perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / mm / memory.c
blob072139579d897021e83fe6b70344ad4acd62d664
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
81 #include "internal.h"
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
107 * Randomize the address space (stacks, mmaps, brk, etc.).
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
115 #else
117 #endif
119 static int __init disable_randmaps(char *s)
121 randomize_va_space = 0;
122 return 1;
124 __setup("norandmaps", disable_randmaps);
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
129 unsigned long highest_memmap_pfn __read_mostly;
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134 static int __init init_zero_pfn(void)
136 zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 return 0;
139 core_initcall(init_zero_pfn);
142 #if defined(SPLIT_RSS_COUNTING)
144 void sync_mm_rss(struct mm_struct *mm)
146 int i;
148 for (i = 0; i < NR_MM_COUNTERS; i++) {
149 if (current->rss_stat.count[i]) {
150 add_mm_counter(mm, i, current->rss_stat.count[i]);
151 current->rss_stat.count[i] = 0;
154 current->rss_stat.events = 0;
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 struct task_struct *task = current;
161 if (likely(task->mm == mm))
162 task->rss_stat.count[member] += val;
163 else
164 add_mm_counter(mm, member, val);
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH (64)
171 static void check_sync_rss_stat(struct task_struct *task)
173 if (unlikely(task != current))
174 return;
175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176 sync_mm_rss(task->mm);
178 #else /* SPLIT_RSS_COUNTING */
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183 static void check_sync_rss_stat(struct task_struct *task)
187 #endif /* SPLIT_RSS_COUNTING */
190 * Note: this doesn't free the actual pages themselves. That
191 * has been handled earlier when unmapping all the memory regions.
193 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
194 unsigned long addr)
196 pgtable_t token = pmd_pgtable(*pmd);
197 pmd_clear(pmd);
198 pte_free_tlb(tlb, token, addr);
199 mm_dec_nr_ptes(tlb->mm);
202 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
203 unsigned long addr, unsigned long end,
204 unsigned long floor, unsigned long ceiling)
206 pmd_t *pmd;
207 unsigned long next;
208 unsigned long start;
210 start = addr;
211 pmd = pmd_offset(pud, addr);
212 do {
213 next = pmd_addr_end(addr, end);
214 if (pmd_none_or_clear_bad(pmd))
215 continue;
216 free_pte_range(tlb, pmd, addr);
217 } while (pmd++, addr = next, addr != end);
219 start &= PUD_MASK;
220 if (start < floor)
221 return;
222 if (ceiling) {
223 ceiling &= PUD_MASK;
224 if (!ceiling)
225 return;
227 if (end - 1 > ceiling - 1)
228 return;
230 pmd = pmd_offset(pud, start);
231 pud_clear(pud);
232 pmd_free_tlb(tlb, pmd, start);
233 mm_dec_nr_pmds(tlb->mm);
236 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
237 unsigned long addr, unsigned long end,
238 unsigned long floor, unsigned long ceiling)
240 pud_t *pud;
241 unsigned long next;
242 unsigned long start;
244 start = addr;
245 pud = pud_offset(p4d, addr);
246 do {
247 next = pud_addr_end(addr, end);
248 if (pud_none_or_clear_bad(pud))
249 continue;
250 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
251 } while (pud++, addr = next, addr != end);
253 start &= P4D_MASK;
254 if (start < floor)
255 return;
256 if (ceiling) {
257 ceiling &= P4D_MASK;
258 if (!ceiling)
259 return;
261 if (end - 1 > ceiling - 1)
262 return;
264 pud = pud_offset(p4d, start);
265 p4d_clear(p4d);
266 pud_free_tlb(tlb, pud, start);
267 mm_dec_nr_puds(tlb->mm);
270 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
271 unsigned long addr, unsigned long end,
272 unsigned long floor, unsigned long ceiling)
274 p4d_t *p4d;
275 unsigned long next;
276 unsigned long start;
278 start = addr;
279 p4d = p4d_offset(pgd, addr);
280 do {
281 next = p4d_addr_end(addr, end);
282 if (p4d_none_or_clear_bad(p4d))
283 continue;
284 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
285 } while (p4d++, addr = next, addr != end);
287 start &= PGDIR_MASK;
288 if (start < floor)
289 return;
290 if (ceiling) {
291 ceiling &= PGDIR_MASK;
292 if (!ceiling)
293 return;
295 if (end - 1 > ceiling - 1)
296 return;
298 p4d = p4d_offset(pgd, start);
299 pgd_clear(pgd);
300 p4d_free_tlb(tlb, p4d, start);
304 * This function frees user-level page tables of a process.
306 void free_pgd_range(struct mmu_gather *tlb,
307 unsigned long addr, unsigned long end,
308 unsigned long floor, unsigned long ceiling)
310 pgd_t *pgd;
311 unsigned long next;
314 * The next few lines have given us lots of grief...
316 * Why are we testing PMD* at this top level? Because often
317 * there will be no work to do at all, and we'd prefer not to
318 * go all the way down to the bottom just to discover that.
320 * Why all these "- 1"s? Because 0 represents both the bottom
321 * of the address space and the top of it (using -1 for the
322 * top wouldn't help much: the masks would do the wrong thing).
323 * The rule is that addr 0 and floor 0 refer to the bottom of
324 * the address space, but end 0 and ceiling 0 refer to the top
325 * Comparisons need to use "end - 1" and "ceiling - 1" (though
326 * that end 0 case should be mythical).
328 * Wherever addr is brought up or ceiling brought down, we must
329 * be careful to reject "the opposite 0" before it confuses the
330 * subsequent tests. But what about where end is brought down
331 * by PMD_SIZE below? no, end can't go down to 0 there.
333 * Whereas we round start (addr) and ceiling down, by different
334 * masks at different levels, in order to test whether a table
335 * now has no other vmas using it, so can be freed, we don't
336 * bother to round floor or end up - the tests don't need that.
339 addr &= PMD_MASK;
340 if (addr < floor) {
341 addr += PMD_SIZE;
342 if (!addr)
343 return;
345 if (ceiling) {
346 ceiling &= PMD_MASK;
347 if (!ceiling)
348 return;
350 if (end - 1 > ceiling - 1)
351 end -= PMD_SIZE;
352 if (addr > end - 1)
353 return;
355 * We add page table cache pages with PAGE_SIZE,
356 * (see pte_free_tlb()), flush the tlb if we need
358 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
359 pgd = pgd_offset(tlb->mm, addr);
360 do {
361 next = pgd_addr_end(addr, end);
362 if (pgd_none_or_clear_bad(pgd))
363 continue;
364 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
365 } while (pgd++, addr = next, addr != end);
368 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
369 unsigned long floor, unsigned long ceiling)
371 while (vma) {
372 struct vm_area_struct *next = vma->vm_next;
373 unsigned long addr = vma->vm_start;
376 * Hide vma from rmap and truncate_pagecache before freeing
377 * pgtables
379 unlink_anon_vmas(vma);
380 unlink_file_vma(vma);
382 if (is_vm_hugetlb_page(vma)) {
383 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
384 floor, next ? next->vm_start : ceiling);
385 } else {
387 * Optimization: gather nearby vmas into one call down
389 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
390 && !is_vm_hugetlb_page(next)) {
391 vma = next;
392 next = vma->vm_next;
393 unlink_anon_vmas(vma);
394 unlink_file_vma(vma);
396 free_pgd_range(tlb, addr, vma->vm_end,
397 floor, next ? next->vm_start : ceiling);
399 vma = next;
403 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
405 spinlock_t *ptl;
406 pgtable_t new = pte_alloc_one(mm, address);
407 if (!new)
408 return -ENOMEM;
411 * Ensure all pte setup (eg. pte page lock and page clearing) are
412 * visible before the pte is made visible to other CPUs by being
413 * put into page tables.
415 * The other side of the story is the pointer chasing in the page
416 * table walking code (when walking the page table without locking;
417 * ie. most of the time). Fortunately, these data accesses consist
418 * of a chain of data-dependent loads, meaning most CPUs (alpha
419 * being the notable exception) will already guarantee loads are
420 * seen in-order. See the alpha page table accessors for the
421 * smp_read_barrier_depends() barriers in page table walking code.
423 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
425 ptl = pmd_lock(mm, pmd);
426 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
427 mm_inc_nr_ptes(mm);
428 pmd_populate(mm, pmd, new);
429 new = NULL;
431 spin_unlock(ptl);
432 if (new)
433 pte_free(mm, new);
434 return 0;
437 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
439 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
440 if (!new)
441 return -ENOMEM;
443 smp_wmb(); /* See comment in __pte_alloc */
445 spin_lock(&init_mm.page_table_lock);
446 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
447 pmd_populate_kernel(&init_mm, pmd, new);
448 new = NULL;
450 spin_unlock(&init_mm.page_table_lock);
451 if (new)
452 pte_free_kernel(&init_mm, new);
453 return 0;
456 static inline void init_rss_vec(int *rss)
458 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
463 int i;
465 if (current->mm == mm)
466 sync_mm_rss(mm);
467 for (i = 0; i < NR_MM_COUNTERS; i++)
468 if (rss[i])
469 add_mm_counter(mm, i, rss[i]);
473 * This function is called to print an error when a bad pte
474 * is found. For example, we might have a PFN-mapped pte in
475 * a region that doesn't allow it.
477 * The calling function must still handle the error.
479 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
480 pte_t pte, struct page *page)
482 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
483 p4d_t *p4d = p4d_offset(pgd, addr);
484 pud_t *pud = pud_offset(p4d, addr);
485 pmd_t *pmd = pmd_offset(pud, addr);
486 struct address_space *mapping;
487 pgoff_t index;
488 static unsigned long resume;
489 static unsigned long nr_shown;
490 static unsigned long nr_unshown;
493 * Allow a burst of 60 reports, then keep quiet for that minute;
494 * or allow a steady drip of one report per second.
496 if (nr_shown == 60) {
497 if (time_before(jiffies, resume)) {
498 nr_unshown++;
499 return;
501 if (nr_unshown) {
502 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
503 nr_unshown);
504 nr_unshown = 0;
506 nr_shown = 0;
508 if (nr_shown++ == 0)
509 resume = jiffies + 60 * HZ;
511 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
512 index = linear_page_index(vma, addr);
514 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
515 current->comm,
516 (long long)pte_val(pte), (long long)pmd_val(*pmd));
517 if (page)
518 dump_page(page, "bad pte");
519 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
520 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
521 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
522 vma->vm_file,
523 vma->vm_ops ? vma->vm_ops->fault : NULL,
524 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
525 mapping ? mapping->a_ops->readpage : NULL);
526 dump_stack();
527 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
531 * vm_normal_page -- This function gets the "struct page" associated with a pte.
533 * "Special" mappings do not wish to be associated with a "struct page" (either
534 * it doesn't exist, or it exists but they don't want to touch it). In this
535 * case, NULL is returned here. "Normal" mappings do have a struct page.
537 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
538 * pte bit, in which case this function is trivial. Secondly, an architecture
539 * may not have a spare pte bit, which requires a more complicated scheme,
540 * described below.
542 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
543 * special mapping (even if there are underlying and valid "struct pages").
544 * COWed pages of a VM_PFNMAP are always normal.
546 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
547 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
548 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
549 * mapping will always honor the rule
551 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
553 * And for normal mappings this is false.
555 * This restricts such mappings to be a linear translation from virtual address
556 * to pfn. To get around this restriction, we allow arbitrary mappings so long
557 * as the vma is not a COW mapping; in that case, we know that all ptes are
558 * special (because none can have been COWed).
561 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
563 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
564 * page" backing, however the difference is that _all_ pages with a struct
565 * page (that is, those where pfn_valid is true) are refcounted and considered
566 * normal pages by the VM. The disadvantage is that pages are refcounted
567 * (which can be slower and simply not an option for some PFNMAP users). The
568 * advantage is that we don't have to follow the strict linearity rule of
569 * PFNMAP mappings in order to support COWable mappings.
572 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
573 pte_t pte, bool with_public_device)
575 unsigned long pfn = pte_pfn(pte);
577 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
578 if (likely(!pte_special(pte)))
579 goto check_pfn;
580 if (vma->vm_ops && vma->vm_ops->find_special_page)
581 return vma->vm_ops->find_special_page(vma, addr);
582 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
583 return NULL;
584 if (is_zero_pfn(pfn))
585 return NULL;
588 * Device public pages are special pages (they are ZONE_DEVICE
589 * pages but different from persistent memory). They behave
590 * allmost like normal pages. The difference is that they are
591 * not on the lru and thus should never be involve with any-
592 * thing that involve lru manipulation (mlock, numa balancing,
593 * ...).
595 * This is why we still want to return NULL for such page from
596 * vm_normal_page() so that we do not have to special case all
597 * call site of vm_normal_page().
599 if (likely(pfn <= highest_memmap_pfn)) {
600 struct page *page = pfn_to_page(pfn);
602 if (is_device_public_page(page)) {
603 if (with_public_device)
604 return page;
605 return NULL;
609 if (pte_devmap(pte))
610 return NULL;
612 print_bad_pte(vma, addr, pte, NULL);
613 return NULL;
616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619 if (vma->vm_flags & VM_MIXEDMAP) {
620 if (!pfn_valid(pfn))
621 return NULL;
622 goto out;
623 } else {
624 unsigned long off;
625 off = (addr - vma->vm_start) >> PAGE_SHIFT;
626 if (pfn == vma->vm_pgoff + off)
627 return NULL;
628 if (!is_cow_mapping(vma->vm_flags))
629 return NULL;
633 if (is_zero_pfn(pfn))
634 return NULL;
636 check_pfn:
637 if (unlikely(pfn > highest_memmap_pfn)) {
638 print_bad_pte(vma, addr, pte, NULL);
639 return NULL;
643 * NOTE! We still have PageReserved() pages in the page tables.
644 * eg. VDSO mappings can cause them to exist.
646 out:
647 return pfn_to_page(pfn);
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652 pmd_t pmd)
654 unsigned long pfn = pmd_pfn(pmd);
657 * There is no pmd_special() but there may be special pmds, e.g.
658 * in a direct-access (dax) mapping, so let's just replicate the
659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
661 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662 if (vma->vm_flags & VM_MIXEDMAP) {
663 if (!pfn_valid(pfn))
664 return NULL;
665 goto out;
666 } else {
667 unsigned long off;
668 off = (addr - vma->vm_start) >> PAGE_SHIFT;
669 if (pfn == vma->vm_pgoff + off)
670 return NULL;
671 if (!is_cow_mapping(vma->vm_flags))
672 return NULL;
676 if (pmd_devmap(pmd))
677 return NULL;
678 if (is_zero_pfn(pfn))
679 return NULL;
680 if (unlikely(pfn > highest_memmap_pfn))
681 return NULL;
684 * NOTE! We still have PageReserved() pages in the page tables.
685 * eg. VDSO mappings can cause them to exist.
687 out:
688 return pfn_to_page(pfn);
690 #endif
693 * copy one vm_area from one task to the other. Assumes the page tables
694 * already present in the new task to be cleared in the whole range
695 * covered by this vma.
698 static inline unsigned long
699 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
701 unsigned long addr, int *rss)
703 unsigned long vm_flags = vma->vm_flags;
704 pte_t pte = *src_pte;
705 struct page *page;
707 /* pte contains position in swap or file, so copy. */
708 if (unlikely(!pte_present(pte))) {
709 swp_entry_t entry = pte_to_swp_entry(pte);
711 if (likely(!non_swap_entry(entry))) {
712 if (swap_duplicate(entry) < 0)
713 return entry.val;
715 /* make sure dst_mm is on swapoff's mmlist. */
716 if (unlikely(list_empty(&dst_mm->mmlist))) {
717 spin_lock(&mmlist_lock);
718 if (list_empty(&dst_mm->mmlist))
719 list_add(&dst_mm->mmlist,
720 &src_mm->mmlist);
721 spin_unlock(&mmlist_lock);
723 rss[MM_SWAPENTS]++;
724 } else if (is_migration_entry(entry)) {
725 page = migration_entry_to_page(entry);
727 rss[mm_counter(page)]++;
729 if (is_write_migration_entry(entry) &&
730 is_cow_mapping(vm_flags)) {
732 * COW mappings require pages in both
733 * parent and child to be set to read.
735 make_migration_entry_read(&entry);
736 pte = swp_entry_to_pte(entry);
737 if (pte_swp_soft_dirty(*src_pte))
738 pte = pte_swp_mksoft_dirty(pte);
739 set_pte_at(src_mm, addr, src_pte, pte);
741 } else if (is_device_private_entry(entry)) {
742 page = device_private_entry_to_page(entry);
745 * Update rss count even for unaddressable pages, as
746 * they should treated just like normal pages in this
747 * respect.
749 * We will likely want to have some new rss counters
750 * for unaddressable pages, at some point. But for now
751 * keep things as they are.
753 get_page(page);
754 rss[mm_counter(page)]++;
755 page_dup_rmap(page, false);
758 * We do not preserve soft-dirty information, because so
759 * far, checkpoint/restore is the only feature that
760 * requires that. And checkpoint/restore does not work
761 * when a device driver is involved (you cannot easily
762 * save and restore device driver state).
764 if (is_write_device_private_entry(entry) &&
765 is_cow_mapping(vm_flags)) {
766 make_device_private_entry_read(&entry);
767 pte = swp_entry_to_pte(entry);
768 set_pte_at(src_mm, addr, src_pte, pte);
771 goto out_set_pte;
775 * If it's a COW mapping, write protect it both
776 * in the parent and the child
778 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
779 ptep_set_wrprotect(src_mm, addr, src_pte);
780 pte = pte_wrprotect(pte);
784 * If it's a shared mapping, mark it clean in
785 * the child
787 if (vm_flags & VM_SHARED)
788 pte = pte_mkclean(pte);
789 pte = pte_mkold(pte);
791 page = vm_normal_page(vma, addr, pte);
792 if (page) {
793 get_page(page);
794 page_dup_rmap(page, false);
795 rss[mm_counter(page)]++;
796 } else if (pte_devmap(pte)) {
797 page = pte_page(pte);
800 * Cache coherent device memory behave like regular page and
801 * not like persistent memory page. For more informations see
802 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
804 if (is_device_public_page(page)) {
805 get_page(page);
806 page_dup_rmap(page, false);
807 rss[mm_counter(page)]++;
811 out_set_pte:
812 set_pte_at(dst_mm, addr, dst_pte, pte);
813 return 0;
816 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
817 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
818 unsigned long addr, unsigned long end)
820 pte_t *orig_src_pte, *orig_dst_pte;
821 pte_t *src_pte, *dst_pte;
822 spinlock_t *src_ptl, *dst_ptl;
823 int progress = 0;
824 int rss[NR_MM_COUNTERS];
825 swp_entry_t entry = (swp_entry_t){0};
827 again:
828 init_rss_vec(rss);
830 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
831 if (!dst_pte)
832 return -ENOMEM;
833 src_pte = pte_offset_map(src_pmd, addr);
834 src_ptl = pte_lockptr(src_mm, src_pmd);
835 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
836 orig_src_pte = src_pte;
837 orig_dst_pte = dst_pte;
838 arch_enter_lazy_mmu_mode();
840 do {
842 * We are holding two locks at this point - either of them
843 * could generate latencies in another task on another CPU.
845 if (progress >= 32) {
846 progress = 0;
847 if (need_resched() ||
848 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
849 break;
851 if (pte_none(*src_pte)) {
852 progress++;
853 continue;
855 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
856 vma, addr, rss);
857 if (entry.val)
858 break;
859 progress += 8;
860 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
862 arch_leave_lazy_mmu_mode();
863 spin_unlock(src_ptl);
864 pte_unmap(orig_src_pte);
865 add_mm_rss_vec(dst_mm, rss);
866 pte_unmap_unlock(orig_dst_pte, dst_ptl);
867 cond_resched();
869 if (entry.val) {
870 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
871 return -ENOMEM;
872 progress = 0;
874 if (addr != end)
875 goto again;
876 return 0;
879 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
880 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
881 unsigned long addr, unsigned long end)
883 pmd_t *src_pmd, *dst_pmd;
884 unsigned long next;
886 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
887 if (!dst_pmd)
888 return -ENOMEM;
889 src_pmd = pmd_offset(src_pud, addr);
890 do {
891 next = pmd_addr_end(addr, end);
892 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
893 || pmd_devmap(*src_pmd)) {
894 int err;
895 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
896 err = copy_huge_pmd(dst_mm, src_mm,
897 dst_pmd, src_pmd, addr, vma);
898 if (err == -ENOMEM)
899 return -ENOMEM;
900 if (!err)
901 continue;
902 /* fall through */
904 if (pmd_none_or_clear_bad(src_pmd))
905 continue;
906 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
907 vma, addr, next))
908 return -ENOMEM;
909 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
910 return 0;
913 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
914 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
915 unsigned long addr, unsigned long end)
917 pud_t *src_pud, *dst_pud;
918 unsigned long next;
920 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
921 if (!dst_pud)
922 return -ENOMEM;
923 src_pud = pud_offset(src_p4d, addr);
924 do {
925 next = pud_addr_end(addr, end);
926 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
927 int err;
929 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
930 err = copy_huge_pud(dst_mm, src_mm,
931 dst_pud, src_pud, addr, vma);
932 if (err == -ENOMEM)
933 return -ENOMEM;
934 if (!err)
935 continue;
936 /* fall through */
938 if (pud_none_or_clear_bad(src_pud))
939 continue;
940 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
941 vma, addr, next))
942 return -ENOMEM;
943 } while (dst_pud++, src_pud++, addr = next, addr != end);
944 return 0;
947 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
948 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
949 unsigned long addr, unsigned long end)
951 p4d_t *src_p4d, *dst_p4d;
952 unsigned long next;
954 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
955 if (!dst_p4d)
956 return -ENOMEM;
957 src_p4d = p4d_offset(src_pgd, addr);
958 do {
959 next = p4d_addr_end(addr, end);
960 if (p4d_none_or_clear_bad(src_p4d))
961 continue;
962 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
963 vma, addr, next))
964 return -ENOMEM;
965 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
966 return 0;
969 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
970 struct vm_area_struct *vma)
972 pgd_t *src_pgd, *dst_pgd;
973 unsigned long next;
974 unsigned long addr = vma->vm_start;
975 unsigned long end = vma->vm_end;
976 unsigned long mmun_start; /* For mmu_notifiers */
977 unsigned long mmun_end; /* For mmu_notifiers */
978 bool is_cow;
979 int ret;
982 * Don't copy ptes where a page fault will fill them correctly.
983 * Fork becomes much lighter when there are big shared or private
984 * readonly mappings. The tradeoff is that copy_page_range is more
985 * efficient than faulting.
987 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
988 !vma->anon_vma)
989 return 0;
991 if (is_vm_hugetlb_page(vma))
992 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
994 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
996 * We do not free on error cases below as remove_vma
997 * gets called on error from higher level routine
999 ret = track_pfn_copy(vma);
1000 if (ret)
1001 return ret;
1005 * We need to invalidate the secondary MMU mappings only when
1006 * there could be a permission downgrade on the ptes of the
1007 * parent mm. And a permission downgrade will only happen if
1008 * is_cow_mapping() returns true.
1010 is_cow = is_cow_mapping(vma->vm_flags);
1011 mmun_start = addr;
1012 mmun_end = end;
1013 if (is_cow)
1014 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1015 mmun_end);
1017 ret = 0;
1018 dst_pgd = pgd_offset(dst_mm, addr);
1019 src_pgd = pgd_offset(src_mm, addr);
1020 do {
1021 next = pgd_addr_end(addr, end);
1022 if (pgd_none_or_clear_bad(src_pgd))
1023 continue;
1024 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1025 vma, addr, next))) {
1026 ret = -ENOMEM;
1027 break;
1029 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1031 if (is_cow)
1032 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1033 return ret;
1036 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1037 struct vm_area_struct *vma, pmd_t *pmd,
1038 unsigned long addr, unsigned long end,
1039 struct zap_details *details)
1041 struct mm_struct *mm = tlb->mm;
1042 int force_flush = 0;
1043 int rss[NR_MM_COUNTERS];
1044 spinlock_t *ptl;
1045 pte_t *start_pte;
1046 pte_t *pte;
1047 swp_entry_t entry;
1049 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1050 again:
1051 init_rss_vec(rss);
1052 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1053 pte = start_pte;
1054 flush_tlb_batched_pending(mm);
1055 arch_enter_lazy_mmu_mode();
1056 do {
1057 pte_t ptent = *pte;
1058 if (pte_none(ptent))
1059 continue;
1061 if (pte_present(ptent)) {
1062 struct page *page;
1064 page = _vm_normal_page(vma, addr, ptent, true);
1065 if (unlikely(details) && page) {
1067 * unmap_shared_mapping_pages() wants to
1068 * invalidate cache without truncating:
1069 * unmap shared but keep private pages.
1071 if (details->check_mapping &&
1072 details->check_mapping != page_rmapping(page))
1073 continue;
1075 ptent = ptep_get_and_clear_full(mm, addr, pte,
1076 tlb->fullmm);
1077 tlb_remove_tlb_entry(tlb, pte, addr);
1078 if (unlikely(!page))
1079 continue;
1081 if (!PageAnon(page)) {
1082 if (pte_dirty(ptent)) {
1083 force_flush = 1;
1084 set_page_dirty(page);
1086 if (pte_young(ptent) &&
1087 likely(!(vma->vm_flags & VM_SEQ_READ)))
1088 mark_page_accessed(page);
1090 rss[mm_counter(page)]--;
1091 page_remove_rmap(page, false);
1092 if (unlikely(page_mapcount(page) < 0))
1093 print_bad_pte(vma, addr, ptent, page);
1094 if (unlikely(__tlb_remove_page(tlb, page))) {
1095 force_flush = 1;
1096 addr += PAGE_SIZE;
1097 break;
1099 continue;
1102 entry = pte_to_swp_entry(ptent);
1103 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1104 struct page *page = device_private_entry_to_page(entry);
1106 if (unlikely(details && details->check_mapping)) {
1108 * unmap_shared_mapping_pages() wants to
1109 * invalidate cache without truncating:
1110 * unmap shared but keep private pages.
1112 if (details->check_mapping !=
1113 page_rmapping(page))
1114 continue;
1117 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1118 rss[mm_counter(page)]--;
1119 page_remove_rmap(page, false);
1120 put_page(page);
1121 continue;
1124 /* If details->check_mapping, we leave swap entries. */
1125 if (unlikely(details))
1126 continue;
1128 entry = pte_to_swp_entry(ptent);
1129 if (!non_swap_entry(entry))
1130 rss[MM_SWAPENTS]--;
1131 else if (is_migration_entry(entry)) {
1132 struct page *page;
1134 page = migration_entry_to_page(entry);
1135 rss[mm_counter(page)]--;
1137 if (unlikely(!free_swap_and_cache(entry)))
1138 print_bad_pte(vma, addr, ptent, NULL);
1139 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1140 } while (pte++, addr += PAGE_SIZE, addr != end);
1142 add_mm_rss_vec(mm, rss);
1143 arch_leave_lazy_mmu_mode();
1145 /* Do the actual TLB flush before dropping ptl */
1146 if (force_flush)
1147 tlb_flush_mmu_tlbonly(tlb);
1148 pte_unmap_unlock(start_pte, ptl);
1151 * If we forced a TLB flush (either due to running out of
1152 * batch buffers or because we needed to flush dirty TLB
1153 * entries before releasing the ptl), free the batched
1154 * memory too. Restart if we didn't do everything.
1156 if (force_flush) {
1157 force_flush = 0;
1158 tlb_flush_mmu_free(tlb);
1159 if (addr != end)
1160 goto again;
1163 return addr;
1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1167 struct vm_area_struct *vma, pud_t *pud,
1168 unsigned long addr, unsigned long end,
1169 struct zap_details *details)
1171 pmd_t *pmd;
1172 unsigned long next;
1174 pmd = pmd_offset(pud, addr);
1175 do {
1176 next = pmd_addr_end(addr, end);
1177 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1178 if (next - addr != HPAGE_PMD_SIZE)
1179 __split_huge_pmd(vma, pmd, addr, false, NULL);
1180 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1181 goto next;
1182 /* fall through */
1185 * Here there can be other concurrent MADV_DONTNEED or
1186 * trans huge page faults running, and if the pmd is
1187 * none or trans huge it can change under us. This is
1188 * because MADV_DONTNEED holds the mmap_sem in read
1189 * mode.
1191 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1192 goto next;
1193 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1194 next:
1195 cond_resched();
1196 } while (pmd++, addr = next, addr != end);
1198 return addr;
1201 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1202 struct vm_area_struct *vma, p4d_t *p4d,
1203 unsigned long addr, unsigned long end,
1204 struct zap_details *details)
1206 pud_t *pud;
1207 unsigned long next;
1209 pud = pud_offset(p4d, addr);
1210 do {
1211 next = pud_addr_end(addr, end);
1212 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1213 if (next - addr != HPAGE_PUD_SIZE) {
1214 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1215 split_huge_pud(vma, pud, addr);
1216 } else if (zap_huge_pud(tlb, vma, pud, addr))
1217 goto next;
1218 /* fall through */
1220 if (pud_none_or_clear_bad(pud))
1221 continue;
1222 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1223 next:
1224 cond_resched();
1225 } while (pud++, addr = next, addr != end);
1227 return addr;
1230 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1231 struct vm_area_struct *vma, pgd_t *pgd,
1232 unsigned long addr, unsigned long end,
1233 struct zap_details *details)
1235 p4d_t *p4d;
1236 unsigned long next;
1238 p4d = p4d_offset(pgd, addr);
1239 do {
1240 next = p4d_addr_end(addr, end);
1241 if (p4d_none_or_clear_bad(p4d))
1242 continue;
1243 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1244 } while (p4d++, addr = next, addr != end);
1246 return addr;
1249 void unmap_page_range(struct mmu_gather *tlb,
1250 struct vm_area_struct *vma,
1251 unsigned long addr, unsigned long end,
1252 struct zap_details *details)
1254 pgd_t *pgd;
1255 unsigned long next;
1257 BUG_ON(addr >= end);
1258 tlb_start_vma(tlb, vma);
1259 pgd = pgd_offset(vma->vm_mm, addr);
1260 do {
1261 next = pgd_addr_end(addr, end);
1262 if (pgd_none_or_clear_bad(pgd))
1263 continue;
1264 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1265 } while (pgd++, addr = next, addr != end);
1266 tlb_end_vma(tlb, vma);
1270 static void unmap_single_vma(struct mmu_gather *tlb,
1271 struct vm_area_struct *vma, unsigned long start_addr,
1272 unsigned long end_addr,
1273 struct zap_details *details)
1275 unsigned long start = max(vma->vm_start, start_addr);
1276 unsigned long end;
1278 if (start >= vma->vm_end)
1279 return;
1280 end = min(vma->vm_end, end_addr);
1281 if (end <= vma->vm_start)
1282 return;
1284 if (vma->vm_file)
1285 uprobe_munmap(vma, start, end);
1287 if (unlikely(vma->vm_flags & VM_PFNMAP))
1288 untrack_pfn(vma, 0, 0);
1290 if (start != end) {
1291 if (unlikely(is_vm_hugetlb_page(vma))) {
1293 * It is undesirable to test vma->vm_file as it
1294 * should be non-null for valid hugetlb area.
1295 * However, vm_file will be NULL in the error
1296 * cleanup path of mmap_region. When
1297 * hugetlbfs ->mmap method fails,
1298 * mmap_region() nullifies vma->vm_file
1299 * before calling this function to clean up.
1300 * Since no pte has actually been setup, it is
1301 * safe to do nothing in this case.
1303 if (vma->vm_file) {
1304 i_mmap_lock_write(vma->vm_file->f_mapping);
1305 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1306 i_mmap_unlock_write(vma->vm_file->f_mapping);
1308 } else
1309 unmap_page_range(tlb, vma, start, end, details);
1314 * unmap_vmas - unmap a range of memory covered by a list of vma's
1315 * @tlb: address of the caller's struct mmu_gather
1316 * @vma: the starting vma
1317 * @start_addr: virtual address at which to start unmapping
1318 * @end_addr: virtual address at which to end unmapping
1320 * Unmap all pages in the vma list.
1322 * Only addresses between `start' and `end' will be unmapped.
1324 * The VMA list must be sorted in ascending virtual address order.
1326 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327 * range after unmap_vmas() returns. So the only responsibility here is to
1328 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329 * drops the lock and schedules.
1331 void unmap_vmas(struct mmu_gather *tlb,
1332 struct vm_area_struct *vma, unsigned long start_addr,
1333 unsigned long end_addr)
1335 struct mm_struct *mm = vma->vm_mm;
1337 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1338 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1339 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1340 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1344 * zap_page_range - remove user pages in a given range
1345 * @vma: vm_area_struct holding the applicable pages
1346 * @start: starting address of pages to zap
1347 * @size: number of bytes to zap
1349 * Caller must protect the VMA list
1351 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1352 unsigned long size)
1354 struct mm_struct *mm = vma->vm_mm;
1355 struct mmu_gather tlb;
1356 unsigned long end = start + size;
1358 lru_add_drain();
1359 tlb_gather_mmu(&tlb, mm, start, end);
1360 update_hiwater_rss(mm);
1361 mmu_notifier_invalidate_range_start(mm, start, end);
1362 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1363 unmap_single_vma(&tlb, vma, start, end, NULL);
1364 mmu_notifier_invalidate_range_end(mm, start, end);
1365 tlb_finish_mmu(&tlb, start, end);
1369 * zap_page_range_single - remove user pages in a given range
1370 * @vma: vm_area_struct holding the applicable pages
1371 * @address: starting address of pages to zap
1372 * @size: number of bytes to zap
1373 * @details: details of shared cache invalidation
1375 * The range must fit into one VMA.
1377 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1378 unsigned long size, struct zap_details *details)
1380 struct mm_struct *mm = vma->vm_mm;
1381 struct mmu_gather tlb;
1382 unsigned long end = address + size;
1384 lru_add_drain();
1385 tlb_gather_mmu(&tlb, mm, address, end);
1386 update_hiwater_rss(mm);
1387 mmu_notifier_invalidate_range_start(mm, address, end);
1388 unmap_single_vma(&tlb, vma, address, end, details);
1389 mmu_notifier_invalidate_range_end(mm, address, end);
1390 tlb_finish_mmu(&tlb, address, end);
1394 * zap_vma_ptes - remove ptes mapping the vma
1395 * @vma: vm_area_struct holding ptes to be zapped
1396 * @address: starting address of pages to zap
1397 * @size: number of bytes to zap
1399 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1401 * The entire address range must be fully contained within the vma.
1404 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1405 unsigned long size)
1407 if (address < vma->vm_start || address + size > vma->vm_end ||
1408 !(vma->vm_flags & VM_PFNMAP))
1409 return;
1411 zap_page_range_single(vma, address, size, NULL);
1413 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1415 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1416 spinlock_t **ptl)
1418 pgd_t *pgd;
1419 p4d_t *p4d;
1420 pud_t *pud;
1421 pmd_t *pmd;
1423 pgd = pgd_offset(mm, addr);
1424 p4d = p4d_alloc(mm, pgd, addr);
1425 if (!p4d)
1426 return NULL;
1427 pud = pud_alloc(mm, p4d, addr);
1428 if (!pud)
1429 return NULL;
1430 pmd = pmd_alloc(mm, pud, addr);
1431 if (!pmd)
1432 return NULL;
1434 VM_BUG_ON(pmd_trans_huge(*pmd));
1435 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1439 * This is the old fallback for page remapping.
1441 * For historical reasons, it only allows reserved pages. Only
1442 * old drivers should use this, and they needed to mark their
1443 * pages reserved for the old functions anyway.
1445 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1446 struct page *page, pgprot_t prot)
1448 struct mm_struct *mm = vma->vm_mm;
1449 int retval;
1450 pte_t *pte;
1451 spinlock_t *ptl;
1453 retval = -EINVAL;
1454 if (PageAnon(page))
1455 goto out;
1456 retval = -ENOMEM;
1457 flush_dcache_page(page);
1458 pte = get_locked_pte(mm, addr, &ptl);
1459 if (!pte)
1460 goto out;
1461 retval = -EBUSY;
1462 if (!pte_none(*pte))
1463 goto out_unlock;
1465 /* Ok, finally just insert the thing.. */
1466 get_page(page);
1467 inc_mm_counter_fast(mm, mm_counter_file(page));
1468 page_add_file_rmap(page, false);
1469 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1471 retval = 0;
1472 pte_unmap_unlock(pte, ptl);
1473 return retval;
1474 out_unlock:
1475 pte_unmap_unlock(pte, ptl);
1476 out:
1477 return retval;
1481 * vm_insert_page - insert single page into user vma
1482 * @vma: user vma to map to
1483 * @addr: target user address of this page
1484 * @page: source kernel page
1486 * This allows drivers to insert individual pages they've allocated
1487 * into a user vma.
1489 * The page has to be a nice clean _individual_ kernel allocation.
1490 * If you allocate a compound page, you need to have marked it as
1491 * such (__GFP_COMP), or manually just split the page up yourself
1492 * (see split_page()).
1494 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1495 * took an arbitrary page protection parameter. This doesn't allow
1496 * that. Your vma protection will have to be set up correctly, which
1497 * means that if you want a shared writable mapping, you'd better
1498 * ask for a shared writable mapping!
1500 * The page does not need to be reserved.
1502 * Usually this function is called from f_op->mmap() handler
1503 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1504 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1505 * function from other places, for example from page-fault handler.
1507 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1508 struct page *page)
1510 if (addr < vma->vm_start || addr >= vma->vm_end)
1511 return -EFAULT;
1512 if (!page_count(page))
1513 return -EINVAL;
1514 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1515 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1516 BUG_ON(vma->vm_flags & VM_PFNMAP);
1517 vma->vm_flags |= VM_MIXEDMAP;
1519 return insert_page(vma, addr, page, vma->vm_page_prot);
1521 EXPORT_SYMBOL(vm_insert_page);
1523 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1524 pfn_t pfn, pgprot_t prot, bool mkwrite)
1526 struct mm_struct *mm = vma->vm_mm;
1527 pte_t *pte, entry;
1528 spinlock_t *ptl;
1530 pte = get_locked_pte(mm, addr, &ptl);
1531 if (!pte)
1532 return VM_FAULT_OOM;
1533 if (!pte_none(*pte)) {
1534 if (mkwrite) {
1536 * For read faults on private mappings the PFN passed
1537 * in may not match the PFN we have mapped if the
1538 * mapped PFN is a writeable COW page. In the mkwrite
1539 * case we are creating a writable PTE for a shared
1540 * mapping and we expect the PFNs to match.
1542 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1543 goto out_unlock;
1544 entry = *pte;
1545 goto out_mkwrite;
1546 } else
1547 goto out_unlock;
1550 /* Ok, finally just insert the thing.. */
1551 if (pfn_t_devmap(pfn))
1552 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1553 else
1554 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1556 out_mkwrite:
1557 if (mkwrite) {
1558 entry = pte_mkyoung(entry);
1559 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1562 set_pte_at(mm, addr, pte, entry);
1563 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1565 out_unlock:
1566 pte_unmap_unlock(pte, ptl);
1567 return VM_FAULT_NOPAGE;
1571 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1572 * @vma: user vma to map to
1573 * @addr: target user address of this page
1574 * @pfn: source kernel pfn
1575 * @pgprot: pgprot flags for the inserted page
1577 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1578 * to override pgprot on a per-page basis.
1580 * This only makes sense for IO mappings, and it makes no sense for
1581 * COW mappings. In general, using multiple vmas is preferable;
1582 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1583 * impractical.
1585 * Context: Process context. May allocate using %GFP_KERNEL.
1586 * Return: vm_fault_t value.
1588 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1589 unsigned long pfn, pgprot_t pgprot)
1592 * Technically, architectures with pte_special can avoid all these
1593 * restrictions (same for remap_pfn_range). However we would like
1594 * consistency in testing and feature parity among all, so we should
1595 * try to keep these invariants in place for everybody.
1597 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1598 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1599 (VM_PFNMAP|VM_MIXEDMAP));
1600 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1601 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1603 if (addr < vma->vm_start || addr >= vma->vm_end)
1604 return VM_FAULT_SIGBUS;
1606 if (!pfn_modify_allowed(pfn, pgprot))
1607 return VM_FAULT_SIGBUS;
1609 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1611 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1612 false);
1614 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1617 * vmf_insert_pfn - insert single pfn into user vma
1618 * @vma: user vma to map to
1619 * @addr: target user address of this page
1620 * @pfn: source kernel pfn
1622 * Similar to vm_insert_page, this allows drivers to insert individual pages
1623 * they've allocated into a user vma. Same comments apply.
1625 * This function should only be called from a vm_ops->fault handler, and
1626 * in that case the handler should return the result of this function.
1628 * vma cannot be a COW mapping.
1630 * As this is called only for pages that do not currently exist, we
1631 * do not need to flush old virtual caches or the TLB.
1633 * Context: Process context. May allocate using %GFP_KERNEL.
1634 * Return: vm_fault_t value.
1636 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1637 unsigned long pfn)
1639 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1641 EXPORT_SYMBOL(vmf_insert_pfn);
1643 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1645 /* these checks mirror the abort conditions in vm_normal_page */
1646 if (vma->vm_flags & VM_MIXEDMAP)
1647 return true;
1648 if (pfn_t_devmap(pfn))
1649 return true;
1650 if (pfn_t_special(pfn))
1651 return true;
1652 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1653 return true;
1654 return false;
1657 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1658 unsigned long addr, pfn_t pfn, bool mkwrite)
1660 pgprot_t pgprot = vma->vm_page_prot;
1661 int err;
1663 BUG_ON(!vm_mixed_ok(vma, pfn));
1665 if (addr < vma->vm_start || addr >= vma->vm_end)
1666 return VM_FAULT_SIGBUS;
1668 track_pfn_insert(vma, &pgprot, pfn);
1670 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1671 return VM_FAULT_SIGBUS;
1674 * If we don't have pte special, then we have to use the pfn_valid()
1675 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1676 * refcount the page if pfn_valid is true (hence insert_page rather
1677 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1678 * without pte special, it would there be refcounted as a normal page.
1680 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1681 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1682 struct page *page;
1685 * At this point we are committed to insert_page()
1686 * regardless of whether the caller specified flags that
1687 * result in pfn_t_has_page() == false.
1689 page = pfn_to_page(pfn_t_to_pfn(pfn));
1690 err = insert_page(vma, addr, page, pgprot);
1691 } else {
1692 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1695 if (err == -ENOMEM)
1696 return VM_FAULT_OOM;
1697 if (err < 0 && err != -EBUSY)
1698 return VM_FAULT_SIGBUS;
1700 return VM_FAULT_NOPAGE;
1703 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1704 pfn_t pfn)
1706 return __vm_insert_mixed(vma, addr, pfn, false);
1708 EXPORT_SYMBOL(vmf_insert_mixed);
1711 * If the insertion of PTE failed because someone else already added a
1712 * different entry in the mean time, we treat that as success as we assume
1713 * the same entry was actually inserted.
1715 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1716 unsigned long addr, pfn_t pfn)
1718 return __vm_insert_mixed(vma, addr, pfn, true);
1720 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1723 * maps a range of physical memory into the requested pages. the old
1724 * mappings are removed. any references to nonexistent pages results
1725 * in null mappings (currently treated as "copy-on-access")
1727 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1728 unsigned long addr, unsigned long end,
1729 unsigned long pfn, pgprot_t prot)
1731 pte_t *pte;
1732 spinlock_t *ptl;
1733 int err = 0;
1735 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1736 if (!pte)
1737 return -ENOMEM;
1738 arch_enter_lazy_mmu_mode();
1739 do {
1740 BUG_ON(!pte_none(*pte));
1741 if (!pfn_modify_allowed(pfn, prot)) {
1742 err = -EACCES;
1743 break;
1745 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1746 pfn++;
1747 } while (pte++, addr += PAGE_SIZE, addr != end);
1748 arch_leave_lazy_mmu_mode();
1749 pte_unmap_unlock(pte - 1, ptl);
1750 return err;
1753 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1754 unsigned long addr, unsigned long end,
1755 unsigned long pfn, pgprot_t prot)
1757 pmd_t *pmd;
1758 unsigned long next;
1759 int err;
1761 pfn -= addr >> PAGE_SHIFT;
1762 pmd = pmd_alloc(mm, pud, addr);
1763 if (!pmd)
1764 return -ENOMEM;
1765 VM_BUG_ON(pmd_trans_huge(*pmd));
1766 do {
1767 next = pmd_addr_end(addr, end);
1768 err = remap_pte_range(mm, pmd, addr, next,
1769 pfn + (addr >> PAGE_SHIFT), prot);
1770 if (err)
1771 return err;
1772 } while (pmd++, addr = next, addr != end);
1773 return 0;
1776 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1777 unsigned long addr, unsigned long end,
1778 unsigned long pfn, pgprot_t prot)
1780 pud_t *pud;
1781 unsigned long next;
1782 int err;
1784 pfn -= addr >> PAGE_SHIFT;
1785 pud = pud_alloc(mm, p4d, addr);
1786 if (!pud)
1787 return -ENOMEM;
1788 do {
1789 next = pud_addr_end(addr, end);
1790 err = remap_pmd_range(mm, pud, addr, next,
1791 pfn + (addr >> PAGE_SHIFT), prot);
1792 if (err)
1793 return err;
1794 } while (pud++, addr = next, addr != end);
1795 return 0;
1798 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1799 unsigned long addr, unsigned long end,
1800 unsigned long pfn, pgprot_t prot)
1802 p4d_t *p4d;
1803 unsigned long next;
1804 int err;
1806 pfn -= addr >> PAGE_SHIFT;
1807 p4d = p4d_alloc(mm, pgd, addr);
1808 if (!p4d)
1809 return -ENOMEM;
1810 do {
1811 next = p4d_addr_end(addr, end);
1812 err = remap_pud_range(mm, p4d, addr, next,
1813 pfn + (addr >> PAGE_SHIFT), prot);
1814 if (err)
1815 return err;
1816 } while (p4d++, addr = next, addr != end);
1817 return 0;
1821 * remap_pfn_range - remap kernel memory to userspace
1822 * @vma: user vma to map to
1823 * @addr: target user address to start at
1824 * @pfn: physical address of kernel memory
1825 * @size: size of map area
1826 * @prot: page protection flags for this mapping
1828 * Note: this is only safe if the mm semaphore is held when called.
1830 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1831 unsigned long pfn, unsigned long size, pgprot_t prot)
1833 pgd_t *pgd;
1834 unsigned long next;
1835 unsigned long end = addr + PAGE_ALIGN(size);
1836 struct mm_struct *mm = vma->vm_mm;
1837 unsigned long remap_pfn = pfn;
1838 int err;
1841 * Physically remapped pages are special. Tell the
1842 * rest of the world about it:
1843 * VM_IO tells people not to look at these pages
1844 * (accesses can have side effects).
1845 * VM_PFNMAP tells the core MM that the base pages are just
1846 * raw PFN mappings, and do not have a "struct page" associated
1847 * with them.
1848 * VM_DONTEXPAND
1849 * Disable vma merging and expanding with mremap().
1850 * VM_DONTDUMP
1851 * Omit vma from core dump, even when VM_IO turned off.
1853 * There's a horrible special case to handle copy-on-write
1854 * behaviour that some programs depend on. We mark the "original"
1855 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1856 * See vm_normal_page() for details.
1858 if (is_cow_mapping(vma->vm_flags)) {
1859 if (addr != vma->vm_start || end != vma->vm_end)
1860 return -EINVAL;
1861 vma->vm_pgoff = pfn;
1864 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1865 if (err)
1866 return -EINVAL;
1868 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1870 BUG_ON(addr >= end);
1871 pfn -= addr >> PAGE_SHIFT;
1872 pgd = pgd_offset(mm, addr);
1873 flush_cache_range(vma, addr, end);
1874 do {
1875 next = pgd_addr_end(addr, end);
1876 err = remap_p4d_range(mm, pgd, addr, next,
1877 pfn + (addr >> PAGE_SHIFT), prot);
1878 if (err)
1879 break;
1880 } while (pgd++, addr = next, addr != end);
1882 if (err)
1883 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1885 return err;
1887 EXPORT_SYMBOL(remap_pfn_range);
1890 * vm_iomap_memory - remap memory to userspace
1891 * @vma: user vma to map to
1892 * @start: start of area
1893 * @len: size of area
1895 * This is a simplified io_remap_pfn_range() for common driver use. The
1896 * driver just needs to give us the physical memory range to be mapped,
1897 * we'll figure out the rest from the vma information.
1899 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1900 * whatever write-combining details or similar.
1902 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1904 unsigned long vm_len, pfn, pages;
1906 /* Check that the physical memory area passed in looks valid */
1907 if (start + len < start)
1908 return -EINVAL;
1910 * You *really* shouldn't map things that aren't page-aligned,
1911 * but we've historically allowed it because IO memory might
1912 * just have smaller alignment.
1914 len += start & ~PAGE_MASK;
1915 pfn = start >> PAGE_SHIFT;
1916 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1917 if (pfn + pages < pfn)
1918 return -EINVAL;
1920 /* We start the mapping 'vm_pgoff' pages into the area */
1921 if (vma->vm_pgoff > pages)
1922 return -EINVAL;
1923 pfn += vma->vm_pgoff;
1924 pages -= vma->vm_pgoff;
1926 /* Can we fit all of the mapping? */
1927 vm_len = vma->vm_end - vma->vm_start;
1928 if (vm_len >> PAGE_SHIFT > pages)
1929 return -EINVAL;
1931 /* Ok, let it rip */
1932 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1934 EXPORT_SYMBOL(vm_iomap_memory);
1936 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1937 unsigned long addr, unsigned long end,
1938 pte_fn_t fn, void *data)
1940 pte_t *pte;
1941 int err;
1942 pgtable_t token;
1943 spinlock_t *uninitialized_var(ptl);
1945 pte = (mm == &init_mm) ?
1946 pte_alloc_kernel(pmd, addr) :
1947 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1948 if (!pte)
1949 return -ENOMEM;
1951 BUG_ON(pmd_huge(*pmd));
1953 arch_enter_lazy_mmu_mode();
1955 token = pmd_pgtable(*pmd);
1957 do {
1958 err = fn(pte++, token, addr, data);
1959 if (err)
1960 break;
1961 } while (addr += PAGE_SIZE, addr != end);
1963 arch_leave_lazy_mmu_mode();
1965 if (mm != &init_mm)
1966 pte_unmap_unlock(pte-1, ptl);
1967 return err;
1970 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1971 unsigned long addr, unsigned long end,
1972 pte_fn_t fn, void *data)
1974 pmd_t *pmd;
1975 unsigned long next;
1976 int err;
1978 BUG_ON(pud_huge(*pud));
1980 pmd = pmd_alloc(mm, pud, addr);
1981 if (!pmd)
1982 return -ENOMEM;
1983 do {
1984 next = pmd_addr_end(addr, end);
1985 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1986 if (err)
1987 break;
1988 } while (pmd++, addr = next, addr != end);
1989 return err;
1992 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
1993 unsigned long addr, unsigned long end,
1994 pte_fn_t fn, void *data)
1996 pud_t *pud;
1997 unsigned long next;
1998 int err;
2000 pud = pud_alloc(mm, p4d, addr);
2001 if (!pud)
2002 return -ENOMEM;
2003 do {
2004 next = pud_addr_end(addr, end);
2005 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2006 if (err)
2007 break;
2008 } while (pud++, addr = next, addr != end);
2009 return err;
2012 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2013 unsigned long addr, unsigned long end,
2014 pte_fn_t fn, void *data)
2016 p4d_t *p4d;
2017 unsigned long next;
2018 int err;
2020 p4d = p4d_alloc(mm, pgd, addr);
2021 if (!p4d)
2022 return -ENOMEM;
2023 do {
2024 next = p4d_addr_end(addr, end);
2025 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2026 if (err)
2027 break;
2028 } while (p4d++, addr = next, addr != end);
2029 return err;
2033 * Scan a region of virtual memory, filling in page tables as necessary
2034 * and calling a provided function on each leaf page table.
2036 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2037 unsigned long size, pte_fn_t fn, void *data)
2039 pgd_t *pgd;
2040 unsigned long next;
2041 unsigned long end = addr + size;
2042 int err;
2044 if (WARN_ON(addr >= end))
2045 return -EINVAL;
2047 pgd = pgd_offset(mm, addr);
2048 do {
2049 next = pgd_addr_end(addr, end);
2050 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2051 if (err)
2052 break;
2053 } while (pgd++, addr = next, addr != end);
2055 return err;
2057 EXPORT_SYMBOL_GPL(apply_to_page_range);
2060 * handle_pte_fault chooses page fault handler according to an entry which was
2061 * read non-atomically. Before making any commitment, on those architectures
2062 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2063 * parts, do_swap_page must check under lock before unmapping the pte and
2064 * proceeding (but do_wp_page is only called after already making such a check;
2065 * and do_anonymous_page can safely check later on).
2067 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2068 pte_t *page_table, pte_t orig_pte)
2070 int same = 1;
2071 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2072 if (sizeof(pte_t) > sizeof(unsigned long)) {
2073 spinlock_t *ptl = pte_lockptr(mm, pmd);
2074 spin_lock(ptl);
2075 same = pte_same(*page_table, orig_pte);
2076 spin_unlock(ptl);
2078 #endif
2079 pte_unmap(page_table);
2080 return same;
2083 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2085 debug_dma_assert_idle(src);
2088 * If the source page was a PFN mapping, we don't have
2089 * a "struct page" for it. We do a best-effort copy by
2090 * just copying from the original user address. If that
2091 * fails, we just zero-fill it. Live with it.
2093 if (unlikely(!src)) {
2094 void *kaddr = kmap_atomic(dst);
2095 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2098 * This really shouldn't fail, because the page is there
2099 * in the page tables. But it might just be unreadable,
2100 * in which case we just give up and fill the result with
2101 * zeroes.
2103 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2104 clear_page(kaddr);
2105 kunmap_atomic(kaddr);
2106 flush_dcache_page(dst);
2107 } else
2108 copy_user_highpage(dst, src, va, vma);
2111 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2113 struct file *vm_file = vma->vm_file;
2115 if (vm_file)
2116 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2119 * Special mappings (e.g. VDSO) do not have any file so fake
2120 * a default GFP_KERNEL for them.
2122 return GFP_KERNEL;
2126 * Notify the address space that the page is about to become writable so that
2127 * it can prohibit this or wait for the page to get into an appropriate state.
2129 * We do this without the lock held, so that it can sleep if it needs to.
2131 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2133 vm_fault_t ret;
2134 struct page *page = vmf->page;
2135 unsigned int old_flags = vmf->flags;
2137 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2139 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2140 /* Restore original flags so that caller is not surprised */
2141 vmf->flags = old_flags;
2142 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2143 return ret;
2144 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2145 lock_page(page);
2146 if (!page->mapping) {
2147 unlock_page(page);
2148 return 0; /* retry */
2150 ret |= VM_FAULT_LOCKED;
2151 } else
2152 VM_BUG_ON_PAGE(!PageLocked(page), page);
2153 return ret;
2157 * Handle dirtying of a page in shared file mapping on a write fault.
2159 * The function expects the page to be locked and unlocks it.
2161 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2162 struct page *page)
2164 struct address_space *mapping;
2165 bool dirtied;
2166 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2168 dirtied = set_page_dirty(page);
2169 VM_BUG_ON_PAGE(PageAnon(page), page);
2171 * Take a local copy of the address_space - page.mapping may be zeroed
2172 * by truncate after unlock_page(). The address_space itself remains
2173 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2174 * release semantics to prevent the compiler from undoing this copying.
2176 mapping = page_rmapping(page);
2177 unlock_page(page);
2179 if ((dirtied || page_mkwrite) && mapping) {
2181 * Some device drivers do not set page.mapping
2182 * but still dirty their pages
2184 balance_dirty_pages_ratelimited(mapping);
2187 if (!page_mkwrite)
2188 file_update_time(vma->vm_file);
2192 * Handle write page faults for pages that can be reused in the current vma
2194 * This can happen either due to the mapping being with the VM_SHARED flag,
2195 * or due to us being the last reference standing to the page. In either
2196 * case, all we need to do here is to mark the page as writable and update
2197 * any related book-keeping.
2199 static inline void wp_page_reuse(struct vm_fault *vmf)
2200 __releases(vmf->ptl)
2202 struct vm_area_struct *vma = vmf->vma;
2203 struct page *page = vmf->page;
2204 pte_t entry;
2206 * Clear the pages cpupid information as the existing
2207 * information potentially belongs to a now completely
2208 * unrelated process.
2210 if (page)
2211 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2213 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2214 entry = pte_mkyoung(vmf->orig_pte);
2215 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2216 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2217 update_mmu_cache(vma, vmf->address, vmf->pte);
2218 pte_unmap_unlock(vmf->pte, vmf->ptl);
2222 * Handle the case of a page which we actually need to copy to a new page.
2224 * Called with mmap_sem locked and the old page referenced, but
2225 * without the ptl held.
2227 * High level logic flow:
2229 * - Allocate a page, copy the content of the old page to the new one.
2230 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2231 * - Take the PTL. If the pte changed, bail out and release the allocated page
2232 * - If the pte is still the way we remember it, update the page table and all
2233 * relevant references. This includes dropping the reference the page-table
2234 * held to the old page, as well as updating the rmap.
2235 * - In any case, unlock the PTL and drop the reference we took to the old page.
2237 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2239 struct vm_area_struct *vma = vmf->vma;
2240 struct mm_struct *mm = vma->vm_mm;
2241 struct page *old_page = vmf->page;
2242 struct page *new_page = NULL;
2243 pte_t entry;
2244 int page_copied = 0;
2245 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2246 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2247 struct mem_cgroup *memcg;
2249 if (unlikely(anon_vma_prepare(vma)))
2250 goto oom;
2252 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2253 new_page = alloc_zeroed_user_highpage_movable(vma,
2254 vmf->address);
2255 if (!new_page)
2256 goto oom;
2257 } else {
2258 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2259 vmf->address);
2260 if (!new_page)
2261 goto oom;
2262 cow_user_page(new_page, old_page, vmf->address, vma);
2265 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2266 goto oom_free_new;
2268 __SetPageUptodate(new_page);
2270 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2273 * Re-check the pte - we dropped the lock
2275 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2276 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2277 if (old_page) {
2278 if (!PageAnon(old_page)) {
2279 dec_mm_counter_fast(mm,
2280 mm_counter_file(old_page));
2281 inc_mm_counter_fast(mm, MM_ANONPAGES);
2283 } else {
2284 inc_mm_counter_fast(mm, MM_ANONPAGES);
2286 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2287 entry = mk_pte(new_page, vma->vm_page_prot);
2288 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2290 * Clear the pte entry and flush it first, before updating the
2291 * pte with the new entry. This will avoid a race condition
2292 * seen in the presence of one thread doing SMC and another
2293 * thread doing COW.
2295 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2296 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2297 mem_cgroup_commit_charge(new_page, memcg, false, false);
2298 lru_cache_add_active_or_unevictable(new_page, vma);
2300 * We call the notify macro here because, when using secondary
2301 * mmu page tables (such as kvm shadow page tables), we want the
2302 * new page to be mapped directly into the secondary page table.
2304 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2305 update_mmu_cache(vma, vmf->address, vmf->pte);
2306 if (old_page) {
2308 * Only after switching the pte to the new page may
2309 * we remove the mapcount here. Otherwise another
2310 * process may come and find the rmap count decremented
2311 * before the pte is switched to the new page, and
2312 * "reuse" the old page writing into it while our pte
2313 * here still points into it and can be read by other
2314 * threads.
2316 * The critical issue is to order this
2317 * page_remove_rmap with the ptp_clear_flush above.
2318 * Those stores are ordered by (if nothing else,)
2319 * the barrier present in the atomic_add_negative
2320 * in page_remove_rmap.
2322 * Then the TLB flush in ptep_clear_flush ensures that
2323 * no process can access the old page before the
2324 * decremented mapcount is visible. And the old page
2325 * cannot be reused until after the decremented
2326 * mapcount is visible. So transitively, TLBs to
2327 * old page will be flushed before it can be reused.
2329 page_remove_rmap(old_page, false);
2332 /* Free the old page.. */
2333 new_page = old_page;
2334 page_copied = 1;
2335 } else {
2336 mem_cgroup_cancel_charge(new_page, memcg, false);
2339 if (new_page)
2340 put_page(new_page);
2342 pte_unmap_unlock(vmf->pte, vmf->ptl);
2344 * No need to double call mmu_notifier->invalidate_range() callback as
2345 * the above ptep_clear_flush_notify() did already call it.
2347 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2348 if (old_page) {
2350 * Don't let another task, with possibly unlocked vma,
2351 * keep the mlocked page.
2353 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2354 lock_page(old_page); /* LRU manipulation */
2355 if (PageMlocked(old_page))
2356 munlock_vma_page(old_page);
2357 unlock_page(old_page);
2359 put_page(old_page);
2361 return page_copied ? VM_FAULT_WRITE : 0;
2362 oom_free_new:
2363 put_page(new_page);
2364 oom:
2365 if (old_page)
2366 put_page(old_page);
2367 return VM_FAULT_OOM;
2371 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2372 * writeable once the page is prepared
2374 * @vmf: structure describing the fault
2376 * This function handles all that is needed to finish a write page fault in a
2377 * shared mapping due to PTE being read-only once the mapped page is prepared.
2378 * It handles locking of PTE and modifying it. The function returns
2379 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2380 * lock.
2382 * The function expects the page to be locked or other protection against
2383 * concurrent faults / writeback (such as DAX radix tree locks).
2385 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2387 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2388 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2389 &vmf->ptl);
2391 * We might have raced with another page fault while we released the
2392 * pte_offset_map_lock.
2394 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2395 pte_unmap_unlock(vmf->pte, vmf->ptl);
2396 return VM_FAULT_NOPAGE;
2398 wp_page_reuse(vmf);
2399 return 0;
2403 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2404 * mapping
2406 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2408 struct vm_area_struct *vma = vmf->vma;
2410 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2411 vm_fault_t ret;
2413 pte_unmap_unlock(vmf->pte, vmf->ptl);
2414 vmf->flags |= FAULT_FLAG_MKWRITE;
2415 ret = vma->vm_ops->pfn_mkwrite(vmf);
2416 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2417 return ret;
2418 return finish_mkwrite_fault(vmf);
2420 wp_page_reuse(vmf);
2421 return VM_FAULT_WRITE;
2424 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2425 __releases(vmf->ptl)
2427 struct vm_area_struct *vma = vmf->vma;
2429 get_page(vmf->page);
2431 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2432 vm_fault_t tmp;
2434 pte_unmap_unlock(vmf->pte, vmf->ptl);
2435 tmp = do_page_mkwrite(vmf);
2436 if (unlikely(!tmp || (tmp &
2437 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2438 put_page(vmf->page);
2439 return tmp;
2441 tmp = finish_mkwrite_fault(vmf);
2442 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2443 unlock_page(vmf->page);
2444 put_page(vmf->page);
2445 return tmp;
2447 } else {
2448 wp_page_reuse(vmf);
2449 lock_page(vmf->page);
2451 fault_dirty_shared_page(vma, vmf->page);
2452 put_page(vmf->page);
2454 return VM_FAULT_WRITE;
2458 * This routine handles present pages, when users try to write
2459 * to a shared page. It is done by copying the page to a new address
2460 * and decrementing the shared-page counter for the old page.
2462 * Note that this routine assumes that the protection checks have been
2463 * done by the caller (the low-level page fault routine in most cases).
2464 * Thus we can safely just mark it writable once we've done any necessary
2465 * COW.
2467 * We also mark the page dirty at this point even though the page will
2468 * change only once the write actually happens. This avoids a few races,
2469 * and potentially makes it more efficient.
2471 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2472 * but allow concurrent faults), with pte both mapped and locked.
2473 * We return with mmap_sem still held, but pte unmapped and unlocked.
2475 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2476 __releases(vmf->ptl)
2478 struct vm_area_struct *vma = vmf->vma;
2480 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2481 if (!vmf->page) {
2483 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2484 * VM_PFNMAP VMA.
2486 * We should not cow pages in a shared writeable mapping.
2487 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2489 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2490 (VM_WRITE|VM_SHARED))
2491 return wp_pfn_shared(vmf);
2493 pte_unmap_unlock(vmf->pte, vmf->ptl);
2494 return wp_page_copy(vmf);
2498 * Take out anonymous pages first, anonymous shared vmas are
2499 * not dirty accountable.
2501 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2502 int total_map_swapcount;
2503 if (!trylock_page(vmf->page)) {
2504 get_page(vmf->page);
2505 pte_unmap_unlock(vmf->pte, vmf->ptl);
2506 lock_page(vmf->page);
2507 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2508 vmf->address, &vmf->ptl);
2509 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2510 unlock_page(vmf->page);
2511 pte_unmap_unlock(vmf->pte, vmf->ptl);
2512 put_page(vmf->page);
2513 return 0;
2515 put_page(vmf->page);
2517 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2518 if (total_map_swapcount == 1) {
2520 * The page is all ours. Move it to
2521 * our anon_vma so the rmap code will
2522 * not search our parent or siblings.
2523 * Protected against the rmap code by
2524 * the page lock.
2526 page_move_anon_rmap(vmf->page, vma);
2528 unlock_page(vmf->page);
2529 wp_page_reuse(vmf);
2530 return VM_FAULT_WRITE;
2532 unlock_page(vmf->page);
2533 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2534 (VM_WRITE|VM_SHARED))) {
2535 return wp_page_shared(vmf);
2539 * Ok, we need to copy. Oh, well..
2541 get_page(vmf->page);
2543 pte_unmap_unlock(vmf->pte, vmf->ptl);
2544 return wp_page_copy(vmf);
2547 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2548 unsigned long start_addr, unsigned long end_addr,
2549 struct zap_details *details)
2551 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2554 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2555 struct zap_details *details)
2557 struct vm_area_struct *vma;
2558 pgoff_t vba, vea, zba, zea;
2560 vma_interval_tree_foreach(vma, root,
2561 details->first_index, details->last_index) {
2563 vba = vma->vm_pgoff;
2564 vea = vba + vma_pages(vma) - 1;
2565 zba = details->first_index;
2566 if (zba < vba)
2567 zba = vba;
2568 zea = details->last_index;
2569 if (zea > vea)
2570 zea = vea;
2572 unmap_mapping_range_vma(vma,
2573 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2574 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2575 details);
2580 * unmap_mapping_pages() - Unmap pages from processes.
2581 * @mapping: The address space containing pages to be unmapped.
2582 * @start: Index of first page to be unmapped.
2583 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2584 * @even_cows: Whether to unmap even private COWed pages.
2586 * Unmap the pages in this address space from any userspace process which
2587 * has them mmaped. Generally, you want to remove COWed pages as well when
2588 * a file is being truncated, but not when invalidating pages from the page
2589 * cache.
2591 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2592 pgoff_t nr, bool even_cows)
2594 struct zap_details details = { };
2596 details.check_mapping = even_cows ? NULL : mapping;
2597 details.first_index = start;
2598 details.last_index = start + nr - 1;
2599 if (details.last_index < details.first_index)
2600 details.last_index = ULONG_MAX;
2602 i_mmap_lock_write(mapping);
2603 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2604 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2605 i_mmap_unlock_write(mapping);
2609 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2610 * address_space corresponding to the specified byte range in the underlying
2611 * file.
2613 * @mapping: the address space containing mmaps to be unmapped.
2614 * @holebegin: byte in first page to unmap, relative to the start of
2615 * the underlying file. This will be rounded down to a PAGE_SIZE
2616 * boundary. Note that this is different from truncate_pagecache(), which
2617 * must keep the partial page. In contrast, we must get rid of
2618 * partial pages.
2619 * @holelen: size of prospective hole in bytes. This will be rounded
2620 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2621 * end of the file.
2622 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2623 * but 0 when invalidating pagecache, don't throw away private data.
2625 void unmap_mapping_range(struct address_space *mapping,
2626 loff_t const holebegin, loff_t const holelen, int even_cows)
2628 pgoff_t hba = holebegin >> PAGE_SHIFT;
2629 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2631 /* Check for overflow. */
2632 if (sizeof(holelen) > sizeof(hlen)) {
2633 long long holeend =
2634 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2635 if (holeend & ~(long long)ULONG_MAX)
2636 hlen = ULONG_MAX - hba + 1;
2639 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2641 EXPORT_SYMBOL(unmap_mapping_range);
2644 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2645 * but allow concurrent faults), and pte mapped but not yet locked.
2646 * We return with pte unmapped and unlocked.
2648 * We return with the mmap_sem locked or unlocked in the same cases
2649 * as does filemap_fault().
2651 vm_fault_t do_swap_page(struct vm_fault *vmf)
2653 struct vm_area_struct *vma = vmf->vma;
2654 struct page *page = NULL, *swapcache;
2655 struct mem_cgroup *memcg;
2656 swp_entry_t entry;
2657 pte_t pte;
2658 int locked;
2659 int exclusive = 0;
2660 vm_fault_t ret = 0;
2662 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2663 goto out;
2665 entry = pte_to_swp_entry(vmf->orig_pte);
2666 if (unlikely(non_swap_entry(entry))) {
2667 if (is_migration_entry(entry)) {
2668 migration_entry_wait(vma->vm_mm, vmf->pmd,
2669 vmf->address);
2670 } else if (is_device_private_entry(entry)) {
2672 * For un-addressable device memory we call the pgmap
2673 * fault handler callback. The callback must migrate
2674 * the page back to some CPU accessible page.
2676 ret = device_private_entry_fault(vma, vmf->address, entry,
2677 vmf->flags, vmf->pmd);
2678 } else if (is_hwpoison_entry(entry)) {
2679 ret = VM_FAULT_HWPOISON;
2680 } else {
2681 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2682 ret = VM_FAULT_SIGBUS;
2684 goto out;
2688 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2689 page = lookup_swap_cache(entry, vma, vmf->address);
2690 swapcache = page;
2692 if (!page) {
2693 struct swap_info_struct *si = swp_swap_info(entry);
2695 if (si->flags & SWP_SYNCHRONOUS_IO &&
2696 __swap_count(si, entry) == 1) {
2697 /* skip swapcache */
2698 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2699 vmf->address);
2700 if (page) {
2701 __SetPageLocked(page);
2702 __SetPageSwapBacked(page);
2703 set_page_private(page, entry.val);
2704 lru_cache_add_anon(page);
2705 swap_readpage(page, true);
2707 } else {
2708 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2709 vmf);
2710 swapcache = page;
2713 if (!page) {
2715 * Back out if somebody else faulted in this pte
2716 * while we released the pte lock.
2718 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2719 vmf->address, &vmf->ptl);
2720 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2721 ret = VM_FAULT_OOM;
2722 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2723 goto unlock;
2726 /* Had to read the page from swap area: Major fault */
2727 ret = VM_FAULT_MAJOR;
2728 count_vm_event(PGMAJFAULT);
2729 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2730 } else if (PageHWPoison(page)) {
2732 * hwpoisoned dirty swapcache pages are kept for killing
2733 * owner processes (which may be unknown at hwpoison time)
2735 ret = VM_FAULT_HWPOISON;
2736 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2737 goto out_release;
2740 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2742 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2743 if (!locked) {
2744 ret |= VM_FAULT_RETRY;
2745 goto out_release;
2749 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2750 * release the swapcache from under us. The page pin, and pte_same
2751 * test below, are not enough to exclude that. Even if it is still
2752 * swapcache, we need to check that the page's swap has not changed.
2754 if (unlikely((!PageSwapCache(page) ||
2755 page_private(page) != entry.val)) && swapcache)
2756 goto out_page;
2758 page = ksm_might_need_to_copy(page, vma, vmf->address);
2759 if (unlikely(!page)) {
2760 ret = VM_FAULT_OOM;
2761 page = swapcache;
2762 goto out_page;
2765 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2766 &memcg, false)) {
2767 ret = VM_FAULT_OOM;
2768 goto out_page;
2772 * Back out if somebody else already faulted in this pte.
2774 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2775 &vmf->ptl);
2776 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2777 goto out_nomap;
2779 if (unlikely(!PageUptodate(page))) {
2780 ret = VM_FAULT_SIGBUS;
2781 goto out_nomap;
2785 * The page isn't present yet, go ahead with the fault.
2787 * Be careful about the sequence of operations here.
2788 * To get its accounting right, reuse_swap_page() must be called
2789 * while the page is counted on swap but not yet in mapcount i.e.
2790 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2791 * must be called after the swap_free(), or it will never succeed.
2794 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2795 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2796 pte = mk_pte(page, vma->vm_page_prot);
2797 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2798 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2799 vmf->flags &= ~FAULT_FLAG_WRITE;
2800 ret |= VM_FAULT_WRITE;
2801 exclusive = RMAP_EXCLUSIVE;
2803 flush_icache_page(vma, page);
2804 if (pte_swp_soft_dirty(vmf->orig_pte))
2805 pte = pte_mksoft_dirty(pte);
2806 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2807 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2808 vmf->orig_pte = pte;
2810 /* ksm created a completely new copy */
2811 if (unlikely(page != swapcache && swapcache)) {
2812 page_add_new_anon_rmap(page, vma, vmf->address, false);
2813 mem_cgroup_commit_charge(page, memcg, false, false);
2814 lru_cache_add_active_or_unevictable(page, vma);
2815 } else {
2816 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2817 mem_cgroup_commit_charge(page, memcg, true, false);
2818 activate_page(page);
2821 swap_free(entry);
2822 if (mem_cgroup_swap_full(page) ||
2823 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2824 try_to_free_swap(page);
2825 unlock_page(page);
2826 if (page != swapcache && swapcache) {
2828 * Hold the lock to avoid the swap entry to be reused
2829 * until we take the PT lock for the pte_same() check
2830 * (to avoid false positives from pte_same). For
2831 * further safety release the lock after the swap_free
2832 * so that the swap count won't change under a
2833 * parallel locked swapcache.
2835 unlock_page(swapcache);
2836 put_page(swapcache);
2839 if (vmf->flags & FAULT_FLAG_WRITE) {
2840 ret |= do_wp_page(vmf);
2841 if (ret & VM_FAULT_ERROR)
2842 ret &= VM_FAULT_ERROR;
2843 goto out;
2846 /* No need to invalidate - it was non-present before */
2847 update_mmu_cache(vma, vmf->address, vmf->pte);
2848 unlock:
2849 pte_unmap_unlock(vmf->pte, vmf->ptl);
2850 out:
2851 return ret;
2852 out_nomap:
2853 mem_cgroup_cancel_charge(page, memcg, false);
2854 pte_unmap_unlock(vmf->pte, vmf->ptl);
2855 out_page:
2856 unlock_page(page);
2857 out_release:
2858 put_page(page);
2859 if (page != swapcache && swapcache) {
2860 unlock_page(swapcache);
2861 put_page(swapcache);
2863 return ret;
2867 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2868 * but allow concurrent faults), and pte mapped but not yet locked.
2869 * We return with mmap_sem still held, but pte unmapped and unlocked.
2871 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2873 struct vm_area_struct *vma = vmf->vma;
2874 struct mem_cgroup *memcg;
2875 struct page *page;
2876 vm_fault_t ret = 0;
2877 pte_t entry;
2879 /* File mapping without ->vm_ops ? */
2880 if (vma->vm_flags & VM_SHARED)
2881 return VM_FAULT_SIGBUS;
2884 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2885 * pte_offset_map() on pmds where a huge pmd might be created
2886 * from a different thread.
2888 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2889 * parallel threads are excluded by other means.
2891 * Here we only have down_read(mmap_sem).
2893 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2894 return VM_FAULT_OOM;
2896 /* See the comment in pte_alloc_one_map() */
2897 if (unlikely(pmd_trans_unstable(vmf->pmd)))
2898 return 0;
2900 /* Use the zero-page for reads */
2901 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2902 !mm_forbids_zeropage(vma->vm_mm)) {
2903 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2904 vma->vm_page_prot));
2905 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2906 vmf->address, &vmf->ptl);
2907 if (!pte_none(*vmf->pte))
2908 goto unlock;
2909 ret = check_stable_address_space(vma->vm_mm);
2910 if (ret)
2911 goto unlock;
2912 /* Deliver the page fault to userland, check inside PT lock */
2913 if (userfaultfd_missing(vma)) {
2914 pte_unmap_unlock(vmf->pte, vmf->ptl);
2915 return handle_userfault(vmf, VM_UFFD_MISSING);
2917 goto setpte;
2920 /* Allocate our own private page. */
2921 if (unlikely(anon_vma_prepare(vma)))
2922 goto oom;
2923 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2924 if (!page)
2925 goto oom;
2927 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2928 false))
2929 goto oom_free_page;
2932 * The memory barrier inside __SetPageUptodate makes sure that
2933 * preceeding stores to the page contents become visible before
2934 * the set_pte_at() write.
2936 __SetPageUptodate(page);
2938 entry = mk_pte(page, vma->vm_page_prot);
2939 if (vma->vm_flags & VM_WRITE)
2940 entry = pte_mkwrite(pte_mkdirty(entry));
2942 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2943 &vmf->ptl);
2944 if (!pte_none(*vmf->pte))
2945 goto release;
2947 ret = check_stable_address_space(vma->vm_mm);
2948 if (ret)
2949 goto release;
2951 /* Deliver the page fault to userland, check inside PT lock */
2952 if (userfaultfd_missing(vma)) {
2953 pte_unmap_unlock(vmf->pte, vmf->ptl);
2954 mem_cgroup_cancel_charge(page, memcg, false);
2955 put_page(page);
2956 return handle_userfault(vmf, VM_UFFD_MISSING);
2959 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2960 page_add_new_anon_rmap(page, vma, vmf->address, false);
2961 mem_cgroup_commit_charge(page, memcg, false, false);
2962 lru_cache_add_active_or_unevictable(page, vma);
2963 setpte:
2964 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2966 /* No need to invalidate - it was non-present before */
2967 update_mmu_cache(vma, vmf->address, vmf->pte);
2968 unlock:
2969 pte_unmap_unlock(vmf->pte, vmf->ptl);
2970 return ret;
2971 release:
2972 mem_cgroup_cancel_charge(page, memcg, false);
2973 put_page(page);
2974 goto unlock;
2975 oom_free_page:
2976 put_page(page);
2977 oom:
2978 return VM_FAULT_OOM;
2982 * The mmap_sem must have been held on entry, and may have been
2983 * released depending on flags and vma->vm_ops->fault() return value.
2984 * See filemap_fault() and __lock_page_retry().
2986 static vm_fault_t __do_fault(struct vm_fault *vmf)
2988 struct vm_area_struct *vma = vmf->vma;
2989 vm_fault_t ret;
2991 ret = vma->vm_ops->fault(vmf);
2992 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
2993 VM_FAULT_DONE_COW)))
2994 return ret;
2996 if (unlikely(PageHWPoison(vmf->page))) {
2997 if (ret & VM_FAULT_LOCKED)
2998 unlock_page(vmf->page);
2999 put_page(vmf->page);
3000 vmf->page = NULL;
3001 return VM_FAULT_HWPOISON;
3004 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3005 lock_page(vmf->page);
3006 else
3007 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3009 return ret;
3013 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3014 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3015 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3016 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3018 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3020 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3023 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3025 struct vm_area_struct *vma = vmf->vma;
3027 if (!pmd_none(*vmf->pmd))
3028 goto map_pte;
3029 if (vmf->prealloc_pte) {
3030 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3031 if (unlikely(!pmd_none(*vmf->pmd))) {
3032 spin_unlock(vmf->ptl);
3033 goto map_pte;
3036 mm_inc_nr_ptes(vma->vm_mm);
3037 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3038 spin_unlock(vmf->ptl);
3039 vmf->prealloc_pte = NULL;
3040 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3041 return VM_FAULT_OOM;
3043 map_pte:
3045 * If a huge pmd materialized under us just retry later. Use
3046 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3047 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3048 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3049 * running immediately after a huge pmd fault in a different thread of
3050 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3051 * All we have to ensure is that it is a regular pmd that we can walk
3052 * with pte_offset_map() and we can do that through an atomic read in
3053 * C, which is what pmd_trans_unstable() provides.
3055 if (pmd_devmap_trans_unstable(vmf->pmd))
3056 return VM_FAULT_NOPAGE;
3059 * At this point we know that our vmf->pmd points to a page of ptes
3060 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3061 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3062 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3063 * be valid and we will re-check to make sure the vmf->pte isn't
3064 * pte_none() under vmf->ptl protection when we return to
3065 * alloc_set_pte().
3067 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3068 &vmf->ptl);
3069 return 0;
3072 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3074 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3075 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3076 unsigned long haddr)
3078 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3079 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3080 return false;
3081 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3082 return false;
3083 return true;
3086 static void deposit_prealloc_pte(struct vm_fault *vmf)
3088 struct vm_area_struct *vma = vmf->vma;
3090 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3092 * We are going to consume the prealloc table,
3093 * count that as nr_ptes.
3095 mm_inc_nr_ptes(vma->vm_mm);
3096 vmf->prealloc_pte = NULL;
3099 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3101 struct vm_area_struct *vma = vmf->vma;
3102 bool write = vmf->flags & FAULT_FLAG_WRITE;
3103 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3104 pmd_t entry;
3105 int i;
3106 vm_fault_t ret;
3108 if (!transhuge_vma_suitable(vma, haddr))
3109 return VM_FAULT_FALLBACK;
3111 ret = VM_FAULT_FALLBACK;
3112 page = compound_head(page);
3115 * Archs like ppc64 need additonal space to store information
3116 * related to pte entry. Use the preallocated table for that.
3118 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3119 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3120 if (!vmf->prealloc_pte)
3121 return VM_FAULT_OOM;
3122 smp_wmb(); /* See comment in __pte_alloc() */
3125 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3126 if (unlikely(!pmd_none(*vmf->pmd)))
3127 goto out;
3129 for (i = 0; i < HPAGE_PMD_NR; i++)
3130 flush_icache_page(vma, page + i);
3132 entry = mk_huge_pmd(page, vma->vm_page_prot);
3133 if (write)
3134 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3136 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3137 page_add_file_rmap(page, true);
3139 * deposit and withdraw with pmd lock held
3141 if (arch_needs_pgtable_deposit())
3142 deposit_prealloc_pte(vmf);
3144 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3146 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3148 /* fault is handled */
3149 ret = 0;
3150 count_vm_event(THP_FILE_MAPPED);
3151 out:
3152 spin_unlock(vmf->ptl);
3153 return ret;
3155 #else
3156 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3158 BUILD_BUG();
3159 return 0;
3161 #endif
3164 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3165 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3167 * @vmf: fault environment
3168 * @memcg: memcg to charge page (only for private mappings)
3169 * @page: page to map
3171 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3172 * return.
3174 * Target users are page handler itself and implementations of
3175 * vm_ops->map_pages.
3177 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3178 struct page *page)
3180 struct vm_area_struct *vma = vmf->vma;
3181 bool write = vmf->flags & FAULT_FLAG_WRITE;
3182 pte_t entry;
3183 vm_fault_t ret;
3185 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3186 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3187 /* THP on COW? */
3188 VM_BUG_ON_PAGE(memcg, page);
3190 ret = do_set_pmd(vmf, page);
3191 if (ret != VM_FAULT_FALLBACK)
3192 return ret;
3195 if (!vmf->pte) {
3196 ret = pte_alloc_one_map(vmf);
3197 if (ret)
3198 return ret;
3201 /* Re-check under ptl */
3202 if (unlikely(!pte_none(*vmf->pte)))
3203 return VM_FAULT_NOPAGE;
3205 flush_icache_page(vma, page);
3206 entry = mk_pte(page, vma->vm_page_prot);
3207 if (write)
3208 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3209 /* copy-on-write page */
3210 if (write && !(vma->vm_flags & VM_SHARED)) {
3211 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3212 page_add_new_anon_rmap(page, vma, vmf->address, false);
3213 mem_cgroup_commit_charge(page, memcg, false, false);
3214 lru_cache_add_active_or_unevictable(page, vma);
3215 } else {
3216 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3217 page_add_file_rmap(page, false);
3219 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3221 /* no need to invalidate: a not-present page won't be cached */
3222 update_mmu_cache(vma, vmf->address, vmf->pte);
3224 return 0;
3229 * finish_fault - finish page fault once we have prepared the page to fault
3231 * @vmf: structure describing the fault
3233 * This function handles all that is needed to finish a page fault once the
3234 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3235 * given page, adds reverse page mapping, handles memcg charges and LRU
3236 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3237 * error.
3239 * The function expects the page to be locked and on success it consumes a
3240 * reference of a page being mapped (for the PTE which maps it).
3242 vm_fault_t finish_fault(struct vm_fault *vmf)
3244 struct page *page;
3245 vm_fault_t ret = 0;
3247 /* Did we COW the page? */
3248 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3249 !(vmf->vma->vm_flags & VM_SHARED))
3250 page = vmf->cow_page;
3251 else
3252 page = vmf->page;
3255 * check even for read faults because we might have lost our CoWed
3256 * page
3258 if (!(vmf->vma->vm_flags & VM_SHARED))
3259 ret = check_stable_address_space(vmf->vma->vm_mm);
3260 if (!ret)
3261 ret = alloc_set_pte(vmf, vmf->memcg, page);
3262 if (vmf->pte)
3263 pte_unmap_unlock(vmf->pte, vmf->ptl);
3264 return ret;
3267 static unsigned long fault_around_bytes __read_mostly =
3268 rounddown_pow_of_two(65536);
3270 #ifdef CONFIG_DEBUG_FS
3271 static int fault_around_bytes_get(void *data, u64 *val)
3273 *val = fault_around_bytes;
3274 return 0;
3278 * fault_around_bytes must be rounded down to the nearest page order as it's
3279 * what do_fault_around() expects to see.
3281 static int fault_around_bytes_set(void *data, u64 val)
3283 if (val / PAGE_SIZE > PTRS_PER_PTE)
3284 return -EINVAL;
3285 if (val > PAGE_SIZE)
3286 fault_around_bytes = rounddown_pow_of_two(val);
3287 else
3288 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3289 return 0;
3291 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3292 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3294 static int __init fault_around_debugfs(void)
3296 void *ret;
3298 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3299 &fault_around_bytes_fops);
3300 if (!ret)
3301 pr_warn("Failed to create fault_around_bytes in debugfs");
3302 return 0;
3304 late_initcall(fault_around_debugfs);
3305 #endif
3308 * do_fault_around() tries to map few pages around the fault address. The hope
3309 * is that the pages will be needed soon and this will lower the number of
3310 * faults to handle.
3312 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3313 * not ready to be mapped: not up-to-date, locked, etc.
3315 * This function is called with the page table lock taken. In the split ptlock
3316 * case the page table lock only protects only those entries which belong to
3317 * the page table corresponding to the fault address.
3319 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3320 * only once.
3322 * fault_around_bytes defines how many bytes we'll try to map.
3323 * do_fault_around() expects it to be set to a power of two less than or equal
3324 * to PTRS_PER_PTE.
3326 * The virtual address of the area that we map is naturally aligned to
3327 * fault_around_bytes rounded down to the machine page size
3328 * (and therefore to page order). This way it's easier to guarantee
3329 * that we don't cross page table boundaries.
3331 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3333 unsigned long address = vmf->address, nr_pages, mask;
3334 pgoff_t start_pgoff = vmf->pgoff;
3335 pgoff_t end_pgoff;
3336 int off;
3337 vm_fault_t ret = 0;
3339 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3340 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3342 vmf->address = max(address & mask, vmf->vma->vm_start);
3343 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3344 start_pgoff -= off;
3347 * end_pgoff is either the end of the page table, the end of
3348 * the vma or nr_pages from start_pgoff, depending what is nearest.
3350 end_pgoff = start_pgoff -
3351 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3352 PTRS_PER_PTE - 1;
3353 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3354 start_pgoff + nr_pages - 1);
3356 if (pmd_none(*vmf->pmd)) {
3357 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3358 vmf->address);
3359 if (!vmf->prealloc_pte)
3360 goto out;
3361 smp_wmb(); /* See comment in __pte_alloc() */
3364 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3366 /* Huge page is mapped? Page fault is solved */
3367 if (pmd_trans_huge(*vmf->pmd)) {
3368 ret = VM_FAULT_NOPAGE;
3369 goto out;
3372 /* ->map_pages() haven't done anything useful. Cold page cache? */
3373 if (!vmf->pte)
3374 goto out;
3376 /* check if the page fault is solved */
3377 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3378 if (!pte_none(*vmf->pte))
3379 ret = VM_FAULT_NOPAGE;
3380 pte_unmap_unlock(vmf->pte, vmf->ptl);
3381 out:
3382 vmf->address = address;
3383 vmf->pte = NULL;
3384 return ret;
3387 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3389 struct vm_area_struct *vma = vmf->vma;
3390 vm_fault_t ret = 0;
3393 * Let's call ->map_pages() first and use ->fault() as fallback
3394 * if page by the offset is not ready to be mapped (cold cache or
3395 * something).
3397 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3398 ret = do_fault_around(vmf);
3399 if (ret)
3400 return ret;
3403 ret = __do_fault(vmf);
3404 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3405 return ret;
3407 ret |= finish_fault(vmf);
3408 unlock_page(vmf->page);
3409 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3410 put_page(vmf->page);
3411 return ret;
3414 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3416 struct vm_area_struct *vma = vmf->vma;
3417 vm_fault_t ret;
3419 if (unlikely(anon_vma_prepare(vma)))
3420 return VM_FAULT_OOM;
3422 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3423 if (!vmf->cow_page)
3424 return VM_FAULT_OOM;
3426 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3427 &vmf->memcg, false)) {
3428 put_page(vmf->cow_page);
3429 return VM_FAULT_OOM;
3432 ret = __do_fault(vmf);
3433 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3434 goto uncharge_out;
3435 if (ret & VM_FAULT_DONE_COW)
3436 return ret;
3438 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3439 __SetPageUptodate(vmf->cow_page);
3441 ret |= finish_fault(vmf);
3442 unlock_page(vmf->page);
3443 put_page(vmf->page);
3444 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3445 goto uncharge_out;
3446 return ret;
3447 uncharge_out:
3448 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3449 put_page(vmf->cow_page);
3450 return ret;
3453 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3455 struct vm_area_struct *vma = vmf->vma;
3456 vm_fault_t ret, tmp;
3458 ret = __do_fault(vmf);
3459 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3460 return ret;
3463 * Check if the backing address space wants to know that the page is
3464 * about to become writable
3466 if (vma->vm_ops->page_mkwrite) {
3467 unlock_page(vmf->page);
3468 tmp = do_page_mkwrite(vmf);
3469 if (unlikely(!tmp ||
3470 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3471 put_page(vmf->page);
3472 return tmp;
3476 ret |= finish_fault(vmf);
3477 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3478 VM_FAULT_RETRY))) {
3479 unlock_page(vmf->page);
3480 put_page(vmf->page);
3481 return ret;
3484 fault_dirty_shared_page(vma, vmf->page);
3485 return ret;
3489 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3490 * but allow concurrent faults).
3491 * The mmap_sem may have been released depending on flags and our
3492 * return value. See filemap_fault() and __lock_page_or_retry().
3494 static vm_fault_t do_fault(struct vm_fault *vmf)
3496 struct vm_area_struct *vma = vmf->vma;
3497 vm_fault_t ret;
3500 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3502 if (!vma->vm_ops->fault) {
3504 * If we find a migration pmd entry or a none pmd entry, which
3505 * should never happen, return SIGBUS
3507 if (unlikely(!pmd_present(*vmf->pmd)))
3508 ret = VM_FAULT_SIGBUS;
3509 else {
3510 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3511 vmf->pmd,
3512 vmf->address,
3513 &vmf->ptl);
3515 * Make sure this is not a temporary clearing of pte
3516 * by holding ptl and checking again. A R/M/W update
3517 * of pte involves: take ptl, clearing the pte so that
3518 * we don't have concurrent modification by hardware
3519 * followed by an update.
3521 if (unlikely(pte_none(*vmf->pte)))
3522 ret = VM_FAULT_SIGBUS;
3523 else
3524 ret = VM_FAULT_NOPAGE;
3526 pte_unmap_unlock(vmf->pte, vmf->ptl);
3528 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3529 ret = do_read_fault(vmf);
3530 else if (!(vma->vm_flags & VM_SHARED))
3531 ret = do_cow_fault(vmf);
3532 else
3533 ret = do_shared_fault(vmf);
3535 /* preallocated pagetable is unused: free it */
3536 if (vmf->prealloc_pte) {
3537 pte_free(vma->vm_mm, vmf->prealloc_pte);
3538 vmf->prealloc_pte = NULL;
3540 return ret;
3543 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3544 unsigned long addr, int page_nid,
3545 int *flags)
3547 get_page(page);
3549 count_vm_numa_event(NUMA_HINT_FAULTS);
3550 if (page_nid == numa_node_id()) {
3551 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3552 *flags |= TNF_FAULT_LOCAL;
3555 return mpol_misplaced(page, vma, addr);
3558 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3560 struct vm_area_struct *vma = vmf->vma;
3561 struct page *page = NULL;
3562 int page_nid = -1;
3563 int last_cpupid;
3564 int target_nid;
3565 bool migrated = false;
3566 pte_t pte;
3567 bool was_writable = pte_savedwrite(vmf->orig_pte);
3568 int flags = 0;
3571 * The "pte" at this point cannot be used safely without
3572 * validation through pte_unmap_same(). It's of NUMA type but
3573 * the pfn may be screwed if the read is non atomic.
3575 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3576 spin_lock(vmf->ptl);
3577 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3578 pte_unmap_unlock(vmf->pte, vmf->ptl);
3579 goto out;
3583 * Make it present again, Depending on how arch implementes non
3584 * accessible ptes, some can allow access by kernel mode.
3586 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3587 pte = pte_modify(pte, vma->vm_page_prot);
3588 pte = pte_mkyoung(pte);
3589 if (was_writable)
3590 pte = pte_mkwrite(pte);
3591 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3592 update_mmu_cache(vma, vmf->address, vmf->pte);
3594 page = vm_normal_page(vma, vmf->address, pte);
3595 if (!page) {
3596 pte_unmap_unlock(vmf->pte, vmf->ptl);
3597 return 0;
3600 /* TODO: handle PTE-mapped THP */
3601 if (PageCompound(page)) {
3602 pte_unmap_unlock(vmf->pte, vmf->ptl);
3603 return 0;
3607 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3608 * much anyway since they can be in shared cache state. This misses
3609 * the case where a mapping is writable but the process never writes
3610 * to it but pte_write gets cleared during protection updates and
3611 * pte_dirty has unpredictable behaviour between PTE scan updates,
3612 * background writeback, dirty balancing and application behaviour.
3614 if (!pte_write(pte))
3615 flags |= TNF_NO_GROUP;
3618 * Flag if the page is shared between multiple address spaces. This
3619 * is later used when determining whether to group tasks together
3621 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3622 flags |= TNF_SHARED;
3624 last_cpupid = page_cpupid_last(page);
3625 page_nid = page_to_nid(page);
3626 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3627 &flags);
3628 pte_unmap_unlock(vmf->pte, vmf->ptl);
3629 if (target_nid == -1) {
3630 put_page(page);
3631 goto out;
3634 /* Migrate to the requested node */
3635 migrated = migrate_misplaced_page(page, vma, target_nid);
3636 if (migrated) {
3637 page_nid = target_nid;
3638 flags |= TNF_MIGRATED;
3639 } else
3640 flags |= TNF_MIGRATE_FAIL;
3642 out:
3643 if (page_nid != -1)
3644 task_numa_fault(last_cpupid, page_nid, 1, flags);
3645 return 0;
3648 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3650 if (vma_is_anonymous(vmf->vma))
3651 return do_huge_pmd_anonymous_page(vmf);
3652 if (vmf->vma->vm_ops->huge_fault)
3653 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3654 return VM_FAULT_FALLBACK;
3657 /* `inline' is required to avoid gcc 4.1.2 build error */
3658 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3660 if (vma_is_anonymous(vmf->vma))
3661 return do_huge_pmd_wp_page(vmf, orig_pmd);
3662 if (vmf->vma->vm_ops->huge_fault)
3663 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3665 /* COW handled on pte level: split pmd */
3666 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3667 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3669 return VM_FAULT_FALLBACK;
3672 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3674 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3677 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3680 /* No support for anonymous transparent PUD pages yet */
3681 if (vma_is_anonymous(vmf->vma))
3682 return VM_FAULT_FALLBACK;
3683 if (vmf->vma->vm_ops->huge_fault)
3684 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3685 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3686 return VM_FAULT_FALLBACK;
3689 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3691 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3692 /* No support for anonymous transparent PUD pages yet */
3693 if (vma_is_anonymous(vmf->vma))
3694 return VM_FAULT_FALLBACK;
3695 if (vmf->vma->vm_ops->huge_fault)
3696 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3697 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3698 return VM_FAULT_FALLBACK;
3702 * These routines also need to handle stuff like marking pages dirty
3703 * and/or accessed for architectures that don't do it in hardware (most
3704 * RISC architectures). The early dirtying is also good on the i386.
3706 * There is also a hook called "update_mmu_cache()" that architectures
3707 * with external mmu caches can use to update those (ie the Sparc or
3708 * PowerPC hashed page tables that act as extended TLBs).
3710 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3711 * concurrent faults).
3713 * The mmap_sem may have been released depending on flags and our return value.
3714 * See filemap_fault() and __lock_page_or_retry().
3716 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3718 pte_t entry;
3720 if (unlikely(pmd_none(*vmf->pmd))) {
3722 * Leave __pte_alloc() until later: because vm_ops->fault may
3723 * want to allocate huge page, and if we expose page table
3724 * for an instant, it will be difficult to retract from
3725 * concurrent faults and from rmap lookups.
3727 vmf->pte = NULL;
3728 } else {
3729 /* See comment in pte_alloc_one_map() */
3730 if (pmd_devmap_trans_unstable(vmf->pmd))
3731 return 0;
3733 * A regular pmd is established and it can't morph into a huge
3734 * pmd from under us anymore at this point because we hold the
3735 * mmap_sem read mode and khugepaged takes it in write mode.
3736 * So now it's safe to run pte_offset_map().
3738 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3739 vmf->orig_pte = *vmf->pte;
3742 * some architectures can have larger ptes than wordsize,
3743 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3744 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3745 * accesses. The code below just needs a consistent view
3746 * for the ifs and we later double check anyway with the
3747 * ptl lock held. So here a barrier will do.
3749 barrier();
3750 if (pte_none(vmf->orig_pte)) {
3751 pte_unmap(vmf->pte);
3752 vmf->pte = NULL;
3756 if (!vmf->pte) {
3757 if (vma_is_anonymous(vmf->vma))
3758 return do_anonymous_page(vmf);
3759 else
3760 return do_fault(vmf);
3763 if (!pte_present(vmf->orig_pte))
3764 return do_swap_page(vmf);
3766 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3767 return do_numa_page(vmf);
3769 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3770 spin_lock(vmf->ptl);
3771 entry = vmf->orig_pte;
3772 if (unlikely(!pte_same(*vmf->pte, entry)))
3773 goto unlock;
3774 if (vmf->flags & FAULT_FLAG_WRITE) {
3775 if (!pte_write(entry))
3776 return do_wp_page(vmf);
3777 entry = pte_mkdirty(entry);
3779 entry = pte_mkyoung(entry);
3780 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3781 vmf->flags & FAULT_FLAG_WRITE)) {
3782 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3783 } else {
3785 * This is needed only for protection faults but the arch code
3786 * is not yet telling us if this is a protection fault or not.
3787 * This still avoids useless tlb flushes for .text page faults
3788 * with threads.
3790 if (vmf->flags & FAULT_FLAG_WRITE)
3791 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3793 unlock:
3794 pte_unmap_unlock(vmf->pte, vmf->ptl);
3795 return 0;
3799 * By the time we get here, we already hold the mm semaphore
3801 * The mmap_sem may have been released depending on flags and our
3802 * return value. See filemap_fault() and __lock_page_or_retry().
3804 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3805 unsigned long address, unsigned int flags)
3807 struct vm_fault vmf = {
3808 .vma = vma,
3809 .address = address & PAGE_MASK,
3810 .flags = flags,
3811 .pgoff = linear_page_index(vma, address),
3812 .gfp_mask = __get_fault_gfp_mask(vma),
3814 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3815 struct mm_struct *mm = vma->vm_mm;
3816 pgd_t *pgd;
3817 p4d_t *p4d;
3818 vm_fault_t ret;
3820 pgd = pgd_offset(mm, address);
3821 p4d = p4d_alloc(mm, pgd, address);
3822 if (!p4d)
3823 return VM_FAULT_OOM;
3825 vmf.pud = pud_alloc(mm, p4d, address);
3826 if (!vmf.pud)
3827 return VM_FAULT_OOM;
3828 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3829 ret = create_huge_pud(&vmf);
3830 if (!(ret & VM_FAULT_FALLBACK))
3831 return ret;
3832 } else {
3833 pud_t orig_pud = *vmf.pud;
3835 barrier();
3836 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3838 /* NUMA case for anonymous PUDs would go here */
3840 if (dirty && !pud_write(orig_pud)) {
3841 ret = wp_huge_pud(&vmf, orig_pud);
3842 if (!(ret & VM_FAULT_FALLBACK))
3843 return ret;
3844 } else {
3845 huge_pud_set_accessed(&vmf, orig_pud);
3846 return 0;
3851 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3852 if (!vmf.pmd)
3853 return VM_FAULT_OOM;
3854 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3855 ret = create_huge_pmd(&vmf);
3856 if (!(ret & VM_FAULT_FALLBACK))
3857 return ret;
3858 } else {
3859 pmd_t orig_pmd = *vmf.pmd;
3861 barrier();
3862 if (unlikely(is_swap_pmd(orig_pmd))) {
3863 VM_BUG_ON(thp_migration_supported() &&
3864 !is_pmd_migration_entry(orig_pmd));
3865 if (is_pmd_migration_entry(orig_pmd))
3866 pmd_migration_entry_wait(mm, vmf.pmd);
3867 return 0;
3869 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3870 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3871 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3873 if (dirty && !pmd_write(orig_pmd)) {
3874 ret = wp_huge_pmd(&vmf, orig_pmd);
3875 if (!(ret & VM_FAULT_FALLBACK))
3876 return ret;
3877 } else {
3878 huge_pmd_set_accessed(&vmf, orig_pmd);
3879 return 0;
3884 return handle_pte_fault(&vmf);
3888 * By the time we get here, we already hold the mm semaphore
3890 * The mmap_sem may have been released depending on flags and our
3891 * return value. See filemap_fault() and __lock_page_or_retry().
3893 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3894 unsigned int flags)
3896 vm_fault_t ret;
3898 __set_current_state(TASK_RUNNING);
3900 count_vm_event(PGFAULT);
3901 count_memcg_event_mm(vma->vm_mm, PGFAULT);
3903 /* do counter updates before entering really critical section. */
3904 check_sync_rss_stat(current);
3906 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3907 flags & FAULT_FLAG_INSTRUCTION,
3908 flags & FAULT_FLAG_REMOTE))
3909 return VM_FAULT_SIGSEGV;
3912 * Enable the memcg OOM handling for faults triggered in user
3913 * space. Kernel faults are handled more gracefully.
3915 if (flags & FAULT_FLAG_USER)
3916 mem_cgroup_enter_user_fault();
3918 if (unlikely(is_vm_hugetlb_page(vma)))
3919 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3920 else
3921 ret = __handle_mm_fault(vma, address, flags);
3923 if (flags & FAULT_FLAG_USER) {
3924 mem_cgroup_exit_user_fault();
3926 * The task may have entered a memcg OOM situation but
3927 * if the allocation error was handled gracefully (no
3928 * VM_FAULT_OOM), there is no need to kill anything.
3929 * Just clean up the OOM state peacefully.
3931 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3932 mem_cgroup_oom_synchronize(false);
3935 return ret;
3937 EXPORT_SYMBOL_GPL(handle_mm_fault);
3939 #ifndef __PAGETABLE_P4D_FOLDED
3941 * Allocate p4d page table.
3942 * We've already handled the fast-path in-line.
3944 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3946 p4d_t *new = p4d_alloc_one(mm, address);
3947 if (!new)
3948 return -ENOMEM;
3950 smp_wmb(); /* See comment in __pte_alloc */
3952 spin_lock(&mm->page_table_lock);
3953 if (pgd_present(*pgd)) /* Another has populated it */
3954 p4d_free(mm, new);
3955 else
3956 pgd_populate(mm, pgd, new);
3957 spin_unlock(&mm->page_table_lock);
3958 return 0;
3960 #endif /* __PAGETABLE_P4D_FOLDED */
3962 #ifndef __PAGETABLE_PUD_FOLDED
3964 * Allocate page upper directory.
3965 * We've already handled the fast-path in-line.
3967 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
3969 pud_t *new = pud_alloc_one(mm, address);
3970 if (!new)
3971 return -ENOMEM;
3973 smp_wmb(); /* See comment in __pte_alloc */
3975 spin_lock(&mm->page_table_lock);
3976 #ifndef __ARCH_HAS_5LEVEL_HACK
3977 if (!p4d_present(*p4d)) {
3978 mm_inc_nr_puds(mm);
3979 p4d_populate(mm, p4d, new);
3980 } else /* Another has populated it */
3981 pud_free(mm, new);
3982 #else
3983 if (!pgd_present(*p4d)) {
3984 mm_inc_nr_puds(mm);
3985 pgd_populate(mm, p4d, new);
3986 } else /* Another has populated it */
3987 pud_free(mm, new);
3988 #endif /* __ARCH_HAS_5LEVEL_HACK */
3989 spin_unlock(&mm->page_table_lock);
3990 return 0;
3992 #endif /* __PAGETABLE_PUD_FOLDED */
3994 #ifndef __PAGETABLE_PMD_FOLDED
3996 * Allocate page middle directory.
3997 * We've already handled the fast-path in-line.
3999 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4001 spinlock_t *ptl;
4002 pmd_t *new = pmd_alloc_one(mm, address);
4003 if (!new)
4004 return -ENOMEM;
4006 smp_wmb(); /* See comment in __pte_alloc */
4008 ptl = pud_lock(mm, pud);
4009 #ifndef __ARCH_HAS_4LEVEL_HACK
4010 if (!pud_present(*pud)) {
4011 mm_inc_nr_pmds(mm);
4012 pud_populate(mm, pud, new);
4013 } else /* Another has populated it */
4014 pmd_free(mm, new);
4015 #else
4016 if (!pgd_present(*pud)) {
4017 mm_inc_nr_pmds(mm);
4018 pgd_populate(mm, pud, new);
4019 } else /* Another has populated it */
4020 pmd_free(mm, new);
4021 #endif /* __ARCH_HAS_4LEVEL_HACK */
4022 spin_unlock(ptl);
4023 return 0;
4025 #endif /* __PAGETABLE_PMD_FOLDED */
4027 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4028 unsigned long *start, unsigned long *end,
4029 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4031 pgd_t *pgd;
4032 p4d_t *p4d;
4033 pud_t *pud;
4034 pmd_t *pmd;
4035 pte_t *ptep;
4037 pgd = pgd_offset(mm, address);
4038 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4039 goto out;
4041 p4d = p4d_offset(pgd, address);
4042 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4043 goto out;
4045 pud = pud_offset(p4d, address);
4046 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4047 goto out;
4049 pmd = pmd_offset(pud, address);
4050 VM_BUG_ON(pmd_trans_huge(*pmd));
4052 if (pmd_huge(*pmd)) {
4053 if (!pmdpp)
4054 goto out;
4056 if (start && end) {
4057 *start = address & PMD_MASK;
4058 *end = *start + PMD_SIZE;
4059 mmu_notifier_invalidate_range_start(mm, *start, *end);
4061 *ptlp = pmd_lock(mm, pmd);
4062 if (pmd_huge(*pmd)) {
4063 *pmdpp = pmd;
4064 return 0;
4066 spin_unlock(*ptlp);
4067 if (start && end)
4068 mmu_notifier_invalidate_range_end(mm, *start, *end);
4071 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4072 goto out;
4074 if (start && end) {
4075 *start = address & PAGE_MASK;
4076 *end = *start + PAGE_SIZE;
4077 mmu_notifier_invalidate_range_start(mm, *start, *end);
4079 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4080 if (!pte_present(*ptep))
4081 goto unlock;
4082 *ptepp = ptep;
4083 return 0;
4084 unlock:
4085 pte_unmap_unlock(ptep, *ptlp);
4086 if (start && end)
4087 mmu_notifier_invalidate_range_end(mm, *start, *end);
4088 out:
4089 return -EINVAL;
4092 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4093 pte_t **ptepp, spinlock_t **ptlp)
4095 int res;
4097 /* (void) is needed to make gcc happy */
4098 (void) __cond_lock(*ptlp,
4099 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4100 ptepp, NULL, ptlp)));
4101 return res;
4104 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4105 unsigned long *start, unsigned long *end,
4106 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4108 int res;
4110 /* (void) is needed to make gcc happy */
4111 (void) __cond_lock(*ptlp,
4112 !(res = __follow_pte_pmd(mm, address, start, end,
4113 ptepp, pmdpp, ptlp)));
4114 return res;
4116 EXPORT_SYMBOL(follow_pte_pmd);
4119 * follow_pfn - look up PFN at a user virtual address
4120 * @vma: memory mapping
4121 * @address: user virtual address
4122 * @pfn: location to store found PFN
4124 * Only IO mappings and raw PFN mappings are allowed.
4126 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4128 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4129 unsigned long *pfn)
4131 int ret = -EINVAL;
4132 spinlock_t *ptl;
4133 pte_t *ptep;
4135 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4136 return ret;
4138 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4139 if (ret)
4140 return ret;
4141 *pfn = pte_pfn(*ptep);
4142 pte_unmap_unlock(ptep, ptl);
4143 return 0;
4145 EXPORT_SYMBOL(follow_pfn);
4147 #ifdef CONFIG_HAVE_IOREMAP_PROT
4148 int follow_phys(struct vm_area_struct *vma,
4149 unsigned long address, unsigned int flags,
4150 unsigned long *prot, resource_size_t *phys)
4152 int ret = -EINVAL;
4153 pte_t *ptep, pte;
4154 spinlock_t *ptl;
4156 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4157 goto out;
4159 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4160 goto out;
4161 pte = *ptep;
4163 if ((flags & FOLL_WRITE) && !pte_write(pte))
4164 goto unlock;
4166 *prot = pgprot_val(pte_pgprot(pte));
4167 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4169 ret = 0;
4170 unlock:
4171 pte_unmap_unlock(ptep, ptl);
4172 out:
4173 return ret;
4176 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4177 void *buf, int len, int write)
4179 resource_size_t phys_addr;
4180 unsigned long prot = 0;
4181 void __iomem *maddr;
4182 int offset = addr & (PAGE_SIZE-1);
4184 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4185 return -EINVAL;
4187 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4188 if (!maddr)
4189 return -ENOMEM;
4191 if (write)
4192 memcpy_toio(maddr + offset, buf, len);
4193 else
4194 memcpy_fromio(buf, maddr + offset, len);
4195 iounmap(maddr);
4197 return len;
4199 EXPORT_SYMBOL_GPL(generic_access_phys);
4200 #endif
4203 * Access another process' address space as given in mm. If non-NULL, use the
4204 * given task for page fault accounting.
4206 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4207 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4209 struct vm_area_struct *vma;
4210 void *old_buf = buf;
4211 int write = gup_flags & FOLL_WRITE;
4213 down_read(&mm->mmap_sem);
4214 /* ignore errors, just check how much was successfully transferred */
4215 while (len) {
4216 int bytes, ret, offset;
4217 void *maddr;
4218 struct page *page = NULL;
4220 ret = get_user_pages_remote(tsk, mm, addr, 1,
4221 gup_flags, &page, &vma, NULL);
4222 if (ret <= 0) {
4223 #ifndef CONFIG_HAVE_IOREMAP_PROT
4224 break;
4225 #else
4227 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4228 * we can access using slightly different code.
4230 vma = find_vma(mm, addr);
4231 if (!vma || vma->vm_start > addr)
4232 break;
4233 if (vma->vm_ops && vma->vm_ops->access)
4234 ret = vma->vm_ops->access(vma, addr, buf,
4235 len, write);
4236 if (ret <= 0)
4237 break;
4238 bytes = ret;
4239 #endif
4240 } else {
4241 bytes = len;
4242 offset = addr & (PAGE_SIZE-1);
4243 if (bytes > PAGE_SIZE-offset)
4244 bytes = PAGE_SIZE-offset;
4246 maddr = kmap(page);
4247 if (write) {
4248 copy_to_user_page(vma, page, addr,
4249 maddr + offset, buf, bytes);
4250 set_page_dirty_lock(page);
4251 } else {
4252 copy_from_user_page(vma, page, addr,
4253 buf, maddr + offset, bytes);
4255 kunmap(page);
4256 put_page(page);
4258 len -= bytes;
4259 buf += bytes;
4260 addr += bytes;
4262 up_read(&mm->mmap_sem);
4264 return buf - old_buf;
4268 * access_remote_vm - access another process' address space
4269 * @mm: the mm_struct of the target address space
4270 * @addr: start address to access
4271 * @buf: source or destination buffer
4272 * @len: number of bytes to transfer
4273 * @gup_flags: flags modifying lookup behaviour
4275 * The caller must hold a reference on @mm.
4277 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4278 void *buf, int len, unsigned int gup_flags)
4280 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4284 * Access another process' address space.
4285 * Source/target buffer must be kernel space,
4286 * Do not walk the page table directly, use get_user_pages
4288 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4289 void *buf, int len, unsigned int gup_flags)
4291 struct mm_struct *mm;
4292 int ret;
4294 mm = get_task_mm(tsk);
4295 if (!mm)
4296 return 0;
4298 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4300 mmput(mm);
4302 return ret;
4304 EXPORT_SYMBOL_GPL(access_process_vm);
4307 * Print the name of a VMA.
4309 void print_vma_addr(char *prefix, unsigned long ip)
4311 struct mm_struct *mm = current->mm;
4312 struct vm_area_struct *vma;
4315 * we might be running from an atomic context so we cannot sleep
4317 if (!down_read_trylock(&mm->mmap_sem))
4318 return;
4320 vma = find_vma(mm, ip);
4321 if (vma && vma->vm_file) {
4322 struct file *f = vma->vm_file;
4323 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4324 if (buf) {
4325 char *p;
4327 p = file_path(f, buf, PAGE_SIZE);
4328 if (IS_ERR(p))
4329 p = "?";
4330 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4331 vma->vm_start,
4332 vma->vm_end - vma->vm_start);
4333 free_page((unsigned long)buf);
4336 up_read(&mm->mmap_sem);
4339 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4340 void __might_fault(const char *file, int line)
4343 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4344 * holding the mmap_sem, this is safe because kernel memory doesn't
4345 * get paged out, therefore we'll never actually fault, and the
4346 * below annotations will generate false positives.
4348 if (uaccess_kernel())
4349 return;
4350 if (pagefault_disabled())
4351 return;
4352 __might_sleep(file, line, 0);
4353 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4354 if (current->mm)
4355 might_lock_read(&current->mm->mmap_sem);
4356 #endif
4358 EXPORT_SYMBOL(__might_fault);
4359 #endif
4361 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4363 * Process all subpages of the specified huge page with the specified
4364 * operation. The target subpage will be processed last to keep its
4365 * cache lines hot.
4367 static inline void process_huge_page(
4368 unsigned long addr_hint, unsigned int pages_per_huge_page,
4369 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4370 void *arg)
4372 int i, n, base, l;
4373 unsigned long addr = addr_hint &
4374 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4376 /* Process target subpage last to keep its cache lines hot */
4377 might_sleep();
4378 n = (addr_hint - addr) / PAGE_SIZE;
4379 if (2 * n <= pages_per_huge_page) {
4380 /* If target subpage in first half of huge page */
4381 base = 0;
4382 l = n;
4383 /* Process subpages at the end of huge page */
4384 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4385 cond_resched();
4386 process_subpage(addr + i * PAGE_SIZE, i, arg);
4388 } else {
4389 /* If target subpage in second half of huge page */
4390 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4391 l = pages_per_huge_page - n;
4392 /* Process subpages at the begin of huge page */
4393 for (i = 0; i < base; i++) {
4394 cond_resched();
4395 process_subpage(addr + i * PAGE_SIZE, i, arg);
4399 * Process remaining subpages in left-right-left-right pattern
4400 * towards the target subpage
4402 for (i = 0; i < l; i++) {
4403 int left_idx = base + i;
4404 int right_idx = base + 2 * l - 1 - i;
4406 cond_resched();
4407 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4408 cond_resched();
4409 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4413 static void clear_gigantic_page(struct page *page,
4414 unsigned long addr,
4415 unsigned int pages_per_huge_page)
4417 int i;
4418 struct page *p = page;
4420 might_sleep();
4421 for (i = 0; i < pages_per_huge_page;
4422 i++, p = mem_map_next(p, page, i)) {
4423 cond_resched();
4424 clear_user_highpage(p, addr + i * PAGE_SIZE);
4428 static void clear_subpage(unsigned long addr, int idx, void *arg)
4430 struct page *page = arg;
4432 clear_user_highpage(page + idx, addr);
4435 void clear_huge_page(struct page *page,
4436 unsigned long addr_hint, unsigned int pages_per_huge_page)
4438 unsigned long addr = addr_hint &
4439 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4441 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4442 clear_gigantic_page(page, addr, pages_per_huge_page);
4443 return;
4446 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4449 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4450 unsigned long addr,
4451 struct vm_area_struct *vma,
4452 unsigned int pages_per_huge_page)
4454 int i;
4455 struct page *dst_base = dst;
4456 struct page *src_base = src;
4458 for (i = 0; i < pages_per_huge_page; ) {
4459 cond_resched();
4460 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4462 i++;
4463 dst = mem_map_next(dst, dst_base, i);
4464 src = mem_map_next(src, src_base, i);
4468 struct copy_subpage_arg {
4469 struct page *dst;
4470 struct page *src;
4471 struct vm_area_struct *vma;
4474 static void copy_subpage(unsigned long addr, int idx, void *arg)
4476 struct copy_subpage_arg *copy_arg = arg;
4478 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4479 addr, copy_arg->vma);
4482 void copy_user_huge_page(struct page *dst, struct page *src,
4483 unsigned long addr_hint, struct vm_area_struct *vma,
4484 unsigned int pages_per_huge_page)
4486 unsigned long addr = addr_hint &
4487 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4488 struct copy_subpage_arg arg = {
4489 .dst = dst,
4490 .src = src,
4491 .vma = vma,
4494 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4495 copy_user_gigantic_page(dst, src, addr, vma,
4496 pages_per_huge_page);
4497 return;
4500 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4503 long copy_huge_page_from_user(struct page *dst_page,
4504 const void __user *usr_src,
4505 unsigned int pages_per_huge_page,
4506 bool allow_pagefault)
4508 void *src = (void *)usr_src;
4509 void *page_kaddr;
4510 unsigned long i, rc = 0;
4511 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4513 for (i = 0; i < pages_per_huge_page; i++) {
4514 if (allow_pagefault)
4515 page_kaddr = kmap(dst_page + i);
4516 else
4517 page_kaddr = kmap_atomic(dst_page + i);
4518 rc = copy_from_user(page_kaddr,
4519 (const void __user *)(src + i * PAGE_SIZE),
4520 PAGE_SIZE);
4521 if (allow_pagefault)
4522 kunmap(dst_page + i);
4523 else
4524 kunmap_atomic(page_kaddr);
4526 ret_val -= (PAGE_SIZE - rc);
4527 if (rc)
4528 break;
4530 cond_resched();
4532 return ret_val;
4534 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4536 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4538 static struct kmem_cache *page_ptl_cachep;
4540 void __init ptlock_cache_init(void)
4542 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4543 SLAB_PANIC, NULL);
4546 bool ptlock_alloc(struct page *page)
4548 spinlock_t *ptl;
4550 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4551 if (!ptl)
4552 return false;
4553 page->ptl = ptl;
4554 return true;
4557 void ptlock_free(struct page *page)
4559 kmem_cache_free(page_ptl_cachep, page->ptl);
4561 #endif