perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / mm / memory_hotplug.c
blob7e6509a53d79facc47bcf0b5f0d5e37de32f3ad6
1 /*
2 * linux/mm/memory_hotplug.c
4 * Copyright (C)
5 */
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/bootmem.h>
37 #include <linux/compaction.h>
39 #include <asm/tlbflush.h>
41 #include "internal.h"
44 * online_page_callback contains pointer to current page onlining function.
45 * Initially it is generic_online_page(). If it is required it could be
46 * changed by calling set_online_page_callback() for callback registration
47 * and restore_online_page_callback() for generic callback restore.
50 static void generic_online_page(struct page *page);
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
57 void get_online_mems(void)
59 percpu_down_read(&mem_hotplug_lock);
62 void put_online_mems(void)
64 percpu_up_read(&mem_hotplug_lock);
67 bool movable_node_enabled = false;
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 bool memhp_auto_online;
71 #else
72 bool memhp_auto_online = true;
73 #endif
74 EXPORT_SYMBOL_GPL(memhp_auto_online);
76 static int __init setup_memhp_default_state(char *str)
78 if (!strcmp(str, "online"))
79 memhp_auto_online = true;
80 else if (!strcmp(str, "offline"))
81 memhp_auto_online = false;
83 return 1;
85 __setup("memhp_default_state=", setup_memhp_default_state);
87 void mem_hotplug_begin(void)
89 cpus_read_lock();
90 percpu_down_write(&mem_hotplug_lock);
93 void mem_hotplug_done(void)
95 percpu_up_write(&mem_hotplug_lock);
96 cpus_read_unlock();
99 /* add this memory to iomem resource */
100 static struct resource *register_memory_resource(u64 start, u64 size)
102 struct resource *res, *conflict;
103 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
104 if (!res)
105 return ERR_PTR(-ENOMEM);
107 res->name = "System RAM";
108 res->start = start;
109 res->end = start + size - 1;
110 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
111 conflict = request_resource_conflict(&iomem_resource, res);
112 if (conflict) {
113 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
114 pr_debug("Device unaddressable memory block "
115 "memory hotplug at %#010llx !\n",
116 (unsigned long long)start);
118 pr_debug("System RAM resource %pR cannot be added\n", res);
119 kfree(res);
120 return ERR_PTR(-EEXIST);
122 return res;
125 static void release_memory_resource(struct resource *res)
127 if (!res)
128 return;
129 release_resource(res);
130 kfree(res);
131 return;
134 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
135 void get_page_bootmem(unsigned long info, struct page *page,
136 unsigned long type)
138 page->freelist = (void *)type;
139 SetPagePrivate(page);
140 set_page_private(page, info);
141 page_ref_inc(page);
144 void put_page_bootmem(struct page *page)
146 unsigned long type;
148 type = (unsigned long) page->freelist;
149 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
150 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
152 if (page_ref_dec_return(page) == 1) {
153 page->freelist = NULL;
154 ClearPagePrivate(page);
155 set_page_private(page, 0);
156 INIT_LIST_HEAD(&page->lru);
157 free_reserved_page(page);
161 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
162 #ifndef CONFIG_SPARSEMEM_VMEMMAP
163 static void register_page_bootmem_info_section(unsigned long start_pfn)
165 unsigned long *usemap, mapsize, section_nr, i;
166 struct mem_section *ms;
167 struct page *page, *memmap;
169 section_nr = pfn_to_section_nr(start_pfn);
170 ms = __nr_to_section(section_nr);
172 /* Get section's memmap address */
173 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
176 * Get page for the memmap's phys address
177 * XXX: need more consideration for sparse_vmemmap...
179 page = virt_to_page(memmap);
180 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
181 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
183 /* remember memmap's page */
184 for (i = 0; i < mapsize; i++, page++)
185 get_page_bootmem(section_nr, page, SECTION_INFO);
187 usemap = ms->pageblock_flags;
188 page = virt_to_page(usemap);
190 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
192 for (i = 0; i < mapsize; i++, page++)
193 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
196 #else /* CONFIG_SPARSEMEM_VMEMMAP */
197 static void register_page_bootmem_info_section(unsigned long start_pfn)
199 unsigned long *usemap, mapsize, section_nr, i;
200 struct mem_section *ms;
201 struct page *page, *memmap;
203 section_nr = pfn_to_section_nr(start_pfn);
204 ms = __nr_to_section(section_nr);
206 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
208 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
210 usemap = ms->pageblock_flags;
211 page = virt_to_page(usemap);
213 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
215 for (i = 0; i < mapsize; i++, page++)
216 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
218 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
220 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
222 unsigned long i, pfn, end_pfn, nr_pages;
223 int node = pgdat->node_id;
224 struct page *page;
226 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
227 page = virt_to_page(pgdat);
229 for (i = 0; i < nr_pages; i++, page++)
230 get_page_bootmem(node, page, NODE_INFO);
232 pfn = pgdat->node_start_pfn;
233 end_pfn = pgdat_end_pfn(pgdat);
235 /* register section info */
236 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
238 * Some platforms can assign the same pfn to multiple nodes - on
239 * node0 as well as nodeN. To avoid registering a pfn against
240 * multiple nodes we check that this pfn does not already
241 * reside in some other nodes.
243 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
244 register_page_bootmem_info_section(pfn);
247 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
249 static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
250 struct vmem_altmap *altmap, bool want_memblock)
252 int ret;
254 if (pfn_valid(phys_start_pfn))
255 return -EEXIST;
257 ret = sparse_add_one_section(NODE_DATA(nid), phys_start_pfn, altmap);
258 if (ret < 0)
259 return ret;
261 if (!want_memblock)
262 return 0;
264 return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
268 * Reasonably generic function for adding memory. It is
269 * expected that archs that support memory hotplug will
270 * call this function after deciding the zone to which to
271 * add the new pages.
273 int __ref __add_pages(int nid, unsigned long phys_start_pfn,
274 unsigned long nr_pages, struct vmem_altmap *altmap,
275 bool want_memblock)
277 unsigned long i;
278 int err = 0;
279 int start_sec, end_sec;
281 /* during initialize mem_map, align hot-added range to section */
282 start_sec = pfn_to_section_nr(phys_start_pfn);
283 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
285 if (altmap) {
287 * Validate altmap is within bounds of the total request
289 if (altmap->base_pfn != phys_start_pfn
290 || vmem_altmap_offset(altmap) > nr_pages) {
291 pr_warn_once("memory add fail, invalid altmap\n");
292 err = -EINVAL;
293 goto out;
295 altmap->alloc = 0;
298 for (i = start_sec; i <= end_sec; i++) {
299 err = __add_section(nid, section_nr_to_pfn(i), altmap,
300 want_memblock);
303 * EEXIST is finally dealt with by ioresource collision
304 * check. see add_memory() => register_memory_resource()
305 * Warning will be printed if there is collision.
307 if (err && (err != -EEXIST))
308 break;
309 err = 0;
310 cond_resched();
312 vmemmap_populate_print_last();
313 out:
314 return err;
317 #ifdef CONFIG_MEMORY_HOTREMOVE
318 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
319 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
320 unsigned long start_pfn,
321 unsigned long end_pfn)
323 struct mem_section *ms;
325 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
326 ms = __pfn_to_section(start_pfn);
328 if (unlikely(!valid_section(ms)))
329 continue;
331 if (unlikely(pfn_to_nid(start_pfn) != nid))
332 continue;
334 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
335 continue;
337 return start_pfn;
340 return 0;
343 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
344 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
345 unsigned long start_pfn,
346 unsigned long end_pfn)
348 struct mem_section *ms;
349 unsigned long pfn;
351 /* pfn is the end pfn of a memory section. */
352 pfn = end_pfn - 1;
353 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
354 ms = __pfn_to_section(pfn);
356 if (unlikely(!valid_section(ms)))
357 continue;
359 if (unlikely(pfn_to_nid(pfn) != nid))
360 continue;
362 if (zone && zone != page_zone(pfn_to_page(pfn)))
363 continue;
365 return pfn;
368 return 0;
371 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
372 unsigned long end_pfn)
374 unsigned long zone_start_pfn = zone->zone_start_pfn;
375 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
376 unsigned long zone_end_pfn = z;
377 unsigned long pfn;
378 struct mem_section *ms;
379 int nid = zone_to_nid(zone);
381 zone_span_writelock(zone);
382 if (zone_start_pfn == start_pfn) {
384 * If the section is smallest section in the zone, it need
385 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
386 * In this case, we find second smallest valid mem_section
387 * for shrinking zone.
389 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
390 zone_end_pfn);
391 if (pfn) {
392 zone->zone_start_pfn = pfn;
393 zone->spanned_pages = zone_end_pfn - pfn;
395 } else if (zone_end_pfn == end_pfn) {
397 * If the section is biggest section in the zone, it need
398 * shrink zone->spanned_pages.
399 * In this case, we find second biggest valid mem_section for
400 * shrinking zone.
402 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
403 start_pfn);
404 if (pfn)
405 zone->spanned_pages = pfn - zone_start_pfn + 1;
409 * The section is not biggest or smallest mem_section in the zone, it
410 * only creates a hole in the zone. So in this case, we need not
411 * change the zone. But perhaps, the zone has only hole data. Thus
412 * it check the zone has only hole or not.
414 pfn = zone_start_pfn;
415 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
416 ms = __pfn_to_section(pfn);
418 if (unlikely(!valid_section(ms)))
419 continue;
421 if (page_zone(pfn_to_page(pfn)) != zone)
422 continue;
424 /* If the section is current section, it continues the loop */
425 if (start_pfn == pfn)
426 continue;
428 /* If we find valid section, we have nothing to do */
429 zone_span_writeunlock(zone);
430 return;
433 /* The zone has no valid section */
434 zone->zone_start_pfn = 0;
435 zone->spanned_pages = 0;
436 zone_span_writeunlock(zone);
439 static void shrink_pgdat_span(struct pglist_data *pgdat,
440 unsigned long start_pfn, unsigned long end_pfn)
442 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
443 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
444 unsigned long pgdat_end_pfn = p;
445 unsigned long pfn;
446 struct mem_section *ms;
447 int nid = pgdat->node_id;
449 if (pgdat_start_pfn == start_pfn) {
451 * If the section is smallest section in the pgdat, it need
452 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
453 * In this case, we find second smallest valid mem_section
454 * for shrinking zone.
456 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
457 pgdat_end_pfn);
458 if (pfn) {
459 pgdat->node_start_pfn = pfn;
460 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
462 } else if (pgdat_end_pfn == end_pfn) {
464 * If the section is biggest section in the pgdat, it need
465 * shrink pgdat->node_spanned_pages.
466 * In this case, we find second biggest valid mem_section for
467 * shrinking zone.
469 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
470 start_pfn);
471 if (pfn)
472 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
476 * If the section is not biggest or smallest mem_section in the pgdat,
477 * it only creates a hole in the pgdat. So in this case, we need not
478 * change the pgdat.
479 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
480 * has only hole or not.
482 pfn = pgdat_start_pfn;
483 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
484 ms = __pfn_to_section(pfn);
486 if (unlikely(!valid_section(ms)))
487 continue;
489 if (pfn_to_nid(pfn) != nid)
490 continue;
492 /* If the section is current section, it continues the loop */
493 if (start_pfn == pfn)
494 continue;
496 /* If we find valid section, we have nothing to do */
497 return;
500 /* The pgdat has no valid section */
501 pgdat->node_start_pfn = 0;
502 pgdat->node_spanned_pages = 0;
505 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
507 struct pglist_data *pgdat = zone->zone_pgdat;
508 int nr_pages = PAGES_PER_SECTION;
509 unsigned long flags;
511 pgdat_resize_lock(zone->zone_pgdat, &flags);
512 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
513 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
514 pgdat_resize_unlock(zone->zone_pgdat, &flags);
517 static int __remove_section(struct zone *zone, struct mem_section *ms,
518 unsigned long map_offset, struct vmem_altmap *altmap)
520 unsigned long start_pfn;
521 int scn_nr;
522 int ret = -EINVAL;
524 if (!valid_section(ms))
525 return ret;
527 ret = unregister_memory_section(ms);
528 if (ret)
529 return ret;
531 scn_nr = __section_nr(ms);
532 start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
533 __remove_zone(zone, start_pfn);
535 sparse_remove_one_section(zone, ms, map_offset, altmap);
536 return 0;
540 * __remove_pages() - remove sections of pages from a zone
541 * @zone: zone from which pages need to be removed
542 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
543 * @nr_pages: number of pages to remove (must be multiple of section size)
544 * @altmap: alternative device page map or %NULL if default memmap is used
546 * Generic helper function to remove section mappings and sysfs entries
547 * for the section of the memory we are removing. Caller needs to make
548 * sure that pages are marked reserved and zones are adjust properly by
549 * calling offline_pages().
551 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
552 unsigned long nr_pages, struct vmem_altmap *altmap)
554 unsigned long i;
555 unsigned long map_offset = 0;
556 int sections_to_remove, ret = 0;
558 /* In the ZONE_DEVICE case device driver owns the memory region */
559 if (is_dev_zone(zone)) {
560 if (altmap)
561 map_offset = vmem_altmap_offset(altmap);
562 } else {
563 resource_size_t start, size;
565 start = phys_start_pfn << PAGE_SHIFT;
566 size = nr_pages * PAGE_SIZE;
568 ret = release_mem_region_adjustable(&iomem_resource, start,
569 size);
570 if (ret) {
571 resource_size_t endres = start + size - 1;
573 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
574 &start, &endres, ret);
578 clear_zone_contiguous(zone);
581 * We can only remove entire sections
583 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
584 BUG_ON(nr_pages % PAGES_PER_SECTION);
586 sections_to_remove = nr_pages / PAGES_PER_SECTION;
587 for (i = 0; i < sections_to_remove; i++) {
588 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
590 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset,
591 altmap);
592 map_offset = 0;
593 if (ret)
594 break;
597 set_zone_contiguous(zone);
599 return ret;
601 #endif /* CONFIG_MEMORY_HOTREMOVE */
603 int set_online_page_callback(online_page_callback_t callback)
605 int rc = -EINVAL;
607 get_online_mems();
608 mutex_lock(&online_page_callback_lock);
610 if (online_page_callback == generic_online_page) {
611 online_page_callback = callback;
612 rc = 0;
615 mutex_unlock(&online_page_callback_lock);
616 put_online_mems();
618 return rc;
620 EXPORT_SYMBOL_GPL(set_online_page_callback);
622 int restore_online_page_callback(online_page_callback_t callback)
624 int rc = -EINVAL;
626 get_online_mems();
627 mutex_lock(&online_page_callback_lock);
629 if (online_page_callback == callback) {
630 online_page_callback = generic_online_page;
631 rc = 0;
634 mutex_unlock(&online_page_callback_lock);
635 put_online_mems();
637 return rc;
639 EXPORT_SYMBOL_GPL(restore_online_page_callback);
641 void __online_page_set_limits(struct page *page)
644 EXPORT_SYMBOL_GPL(__online_page_set_limits);
646 void __online_page_increment_counters(struct page *page)
648 adjust_managed_page_count(page, 1);
650 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
652 void __online_page_free(struct page *page)
654 __free_reserved_page(page);
656 EXPORT_SYMBOL_GPL(__online_page_free);
658 static void generic_online_page(struct page *page)
660 __online_page_set_limits(page);
661 __online_page_increment_counters(page);
662 __online_page_free(page);
665 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
666 void *arg)
668 unsigned long i;
669 unsigned long onlined_pages = *(unsigned long *)arg;
670 struct page *page;
672 if (PageReserved(pfn_to_page(start_pfn)))
673 for (i = 0; i < nr_pages; i++) {
674 page = pfn_to_page(start_pfn + i);
675 (*online_page_callback)(page);
676 onlined_pages++;
679 online_mem_sections(start_pfn, start_pfn + nr_pages);
681 *(unsigned long *)arg = onlined_pages;
682 return 0;
685 /* check which state of node_states will be changed when online memory */
686 static void node_states_check_changes_online(unsigned long nr_pages,
687 struct zone *zone, struct memory_notify *arg)
689 int nid = zone_to_nid(zone);
691 arg->status_change_nid = -1;
692 arg->status_change_nid_normal = -1;
693 arg->status_change_nid_high = -1;
695 if (!node_state(nid, N_MEMORY))
696 arg->status_change_nid = nid;
697 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
698 arg->status_change_nid_normal = nid;
699 #ifdef CONFIG_HIGHMEM
700 if (zone_idx(zone) <= N_HIGH_MEMORY && !node_state(nid, N_HIGH_MEMORY))
701 arg->status_change_nid_high = nid;
702 #endif
705 static void node_states_set_node(int node, struct memory_notify *arg)
707 if (arg->status_change_nid_normal >= 0)
708 node_set_state(node, N_NORMAL_MEMORY);
710 if (arg->status_change_nid_high >= 0)
711 node_set_state(node, N_HIGH_MEMORY);
713 if (arg->status_change_nid >= 0)
714 node_set_state(node, N_MEMORY);
717 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
718 unsigned long nr_pages)
720 unsigned long old_end_pfn = zone_end_pfn(zone);
722 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
723 zone->zone_start_pfn = start_pfn;
725 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
728 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
729 unsigned long nr_pages)
731 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
733 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
734 pgdat->node_start_pfn = start_pfn;
736 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
739 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
740 unsigned long nr_pages, struct vmem_altmap *altmap)
742 struct pglist_data *pgdat = zone->zone_pgdat;
743 int nid = pgdat->node_id;
744 unsigned long flags;
746 if (zone_is_empty(zone))
747 init_currently_empty_zone(zone, start_pfn, nr_pages);
749 clear_zone_contiguous(zone);
751 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
752 pgdat_resize_lock(pgdat, &flags);
753 zone_span_writelock(zone);
754 resize_zone_range(zone, start_pfn, nr_pages);
755 zone_span_writeunlock(zone);
756 resize_pgdat_range(pgdat, start_pfn, nr_pages);
757 pgdat_resize_unlock(pgdat, &flags);
760 * TODO now we have a visible range of pages which are not associated
761 * with their zone properly. Not nice but set_pfnblock_flags_mask
762 * expects the zone spans the pfn range. All the pages in the range
763 * are reserved so nobody should be touching them so we should be safe
765 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
766 MEMMAP_HOTPLUG, altmap);
768 set_zone_contiguous(zone);
772 * Returns a default kernel memory zone for the given pfn range.
773 * If no kernel zone covers this pfn range it will automatically go
774 * to the ZONE_NORMAL.
776 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
777 unsigned long nr_pages)
779 struct pglist_data *pgdat = NODE_DATA(nid);
780 int zid;
782 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
783 struct zone *zone = &pgdat->node_zones[zid];
785 if (zone_intersects(zone, start_pfn, nr_pages))
786 return zone;
789 return &pgdat->node_zones[ZONE_NORMAL];
792 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
793 unsigned long nr_pages)
795 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
796 nr_pages);
797 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
798 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
799 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
802 * We inherit the existing zone in a simple case where zones do not
803 * overlap in the given range
805 if (in_kernel ^ in_movable)
806 return (in_kernel) ? kernel_zone : movable_zone;
809 * If the range doesn't belong to any zone or two zones overlap in the
810 * given range then we use movable zone only if movable_node is
811 * enabled because we always online to a kernel zone by default.
813 return movable_node_enabled ? movable_zone : kernel_zone;
816 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
817 unsigned long nr_pages)
819 if (online_type == MMOP_ONLINE_KERNEL)
820 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
822 if (online_type == MMOP_ONLINE_MOVABLE)
823 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
825 return default_zone_for_pfn(nid, start_pfn, nr_pages);
829 * Associates the given pfn range with the given node and the zone appropriate
830 * for the given online type.
832 static struct zone * __meminit move_pfn_range(int online_type, int nid,
833 unsigned long start_pfn, unsigned long nr_pages)
835 struct zone *zone;
837 zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
838 move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
839 return zone;
842 /* Must be protected by mem_hotplug_begin() or a device_lock */
843 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
845 unsigned long flags;
846 unsigned long onlined_pages = 0;
847 struct zone *zone;
848 int need_zonelists_rebuild = 0;
849 int nid;
850 int ret;
851 struct memory_notify arg;
852 struct memory_block *mem;
855 * We can't use pfn_to_nid() because nid might be stored in struct page
856 * which is not yet initialized. Instead, we find nid from memory block.
858 mem = find_memory_block(__pfn_to_section(pfn));
859 nid = mem->nid;
861 /* associate pfn range with the zone */
862 zone = move_pfn_range(online_type, nid, pfn, nr_pages);
864 arg.start_pfn = pfn;
865 arg.nr_pages = nr_pages;
866 node_states_check_changes_online(nr_pages, zone, &arg);
868 ret = memory_notify(MEM_GOING_ONLINE, &arg);
869 ret = notifier_to_errno(ret);
870 if (ret)
871 goto failed_addition;
874 * If this zone is not populated, then it is not in zonelist.
875 * This means the page allocator ignores this zone.
876 * So, zonelist must be updated after online.
878 if (!populated_zone(zone)) {
879 need_zonelists_rebuild = 1;
880 setup_zone_pageset(zone);
883 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
884 online_pages_range);
885 if (ret) {
886 if (need_zonelists_rebuild)
887 zone_pcp_reset(zone);
888 goto failed_addition;
891 zone->present_pages += onlined_pages;
893 pgdat_resize_lock(zone->zone_pgdat, &flags);
894 zone->zone_pgdat->node_present_pages += onlined_pages;
895 pgdat_resize_unlock(zone->zone_pgdat, &flags);
897 if (onlined_pages) {
898 node_states_set_node(nid, &arg);
899 if (need_zonelists_rebuild)
900 build_all_zonelists(NULL);
901 else
902 zone_pcp_update(zone);
905 init_per_zone_wmark_min();
907 if (onlined_pages) {
908 kswapd_run(nid);
909 kcompactd_run(nid);
912 vm_total_pages = nr_free_pagecache_pages();
914 writeback_set_ratelimit();
916 if (onlined_pages)
917 memory_notify(MEM_ONLINE, &arg);
918 return 0;
920 failed_addition:
921 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
922 (unsigned long long) pfn << PAGE_SHIFT,
923 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
924 memory_notify(MEM_CANCEL_ONLINE, &arg);
925 return ret;
927 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
929 static void reset_node_present_pages(pg_data_t *pgdat)
931 struct zone *z;
933 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
934 z->present_pages = 0;
936 pgdat->node_present_pages = 0;
939 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
940 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
942 struct pglist_data *pgdat;
943 unsigned long start_pfn = PFN_DOWN(start);
945 pgdat = NODE_DATA(nid);
946 if (!pgdat) {
947 pgdat = arch_alloc_nodedata(nid);
948 if (!pgdat)
949 return NULL;
951 arch_refresh_nodedata(nid, pgdat);
952 } else {
954 * Reset the nr_zones, order and classzone_idx before reuse.
955 * Note that kswapd will init kswapd_classzone_idx properly
956 * when it starts in the near future.
958 pgdat->nr_zones = 0;
959 pgdat->kswapd_order = 0;
960 pgdat->kswapd_classzone_idx = 0;
963 /* we can use NODE_DATA(nid) from here */
965 pgdat->node_id = nid;
966 pgdat->node_start_pfn = start_pfn;
968 /* init node's zones as empty zones, we don't have any present pages.*/
969 free_area_init_core_hotplug(nid);
970 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
973 * The node we allocated has no zone fallback lists. For avoiding
974 * to access not-initialized zonelist, build here.
976 build_all_zonelists(pgdat);
979 * When memory is hot-added, all the memory is in offline state. So
980 * clear all zones' present_pages because they will be updated in
981 * online_pages() and offline_pages().
983 reset_node_managed_pages(pgdat);
984 reset_node_present_pages(pgdat);
986 return pgdat;
989 static void rollback_node_hotadd(int nid)
991 pg_data_t *pgdat = NODE_DATA(nid);
993 arch_refresh_nodedata(nid, NULL);
994 free_percpu(pgdat->per_cpu_nodestats);
995 arch_free_nodedata(pgdat);
996 return;
1001 * try_online_node - online a node if offlined
1002 * @nid: the node ID
1003 * @start: start addr of the node
1004 * @set_node_online: Whether we want to online the node
1005 * called by cpu_up() to online a node without onlined memory.
1007 * Returns:
1008 * 1 -> a new node has been allocated
1009 * 0 -> the node is already online
1010 * -ENOMEM -> the node could not be allocated
1012 static int __try_online_node(int nid, u64 start, bool set_node_online)
1014 pg_data_t *pgdat;
1015 int ret = 1;
1017 if (node_online(nid))
1018 return 0;
1020 pgdat = hotadd_new_pgdat(nid, start);
1021 if (!pgdat) {
1022 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1023 ret = -ENOMEM;
1024 goto out;
1027 if (set_node_online) {
1028 node_set_online(nid);
1029 ret = register_one_node(nid);
1030 BUG_ON(ret);
1032 out:
1033 return ret;
1037 * Users of this function always want to online/register the node
1039 int try_online_node(int nid)
1041 int ret;
1043 mem_hotplug_begin();
1044 ret = __try_online_node(nid, 0, true);
1045 mem_hotplug_done();
1046 return ret;
1049 static int check_hotplug_memory_range(u64 start, u64 size)
1051 unsigned long block_sz = memory_block_size_bytes();
1052 u64 block_nr_pages = block_sz >> PAGE_SHIFT;
1053 u64 nr_pages = size >> PAGE_SHIFT;
1054 u64 start_pfn = PFN_DOWN(start);
1056 /* memory range must be block size aligned */
1057 if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
1058 !IS_ALIGNED(nr_pages, block_nr_pages)) {
1059 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1060 block_sz, start, size);
1061 return -EINVAL;
1064 return 0;
1067 static int online_memory_block(struct memory_block *mem, void *arg)
1069 return device_online(&mem->dev);
1072 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1073 int __ref add_memory_resource(int nid, struct resource *res, bool online)
1075 u64 start, size;
1076 bool new_node = false;
1077 int ret;
1079 start = res->start;
1080 size = resource_size(res);
1082 ret = check_hotplug_memory_range(start, size);
1083 if (ret)
1084 return ret;
1086 mem_hotplug_begin();
1089 * Add new range to memblock so that when hotadd_new_pgdat() is called
1090 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1091 * this new range and calculate total pages correctly. The range will
1092 * be removed at hot-remove time.
1094 memblock_add_node(start, size, nid);
1096 ret = __try_online_node(nid, start, false);
1097 if (ret < 0)
1098 goto error;
1099 new_node = ret;
1101 /* call arch's memory hotadd */
1102 ret = arch_add_memory(nid, start, size, NULL, true);
1103 if (ret < 0)
1104 goto error;
1106 if (new_node) {
1107 /* If sysfs file of new node can't be created, cpu on the node
1108 * can't be hot-added. There is no rollback way now.
1109 * So, check by BUG_ON() to catch it reluctantly..
1110 * We online node here. We can't roll back from here.
1112 node_set_online(nid);
1113 ret = __register_one_node(nid);
1114 BUG_ON(ret);
1117 /* link memory sections under this node.*/
1118 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1119 BUG_ON(ret);
1121 /* create new memmap entry */
1122 firmware_map_add_hotplug(start, start + size, "System RAM");
1124 /* online pages if requested */
1125 if (online)
1126 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1127 NULL, online_memory_block);
1129 goto out;
1131 error:
1132 /* rollback pgdat allocation and others */
1133 if (new_node)
1134 rollback_node_hotadd(nid);
1135 memblock_remove(start, size);
1137 out:
1138 mem_hotplug_done();
1139 return ret;
1141 EXPORT_SYMBOL_GPL(add_memory_resource);
1143 int __ref add_memory(int nid, u64 start, u64 size)
1145 struct resource *res;
1146 int ret;
1148 res = register_memory_resource(start, size);
1149 if (IS_ERR(res))
1150 return PTR_ERR(res);
1152 ret = add_memory_resource(nid, res, memhp_auto_online);
1153 if (ret < 0)
1154 release_memory_resource(res);
1155 return ret;
1157 EXPORT_SYMBOL_GPL(add_memory);
1159 #ifdef CONFIG_MEMORY_HOTREMOVE
1161 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1162 * set and the size of the free page is given by page_order(). Using this,
1163 * the function determines if the pageblock contains only free pages.
1164 * Due to buddy contraints, a free page at least the size of a pageblock will
1165 * be located at the start of the pageblock
1167 static inline int pageblock_free(struct page *page)
1169 return PageBuddy(page) && page_order(page) >= pageblock_order;
1172 /* Return the start of the next active pageblock after a given page */
1173 static struct page *next_active_pageblock(struct page *page)
1175 /* Ensure the starting page is pageblock-aligned */
1176 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1178 /* If the entire pageblock is free, move to the end of free page */
1179 if (pageblock_free(page)) {
1180 int order;
1181 /* be careful. we don't have locks, page_order can be changed.*/
1182 order = page_order(page);
1183 if ((order < MAX_ORDER) && (order >= pageblock_order))
1184 return page + (1 << order);
1187 return page + pageblock_nr_pages;
1190 static bool is_pageblock_removable_nolock(struct page *page)
1192 struct zone *zone;
1193 unsigned long pfn;
1196 * We have to be careful here because we are iterating over memory
1197 * sections which are not zone aware so we might end up outside of
1198 * the zone but still within the section.
1199 * We have to take care about the node as well. If the node is offline
1200 * its NODE_DATA will be NULL - see page_zone.
1202 if (!node_online(page_to_nid(page)))
1203 return false;
1205 zone = page_zone(page);
1206 pfn = page_to_pfn(page);
1207 if (!zone_spans_pfn(zone, pfn))
1208 return false;
1210 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
1213 /* Checks if this range of memory is likely to be hot-removable. */
1214 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1216 struct page *page = pfn_to_page(start_pfn);
1217 struct page *end_page = page + nr_pages;
1219 /* Check the starting page of each pageblock within the range */
1220 for (; page < end_page; page = next_active_pageblock(page)) {
1221 if (!is_pageblock_removable_nolock(page))
1222 return false;
1223 cond_resched();
1226 /* All pageblocks in the memory block are likely to be hot-removable */
1227 return true;
1231 * Confirm all pages in a range [start, end) belong to the same zone.
1232 * When true, return its valid [start, end).
1234 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1235 unsigned long *valid_start, unsigned long *valid_end)
1237 unsigned long pfn, sec_end_pfn;
1238 unsigned long start, end;
1239 struct zone *zone = NULL;
1240 struct page *page;
1241 int i;
1242 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1243 pfn < end_pfn;
1244 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1245 /* Make sure the memory section is present first */
1246 if (!present_section_nr(pfn_to_section_nr(pfn)))
1247 continue;
1248 for (; pfn < sec_end_pfn && pfn < end_pfn;
1249 pfn += MAX_ORDER_NR_PAGES) {
1250 i = 0;
1251 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1252 while ((i < MAX_ORDER_NR_PAGES) &&
1253 !pfn_valid_within(pfn + i))
1254 i++;
1255 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1256 continue;
1257 page = pfn_to_page(pfn + i);
1258 if (zone && page_zone(page) != zone)
1259 return 0;
1260 if (!zone)
1261 start = pfn + i;
1262 zone = page_zone(page);
1263 end = pfn + MAX_ORDER_NR_PAGES;
1267 if (zone) {
1268 *valid_start = start;
1269 *valid_end = min(end, end_pfn);
1270 return 1;
1271 } else {
1272 return 0;
1277 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1278 * non-lru movable pages and hugepages). We scan pfn because it's much
1279 * easier than scanning over linked list. This function returns the pfn
1280 * of the first found movable page if it's found, otherwise 0.
1282 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1284 unsigned long pfn;
1285 struct page *page;
1286 for (pfn = start; pfn < end; pfn++) {
1287 if (pfn_valid(pfn)) {
1288 page = pfn_to_page(pfn);
1289 if (PageLRU(page))
1290 return pfn;
1291 if (__PageMovable(page))
1292 return pfn;
1293 if (PageHuge(page)) {
1294 if (hugepage_migration_supported(page_hstate(page)) &&
1295 page_huge_active(page))
1296 return pfn;
1297 else
1298 pfn = round_up(pfn + 1,
1299 1 << compound_order(page)) - 1;
1303 return 0;
1306 static struct page *new_node_page(struct page *page, unsigned long private)
1308 int nid = page_to_nid(page);
1309 nodemask_t nmask = node_states[N_MEMORY];
1312 * try to allocate from a different node but reuse this node if there
1313 * are no other online nodes to be used (e.g. we are offlining a part
1314 * of the only existing node)
1316 node_clear(nid, nmask);
1317 if (nodes_empty(nmask))
1318 node_set(nid, nmask);
1320 return new_page_nodemask(page, nid, &nmask);
1323 #define NR_OFFLINE_AT_ONCE_PAGES (256)
1324 static int
1325 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1327 unsigned long pfn;
1328 struct page *page;
1329 int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1330 int not_managed = 0;
1331 int ret = 0;
1332 LIST_HEAD(source);
1334 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1335 if (!pfn_valid(pfn))
1336 continue;
1337 page = pfn_to_page(pfn);
1339 if (PageHuge(page)) {
1340 struct page *head = compound_head(page);
1341 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1342 if (compound_order(head) > PFN_SECTION_SHIFT) {
1343 ret = -EBUSY;
1344 break;
1346 if (isolate_huge_page(page, &source))
1347 move_pages -= 1 << compound_order(head);
1348 continue;
1349 } else if (PageTransHuge(page))
1350 pfn = page_to_pfn(compound_head(page))
1351 + hpage_nr_pages(page) - 1;
1353 if (!get_page_unless_zero(page))
1354 continue;
1356 * We can skip free pages. And we can deal with pages on
1357 * LRU and non-lru movable pages.
1359 if (PageLRU(page))
1360 ret = isolate_lru_page(page);
1361 else
1362 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1363 if (!ret) { /* Success */
1364 put_page(page);
1365 list_add_tail(&page->lru, &source);
1366 move_pages--;
1367 if (!__PageMovable(page))
1368 inc_node_page_state(page, NR_ISOLATED_ANON +
1369 page_is_file_cache(page));
1371 } else {
1372 #ifdef CONFIG_DEBUG_VM
1373 pr_alert("failed to isolate pfn %lx\n", pfn);
1374 dump_page(page, "isolation failed");
1375 #endif
1376 put_page(page);
1377 /* Because we don't have big zone->lock. we should
1378 check this again here. */
1379 if (page_count(page)) {
1380 not_managed++;
1381 ret = -EBUSY;
1382 break;
1386 if (!list_empty(&source)) {
1387 if (not_managed) {
1388 putback_movable_pages(&source);
1389 goto out;
1392 /* Allocate a new page from the nearest neighbor node */
1393 ret = migrate_pages(&source, new_node_page, NULL, 0,
1394 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1395 if (ret)
1396 putback_movable_pages(&source);
1398 out:
1399 return ret;
1403 * remove from free_area[] and mark all as Reserved.
1405 static int
1406 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1407 void *data)
1409 __offline_isolated_pages(start, start + nr_pages);
1410 return 0;
1413 static void
1414 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1416 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1417 offline_isolated_pages_cb);
1421 * Check all pages in range, recoreded as memory resource, are isolated.
1423 static int
1424 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1425 void *data)
1427 int ret;
1428 long offlined = *(long *)data;
1429 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1430 offlined = nr_pages;
1431 if (!ret)
1432 *(long *)data += offlined;
1433 return ret;
1436 static long
1437 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1439 long offlined = 0;
1440 int ret;
1442 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1443 check_pages_isolated_cb);
1444 if (ret < 0)
1445 offlined = (long)ret;
1446 return offlined;
1449 static int __init cmdline_parse_movable_node(char *p)
1451 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1452 movable_node_enabled = true;
1453 #else
1454 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1455 #endif
1456 return 0;
1458 early_param("movable_node", cmdline_parse_movable_node);
1460 /* check which state of node_states will be changed when offline memory */
1461 static void node_states_check_changes_offline(unsigned long nr_pages,
1462 struct zone *zone, struct memory_notify *arg)
1464 struct pglist_data *pgdat = zone->zone_pgdat;
1465 unsigned long present_pages = 0;
1466 enum zone_type zt;
1468 arg->status_change_nid = -1;
1469 arg->status_change_nid_normal = -1;
1470 arg->status_change_nid_high = -1;
1473 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1474 * If the memory to be offline is within the range
1475 * [0..ZONE_NORMAL], and it is the last present memory there,
1476 * the zones in that range will become empty after the offlining,
1477 * thus we can determine that we need to clear the node from
1478 * node_states[N_NORMAL_MEMORY].
1480 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1481 present_pages += pgdat->node_zones[zt].present_pages;
1482 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1483 arg->status_change_nid_normal = zone_to_nid(zone);
1485 #ifdef CONFIG_HIGHMEM
1487 * node_states[N_HIGH_MEMORY] contains nodes which
1488 * have normal memory or high memory.
1489 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1490 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1491 * we determine that the zones in that range become empty,
1492 * we need to clear the node for N_HIGH_MEMORY.
1494 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1495 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1496 arg->status_change_nid_high = zone_to_nid(zone);
1497 #endif
1500 * We have accounted the pages from [0..ZONE_NORMAL), and
1501 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1502 * as well.
1503 * Here we count the possible pages from ZONE_MOVABLE.
1504 * If after having accounted all the pages, we see that the nr_pages
1505 * to be offlined is over or equal to the accounted pages,
1506 * we know that the node will become empty, and so, we can clear
1507 * it for N_MEMORY as well.
1509 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1511 if (nr_pages >= present_pages)
1512 arg->status_change_nid = zone_to_nid(zone);
1515 static void node_states_clear_node(int node, struct memory_notify *arg)
1517 if (arg->status_change_nid_normal >= 0)
1518 node_clear_state(node, N_NORMAL_MEMORY);
1520 if (arg->status_change_nid_high >= 0)
1521 node_clear_state(node, N_HIGH_MEMORY);
1523 if (arg->status_change_nid >= 0)
1524 node_clear_state(node, N_MEMORY);
1527 static int __ref __offline_pages(unsigned long start_pfn,
1528 unsigned long end_pfn)
1530 unsigned long pfn, nr_pages;
1531 long offlined_pages;
1532 int ret, node;
1533 unsigned long flags;
1534 unsigned long valid_start, valid_end;
1535 struct zone *zone;
1536 struct memory_notify arg;
1538 /* at least, alignment against pageblock is necessary */
1539 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1540 return -EINVAL;
1541 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1542 return -EINVAL;
1543 /* This makes hotplug much easier...and readable.
1544 we assume this for now. .*/
1545 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end))
1546 return -EINVAL;
1548 zone = page_zone(pfn_to_page(valid_start));
1549 node = zone_to_nid(zone);
1550 nr_pages = end_pfn - start_pfn;
1552 /* set above range as isolated */
1553 ret = start_isolate_page_range(start_pfn, end_pfn,
1554 MIGRATE_MOVABLE, true);
1555 if (ret)
1556 return ret;
1558 arg.start_pfn = start_pfn;
1559 arg.nr_pages = nr_pages;
1560 node_states_check_changes_offline(nr_pages, zone, &arg);
1562 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1563 ret = notifier_to_errno(ret);
1564 if (ret)
1565 goto failed_removal;
1567 pfn = start_pfn;
1568 repeat:
1569 /* start memory hot removal */
1570 ret = -EINTR;
1571 if (signal_pending(current))
1572 goto failed_removal;
1574 cond_resched();
1575 lru_add_drain_all();
1576 drain_all_pages(zone);
1578 pfn = scan_movable_pages(start_pfn, end_pfn);
1579 if (pfn) { /* We have movable pages */
1580 ret = do_migrate_range(pfn, end_pfn);
1581 goto repeat;
1585 * dissolve free hugepages in the memory block before doing offlining
1586 * actually in order to make hugetlbfs's object counting consistent.
1588 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1589 if (ret)
1590 goto failed_removal;
1591 /* check again */
1592 offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1593 if (offlined_pages < 0)
1594 goto repeat;
1595 pr_info("Offlined Pages %ld\n", offlined_pages);
1596 /* Ok, all of our target is isolated.
1597 We cannot do rollback at this point. */
1598 offline_isolated_pages(start_pfn, end_pfn);
1599 /* reset pagetype flags and makes migrate type to be MOVABLE */
1600 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1601 /* removal success */
1602 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1603 zone->present_pages -= offlined_pages;
1605 pgdat_resize_lock(zone->zone_pgdat, &flags);
1606 zone->zone_pgdat->node_present_pages -= offlined_pages;
1607 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1609 init_per_zone_wmark_min();
1611 if (!populated_zone(zone)) {
1612 zone_pcp_reset(zone);
1613 build_all_zonelists(NULL);
1614 } else
1615 zone_pcp_update(zone);
1617 node_states_clear_node(node, &arg);
1618 if (arg.status_change_nid >= 0) {
1619 kswapd_stop(node);
1620 kcompactd_stop(node);
1623 vm_total_pages = nr_free_pagecache_pages();
1624 writeback_set_ratelimit();
1626 memory_notify(MEM_OFFLINE, &arg);
1627 return 0;
1629 failed_removal:
1630 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1631 (unsigned long long) start_pfn << PAGE_SHIFT,
1632 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1633 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1634 /* pushback to free area */
1635 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1636 return ret;
1639 /* Must be protected by mem_hotplug_begin() or a device_lock */
1640 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1642 return __offline_pages(start_pfn, start_pfn + nr_pages);
1644 #endif /* CONFIG_MEMORY_HOTREMOVE */
1647 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1648 * @start_pfn: start pfn of the memory range
1649 * @end_pfn: end pfn of the memory range
1650 * @arg: argument passed to func
1651 * @func: callback for each memory section walked
1653 * This function walks through all present mem sections in range
1654 * [start_pfn, end_pfn) and call func on each mem section.
1656 * Returns the return value of func.
1658 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1659 void *arg, int (*func)(struct memory_block *, void *))
1661 struct memory_block *mem = NULL;
1662 struct mem_section *section;
1663 unsigned long pfn, section_nr;
1664 int ret;
1666 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1667 section_nr = pfn_to_section_nr(pfn);
1668 if (!present_section_nr(section_nr))
1669 continue;
1671 section = __nr_to_section(section_nr);
1672 /* same memblock? */
1673 if (mem)
1674 if ((section_nr >= mem->start_section_nr) &&
1675 (section_nr <= mem->end_section_nr))
1676 continue;
1678 mem = find_memory_block_hinted(section, mem);
1679 if (!mem)
1680 continue;
1682 ret = func(mem, arg);
1683 if (ret) {
1684 kobject_put(&mem->dev.kobj);
1685 return ret;
1689 if (mem)
1690 kobject_put(&mem->dev.kobj);
1692 return 0;
1695 #ifdef CONFIG_MEMORY_HOTREMOVE
1696 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1698 int ret = !is_memblock_offlined(mem);
1700 if (unlikely(ret)) {
1701 phys_addr_t beginpa, endpa;
1703 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1704 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1705 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1706 &beginpa, &endpa);
1709 return ret;
1712 static int check_cpu_on_node(pg_data_t *pgdat)
1714 int cpu;
1716 for_each_present_cpu(cpu) {
1717 if (cpu_to_node(cpu) == pgdat->node_id)
1719 * the cpu on this node isn't removed, and we can't
1720 * offline this node.
1722 return -EBUSY;
1725 return 0;
1728 static void unmap_cpu_on_node(pg_data_t *pgdat)
1730 #ifdef CONFIG_ACPI_NUMA
1731 int cpu;
1733 for_each_possible_cpu(cpu)
1734 if (cpu_to_node(cpu) == pgdat->node_id)
1735 numa_clear_node(cpu);
1736 #endif
1739 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1741 int ret;
1743 ret = check_cpu_on_node(pgdat);
1744 if (ret)
1745 return ret;
1748 * the node will be offlined when we come here, so we can clear
1749 * the cpu_to_node() now.
1752 unmap_cpu_on_node(pgdat);
1753 return 0;
1757 * try_offline_node
1758 * @nid: the node ID
1760 * Offline a node if all memory sections and cpus of the node are removed.
1762 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1763 * and online/offline operations before this call.
1765 void try_offline_node(int nid)
1767 pg_data_t *pgdat = NODE_DATA(nid);
1768 unsigned long start_pfn = pgdat->node_start_pfn;
1769 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1770 unsigned long pfn;
1772 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1773 unsigned long section_nr = pfn_to_section_nr(pfn);
1775 if (!present_section_nr(section_nr))
1776 continue;
1778 if (pfn_to_nid(pfn) != nid)
1779 continue;
1782 * some memory sections of this node are not removed, and we
1783 * can't offline node now.
1785 return;
1788 if (check_and_unmap_cpu_on_node(pgdat))
1789 return;
1792 * all memory/cpu of this node are removed, we can offline this
1793 * node now.
1795 node_set_offline(nid);
1796 unregister_one_node(nid);
1798 EXPORT_SYMBOL(try_offline_node);
1801 * remove_memory
1802 * @nid: the node ID
1803 * @start: physical address of the region to remove
1804 * @size: size of the region to remove
1806 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1807 * and online/offline operations before this call, as required by
1808 * try_offline_node().
1810 void __ref remove_memory(int nid, u64 start, u64 size)
1812 int ret;
1814 BUG_ON(check_hotplug_memory_range(start, size));
1816 mem_hotplug_begin();
1819 * All memory blocks must be offlined before removing memory. Check
1820 * whether all memory blocks in question are offline and trigger a BUG()
1821 * if this is not the case.
1823 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1824 check_memblock_offlined_cb);
1825 if (ret)
1826 BUG();
1828 /* remove memmap entry */
1829 firmware_map_remove(start, start + size, "System RAM");
1830 memblock_free(start, size);
1831 memblock_remove(start, size);
1833 arch_remove_memory(start, size, NULL);
1835 try_offline_node(nid);
1837 mem_hotplug_done();
1839 EXPORT_SYMBOL_GPL(remove_memory);
1840 #endif /* CONFIG_MEMORY_HOTREMOVE */