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2435 tmp
= do_page_mkwrite(vmf
);
2436 if (unlikely(!tmp
|| (tmp
&
2437 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2438 put_page(vmf
->page
);
2441 tmp
= finish_mkwrite_fault(vmf
);
2442 if (unlikely(tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2443 unlock_page(vmf
->page
);
2444 put_page(vmf
->page
);
2449 lock_page(vmf
->page
);
2451 fault_dirty_shared_page(vma
, vmf
->page
);
2452 put_page(vmf
->page
);
2454 return VM_FAULT_WRITE
;
2458 * This routine handles present pages, when users try to write
2459 * to a shared page. It is done by copying the page to a new address
2460 * and decrementing the shared-page counter for the old page.
2462 * Note that this routine assumes that the protection checks have been
2463 * done by the caller (the low-level page fault routine in most cases).
2464 * Thus we can safely just mark it writable once we've done any necessary
2467 * We also mark the page dirty at this point even though the page will
2468 * change only once the write actually happens. This avoids a few races,
2469 * and potentially makes it more efficient.
2471 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2472 * but allow concurrent faults), with pte both mapped and locked.
2473 * We return with mmap_sem still held, but pte unmapped and unlocked.
2475 static vm_fault_t
do_wp_page(struct vm_fault
*vmf
)
2476 __releases(vmf
->ptl
)
2478 struct vm_area_struct
*vma
= vmf
->vma
;
2480 vmf
->page
= vm_normal_page(vma
, vmf
->address
, vmf
->orig_pte
);
2483 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2486 * We should not cow pages in a shared writeable mapping.
2487 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2489 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2490 (VM_WRITE
|VM_SHARED
))
2491 return wp_pfn_shared(vmf
);
2493 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2494 return wp_page_copy(vmf
);
2498 * Take out anonymous pages first, anonymous shared vmas are
2499 * not dirty accountable.
2501 if (PageAnon(vmf
->page
) && !PageKsm(vmf
->page
)) {
2502 int total_map_swapcount
;
2503 if (!trylock_page(vmf
->page
)) {
2504 get_page(vmf
->page
);
2505 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2506 lock_page(vmf
->page
);
2507 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2508 vmf
->address
, &vmf
->ptl
);
2509 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2510 unlock_page(vmf
->page
);
2511 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2512 put_page(vmf
->page
);
2515 put_page(vmf
->page
);
2517 if (reuse_swap_page(vmf
->page
, &total_map_swapcount
)) {
2518 if (total_map_swapcount
== 1) {
2520 * The page is all ours. Move it to
2521 * our anon_vma so the rmap code will
2522 * not search our parent or siblings.
2523 * Protected against the rmap code by
2526 page_move_anon_rmap(vmf
->page
, vma
);
2528 unlock_page(vmf
->page
);
2530 return VM_FAULT_WRITE
;
2532 unlock_page(vmf
->page
);
2533 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2534 (VM_WRITE
|VM_SHARED
))) {
2535 return wp_page_shared(vmf
);
2539 * Ok, we need to copy. Oh, well..
2541 get_page(vmf
->page
);
2543 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2544 return wp_page_copy(vmf
);
2547 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2548 unsigned long start_addr
, unsigned long end_addr
,
2549 struct zap_details
*details
)
2551 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2554 static inline void unmap_mapping_range_tree(struct rb_root_cached
*root
,
2555 struct zap_details
*details
)
2557 struct vm_area_struct
*vma
;
2558 pgoff_t vba
, vea
, zba
, zea
;
2560 vma_interval_tree_foreach(vma
, root
,
2561 details
->first_index
, details
->last_index
) {
2563 vba
= vma
->vm_pgoff
;
2564 vea
= vba
+ vma_pages(vma
) - 1;
2565 zba
= details
->first_index
;
2568 zea
= details
->last_index
;
2572 unmap_mapping_range_vma(vma
,
2573 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2574 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2580 * unmap_mapping_pages() - Unmap pages from processes.
2581 * @mapping: The address space containing pages to be unmapped.
2582 * @start: Index of first page to be unmapped.
2583 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2584 * @even_cows: Whether to unmap even private COWed pages.
2586 * Unmap the pages in this address space from any userspace process which
2587 * has them mmaped. Generally, you want to remove COWed pages as well when
2588 * a file is being truncated, but not when invalidating pages from the page
2591 void unmap_mapping_pages(struct address_space
*mapping
, pgoff_t start
,
2592 pgoff_t nr
, bool even_cows
)
2594 struct zap_details details
= { };
2596 details
.check_mapping
= even_cows
? NULL
: mapping
;
2597 details
.first_index
= start
;
2598 details
.last_index
= start
+ nr
- 1;
2599 if (details
.last_index
< details
.first_index
)
2600 details
.last_index
= ULONG_MAX
;
2602 i_mmap_lock_write(mapping
);
2603 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
)))
2604 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2605 i_mmap_unlock_write(mapping
);
2609 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2610 * address_space corresponding to the specified byte range in the underlying
2613 * @mapping: the address space containing mmaps to be unmapped.
2614 * @holebegin: byte in first page to unmap, relative to the start of
2615 * the underlying file. This will be rounded down to a PAGE_SIZE
2616 * boundary. Note that this is different from truncate_pagecache(), which
2617 * must keep the partial page. In contrast, we must get rid of
2619 * @holelen: size of prospective hole in bytes. This will be rounded
2620 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2622 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2623 * but 0 when invalidating pagecache, don't throw away private data.
2625 void unmap_mapping_range(struct address_space
*mapping
,
2626 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2628 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2629 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2631 /* Check for overflow. */
2632 if (sizeof(holelen
) > sizeof(hlen
)) {
2634 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2635 if (holeend
& ~(long long)ULONG_MAX
)
2636 hlen
= ULONG_MAX
- hba
+ 1;
2639 unmap_mapping_pages(mapping
, hba
, hlen
, even_cows
);
2641 EXPORT_SYMBOL(unmap_mapping_range
);
2644 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2645 * but allow concurrent faults), and pte mapped but not yet locked.
2646 * We return with pte unmapped and unlocked.
2648 * We return with the mmap_sem locked or unlocked in the same cases
2649 * as does filemap_fault().
2651 vm_fault_t
do_swap_page(struct vm_fault
*vmf
)
2653 struct vm_area_struct
*vma
= vmf
->vma
;
2654 struct page
*page
= NULL
, *swapcache
;
2655 struct mem_cgroup
*memcg
;
2662 if (!pte_unmap_same(vma
->vm_mm
, vmf
->pmd
, vmf
->pte
, vmf
->orig_pte
))
2665 entry
= pte_to_swp_entry(vmf
->orig_pte
);
2666 if (unlikely(non_swap_entry(entry
))) {
2667 if (is_migration_entry(entry
)) {
2668 migration_entry_wait(vma
->vm_mm
, vmf
->pmd
,
2670 } else if (is_device_private_entry(entry
)) {
2672 * For un-addressable device memory we call the pgmap
2673 * fault handler callback. The callback must migrate
2674 * the page back to some CPU accessible page.
2676 ret
= device_private_entry_fault(vma
, vmf
->address
, entry
,
2677 vmf
->flags
, vmf
->pmd
);
2678 } else if (is_hwpoison_entry(entry
)) {
2679 ret
= VM_FAULT_HWPOISON
;
2681 print_bad_pte(vma
, vmf
->address
, vmf
->orig_pte
, NULL
);
2682 ret
= VM_FAULT_SIGBUS
;
2688 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2689 page
= lookup_swap_cache(entry
, vma
, vmf
->address
);
2693 struct swap_info_struct
*si
= swp_swap_info(entry
);
2695 if (si
->flags
& SWP_SYNCHRONOUS_IO
&&
2696 __swap_count(si
, entry
) == 1) {
2697 /* skip swapcache */
2698 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2701 __SetPageLocked(page
);
2702 __SetPageSwapBacked(page
);
2703 set_page_private(page
, entry
.val
);
2704 lru_cache_add_anon(page
);
2705 swap_readpage(page
, true);
2708 page
= swapin_readahead(entry
, GFP_HIGHUSER_MOVABLE
,
2715 * Back out if somebody else faulted in this pte
2716 * while we released the pte lock.
2718 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2719 vmf
->address
, &vmf
->ptl
);
2720 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2722 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2726 /* Had to read the page from swap area: Major fault */
2727 ret
= VM_FAULT_MAJOR
;
2728 count_vm_event(PGMAJFAULT
);
2729 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
2730 } else if (PageHWPoison(page
)) {
2732 * hwpoisoned dirty swapcache pages are kept for killing
2733 * owner processes (which may be unknown at hwpoison time)
2735 ret
= VM_FAULT_HWPOISON
;
2736 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2740 locked
= lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
);
2742 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2744 ret
|= VM_FAULT_RETRY
;
2749 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2750 * release the swapcache from under us. The page pin, and pte_same
2751 * test below, are not enough to exclude that. Even if it is still
2752 * swapcache, we need to check that the page's swap has not changed.
2754 if (unlikely((!PageSwapCache(page
) ||
2755 page_private(page
) != entry
.val
)) && swapcache
)
2758 page
= ksm_might_need_to_copy(page
, vma
, vmf
->address
);
2759 if (unlikely(!page
)) {
2765 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, GFP_KERNEL
,
2772 * Back out if somebody else already faulted in this pte.
2774 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2776 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2779 if (unlikely(!PageUptodate(page
))) {
2780 ret
= VM_FAULT_SIGBUS
;
2785 * The page isn't present yet, go ahead with the fault.
2787 * Be careful about the sequence of operations here.
2788 * To get its accounting right, reuse_swap_page() must be called
2789 * while the page is counted on swap but not yet in mapcount i.e.
2790 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2791 * must be called after the swap_free(), or it will never succeed.
2794 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2795 dec_mm_counter_fast(vma
->vm_mm
, MM_SWAPENTS
);
2796 pte
= mk_pte(page
, vma
->vm_page_prot
);
2797 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
, NULL
)) {
2798 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2799 vmf
->flags
&= ~FAULT_FLAG_WRITE
;
2800 ret
|= VM_FAULT_WRITE
;
2801 exclusive
= RMAP_EXCLUSIVE
;
2803 flush_icache_page(vma
, page
);
2804 if (pte_swp_soft_dirty(vmf
->orig_pte
))
2805 pte
= pte_mksoft_dirty(pte
);
2806 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
2807 arch_do_swap_page(vma
->vm_mm
, vma
, vmf
->address
, pte
, vmf
->orig_pte
);
2808 vmf
->orig_pte
= pte
;
2810 /* ksm created a completely new copy */
2811 if (unlikely(page
!= swapcache
&& swapcache
)) {
2812 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
2813 mem_cgroup_commit_charge(page
, memcg
, false, false);
2814 lru_cache_add_active_or_unevictable(page
, vma
);
2816 do_page_add_anon_rmap(page
, vma
, vmf
->address
, exclusive
);
2817 mem_cgroup_commit_charge(page
, memcg
, true, false);
2818 activate_page(page
);
2822 if (mem_cgroup_swap_full(page
) ||
2823 (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2824 try_to_free_swap(page
);
2826 if (page
!= swapcache
&& swapcache
) {
2828 * Hold the lock to avoid the swap entry to be reused
2829 * until we take the PT lock for the pte_same() check
2830 * (to avoid false positives from pte_same). For
2831 * further safety release the lock after the swap_free
2832 * so that the swap count won't change under a
2833 * parallel locked swapcache.
2835 unlock_page(swapcache
);
2836 put_page(swapcache
);
2839 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
2840 ret
|= do_wp_page(vmf
);
2841 if (ret
& VM_FAULT_ERROR
)
2842 ret
&= VM_FAULT_ERROR
;
2846 /* No need to invalidate - it was non-present before */
2847 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2849 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2853 mem_cgroup_cancel_charge(page
, memcg
, false);
2854 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2859 if (page
!= swapcache
&& swapcache
) {
2860 unlock_page(swapcache
);
2861 put_page(swapcache
);
2867 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2868 * but allow concurrent faults), and pte mapped but not yet locked.
2869 * We return with mmap_sem still held, but pte unmapped and unlocked.
2871 static vm_fault_t
do_anonymous_page(struct vm_fault
*vmf
)
2873 struct vm_area_struct
*vma
= vmf
->vma
;
2874 struct mem_cgroup
*memcg
;
2879 /* File mapping without ->vm_ops ? */
2880 if (vma
->vm_flags
& VM_SHARED
)
2881 return VM_FAULT_SIGBUS
;
2884 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2885 * pte_offset_map() on pmds where a huge pmd might be created
2886 * from a different thread.
2888 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2889 * parallel threads are excluded by other means.
2891 * Here we only have down_read(mmap_sem).
2893 if (pte_alloc(vma
->vm_mm
, vmf
->pmd
, vmf
->address
))
2894 return VM_FAULT_OOM
;
2896 /* See the comment in pte_alloc_one_map() */
2897 if (unlikely(pmd_trans_unstable(vmf
->pmd
)))
2900 /* Use the zero-page for reads */
2901 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
2902 !mm_forbids_zeropage(vma
->vm_mm
)) {
2903 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(vmf
->address
),
2904 vma
->vm_page_prot
));
2905 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2906 vmf
->address
, &vmf
->ptl
);
2907 if (!pte_none(*vmf
->pte
))
2909 ret
= check_stable_address_space(vma
->vm_mm
);
2912 /* Deliver the page fault to userland, check inside PT lock */
2913 if (userfaultfd_missing(vma
)) {
2914 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2915 return handle_userfault(vmf
, VM_UFFD_MISSING
);
2920 /* Allocate our own private page. */
2921 if (unlikely(anon_vma_prepare(vma
)))
2923 page
= alloc_zeroed_user_highpage_movable(vma
, vmf
->address
);
2927 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
,
2932 * The memory barrier inside __SetPageUptodate makes sure that
2933 * preceeding stores to the page contents become visible before
2934 * the set_pte_at() write.
2936 __SetPageUptodate(page
);
2938 entry
= mk_pte(page
, vma
->vm_page_prot
);
2939 if (vma
->vm_flags
& VM_WRITE
)
2940 entry
= pte_mkwrite(pte_mkdirty(entry
));
2942 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2944 if (!pte_none(*vmf
->pte
))
2947 ret
= check_stable_address_space(vma
->vm_mm
);
2951 /* Deliver the page fault to userland, check inside PT lock */
2952 if (userfaultfd_missing(vma
)) {
2953 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2954 mem_cgroup_cancel_charge(page
, memcg
, false);
2956 return handle_userfault(vmf
, VM_UFFD_MISSING
);
2959 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2960 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
2961 mem_cgroup_commit_charge(page
, memcg
, false, false);
2962 lru_cache_add_active_or_unevictable(page
, vma
);
2964 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
2966 /* No need to invalidate - it was non-present before */
2967 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2969 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2972 mem_cgroup_cancel_charge(page
, memcg
, false);
2978 return VM_FAULT_OOM
;
2982 * The mmap_sem must have been held on entry, and may have been
2983 * released depending on flags and vma->vm_ops->fault() return value.
2984 * See filemap_fault() and __lock_page_retry().
2986 static vm_fault_t
__do_fault(struct vm_fault
*vmf
)
2988 struct vm_area_struct
*vma
= vmf
->vma
;
2991 ret
= vma
->vm_ops
->fault(vmf
);
2992 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
|
2993 VM_FAULT_DONE_COW
)))
2996 if (unlikely(PageHWPoison(vmf
->page
))) {
2997 if (ret
& VM_FAULT_LOCKED
)
2998 unlock_page(vmf
->page
);
2999 put_page(vmf
->page
);
3001 return VM_FAULT_HWPOISON
;
3004 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3005 lock_page(vmf
->page
);
3007 VM_BUG_ON_PAGE(!PageLocked(vmf
->page
), vmf
->page
);
3013 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3014 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3015 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3016 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3018 static int pmd_devmap_trans_unstable(pmd_t
*pmd
)
3020 return pmd_devmap(*pmd
) || pmd_trans_unstable(pmd
);
3023 static vm_fault_t
pte_alloc_one_map(struct vm_fault
*vmf
)
3025 struct vm_area_struct
*vma
= vmf
->vma
;
3027 if (!pmd_none(*vmf
->pmd
))
3029 if (vmf
->prealloc_pte
) {
3030 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3031 if (unlikely(!pmd_none(*vmf
->pmd
))) {
3032 spin_unlock(vmf
->ptl
);
3036 mm_inc_nr_ptes(vma
->vm_mm
);
3037 pmd_populate(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3038 spin_unlock(vmf
->ptl
);
3039 vmf
->prealloc_pte
= NULL
;
3040 } else if (unlikely(pte_alloc(vma
->vm_mm
, vmf
->pmd
, vmf
->address
))) {
3041 return VM_FAULT_OOM
;
3045 * If a huge pmd materialized under us just retry later. Use
3046 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3047 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3048 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3049 * running immediately after a huge pmd fault in a different thread of
3050 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3051 * All we have to ensure is that it is a regular pmd that we can walk
3052 * with pte_offset_map() and we can do that through an atomic read in
3053 * C, which is what pmd_trans_unstable() provides.
3055 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3056 return VM_FAULT_NOPAGE
;
3059 * At this point we know that our vmf->pmd points to a page of ptes
3060 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3061 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3062 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3063 * be valid and we will re-check to make sure the vmf->pte isn't
3064 * pte_none() under vmf->ptl protection when we return to
3067 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3072 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3074 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3075 static inline bool transhuge_vma_suitable(struct vm_area_struct
*vma
,
3076 unsigned long haddr
)
3078 if (((vma
->vm_start
>> PAGE_SHIFT
) & HPAGE_CACHE_INDEX_MASK
) !=
3079 (vma
->vm_pgoff
& HPAGE_CACHE_INDEX_MASK
))
3081 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
3086 static void deposit_prealloc_pte(struct vm_fault
*vmf
)
3088 struct vm_area_struct
*vma
= vmf
->vma
;
3090 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3092 * We are going to consume the prealloc table,
3093 * count that as nr_ptes.
3095 mm_inc_nr_ptes(vma
->vm_mm
);
3096 vmf
->prealloc_pte
= NULL
;
3099 static vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3101 struct vm_area_struct
*vma
= vmf
->vma
;
3102 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3103 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
3108 if (!transhuge_vma_suitable(vma
, haddr
))
3109 return VM_FAULT_FALLBACK
;
3111 ret
= VM_FAULT_FALLBACK
;
3112 page
= compound_head(page
);
3115 * Archs like ppc64 need additonal space to store information
3116 * related to pte entry. Use the preallocated table for that.
3118 if (arch_needs_pgtable_deposit() && !vmf
->prealloc_pte
) {
3119 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
, vmf
->address
);
3120 if (!vmf
->prealloc_pte
)
3121 return VM_FAULT_OOM
;
3122 smp_wmb(); /* See comment in __pte_alloc() */
3125 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3126 if (unlikely(!pmd_none(*vmf
->pmd
)))
3129 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
3130 flush_icache_page(vma
, page
+ i
);
3132 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
3134 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
3136 add_mm_counter(vma
->vm_mm
, mm_counter_file(page
), HPAGE_PMD_NR
);
3137 page_add_file_rmap(page
, true);
3139 * deposit and withdraw with pmd lock held
3141 if (arch_needs_pgtable_deposit())
3142 deposit_prealloc_pte(vmf
);
3144 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
3146 update_mmu_cache_pmd(vma
, haddr
, vmf
->pmd
);
3148 /* fault is handled */
3150 count_vm_event(THP_FILE_MAPPED
);
3152 spin_unlock(vmf
->ptl
);
3156 static vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3164 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3165 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3167 * @vmf: fault environment
3168 * @memcg: memcg to charge page (only for private mappings)
3169 * @page: page to map
3171 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3174 * Target users are page handler itself and implementations of
3175 * vm_ops->map_pages.
3177 vm_fault_t
alloc_set_pte(struct vm_fault
*vmf
, struct mem_cgroup
*memcg
,
3180 struct vm_area_struct
*vma
= vmf
->vma
;
3181 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3185 if (pmd_none(*vmf
->pmd
) && PageTransCompound(page
) &&
3186 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
3188 VM_BUG_ON_PAGE(memcg
, page
);
3190 ret
= do_set_pmd(vmf
, page
);
3191 if (ret
!= VM_FAULT_FALLBACK
)
3196 ret
= pte_alloc_one_map(vmf
);
3201 /* Re-check under ptl */
3202 if (unlikely(!pte_none(*vmf
->pte
)))
3203 return VM_FAULT_NOPAGE
;
3205 flush_icache_page(vma
, page
);
3206 entry
= mk_pte(page
, vma
->vm_page_prot
);
3208 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3209 /* copy-on-write page */
3210 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
3211 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3212 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3213 mem_cgroup_commit_charge(page
, memcg
, false, false);
3214 lru_cache_add_active_or_unevictable(page
, vma
);
3216 inc_mm_counter_fast(vma
->vm_mm
, mm_counter_file(page
));
3217 page_add_file_rmap(page
, false);
3219 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3221 /* no need to invalidate: a not-present page won't be cached */
3222 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3229 * finish_fault - finish page fault once we have prepared the page to fault
3231 * @vmf: structure describing the fault
3233 * This function handles all that is needed to finish a page fault once the
3234 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3235 * given page, adds reverse page mapping, handles memcg charges and LRU
3236 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3239 * The function expects the page to be locked and on success it consumes a
3240 * reference of a page being mapped (for the PTE which maps it).
3242 vm_fault_t
finish_fault(struct vm_fault
*vmf
)
3247 /* Did we COW the page? */
3248 if ((vmf
->flags
& FAULT_FLAG_WRITE
) &&
3249 !(vmf
->vma
->vm_flags
& VM_SHARED
))
3250 page
= vmf
->cow_page
;
3255 * check even for read faults because we might have lost our CoWed
3258 if (!(vmf
->vma
->vm_flags
& VM_SHARED
))
3259 ret
= check_stable_address_space(vmf
->vma
->vm_mm
);
3261 ret
= alloc_set_pte(vmf
, vmf
->memcg
, page
);
3263 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3267 static unsigned long fault_around_bytes __read_mostly
=
3268 rounddown_pow_of_two(65536);
3270 #ifdef CONFIG_DEBUG_FS
3271 static int fault_around_bytes_get(void *data
, u64
*val
)
3273 *val
= fault_around_bytes
;
3278 * fault_around_bytes must be rounded down to the nearest page order as it's
3279 * what do_fault_around() expects to see.
3281 static int fault_around_bytes_set(void *data
, u64 val
)
3283 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
3285 if (val
> PAGE_SIZE
)
3286 fault_around_bytes
= rounddown_pow_of_two(val
);
3288 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
3291 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops
,
3292 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
3294 static int __init
fault_around_debugfs(void)
3298 ret
= debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL
, NULL
,
3299 &fault_around_bytes_fops
);
3301 pr_warn("Failed to create fault_around_bytes in debugfs");
3304 late_initcall(fault_around_debugfs
);
3308 * do_fault_around() tries to map few pages around the fault address. The hope
3309 * is that the pages will be needed soon and this will lower the number of
3312 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3313 * not ready to be mapped: not up-to-date, locked, etc.
3315 * This function is called with the page table lock taken. In the split ptlock
3316 * case the page table lock only protects only those entries which belong to
3317 * the page table corresponding to the fault address.
3319 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3322 * fault_around_bytes defines how many bytes we'll try to map.
3323 * do_fault_around() expects it to be set to a power of two less than or equal
3326 * The virtual address of the area that we map is naturally aligned to
3327 * fault_around_bytes rounded down to the machine page size
3328 * (and therefore to page order). This way it's easier to guarantee
3329 * that we don't cross page table boundaries.
3331 static vm_fault_t
do_fault_around(struct vm_fault
*vmf
)
3333 unsigned long address
= vmf
->address
, nr_pages
, mask
;
3334 pgoff_t start_pgoff
= vmf
->pgoff
;
3339 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
3340 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
3342 vmf
->address
= max(address
& mask
, vmf
->vma
->vm_start
);
3343 off
= ((address
- vmf
->address
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3347 * end_pgoff is either the end of the page table, the end of
3348 * the vma or nr_pages from start_pgoff, depending what is nearest.
3350 end_pgoff
= start_pgoff
-
3351 ((vmf
->address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3353 end_pgoff
= min3(end_pgoff
, vma_pages(vmf
->vma
) + vmf
->vma
->vm_pgoff
- 1,
3354 start_pgoff
+ nr_pages
- 1);
3356 if (pmd_none(*vmf
->pmd
)) {
3357 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
,
3359 if (!vmf
->prealloc_pte
)
3361 smp_wmb(); /* See comment in __pte_alloc() */
3364 vmf
->vma
->vm_ops
->map_pages(vmf
, start_pgoff
, end_pgoff
);
3366 /* Huge page is mapped? Page fault is solved */
3367 if (pmd_trans_huge(*vmf
->pmd
)) {
3368 ret
= VM_FAULT_NOPAGE
;
3372 /* ->map_pages() haven't done anything useful. Cold page cache? */
3376 /* check if the page fault is solved */
3377 vmf
->pte
-= (vmf
->address
>> PAGE_SHIFT
) - (address
>> PAGE_SHIFT
);
3378 if (!pte_none(*vmf
->pte
))
3379 ret
= VM_FAULT_NOPAGE
;
3380 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3382 vmf
->address
= address
;
3387 static vm_fault_t
do_read_fault(struct vm_fault
*vmf
)
3389 struct vm_area_struct
*vma
= vmf
->vma
;
3393 * Let's call ->map_pages() first and use ->fault() as fallback
3394 * if page by the offset is not ready to be mapped (cold cache or
3397 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
3398 ret
= do_fault_around(vmf
);
3403 ret
= __do_fault(vmf
);
3404 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3407 ret
|= finish_fault(vmf
);
3408 unlock_page(vmf
->page
);
3409 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3410 put_page(vmf
->page
);
3414 static vm_fault_t
do_cow_fault(struct vm_fault
*vmf
)
3416 struct vm_area_struct
*vma
= vmf
->vma
;
3419 if (unlikely(anon_vma_prepare(vma
)))
3420 return VM_FAULT_OOM
;
3422 vmf
->cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
3424 return VM_FAULT_OOM
;
3426 if (mem_cgroup_try_charge_delay(vmf
->cow_page
, vma
->vm_mm
, GFP_KERNEL
,
3427 &vmf
->memcg
, false)) {
3428 put_page(vmf
->cow_page
);
3429 return VM_FAULT_OOM
;
3432 ret
= __do_fault(vmf
);
3433 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3435 if (ret
& VM_FAULT_DONE_COW
)
3438 copy_user_highpage(vmf
->cow_page
, vmf
->page
, vmf
->address
, vma
);
3439 __SetPageUptodate(vmf
->cow_page
);
3441 ret
|= finish_fault(vmf
);
3442 unlock_page(vmf
->page
);
3443 put_page(vmf
->page
);
3444 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3448 mem_cgroup_cancel_charge(vmf
->cow_page
, vmf
->memcg
, false);
3449 put_page(vmf
->cow_page
);
3453 static vm_fault_t
do_shared_fault(struct vm_fault
*vmf
)
3455 struct vm_area_struct
*vma
= vmf
->vma
;
3456 vm_fault_t ret
, tmp
;
3458 ret
= __do_fault(vmf
);
3459 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3463 * Check if the backing address space wants to know that the page is
3464 * about to become writable
3466 if (vma
->vm_ops
->page_mkwrite
) {
3467 unlock_page(vmf
->page
);
3468 tmp
= do_page_mkwrite(vmf
);
3469 if (unlikely(!tmp
||
3470 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3471 put_page(vmf
->page
);
3476 ret
|= finish_fault(vmf
);
3477 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3479 unlock_page(vmf
->page
);
3480 put_page(vmf
->page
);
3484 fault_dirty_shared_page(vma
, vmf
->page
);
3489 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3490 * but allow concurrent faults).
3491 * The mmap_sem may have been released depending on flags and our
3492 * return value. See filemap_fault() and __lock_page_or_retry().
3494 static vm_fault_t
do_fault(struct vm_fault
*vmf
)
3496 struct vm_area_struct
*vma
= vmf
->vma
;
3500 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3502 if (!vma
->vm_ops
->fault
) {
3504 * If we find a migration pmd entry or a none pmd entry, which
3505 * should never happen, return SIGBUS
3507 if (unlikely(!pmd_present(*vmf
->pmd
)))
3508 ret
= VM_FAULT_SIGBUS
;
3510 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
,
3515 * Make sure this is not a temporary clearing of pte
3516 * by holding ptl and checking again. A R/M/W update
3517 * of pte involves: take ptl, clearing the pte so that
3518 * we don't have concurrent modification by hardware
3519 * followed by an update.
3521 if (unlikely(pte_none(*vmf
->pte
)))
3522 ret
= VM_FAULT_SIGBUS
;
3524 ret
= VM_FAULT_NOPAGE
;
3526 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3528 } else if (!(vmf
->flags
& FAULT_FLAG_WRITE
))
3529 ret
= do_read_fault(vmf
);
3530 else if (!(vma
->vm_flags
& VM_SHARED
))
3531 ret
= do_cow_fault(vmf
);
3533 ret
= do_shared_fault(vmf
);
3535 /* preallocated pagetable is unused: free it */
3536 if (vmf
->prealloc_pte
) {
3537 pte_free(vma
->vm_mm
, vmf
->prealloc_pte
);
3538 vmf
->prealloc_pte
= NULL
;
3543 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3544 unsigned long addr
, int page_nid
,
3549 count_vm_numa_event(NUMA_HINT_FAULTS
);
3550 if (page_nid
== numa_node_id()) {
3551 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3552 *flags
|= TNF_FAULT_LOCAL
;
3555 return mpol_misplaced(page
, vma
, addr
);
3558 static vm_fault_t
do_numa_page(struct vm_fault
*vmf
)
3560 struct vm_area_struct
*vma
= vmf
->vma
;
3561 struct page
*page
= NULL
;
3565 bool migrated
= false;
3567 bool was_writable
= pte_savedwrite(vmf
->orig_pte
);
3571 * The "pte" at this point cannot be used safely without
3572 * validation through pte_unmap_same(). It's of NUMA type but
3573 * the pfn may be screwed if the read is non atomic.
3575 vmf
->ptl
= pte_lockptr(vma
->vm_mm
, vmf
->pmd
);
3576 spin_lock(vmf
->ptl
);
3577 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
3578 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3583 * Make it present again, Depending on how arch implementes non
3584 * accessible ptes, some can allow access by kernel mode.
3586 pte
= ptep_modify_prot_start(vma
->vm_mm
, vmf
->address
, vmf
->pte
);
3587 pte
= pte_modify(pte
, vma
->vm_page_prot
);
3588 pte
= pte_mkyoung(pte
);
3590 pte
= pte_mkwrite(pte
);
3591 ptep_modify_prot_commit(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3592 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3594 page
= vm_normal_page(vma
, vmf
->address
, pte
);
3596 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3600 /* TODO: handle PTE-mapped THP */
3601 if (PageCompound(page
)) {
3602 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3607 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3608 * much anyway since they can be in shared cache state. This misses
3609 * the case where a mapping is writable but the process never writes
3610 * to it but pte_write gets cleared during protection updates and
3611 * pte_dirty has unpredictable behaviour between PTE scan updates,
3612 * background writeback, dirty balancing and application behaviour.
3614 if (!pte_write(pte
))
3615 flags
|= TNF_NO_GROUP
;
3618 * Flag if the page is shared between multiple address spaces. This
3619 * is later used when determining whether to group tasks together
3621 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3622 flags
|= TNF_SHARED
;
3624 last_cpupid
= page_cpupid_last(page
);
3625 page_nid
= page_to_nid(page
);
3626 target_nid
= numa_migrate_prep(page
, vma
, vmf
->address
, page_nid
,
3628 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3629 if (target_nid
== -1) {
3634 /* Migrate to the requested node */
3635 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3637 page_nid
= target_nid
;
3638 flags
|= TNF_MIGRATED
;
3640 flags
|= TNF_MIGRATE_FAIL
;
3644 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3648 static inline vm_fault_t
create_huge_pmd(struct vm_fault
*vmf
)
3650 if (vma_is_anonymous(vmf
->vma
))
3651 return do_huge_pmd_anonymous_page(vmf
);
3652 if (vmf
->vma
->vm_ops
->huge_fault
)
3653 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3654 return VM_FAULT_FALLBACK
;
3657 /* `inline' is required to avoid gcc 4.1.2 build error */
3658 static inline vm_fault_t
wp_huge_pmd(struct vm_fault
*vmf
, pmd_t orig_pmd
)
3660 if (vma_is_anonymous(vmf
->vma
))
3661 return do_huge_pmd_wp_page(vmf
, orig_pmd
);
3662 if (vmf
->vma
->vm_ops
->huge_fault
)
3663 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3665 /* COW handled on pte level: split pmd */
3666 VM_BUG_ON_VMA(vmf
->vma
->vm_flags
& VM_SHARED
, vmf
->vma
);
3667 __split_huge_pmd(vmf
->vma
, vmf
->pmd
, vmf
->address
, false, NULL
);
3669 return VM_FAULT_FALLBACK
;
3672 static inline bool vma_is_accessible(struct vm_area_struct
*vma
)
3674 return vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
);
3677 static vm_fault_t
create_huge_pud(struct vm_fault
*vmf
)
3679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3680 /* No support for anonymous transparent PUD pages yet */
3681 if (vma_is_anonymous(vmf
->vma
))
3682 return VM_FAULT_FALLBACK
;
3683 if (vmf
->vma
->vm_ops
->huge_fault
)
3684 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3685 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3686 return VM_FAULT_FALLBACK
;
3689 static vm_fault_t
wp_huge_pud(struct vm_fault
*vmf
, pud_t orig_pud
)
3691 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3692 /* No support for anonymous transparent PUD pages yet */
3693 if (vma_is_anonymous(vmf
->vma
))
3694 return VM_FAULT_FALLBACK
;
3695 if (vmf
->vma
->vm_ops
->huge_fault
)
3696 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3697 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3698 return VM_FAULT_FALLBACK
;
3702 * These routines also need to handle stuff like marking pages dirty
3703 * and/or accessed for architectures that don't do it in hardware (most
3704 * RISC architectures). The early dirtying is also good on the i386.
3706 * There is also a hook called "update_mmu_cache()" that architectures
3707 * with external mmu caches can use to update those (ie the Sparc or
3708 * PowerPC hashed page tables that act as extended TLBs).
3710 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3711 * concurrent faults).
3713 * The mmap_sem may have been released depending on flags and our return value.
3714 * See filemap_fault() and __lock_page_or_retry().
3716 static vm_fault_t
handle_pte_fault(struct vm_fault
*vmf
)
3720 if (unlikely(pmd_none(*vmf
->pmd
))) {
3722 * Leave __pte_alloc() until later: because vm_ops->fault may
3723 * want to allocate huge page, and if we expose page table
3724 * for an instant, it will be difficult to retract from
3725 * concurrent faults and from rmap lookups.
3729 /* See comment in pte_alloc_one_map() */
3730 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3733 * A regular pmd is established and it can't morph into a huge
3734 * pmd from under us anymore at this point because we hold the
3735 * mmap_sem read mode and khugepaged takes it in write mode.
3736 * So now it's safe to run pte_offset_map().
3738 vmf
->pte
= pte_offset_map(vmf
->pmd
, vmf
->address
);
3739 vmf
->orig_pte
= *vmf
->pte
;
3742 * some architectures can have larger ptes than wordsize,
3743 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3744 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3745 * accesses. The code below just needs a consistent view
3746 * for the ifs and we later double check anyway with the
3747 * ptl lock held. So here a barrier will do.
3750 if (pte_none(vmf
->orig_pte
)) {
3751 pte_unmap(vmf
->pte
);
3757 if (vma_is_anonymous(vmf
->vma
))
3758 return do_anonymous_page(vmf
);
3760 return do_fault(vmf
);
3763 if (!pte_present(vmf
->orig_pte
))
3764 return do_swap_page(vmf
);
3766 if (pte_protnone(vmf
->orig_pte
) && vma_is_accessible(vmf
->vma
))
3767 return do_numa_page(vmf
);
3769 vmf
->ptl
= pte_lockptr(vmf
->vma
->vm_mm
, vmf
->pmd
);
3770 spin_lock(vmf
->ptl
);
3771 entry
= vmf
->orig_pte
;
3772 if (unlikely(!pte_same(*vmf
->pte
, entry
)))
3774 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3775 if (!pte_write(entry
))
3776 return do_wp_page(vmf
);
3777 entry
= pte_mkdirty(entry
);
3779 entry
= pte_mkyoung(entry
);
3780 if (ptep_set_access_flags(vmf
->vma
, vmf
->address
, vmf
->pte
, entry
,
3781 vmf
->flags
& FAULT_FLAG_WRITE
)) {
3782 update_mmu_cache(vmf
->vma
, vmf
->address
, vmf
->pte
);
3785 * This is needed only for protection faults but the arch code
3786 * is not yet telling us if this is a protection fault or not.
3787 * This still avoids useless tlb flushes for .text page faults
3790 if (vmf
->flags
& FAULT_FLAG_WRITE
)
3791 flush_tlb_fix_spurious_fault(vmf
->vma
, vmf
->address
);
3794 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3799 * By the time we get here, we already hold the mm semaphore
3801 * The mmap_sem may have been released depending on flags and our
3802 * return value. See filemap_fault() and __lock_page_or_retry().
3804 static vm_fault_t
__handle_mm_fault(struct vm_area_struct
*vma
,
3805 unsigned long address
, unsigned int flags
)
3807 struct vm_fault vmf
= {
3809 .address
= address
& PAGE_MASK
,
3811 .pgoff
= linear_page_index(vma
, address
),
3812 .gfp_mask
= __get_fault_gfp_mask(vma
),
3814 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3815 struct mm_struct
*mm
= vma
->vm_mm
;
3820 pgd
= pgd_offset(mm
, address
);
3821 p4d
= p4d_alloc(mm
, pgd
, address
);
3823 return VM_FAULT_OOM
;
3825 vmf
.pud
= pud_alloc(mm
, p4d
, address
);
3827 return VM_FAULT_OOM
;
3828 if (pud_none(*vmf
.pud
) && transparent_hugepage_enabled(vma
)) {
3829 ret
= create_huge_pud(&vmf
);
3830 if (!(ret
& VM_FAULT_FALLBACK
))
3833 pud_t orig_pud
= *vmf
.pud
;
3836 if (pud_trans_huge(orig_pud
) || pud_devmap(orig_pud
)) {
3838 /* NUMA case for anonymous PUDs would go here */
3840 if (dirty
&& !pud_write(orig_pud
)) {
3841 ret
= wp_huge_pud(&vmf
, orig_pud
);
3842 if (!(ret
& VM_FAULT_FALLBACK
))
3845 huge_pud_set_accessed(&vmf
, orig_pud
);
3851 vmf
.pmd
= pmd_alloc(mm
, vmf
.pud
, address
);
3853 return VM_FAULT_OOM
;
3854 if (pmd_none(*vmf
.pmd
) && transparent_hugepage_enabled(vma
)) {
3855 ret
= create_huge_pmd(&vmf
);
3856 if (!(ret
& VM_FAULT_FALLBACK
))
3859 pmd_t orig_pmd
= *vmf
.pmd
;
3862 if (unlikely(is_swap_pmd(orig_pmd
))) {
3863 VM_BUG_ON(thp_migration_supported() &&
3864 !is_pmd_migration_entry(orig_pmd
));
3865 if (is_pmd_migration_entry(orig_pmd
))
3866 pmd_migration_entry_wait(mm
, vmf
.pmd
);
3869 if (pmd_trans_huge(orig_pmd
) || pmd_devmap(orig_pmd
)) {
3870 if (pmd_protnone(orig_pmd
) && vma_is_accessible(vma
))
3871 return do_huge_pmd_numa_page(&vmf
, orig_pmd
);
3873 if (dirty
&& !pmd_write(orig_pmd
)) {
3874 ret
= wp_huge_pmd(&vmf
, orig_pmd
);
3875 if (!(ret
& VM_FAULT_FALLBACK
))
3878 huge_pmd_set_accessed(&vmf
, orig_pmd
);
3884 return handle_pte_fault(&vmf
);
3888 * By the time we get here, we already hold the mm semaphore
3890 * The mmap_sem may have been released depending on flags and our
3891 * return value. See filemap_fault() and __lock_page_or_retry().
3893 vm_fault_t
handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
3898 __set_current_state(TASK_RUNNING
);
3900 count_vm_event(PGFAULT
);
3901 count_memcg_event_mm(vma
->vm_mm
, PGFAULT
);
3903 /* do counter updates before entering really critical section. */
3904 check_sync_rss_stat(current
);
3906 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
3907 flags
& FAULT_FLAG_INSTRUCTION
,
3908 flags
& FAULT_FLAG_REMOTE
))
3909 return VM_FAULT_SIGSEGV
;
3912 * Enable the memcg OOM handling for faults triggered in user
3913 * space. Kernel faults are handled more gracefully.
3915 if (flags
& FAULT_FLAG_USER
)
3916 mem_cgroup_enter_user_fault();
3918 if (unlikely(is_vm_hugetlb_page(vma
)))
3919 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
3921 ret
= __handle_mm_fault(vma
, address
, flags
);
3923 if (flags
& FAULT_FLAG_USER
) {
3924 mem_cgroup_exit_user_fault();
3926 * The task may have entered a memcg OOM situation but
3927 * if the allocation error was handled gracefully (no
3928 * VM_FAULT_OOM), there is no need to kill anything.
3929 * Just clean up the OOM state peacefully.
3931 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
3932 mem_cgroup_oom_synchronize(false);
3937 EXPORT_SYMBOL_GPL(handle_mm_fault
);
3939 #ifndef __PAGETABLE_P4D_FOLDED
3941 * Allocate p4d page table.
3942 * We've already handled the fast-path in-line.
3944 int __p4d_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3946 p4d_t
*new = p4d_alloc_one(mm
, address
);
3950 smp_wmb(); /* See comment in __pte_alloc */
3952 spin_lock(&mm
->page_table_lock
);
3953 if (pgd_present(*pgd
)) /* Another has populated it */
3956 pgd_populate(mm
, pgd
, new);
3957 spin_unlock(&mm
->page_table_lock
);
3960 #endif /* __PAGETABLE_P4D_FOLDED */
3962 #ifndef __PAGETABLE_PUD_FOLDED
3964 * Allocate page upper directory.
3965 * We've already handled the fast-path in-line.
3967 int __pud_alloc(struct mm_struct
*mm
, p4d_t
*p4d
, unsigned long address
)
3969 pud_t
*new = pud_alloc_one(mm
, address
);
3973 smp_wmb(); /* See comment in __pte_alloc */
3975 spin_lock(&mm
->page_table_lock
);
3976 #ifndef __ARCH_HAS_5LEVEL_HACK
3977 if (!p4d_present(*p4d
)) {
3979 p4d_populate(mm
, p4d
, new);
3980 } else /* Another has populated it */
3983 if (!pgd_present(*p4d
)) {
3985 pgd_populate(mm
, p4d
, new);
3986 } else /* Another has populated it */
3988 #endif /* __ARCH_HAS_5LEVEL_HACK */
3989 spin_unlock(&mm
->page_table_lock
);
3992 #endif /* __PAGETABLE_PUD_FOLDED */
3994 #ifndef __PAGETABLE_PMD_FOLDED
3996 * Allocate page middle directory.
3997 * We've already handled the fast-path in-line.
3999 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
4002 pmd_t
*new = pmd_alloc_one(mm
, address
);
4006 smp_wmb(); /* See comment in __pte_alloc */
4008 ptl
= pud_lock(mm
, pud
);
4009 #ifndef __ARCH_HAS_4LEVEL_HACK
4010 if (!pud_present(*pud
)) {
4012 pud_populate(mm
, pud
, new);
4013 } else /* Another has populated it */
4016 if (!pgd_present(*pud
)) {
4018 pgd_populate(mm
, pud
, new);
4019 } else /* Another has populated it */
4021 #endif /* __ARCH_HAS_4LEVEL_HACK */
4025 #endif /* __PAGETABLE_PMD_FOLDED */
4027 static int __follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4028 unsigned long *start
, unsigned long *end
,
4029 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4037 pgd
= pgd_offset(mm
, address
);
4038 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
4041 p4d
= p4d_offset(pgd
, address
);
4042 if (p4d_none(*p4d
) || unlikely(p4d_bad(*p4d
)))
4045 pud
= pud_offset(p4d
, address
);
4046 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
4049 pmd
= pmd_offset(pud
, address
);
4050 VM_BUG_ON(pmd_trans_huge(*pmd
));
4052 if (pmd_huge(*pmd
)) {
4057 *start
= address
& PMD_MASK
;
4058 *end
= *start
+ PMD_SIZE
;
4059 mmu_notifier_invalidate_range_start(mm
, *start
, *end
);
4061 *ptlp
= pmd_lock(mm
, pmd
);
4062 if (pmd_huge(*pmd
)) {
4068 mmu_notifier_invalidate_range_end(mm
, *start
, *end
);
4071 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
4075 *start
= address
& PAGE_MASK
;
4076 *end
= *start
+ PAGE_SIZE
;
4077 mmu_notifier_invalidate_range_start(mm
, *start
, *end
);
4079 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
4080 if (!pte_present(*ptep
))
4085 pte_unmap_unlock(ptep
, *ptlp
);
4087 mmu_notifier_invalidate_range_end(mm
, *start
, *end
);
4092 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
4093 pte_t
**ptepp
, spinlock_t
**ptlp
)
4097 /* (void) is needed to make gcc happy */
4098 (void) __cond_lock(*ptlp
,
4099 !(res
= __follow_pte_pmd(mm
, address
, NULL
, NULL
,
4100 ptepp
, NULL
, ptlp
)));
4104 int follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4105 unsigned long *start
, unsigned long *end
,
4106 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4110 /* (void) is needed to make gcc happy */
4111 (void) __cond_lock(*ptlp
,
4112 !(res
= __follow_pte_pmd(mm
, address
, start
, end
,
4113 ptepp
, pmdpp
, ptlp
)));
4116 EXPORT_SYMBOL(follow_pte_pmd
);
4119 * follow_pfn - look up PFN at a user virtual address
4120 * @vma: memory mapping
4121 * @address: user virtual address
4122 * @pfn: location to store found PFN
4124 * Only IO mappings and raw PFN mappings are allowed.
4126 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4128 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
4135 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4138 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
4141 *pfn
= pte_pfn(*ptep
);
4142 pte_unmap_unlock(ptep
, ptl
);
4145 EXPORT_SYMBOL(follow_pfn
);
4147 #ifdef CONFIG_HAVE_IOREMAP_PROT
4148 int follow_phys(struct vm_area_struct
*vma
,
4149 unsigned long address
, unsigned int flags
,
4150 unsigned long *prot
, resource_size_t
*phys
)
4156 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4159 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
4163 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
4166 *prot
= pgprot_val(pte_pgprot(pte
));
4167 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
4171 pte_unmap_unlock(ptep
, ptl
);
4176 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
4177 void *buf
, int len
, int write
)
4179 resource_size_t phys_addr
;
4180 unsigned long prot
= 0;
4181 void __iomem
*maddr
;
4182 int offset
= addr
& (PAGE_SIZE
-1);
4184 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4187 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
4192 memcpy_toio(maddr
+ offset
, buf
, len
);
4194 memcpy_fromio(buf
, maddr
+ offset
, len
);
4199 EXPORT_SYMBOL_GPL(generic_access_phys
);
4203 * Access another process' address space as given in mm. If non-NULL, use the
4204 * given task for page fault accounting.
4206 int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4207 unsigned long addr
, void *buf
, int len
, unsigned int gup_flags
)
4209 struct vm_area_struct
*vma
;
4210 void *old_buf
= buf
;
4211 int write
= gup_flags
& FOLL_WRITE
;
4213 down_read(&mm
->mmap_sem
);
4214 /* ignore errors, just check how much was successfully transferred */
4216 int bytes
, ret
, offset
;
4218 struct page
*page
= NULL
;
4220 ret
= get_user_pages_remote(tsk
, mm
, addr
, 1,
4221 gup_flags
, &page
, &vma
, NULL
);
4223 #ifndef CONFIG_HAVE_IOREMAP_PROT
4227 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4228 * we can access using slightly different code.
4230 vma
= find_vma(mm
, addr
);
4231 if (!vma
|| vma
->vm_start
> addr
)
4233 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4234 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4242 offset
= addr
& (PAGE_SIZE
-1);
4243 if (bytes
> PAGE_SIZE
-offset
)
4244 bytes
= PAGE_SIZE
-offset
;
4248 copy_to_user_page(vma
, page
, addr
,
4249 maddr
+ offset
, buf
, bytes
);
4250 set_page_dirty_lock(page
);
4252 copy_from_user_page(vma
, page
, addr
,
4253 buf
, maddr
+ offset
, bytes
);
4262 up_read(&mm
->mmap_sem
);
4264 return buf
- old_buf
;
4268 * access_remote_vm - access another process' address space
4269 * @mm: the mm_struct of the target address space
4270 * @addr: start address to access
4271 * @buf: source or destination buffer
4272 * @len: number of bytes to transfer
4273 * @gup_flags: flags modifying lookup behaviour
4275 * The caller must hold a reference on @mm.
4277 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4278 void *buf
, int len
, unsigned int gup_flags
)
4280 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, gup_flags
);
4284 * Access another process' address space.
4285 * Source/target buffer must be kernel space,
4286 * Do not walk the page table directly, use get_user_pages
4288 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4289 void *buf
, int len
, unsigned int gup_flags
)
4291 struct mm_struct
*mm
;
4294 mm
= get_task_mm(tsk
);
4298 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, gup_flags
);
4304 EXPORT_SYMBOL_GPL(access_process_vm
);
4307 * Print the name of a VMA.
4309 void print_vma_addr(char *prefix
, unsigned long ip
)
4311 struct mm_struct
*mm
= current
->mm
;
4312 struct vm_area_struct
*vma
;
4315 * we might be running from an atomic context so we cannot sleep
4317 if (!down_read_trylock(&mm
->mmap_sem
))
4320 vma
= find_vma(mm
, ip
);
4321 if (vma
&& vma
->vm_file
) {
4322 struct file
*f
= vma
->vm_file
;
4323 char *buf
= (char *)__get_free_page(GFP_NOWAIT
);
4327 p
= file_path(f
, buf
, PAGE_SIZE
);
4330 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4332 vma
->vm_end
- vma
->vm_start
);
4333 free_page((unsigned long)buf
);
4336 up_read(&mm
->mmap_sem
);
4339 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4340 void __might_fault(const char *file
, int line
)
4343 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4344 * holding the mmap_sem, this is safe because kernel memory doesn't
4345 * get paged out, therefore we'll never actually fault, and the
4346 * below annotations will generate false positives.
4348 if (uaccess_kernel())
4350 if (pagefault_disabled())
4352 __might_sleep(file
, line
, 0);
4353 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4355 might_lock_read(¤t
->mm
->mmap_sem
);
4358 EXPORT_SYMBOL(__might_fault
);
4361 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4363 * Process all subpages of the specified huge page with the specified
4364 * operation. The target subpage will be processed last to keep its
4367 static inline void process_huge_page(
4368 unsigned long addr_hint
, unsigned int pages_per_huge_page
,
4369 void (*process_subpage
)(unsigned long addr
, int idx
, void *arg
),
4373 unsigned long addr
= addr_hint
&
4374 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4376 /* Process target subpage last to keep its cache lines hot */
4378 n
= (addr_hint
- addr
) / PAGE_SIZE
;
4379 if (2 * n
<= pages_per_huge_page
) {
4380 /* If target subpage in first half of huge page */
4383 /* Process subpages at the end of huge page */
4384 for (i
= pages_per_huge_page
- 1; i
>= 2 * n
; i
--) {
4386 process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
4389 /* If target subpage in second half of huge page */
4390 base
= pages_per_huge_page
- 2 * (pages_per_huge_page
- n
);
4391 l
= pages_per_huge_page
- n
;
4392 /* Process subpages at the begin of huge page */
4393 for (i
= 0; i
< base
; i
++) {
4395 process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
4399 * Process remaining subpages in left-right-left-right pattern
4400 * towards the target subpage
4402 for (i
= 0; i
< l
; i
++) {
4403 int left_idx
= base
+ i
;
4404 int right_idx
= base
+ 2 * l
- 1 - i
;
4407 process_subpage(addr
+ left_idx
* PAGE_SIZE
, left_idx
, arg
);
4409 process_subpage(addr
+ right_idx
* PAGE_SIZE
, right_idx
, arg
);
4413 static void clear_gigantic_page(struct page
*page
,
4415 unsigned int pages_per_huge_page
)
4418 struct page
*p
= page
;
4421 for (i
= 0; i
< pages_per_huge_page
;
4422 i
++, p
= mem_map_next(p
, page
, i
)) {
4424 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4428 static void clear_subpage(unsigned long addr
, int idx
, void *arg
)
4430 struct page
*page
= arg
;
4432 clear_user_highpage(page
+ idx
, addr
);
4435 void clear_huge_page(struct page
*page
,
4436 unsigned long addr_hint
, unsigned int pages_per_huge_page
)
4438 unsigned long addr
= addr_hint
&
4439 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4441 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4442 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4446 process_huge_page(addr_hint
, pages_per_huge_page
, clear_subpage
, page
);
4449 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4451 struct vm_area_struct
*vma
,
4452 unsigned int pages_per_huge_page
)
4455 struct page
*dst_base
= dst
;
4456 struct page
*src_base
= src
;
4458 for (i
= 0; i
< pages_per_huge_page
; ) {
4460 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4463 dst
= mem_map_next(dst
, dst_base
, i
);
4464 src
= mem_map_next(src
, src_base
, i
);
4468 struct copy_subpage_arg
{
4471 struct vm_area_struct
*vma
;
4474 static void copy_subpage(unsigned long addr
, int idx
, void *arg
)
4476 struct copy_subpage_arg
*copy_arg
= arg
;
4478 copy_user_highpage(copy_arg
->dst
+ idx
, copy_arg
->src
+ idx
,
4479 addr
, copy_arg
->vma
);
4482 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4483 unsigned long addr_hint
, struct vm_area_struct
*vma
,
4484 unsigned int pages_per_huge_page
)
4486 unsigned long addr
= addr_hint
&
4487 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4488 struct copy_subpage_arg arg
= {
4494 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4495 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4496 pages_per_huge_page
);
4500 process_huge_page(addr_hint
, pages_per_huge_page
, copy_subpage
, &arg
);
4503 long copy_huge_page_from_user(struct page
*dst_page
,
4504 const void __user
*usr_src
,
4505 unsigned int pages_per_huge_page
,
4506 bool allow_pagefault
)
4508 void *src
= (void *)usr_src
;
4510 unsigned long i
, rc
= 0;
4511 unsigned long ret_val
= pages_per_huge_page
* PAGE_SIZE
;
4513 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4514 if (allow_pagefault
)
4515 page_kaddr
= kmap(dst_page
+ i
);
4517 page_kaddr
= kmap_atomic(dst_page
+ i
);
4518 rc
= copy_from_user(page_kaddr
,
4519 (const void __user
*)(src
+ i
* PAGE_SIZE
),
4521 if (allow_pagefault
)
4522 kunmap(dst_page
+ i
);
4524 kunmap_atomic(page_kaddr
);
4526 ret_val
-= (PAGE_SIZE
- rc
);
4534 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4536 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4538 static struct kmem_cache
*page_ptl_cachep
;
4540 void __init
ptlock_cache_init(void)
4542 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
4546 bool ptlock_alloc(struct page
*page
)
4550 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
4557 void ptlock_free(struct page
*page
)
4559 kmem_cache_free(page_ptl_cachep
, page
->ptl
);