perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / mm / mempolicy.c
blobcfd26d7e61a17f9c5fd260b85778058aa04b83e2
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
106 #include "internal.h"
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
115 /* Highest zone. An specific allocation for a zone below that is not
116 policied. */
117 enum zone_type policy_zone = 0;
120 * run-time system-wide default policy => local allocation
122 static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
130 struct mempolicy *get_task_policy(struct task_struct *p)
132 struct mempolicy *pol = p->mempolicy;
133 int node;
135 if (pol)
136 return pol;
138 node = numa_node_id();
139 if (node != NUMA_NO_NODE) {
140 pol = &preferred_node_policy[node];
141 /* preferred_node_policy is not initialised early in boot */
142 if (pol->mode)
143 return pol;
146 return &default_policy;
149 static const struct mempolicy_operations {
150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152 } mpol_ops[MPOL_MAX];
154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
156 return pol->flags & MPOL_MODE_FLAGS;
159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 const nodemask_t *rel)
162 nodemask_t tmp;
163 nodes_fold(tmp, *orig, nodes_weight(*rel));
164 nodes_onto(*ret, tmp, *rel);
167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
169 if (nodes_empty(*nodes))
170 return -EINVAL;
171 pol->v.nodes = *nodes;
172 return 0;
175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
177 if (!nodes)
178 pol->flags |= MPOL_F_LOCAL; /* local allocation */
179 else if (nodes_empty(*nodes))
180 return -EINVAL; /* no allowed nodes */
181 else
182 pol->v.preferred_node = first_node(*nodes);
183 return 0;
186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
188 if (nodes_empty(*nodes))
189 return -EINVAL;
190 pol->v.nodes = *nodes;
191 return 0;
195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196 * any, for the new policy. mpol_new() has already validated the nodes
197 * parameter with respect to the policy mode and flags. But, we need to
198 * handle an empty nodemask with MPOL_PREFERRED here.
200 * Must be called holding task's alloc_lock to protect task's mems_allowed
201 * and mempolicy. May also be called holding the mmap_semaphore for write.
203 static int mpol_set_nodemask(struct mempolicy *pol,
204 const nodemask_t *nodes, struct nodemask_scratch *nsc)
206 int ret;
208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 if (pol == NULL)
210 return 0;
211 /* Check N_MEMORY */
212 nodes_and(nsc->mask1,
213 cpuset_current_mems_allowed, node_states[N_MEMORY]);
215 VM_BUG_ON(!nodes);
216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 nodes = NULL; /* explicit local allocation */
218 else {
219 if (pol->flags & MPOL_F_RELATIVE_NODES)
220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 else
222 nodes_and(nsc->mask2, *nodes, nsc->mask1);
224 if (mpol_store_user_nodemask(pol))
225 pol->w.user_nodemask = *nodes;
226 else
227 pol->w.cpuset_mems_allowed =
228 cpuset_current_mems_allowed;
231 if (nodes)
232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 else
234 ret = mpol_ops[pol->mode].create(pol, NULL);
235 return ret;
239 * This function just creates a new policy, does some check and simple
240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 nodemask_t *nodes)
245 struct mempolicy *policy;
247 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
250 if (mode == MPOL_DEFAULT) {
251 if (nodes && !nodes_empty(*nodes))
252 return ERR_PTR(-EINVAL);
253 return NULL;
255 VM_BUG_ON(!nodes);
258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 * All other modes require a valid pointer to a non-empty nodemask.
262 if (mode == MPOL_PREFERRED) {
263 if (nodes_empty(*nodes)) {
264 if (((flags & MPOL_F_STATIC_NODES) ||
265 (flags & MPOL_F_RELATIVE_NODES)))
266 return ERR_PTR(-EINVAL);
268 } else if (mode == MPOL_LOCAL) {
269 if (!nodes_empty(*nodes) ||
270 (flags & MPOL_F_STATIC_NODES) ||
271 (flags & MPOL_F_RELATIVE_NODES))
272 return ERR_PTR(-EINVAL);
273 mode = MPOL_PREFERRED;
274 } else if (nodes_empty(*nodes))
275 return ERR_PTR(-EINVAL);
276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 if (!policy)
278 return ERR_PTR(-ENOMEM);
279 atomic_set(&policy->refcnt, 1);
280 policy->mode = mode;
281 policy->flags = flags;
283 return policy;
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy *p)
289 if (!atomic_dec_and_test(&p->refcnt))
290 return;
291 kmem_cache_free(policy_cache, p);
294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
300 nodemask_t tmp;
302 if (pol->flags & MPOL_F_STATIC_NODES)
303 nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 else {
307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 *nodes);
309 pol->w.cpuset_mems_allowed = tmp;
312 if (nodes_empty(tmp))
313 tmp = *nodes;
315 pol->v.nodes = tmp;
318 static void mpol_rebind_preferred(struct mempolicy *pol,
319 const nodemask_t *nodes)
321 nodemask_t tmp;
323 if (pol->flags & MPOL_F_STATIC_NODES) {
324 int node = first_node(pol->w.user_nodemask);
326 if (node_isset(node, *nodes)) {
327 pol->v.preferred_node = node;
328 pol->flags &= ~MPOL_F_LOCAL;
329 } else
330 pol->flags |= MPOL_F_LOCAL;
331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 pol->v.preferred_node = first_node(tmp);
334 } else if (!(pol->flags & MPOL_F_LOCAL)) {
335 pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 pol->w.cpuset_mems_allowed,
337 *nodes);
338 pol->w.cpuset_mems_allowed = *nodes;
343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
346 * policies are protected by task->mems_allowed_seq to prevent a premature
347 * OOM/allocation failure due to parallel nodemask modification.
349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
351 if (!pol)
352 return;
353 if (!mpol_store_user_nodemask(pol) &&
354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 return;
357 mpol_ops[pol->mode].rebind(pol, newmask);
361 * Wrapper for mpol_rebind_policy() that just requires task
362 * pointer, and updates task mempolicy.
364 * Called with task's alloc_lock held.
367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
369 mpol_rebind_policy(tsk->mempolicy, new);
373 * Rebind each vma in mm to new nodemask.
375 * Call holding a reference to mm. Takes mm->mmap_sem during call.
378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
380 struct vm_area_struct *vma;
382 down_write(&mm->mmap_sem);
383 for (vma = mm->mmap; vma; vma = vma->vm_next)
384 mpol_rebind_policy(vma->vm_policy, new);
385 up_write(&mm->mmap_sem);
388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 [MPOL_DEFAULT] = {
390 .rebind = mpol_rebind_default,
392 [MPOL_INTERLEAVE] = {
393 .create = mpol_new_interleave,
394 .rebind = mpol_rebind_nodemask,
396 [MPOL_PREFERRED] = {
397 .create = mpol_new_preferred,
398 .rebind = mpol_rebind_preferred,
400 [MPOL_BIND] = {
401 .create = mpol_new_bind,
402 .rebind = mpol_rebind_nodemask,
406 static void migrate_page_add(struct page *page, struct list_head *pagelist,
407 unsigned long flags);
409 struct queue_pages {
410 struct list_head *pagelist;
411 unsigned long flags;
412 nodemask_t *nmask;
413 struct vm_area_struct *prev;
417 * Check if the page's nid is in qp->nmask.
419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420 * in the invert of qp->nmask.
422 static inline bool queue_pages_required(struct page *page,
423 struct queue_pages *qp)
425 int nid = page_to_nid(page);
426 unsigned long flags = qp->flags;
428 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
431 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
432 unsigned long end, struct mm_walk *walk)
434 int ret = 0;
435 struct page *page;
436 struct queue_pages *qp = walk->private;
437 unsigned long flags;
439 if (unlikely(is_pmd_migration_entry(*pmd))) {
440 ret = 1;
441 goto unlock;
443 page = pmd_page(*pmd);
444 if (is_huge_zero_page(page)) {
445 spin_unlock(ptl);
446 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
447 goto out;
449 if (!queue_pages_required(page, qp)) {
450 ret = 1;
451 goto unlock;
454 ret = 1;
455 flags = qp->flags;
456 /* go to thp migration */
457 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
458 migrate_page_add(page, qp->pagelist, flags);
459 unlock:
460 spin_unlock(ptl);
461 out:
462 return ret;
466 * Scan through pages checking if pages follow certain conditions,
467 * and move them to the pagelist if they do.
469 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
470 unsigned long end, struct mm_walk *walk)
472 struct vm_area_struct *vma = walk->vma;
473 struct page *page;
474 struct queue_pages *qp = walk->private;
475 unsigned long flags = qp->flags;
476 int ret;
477 pte_t *pte;
478 spinlock_t *ptl;
480 ptl = pmd_trans_huge_lock(pmd, vma);
481 if (ptl) {
482 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
483 if (ret)
484 return 0;
487 if (pmd_trans_unstable(pmd))
488 return 0;
490 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
491 for (; addr != end; pte++, addr += PAGE_SIZE) {
492 if (!pte_present(*pte))
493 continue;
494 page = vm_normal_page(vma, addr, *pte);
495 if (!page)
496 continue;
498 * vm_normal_page() filters out zero pages, but there might
499 * still be PageReserved pages to skip, perhaps in a VDSO.
501 if (PageReserved(page))
502 continue;
503 if (!queue_pages_required(page, qp))
504 continue;
505 migrate_page_add(page, qp->pagelist, flags);
507 pte_unmap_unlock(pte - 1, ptl);
508 cond_resched();
509 return 0;
512 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
513 unsigned long addr, unsigned long end,
514 struct mm_walk *walk)
516 #ifdef CONFIG_HUGETLB_PAGE
517 struct queue_pages *qp = walk->private;
518 unsigned long flags = qp->flags;
519 struct page *page;
520 spinlock_t *ptl;
521 pte_t entry;
523 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
524 entry = huge_ptep_get(pte);
525 if (!pte_present(entry))
526 goto unlock;
527 page = pte_page(entry);
528 if (!queue_pages_required(page, qp))
529 goto unlock;
530 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
531 if (flags & (MPOL_MF_MOVE_ALL) ||
532 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
533 isolate_huge_page(page, qp->pagelist);
534 unlock:
535 spin_unlock(ptl);
536 #else
537 BUG();
538 #endif
539 return 0;
542 #ifdef CONFIG_NUMA_BALANCING
544 * This is used to mark a range of virtual addresses to be inaccessible.
545 * These are later cleared by a NUMA hinting fault. Depending on these
546 * faults, pages may be migrated for better NUMA placement.
548 * This is assuming that NUMA faults are handled using PROT_NONE. If
549 * an architecture makes a different choice, it will need further
550 * changes to the core.
552 unsigned long change_prot_numa(struct vm_area_struct *vma,
553 unsigned long addr, unsigned long end)
555 int nr_updated;
557 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
558 if (nr_updated)
559 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
561 return nr_updated;
563 #else
564 static unsigned long change_prot_numa(struct vm_area_struct *vma,
565 unsigned long addr, unsigned long end)
567 return 0;
569 #endif /* CONFIG_NUMA_BALANCING */
571 static int queue_pages_test_walk(unsigned long start, unsigned long end,
572 struct mm_walk *walk)
574 struct vm_area_struct *vma = walk->vma;
575 struct queue_pages *qp = walk->private;
576 unsigned long endvma = vma->vm_end;
577 unsigned long flags = qp->flags;
579 if (!vma_migratable(vma))
580 return 1;
582 if (endvma > end)
583 endvma = end;
584 if (vma->vm_start > start)
585 start = vma->vm_start;
587 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
588 if (!vma->vm_next && vma->vm_end < end)
589 return -EFAULT;
590 if (qp->prev && qp->prev->vm_end < vma->vm_start)
591 return -EFAULT;
594 qp->prev = vma;
596 if (flags & MPOL_MF_LAZY) {
597 /* Similar to task_numa_work, skip inaccessible VMAs */
598 if (!is_vm_hugetlb_page(vma) &&
599 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
600 !(vma->vm_flags & VM_MIXEDMAP))
601 change_prot_numa(vma, start, endvma);
602 return 1;
605 /* queue pages from current vma */
606 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
607 return 0;
608 return 1;
612 * Walk through page tables and collect pages to be migrated.
614 * If pages found in a given range are on a set of nodes (determined by
615 * @nodes and @flags,) it's isolated and queued to the pagelist which is
616 * passed via @private.)
618 static int
619 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
620 nodemask_t *nodes, unsigned long flags,
621 struct list_head *pagelist)
623 struct queue_pages qp = {
624 .pagelist = pagelist,
625 .flags = flags,
626 .nmask = nodes,
627 .prev = NULL,
629 struct mm_walk queue_pages_walk = {
630 .hugetlb_entry = queue_pages_hugetlb,
631 .pmd_entry = queue_pages_pte_range,
632 .test_walk = queue_pages_test_walk,
633 .mm = mm,
634 .private = &qp,
637 return walk_page_range(start, end, &queue_pages_walk);
641 * Apply policy to a single VMA
642 * This must be called with the mmap_sem held for writing.
644 static int vma_replace_policy(struct vm_area_struct *vma,
645 struct mempolicy *pol)
647 int err;
648 struct mempolicy *old;
649 struct mempolicy *new;
651 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
652 vma->vm_start, vma->vm_end, vma->vm_pgoff,
653 vma->vm_ops, vma->vm_file,
654 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
656 new = mpol_dup(pol);
657 if (IS_ERR(new))
658 return PTR_ERR(new);
660 if (vma->vm_ops && vma->vm_ops->set_policy) {
661 err = vma->vm_ops->set_policy(vma, new);
662 if (err)
663 goto err_out;
666 old = vma->vm_policy;
667 vma->vm_policy = new; /* protected by mmap_sem */
668 mpol_put(old);
670 return 0;
671 err_out:
672 mpol_put(new);
673 return err;
676 /* Step 2: apply policy to a range and do splits. */
677 static int mbind_range(struct mm_struct *mm, unsigned long start,
678 unsigned long end, struct mempolicy *new_pol)
680 struct vm_area_struct *next;
681 struct vm_area_struct *prev;
682 struct vm_area_struct *vma;
683 int err = 0;
684 pgoff_t pgoff;
685 unsigned long vmstart;
686 unsigned long vmend;
688 vma = find_vma(mm, start);
689 if (!vma || vma->vm_start > start)
690 return -EFAULT;
692 prev = vma->vm_prev;
693 if (start > vma->vm_start)
694 prev = vma;
696 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
697 next = vma->vm_next;
698 vmstart = max(start, vma->vm_start);
699 vmend = min(end, vma->vm_end);
701 if (mpol_equal(vma_policy(vma), new_pol))
702 continue;
704 pgoff = vma->vm_pgoff +
705 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
706 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
707 vma->anon_vma, vma->vm_file, pgoff,
708 new_pol, vma->vm_userfaultfd_ctx);
709 if (prev) {
710 vma = prev;
711 next = vma->vm_next;
712 if (mpol_equal(vma_policy(vma), new_pol))
713 continue;
714 /* vma_merge() joined vma && vma->next, case 8 */
715 goto replace;
717 if (vma->vm_start != vmstart) {
718 err = split_vma(vma->vm_mm, vma, vmstart, 1);
719 if (err)
720 goto out;
722 if (vma->vm_end != vmend) {
723 err = split_vma(vma->vm_mm, vma, vmend, 0);
724 if (err)
725 goto out;
727 replace:
728 err = vma_replace_policy(vma, new_pol);
729 if (err)
730 goto out;
733 out:
734 return err;
737 /* Set the process memory policy */
738 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
739 nodemask_t *nodes)
741 struct mempolicy *new, *old;
742 NODEMASK_SCRATCH(scratch);
743 int ret;
745 if (!scratch)
746 return -ENOMEM;
748 new = mpol_new(mode, flags, nodes);
749 if (IS_ERR(new)) {
750 ret = PTR_ERR(new);
751 goto out;
754 task_lock(current);
755 ret = mpol_set_nodemask(new, nodes, scratch);
756 if (ret) {
757 task_unlock(current);
758 mpol_put(new);
759 goto out;
761 old = current->mempolicy;
762 current->mempolicy = new;
763 if (new && new->mode == MPOL_INTERLEAVE)
764 current->il_prev = MAX_NUMNODES-1;
765 task_unlock(current);
766 mpol_put(old);
767 ret = 0;
768 out:
769 NODEMASK_SCRATCH_FREE(scratch);
770 return ret;
774 * Return nodemask for policy for get_mempolicy() query
776 * Called with task's alloc_lock held
778 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
780 nodes_clear(*nodes);
781 if (p == &default_policy)
782 return;
784 switch (p->mode) {
785 case MPOL_BIND:
786 /* Fall through */
787 case MPOL_INTERLEAVE:
788 *nodes = p->v.nodes;
789 break;
790 case MPOL_PREFERRED:
791 if (!(p->flags & MPOL_F_LOCAL))
792 node_set(p->v.preferred_node, *nodes);
793 /* else return empty node mask for local allocation */
794 break;
795 default:
796 BUG();
800 static int lookup_node(struct mm_struct *mm, unsigned long addr)
802 struct page *p;
803 int err;
805 int locked = 1;
806 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
807 if (err >= 0) {
808 err = page_to_nid(p);
809 put_page(p);
811 if (locked)
812 up_read(&mm->mmap_sem);
813 return err;
816 /* Retrieve NUMA policy */
817 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
818 unsigned long addr, unsigned long flags)
820 int err;
821 struct mm_struct *mm = current->mm;
822 struct vm_area_struct *vma = NULL;
823 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
825 if (flags &
826 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
827 return -EINVAL;
829 if (flags & MPOL_F_MEMS_ALLOWED) {
830 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
831 return -EINVAL;
832 *policy = 0; /* just so it's initialized */
833 task_lock(current);
834 *nmask = cpuset_current_mems_allowed;
835 task_unlock(current);
836 return 0;
839 if (flags & MPOL_F_ADDR) {
841 * Do NOT fall back to task policy if the
842 * vma/shared policy at addr is NULL. We
843 * want to return MPOL_DEFAULT in this case.
845 down_read(&mm->mmap_sem);
846 vma = find_vma_intersection(mm, addr, addr+1);
847 if (!vma) {
848 up_read(&mm->mmap_sem);
849 return -EFAULT;
851 if (vma->vm_ops && vma->vm_ops->get_policy)
852 pol = vma->vm_ops->get_policy(vma, addr);
853 else
854 pol = vma->vm_policy;
855 } else if (addr)
856 return -EINVAL;
858 if (!pol)
859 pol = &default_policy; /* indicates default behavior */
861 if (flags & MPOL_F_NODE) {
862 if (flags & MPOL_F_ADDR) {
864 * Take a refcount on the mpol, lookup_node()
865 * wil drop the mmap_sem, so after calling
866 * lookup_node() only "pol" remains valid, "vma"
867 * is stale.
869 pol_refcount = pol;
870 vma = NULL;
871 mpol_get(pol);
872 err = lookup_node(mm, addr);
873 if (err < 0)
874 goto out;
875 *policy = err;
876 } else if (pol == current->mempolicy &&
877 pol->mode == MPOL_INTERLEAVE) {
878 *policy = next_node_in(current->il_prev, pol->v.nodes);
879 } else {
880 err = -EINVAL;
881 goto out;
883 } else {
884 *policy = pol == &default_policy ? MPOL_DEFAULT :
885 pol->mode;
887 * Internal mempolicy flags must be masked off before exposing
888 * the policy to userspace.
890 *policy |= (pol->flags & MPOL_MODE_FLAGS);
893 err = 0;
894 if (nmask) {
895 if (mpol_store_user_nodemask(pol)) {
896 *nmask = pol->w.user_nodemask;
897 } else {
898 task_lock(current);
899 get_policy_nodemask(pol, nmask);
900 task_unlock(current);
904 out:
905 mpol_cond_put(pol);
906 if (vma)
907 up_read(&mm->mmap_sem);
908 if (pol_refcount)
909 mpol_put(pol_refcount);
910 return err;
913 #ifdef CONFIG_MIGRATION
915 * page migration, thp tail pages can be passed.
917 static void migrate_page_add(struct page *page, struct list_head *pagelist,
918 unsigned long flags)
920 struct page *head = compound_head(page);
922 * Avoid migrating a page that is shared with others.
924 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
925 if (!isolate_lru_page(head)) {
926 list_add_tail(&head->lru, pagelist);
927 mod_node_page_state(page_pgdat(head),
928 NR_ISOLATED_ANON + page_is_file_cache(head),
929 hpage_nr_pages(head));
934 /* page allocation callback for NUMA node migration */
935 struct page *alloc_new_node_page(struct page *page, unsigned long node)
937 if (PageHuge(page))
938 return alloc_huge_page_node(page_hstate(compound_head(page)),
939 node);
940 else if (PageTransHuge(page)) {
941 struct page *thp;
943 thp = alloc_pages_node(node,
944 (GFP_TRANSHUGE | __GFP_THISNODE),
945 HPAGE_PMD_ORDER);
946 if (!thp)
947 return NULL;
948 prep_transhuge_page(thp);
949 return thp;
950 } else
951 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
952 __GFP_THISNODE, 0);
956 * Migrate pages from one node to a target node.
957 * Returns error or the number of pages not migrated.
959 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
960 int flags)
962 nodemask_t nmask;
963 LIST_HEAD(pagelist);
964 int err = 0;
966 nodes_clear(nmask);
967 node_set(source, nmask);
970 * This does not "check" the range but isolates all pages that
971 * need migration. Between passing in the full user address
972 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
974 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
975 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
976 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
978 if (!list_empty(&pagelist)) {
979 err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
980 MIGRATE_SYNC, MR_SYSCALL);
981 if (err)
982 putback_movable_pages(&pagelist);
985 return err;
989 * Move pages between the two nodesets so as to preserve the physical
990 * layout as much as possible.
992 * Returns the number of page that could not be moved.
994 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
995 const nodemask_t *to, int flags)
997 int busy = 0;
998 int err;
999 nodemask_t tmp;
1001 err = migrate_prep();
1002 if (err)
1003 return err;
1005 down_read(&mm->mmap_sem);
1008 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1009 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1010 * bit in 'tmp', and return that <source, dest> pair for migration.
1011 * The pair of nodemasks 'to' and 'from' define the map.
1013 * If no pair of bits is found that way, fallback to picking some
1014 * pair of 'source' and 'dest' bits that are not the same. If the
1015 * 'source' and 'dest' bits are the same, this represents a node
1016 * that will be migrating to itself, so no pages need move.
1018 * If no bits are left in 'tmp', or if all remaining bits left
1019 * in 'tmp' correspond to the same bit in 'to', return false
1020 * (nothing left to migrate).
1022 * This lets us pick a pair of nodes to migrate between, such that
1023 * if possible the dest node is not already occupied by some other
1024 * source node, minimizing the risk of overloading the memory on a
1025 * node that would happen if we migrated incoming memory to a node
1026 * before migrating outgoing memory source that same node.
1028 * A single scan of tmp is sufficient. As we go, we remember the
1029 * most recent <s, d> pair that moved (s != d). If we find a pair
1030 * that not only moved, but what's better, moved to an empty slot
1031 * (d is not set in tmp), then we break out then, with that pair.
1032 * Otherwise when we finish scanning from_tmp, we at least have the
1033 * most recent <s, d> pair that moved. If we get all the way through
1034 * the scan of tmp without finding any node that moved, much less
1035 * moved to an empty node, then there is nothing left worth migrating.
1038 tmp = *from;
1039 while (!nodes_empty(tmp)) {
1040 int s,d;
1041 int source = NUMA_NO_NODE;
1042 int dest = 0;
1044 for_each_node_mask(s, tmp) {
1047 * do_migrate_pages() tries to maintain the relative
1048 * node relationship of the pages established between
1049 * threads and memory areas.
1051 * However if the number of source nodes is not equal to
1052 * the number of destination nodes we can not preserve
1053 * this node relative relationship. In that case, skip
1054 * copying memory from a node that is in the destination
1055 * mask.
1057 * Example: [2,3,4] -> [3,4,5] moves everything.
1058 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1061 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1062 (node_isset(s, *to)))
1063 continue;
1065 d = node_remap(s, *from, *to);
1066 if (s == d)
1067 continue;
1069 source = s; /* Node moved. Memorize */
1070 dest = d;
1072 /* dest not in remaining from nodes? */
1073 if (!node_isset(dest, tmp))
1074 break;
1076 if (source == NUMA_NO_NODE)
1077 break;
1079 node_clear(source, tmp);
1080 err = migrate_to_node(mm, source, dest, flags);
1081 if (err > 0)
1082 busy += err;
1083 if (err < 0)
1084 break;
1086 up_read(&mm->mmap_sem);
1087 if (err < 0)
1088 return err;
1089 return busy;
1094 * Allocate a new page for page migration based on vma policy.
1095 * Start by assuming the page is mapped by the same vma as contains @start.
1096 * Search forward from there, if not. N.B., this assumes that the
1097 * list of pages handed to migrate_pages()--which is how we get here--
1098 * is in virtual address order.
1100 static struct page *new_page(struct page *page, unsigned long start)
1102 struct vm_area_struct *vma;
1103 unsigned long uninitialized_var(address);
1105 vma = find_vma(current->mm, start);
1106 while (vma) {
1107 address = page_address_in_vma(page, vma);
1108 if (address != -EFAULT)
1109 break;
1110 vma = vma->vm_next;
1113 if (PageHuge(page)) {
1114 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1115 vma, address);
1116 } else if (PageTransHuge(page)) {
1117 struct page *thp;
1119 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1120 HPAGE_PMD_ORDER);
1121 if (!thp)
1122 return NULL;
1123 prep_transhuge_page(thp);
1124 return thp;
1127 * if !vma, alloc_page_vma() will use task or system default policy
1129 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1130 vma, address);
1132 #else
1134 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1135 unsigned long flags)
1139 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1140 const nodemask_t *to, int flags)
1142 return -ENOSYS;
1145 static struct page *new_page(struct page *page, unsigned long start)
1147 return NULL;
1149 #endif
1151 static long do_mbind(unsigned long start, unsigned long len,
1152 unsigned short mode, unsigned short mode_flags,
1153 nodemask_t *nmask, unsigned long flags)
1155 struct mm_struct *mm = current->mm;
1156 struct mempolicy *new;
1157 unsigned long end;
1158 int err;
1159 LIST_HEAD(pagelist);
1161 if (flags & ~(unsigned long)MPOL_MF_VALID)
1162 return -EINVAL;
1163 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1164 return -EPERM;
1166 if (start & ~PAGE_MASK)
1167 return -EINVAL;
1169 if (mode == MPOL_DEFAULT)
1170 flags &= ~MPOL_MF_STRICT;
1172 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1173 end = start + len;
1175 if (end < start)
1176 return -EINVAL;
1177 if (end == start)
1178 return 0;
1180 new = mpol_new(mode, mode_flags, nmask);
1181 if (IS_ERR(new))
1182 return PTR_ERR(new);
1184 if (flags & MPOL_MF_LAZY)
1185 new->flags |= MPOL_F_MOF;
1188 * If we are using the default policy then operation
1189 * on discontinuous address spaces is okay after all
1191 if (!new)
1192 flags |= MPOL_MF_DISCONTIG_OK;
1194 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1195 start, start + len, mode, mode_flags,
1196 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1198 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1200 err = migrate_prep();
1201 if (err)
1202 goto mpol_out;
1205 NODEMASK_SCRATCH(scratch);
1206 if (scratch) {
1207 down_write(&mm->mmap_sem);
1208 task_lock(current);
1209 err = mpol_set_nodemask(new, nmask, scratch);
1210 task_unlock(current);
1211 if (err)
1212 up_write(&mm->mmap_sem);
1213 } else
1214 err = -ENOMEM;
1215 NODEMASK_SCRATCH_FREE(scratch);
1217 if (err)
1218 goto mpol_out;
1220 err = queue_pages_range(mm, start, end, nmask,
1221 flags | MPOL_MF_INVERT, &pagelist);
1222 if (!err)
1223 err = mbind_range(mm, start, end, new);
1225 if (!err) {
1226 int nr_failed = 0;
1228 if (!list_empty(&pagelist)) {
1229 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1230 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1231 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1232 if (nr_failed)
1233 putback_movable_pages(&pagelist);
1236 if (nr_failed && (flags & MPOL_MF_STRICT))
1237 err = -EIO;
1238 } else
1239 putback_movable_pages(&pagelist);
1241 up_write(&mm->mmap_sem);
1242 mpol_out:
1243 mpol_put(new);
1244 return err;
1248 * User space interface with variable sized bitmaps for nodelists.
1251 /* Copy a node mask from user space. */
1252 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1253 unsigned long maxnode)
1255 unsigned long k;
1256 unsigned long t;
1257 unsigned long nlongs;
1258 unsigned long endmask;
1260 --maxnode;
1261 nodes_clear(*nodes);
1262 if (maxnode == 0 || !nmask)
1263 return 0;
1264 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1265 return -EINVAL;
1267 nlongs = BITS_TO_LONGS(maxnode);
1268 if ((maxnode % BITS_PER_LONG) == 0)
1269 endmask = ~0UL;
1270 else
1271 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1274 * When the user specified more nodes than supported just check
1275 * if the non supported part is all zero.
1277 * If maxnode have more longs than MAX_NUMNODES, check
1278 * the bits in that area first. And then go through to
1279 * check the rest bits which equal or bigger than MAX_NUMNODES.
1280 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1282 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1283 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1284 if (get_user(t, nmask + k))
1285 return -EFAULT;
1286 if (k == nlongs - 1) {
1287 if (t & endmask)
1288 return -EINVAL;
1289 } else if (t)
1290 return -EINVAL;
1292 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1293 endmask = ~0UL;
1296 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1297 unsigned long valid_mask = endmask;
1299 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1300 if (get_user(t, nmask + nlongs - 1))
1301 return -EFAULT;
1302 if (t & valid_mask)
1303 return -EINVAL;
1306 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1307 return -EFAULT;
1308 nodes_addr(*nodes)[nlongs-1] &= endmask;
1309 return 0;
1312 /* Copy a kernel node mask to user space */
1313 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1314 nodemask_t *nodes)
1316 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1317 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1319 if (copy > nbytes) {
1320 if (copy > PAGE_SIZE)
1321 return -EINVAL;
1322 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1323 return -EFAULT;
1324 copy = nbytes;
1326 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1329 static long kernel_mbind(unsigned long start, unsigned long len,
1330 unsigned long mode, const unsigned long __user *nmask,
1331 unsigned long maxnode, unsigned int flags)
1333 nodemask_t nodes;
1334 int err;
1335 unsigned short mode_flags;
1337 mode_flags = mode & MPOL_MODE_FLAGS;
1338 mode &= ~MPOL_MODE_FLAGS;
1339 if (mode >= MPOL_MAX)
1340 return -EINVAL;
1341 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1342 (mode_flags & MPOL_F_RELATIVE_NODES))
1343 return -EINVAL;
1344 err = get_nodes(&nodes, nmask, maxnode);
1345 if (err)
1346 return err;
1347 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1350 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1351 unsigned long, mode, const unsigned long __user *, nmask,
1352 unsigned long, maxnode, unsigned int, flags)
1354 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1357 /* Set the process memory policy */
1358 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1359 unsigned long maxnode)
1361 int err;
1362 nodemask_t nodes;
1363 unsigned short flags;
1365 flags = mode & MPOL_MODE_FLAGS;
1366 mode &= ~MPOL_MODE_FLAGS;
1367 if ((unsigned int)mode >= MPOL_MAX)
1368 return -EINVAL;
1369 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1370 return -EINVAL;
1371 err = get_nodes(&nodes, nmask, maxnode);
1372 if (err)
1373 return err;
1374 return do_set_mempolicy(mode, flags, &nodes);
1377 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1378 unsigned long, maxnode)
1380 return kernel_set_mempolicy(mode, nmask, maxnode);
1383 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1384 const unsigned long __user *old_nodes,
1385 const unsigned long __user *new_nodes)
1387 struct mm_struct *mm = NULL;
1388 struct task_struct *task;
1389 nodemask_t task_nodes;
1390 int err;
1391 nodemask_t *old;
1392 nodemask_t *new;
1393 NODEMASK_SCRATCH(scratch);
1395 if (!scratch)
1396 return -ENOMEM;
1398 old = &scratch->mask1;
1399 new = &scratch->mask2;
1401 err = get_nodes(old, old_nodes, maxnode);
1402 if (err)
1403 goto out;
1405 err = get_nodes(new, new_nodes, maxnode);
1406 if (err)
1407 goto out;
1409 /* Find the mm_struct */
1410 rcu_read_lock();
1411 task = pid ? find_task_by_vpid(pid) : current;
1412 if (!task) {
1413 rcu_read_unlock();
1414 err = -ESRCH;
1415 goto out;
1417 get_task_struct(task);
1419 err = -EINVAL;
1422 * Check if this process has the right to modify the specified process.
1423 * Use the regular "ptrace_may_access()" checks.
1425 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1426 rcu_read_unlock();
1427 err = -EPERM;
1428 goto out_put;
1430 rcu_read_unlock();
1432 task_nodes = cpuset_mems_allowed(task);
1433 /* Is the user allowed to access the target nodes? */
1434 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1435 err = -EPERM;
1436 goto out_put;
1439 task_nodes = cpuset_mems_allowed(current);
1440 nodes_and(*new, *new, task_nodes);
1441 if (nodes_empty(*new))
1442 goto out_put;
1444 nodes_and(*new, *new, node_states[N_MEMORY]);
1445 if (nodes_empty(*new))
1446 goto out_put;
1448 err = security_task_movememory(task);
1449 if (err)
1450 goto out_put;
1452 mm = get_task_mm(task);
1453 put_task_struct(task);
1455 if (!mm) {
1456 err = -EINVAL;
1457 goto out;
1460 err = do_migrate_pages(mm, old, new,
1461 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1463 mmput(mm);
1464 out:
1465 NODEMASK_SCRATCH_FREE(scratch);
1467 return err;
1469 out_put:
1470 put_task_struct(task);
1471 goto out;
1475 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1476 const unsigned long __user *, old_nodes,
1477 const unsigned long __user *, new_nodes)
1479 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1483 /* Retrieve NUMA policy */
1484 static int kernel_get_mempolicy(int __user *policy,
1485 unsigned long __user *nmask,
1486 unsigned long maxnode,
1487 unsigned long addr,
1488 unsigned long flags)
1490 int err;
1491 int uninitialized_var(pval);
1492 nodemask_t nodes;
1494 if (nmask != NULL && maxnode < MAX_NUMNODES)
1495 return -EINVAL;
1497 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1499 if (err)
1500 return err;
1502 if (policy && put_user(pval, policy))
1503 return -EFAULT;
1505 if (nmask)
1506 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1508 return err;
1511 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1512 unsigned long __user *, nmask, unsigned long, maxnode,
1513 unsigned long, addr, unsigned long, flags)
1515 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1518 #ifdef CONFIG_COMPAT
1520 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1521 compat_ulong_t __user *, nmask,
1522 compat_ulong_t, maxnode,
1523 compat_ulong_t, addr, compat_ulong_t, flags)
1525 long err;
1526 unsigned long __user *nm = NULL;
1527 unsigned long nr_bits, alloc_size;
1528 DECLARE_BITMAP(bm, MAX_NUMNODES);
1530 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1531 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1533 if (nmask)
1534 nm = compat_alloc_user_space(alloc_size);
1536 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1538 if (!err && nmask) {
1539 unsigned long copy_size;
1540 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1541 err = copy_from_user(bm, nm, copy_size);
1542 /* ensure entire bitmap is zeroed */
1543 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1544 err |= compat_put_bitmap(nmask, bm, nr_bits);
1547 return err;
1550 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1551 compat_ulong_t, maxnode)
1553 unsigned long __user *nm = NULL;
1554 unsigned long nr_bits, alloc_size;
1555 DECLARE_BITMAP(bm, MAX_NUMNODES);
1557 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1558 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1560 if (nmask) {
1561 if (compat_get_bitmap(bm, nmask, nr_bits))
1562 return -EFAULT;
1563 nm = compat_alloc_user_space(alloc_size);
1564 if (copy_to_user(nm, bm, alloc_size))
1565 return -EFAULT;
1568 return kernel_set_mempolicy(mode, nm, nr_bits+1);
1571 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1572 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1573 compat_ulong_t, maxnode, compat_ulong_t, flags)
1575 unsigned long __user *nm = NULL;
1576 unsigned long nr_bits, alloc_size;
1577 nodemask_t bm;
1579 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1580 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1582 if (nmask) {
1583 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1584 return -EFAULT;
1585 nm = compat_alloc_user_space(alloc_size);
1586 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1587 return -EFAULT;
1590 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1593 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1594 compat_ulong_t, maxnode,
1595 const compat_ulong_t __user *, old_nodes,
1596 const compat_ulong_t __user *, new_nodes)
1598 unsigned long __user *old = NULL;
1599 unsigned long __user *new = NULL;
1600 nodemask_t tmp_mask;
1601 unsigned long nr_bits;
1602 unsigned long size;
1604 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1605 size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1606 if (old_nodes) {
1607 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1608 return -EFAULT;
1609 old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1610 if (new_nodes)
1611 new = old + size / sizeof(unsigned long);
1612 if (copy_to_user(old, nodes_addr(tmp_mask), size))
1613 return -EFAULT;
1615 if (new_nodes) {
1616 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1617 return -EFAULT;
1618 if (new == NULL)
1619 new = compat_alloc_user_space(size);
1620 if (copy_to_user(new, nodes_addr(tmp_mask), size))
1621 return -EFAULT;
1623 return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1626 #endif /* CONFIG_COMPAT */
1628 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1629 unsigned long addr)
1631 struct mempolicy *pol = NULL;
1633 if (vma) {
1634 if (vma->vm_ops && vma->vm_ops->get_policy) {
1635 pol = vma->vm_ops->get_policy(vma, addr);
1636 } else if (vma->vm_policy) {
1637 pol = vma->vm_policy;
1640 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1641 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1642 * count on these policies which will be dropped by
1643 * mpol_cond_put() later
1645 if (mpol_needs_cond_ref(pol))
1646 mpol_get(pol);
1650 return pol;
1654 * get_vma_policy(@vma, @addr)
1655 * @vma: virtual memory area whose policy is sought
1656 * @addr: address in @vma for shared policy lookup
1658 * Returns effective policy for a VMA at specified address.
1659 * Falls back to current->mempolicy or system default policy, as necessary.
1660 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1661 * count--added by the get_policy() vm_op, as appropriate--to protect against
1662 * freeing by another task. It is the caller's responsibility to free the
1663 * extra reference for shared policies.
1665 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1666 unsigned long addr)
1668 struct mempolicy *pol = __get_vma_policy(vma, addr);
1670 if (!pol)
1671 pol = get_task_policy(current);
1673 return pol;
1676 bool vma_policy_mof(struct vm_area_struct *vma)
1678 struct mempolicy *pol;
1680 if (vma->vm_ops && vma->vm_ops->get_policy) {
1681 bool ret = false;
1683 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1684 if (pol && (pol->flags & MPOL_F_MOF))
1685 ret = true;
1686 mpol_cond_put(pol);
1688 return ret;
1691 pol = vma->vm_policy;
1692 if (!pol)
1693 pol = get_task_policy(current);
1695 return pol->flags & MPOL_F_MOF;
1698 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1700 enum zone_type dynamic_policy_zone = policy_zone;
1702 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1705 * if policy->v.nodes has movable memory only,
1706 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1708 * policy->v.nodes is intersect with node_states[N_MEMORY].
1709 * so if the following test faile, it implies
1710 * policy->v.nodes has movable memory only.
1712 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1713 dynamic_policy_zone = ZONE_MOVABLE;
1715 return zone >= dynamic_policy_zone;
1719 * Return a nodemask representing a mempolicy for filtering nodes for
1720 * page allocation
1722 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1724 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1725 if (unlikely(policy->mode == MPOL_BIND) &&
1726 apply_policy_zone(policy, gfp_zone(gfp)) &&
1727 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1728 return &policy->v.nodes;
1730 return NULL;
1733 /* Return the node id preferred by the given mempolicy, or the given id */
1734 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1735 int nd)
1737 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1738 nd = policy->v.preferred_node;
1739 else {
1741 * __GFP_THISNODE shouldn't even be used with the bind policy
1742 * because we might easily break the expectation to stay on the
1743 * requested node and not break the policy.
1745 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1748 return nd;
1751 /* Do dynamic interleaving for a process */
1752 static unsigned interleave_nodes(struct mempolicy *policy)
1754 unsigned next;
1755 struct task_struct *me = current;
1757 next = next_node_in(me->il_prev, policy->v.nodes);
1758 if (next < MAX_NUMNODES)
1759 me->il_prev = next;
1760 return next;
1764 * Depending on the memory policy provide a node from which to allocate the
1765 * next slab entry.
1767 unsigned int mempolicy_slab_node(void)
1769 struct mempolicy *policy;
1770 int node = numa_mem_id();
1772 if (in_interrupt())
1773 return node;
1775 policy = current->mempolicy;
1776 if (!policy || policy->flags & MPOL_F_LOCAL)
1777 return node;
1779 switch (policy->mode) {
1780 case MPOL_PREFERRED:
1782 * handled MPOL_F_LOCAL above
1784 return policy->v.preferred_node;
1786 case MPOL_INTERLEAVE:
1787 return interleave_nodes(policy);
1789 case MPOL_BIND: {
1790 struct zoneref *z;
1793 * Follow bind policy behavior and start allocation at the
1794 * first node.
1796 struct zonelist *zonelist;
1797 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1798 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1799 z = first_zones_zonelist(zonelist, highest_zoneidx,
1800 &policy->v.nodes);
1801 return z->zone ? zone_to_nid(z->zone) : node;
1804 default:
1805 BUG();
1810 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1811 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1812 * number of present nodes.
1814 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1816 unsigned nnodes = nodes_weight(pol->v.nodes);
1817 unsigned target;
1818 int i;
1819 int nid;
1821 if (!nnodes)
1822 return numa_node_id();
1823 target = (unsigned int)n % nnodes;
1824 nid = first_node(pol->v.nodes);
1825 for (i = 0; i < target; i++)
1826 nid = next_node(nid, pol->v.nodes);
1827 return nid;
1830 /* Determine a node number for interleave */
1831 static inline unsigned interleave_nid(struct mempolicy *pol,
1832 struct vm_area_struct *vma, unsigned long addr, int shift)
1834 if (vma) {
1835 unsigned long off;
1838 * for small pages, there is no difference between
1839 * shift and PAGE_SHIFT, so the bit-shift is safe.
1840 * for huge pages, since vm_pgoff is in units of small
1841 * pages, we need to shift off the always 0 bits to get
1842 * a useful offset.
1844 BUG_ON(shift < PAGE_SHIFT);
1845 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1846 off += (addr - vma->vm_start) >> shift;
1847 return offset_il_node(pol, off);
1848 } else
1849 return interleave_nodes(pol);
1852 #ifdef CONFIG_HUGETLBFS
1854 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1855 * @vma: virtual memory area whose policy is sought
1856 * @addr: address in @vma for shared policy lookup and interleave policy
1857 * @gfp_flags: for requested zone
1858 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1859 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1861 * Returns a nid suitable for a huge page allocation and a pointer
1862 * to the struct mempolicy for conditional unref after allocation.
1863 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1864 * @nodemask for filtering the zonelist.
1866 * Must be protected by read_mems_allowed_begin()
1868 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1869 struct mempolicy **mpol, nodemask_t **nodemask)
1871 int nid;
1873 *mpol = get_vma_policy(vma, addr);
1874 *nodemask = NULL; /* assume !MPOL_BIND */
1876 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1877 nid = interleave_nid(*mpol, vma, addr,
1878 huge_page_shift(hstate_vma(vma)));
1879 } else {
1880 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1881 if ((*mpol)->mode == MPOL_BIND)
1882 *nodemask = &(*mpol)->v.nodes;
1884 return nid;
1888 * init_nodemask_of_mempolicy
1890 * If the current task's mempolicy is "default" [NULL], return 'false'
1891 * to indicate default policy. Otherwise, extract the policy nodemask
1892 * for 'bind' or 'interleave' policy into the argument nodemask, or
1893 * initialize the argument nodemask to contain the single node for
1894 * 'preferred' or 'local' policy and return 'true' to indicate presence
1895 * of non-default mempolicy.
1897 * We don't bother with reference counting the mempolicy [mpol_get/put]
1898 * because the current task is examining it's own mempolicy and a task's
1899 * mempolicy is only ever changed by the task itself.
1901 * N.B., it is the caller's responsibility to free a returned nodemask.
1903 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1905 struct mempolicy *mempolicy;
1906 int nid;
1908 if (!(mask && current->mempolicy))
1909 return false;
1911 task_lock(current);
1912 mempolicy = current->mempolicy;
1913 switch (mempolicy->mode) {
1914 case MPOL_PREFERRED:
1915 if (mempolicy->flags & MPOL_F_LOCAL)
1916 nid = numa_node_id();
1917 else
1918 nid = mempolicy->v.preferred_node;
1919 init_nodemask_of_node(mask, nid);
1920 break;
1922 case MPOL_BIND:
1923 /* Fall through */
1924 case MPOL_INTERLEAVE:
1925 *mask = mempolicy->v.nodes;
1926 break;
1928 default:
1929 BUG();
1931 task_unlock(current);
1933 return true;
1935 #endif
1938 * mempolicy_nodemask_intersects
1940 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1941 * policy. Otherwise, check for intersection between mask and the policy
1942 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1943 * policy, always return true since it may allocate elsewhere on fallback.
1945 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1947 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1948 const nodemask_t *mask)
1950 struct mempolicy *mempolicy;
1951 bool ret = true;
1953 if (!mask)
1954 return ret;
1955 task_lock(tsk);
1956 mempolicy = tsk->mempolicy;
1957 if (!mempolicy)
1958 goto out;
1960 switch (mempolicy->mode) {
1961 case MPOL_PREFERRED:
1963 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1964 * allocate from, they may fallback to other nodes when oom.
1965 * Thus, it's possible for tsk to have allocated memory from
1966 * nodes in mask.
1968 break;
1969 case MPOL_BIND:
1970 case MPOL_INTERLEAVE:
1971 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1972 break;
1973 default:
1974 BUG();
1976 out:
1977 task_unlock(tsk);
1978 return ret;
1981 /* Allocate a page in interleaved policy.
1982 Own path because it needs to do special accounting. */
1983 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1984 unsigned nid)
1986 struct page *page;
1988 page = __alloc_pages(gfp, order, nid);
1989 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
1990 if (!static_branch_likely(&vm_numa_stat_key))
1991 return page;
1992 if (page && page_to_nid(page) == nid) {
1993 preempt_disable();
1994 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
1995 preempt_enable();
1997 return page;
2001 * alloc_pages_vma - Allocate a page for a VMA.
2003 * @gfp:
2004 * %GFP_USER user allocation.
2005 * %GFP_KERNEL kernel allocations,
2006 * %GFP_HIGHMEM highmem/user allocations,
2007 * %GFP_FS allocation should not call back into a file system.
2008 * %GFP_ATOMIC don't sleep.
2010 * @order:Order of the GFP allocation.
2011 * @vma: Pointer to VMA or NULL if not available.
2012 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2013 * @node: Which node to prefer for allocation (modulo policy).
2014 * @hugepage: for hugepages try only the preferred node if possible
2016 * This function allocates a page from the kernel page pool and applies
2017 * a NUMA policy associated with the VMA or the current process.
2018 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2019 * mm_struct of the VMA to prevent it from going away. Should be used for
2020 * all allocations for pages that will be mapped into user space. Returns
2021 * NULL when no page can be allocated.
2023 struct page *
2024 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2025 unsigned long addr, int node, bool hugepage)
2027 struct mempolicy *pol;
2028 struct page *page;
2029 int preferred_nid;
2030 nodemask_t *nmask;
2032 pol = get_vma_policy(vma, addr);
2034 if (pol->mode == MPOL_INTERLEAVE) {
2035 unsigned nid;
2037 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2038 mpol_cond_put(pol);
2039 page = alloc_page_interleave(gfp, order, nid);
2040 goto out;
2043 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2044 int hpage_node = node;
2047 * For hugepage allocation and non-interleave policy which
2048 * allows the current node (or other explicitly preferred
2049 * node) we only try to allocate from the current/preferred
2050 * node and don't fall back to other nodes, as the cost of
2051 * remote accesses would likely offset THP benefits.
2053 * If the policy is interleave, or does not allow the current
2054 * node in its nodemask, we allocate the standard way.
2056 if (pol->mode == MPOL_PREFERRED &&
2057 !(pol->flags & MPOL_F_LOCAL))
2058 hpage_node = pol->v.preferred_node;
2060 nmask = policy_nodemask(gfp, pol);
2061 if (!nmask || node_isset(hpage_node, *nmask)) {
2062 mpol_cond_put(pol);
2063 page = __alloc_pages_node(hpage_node,
2064 gfp | __GFP_THISNODE, order);
2065 goto out;
2069 nmask = policy_nodemask(gfp, pol);
2070 preferred_nid = policy_node(gfp, pol, node);
2071 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2072 mpol_cond_put(pol);
2073 out:
2074 return page;
2078 * alloc_pages_current - Allocate pages.
2080 * @gfp:
2081 * %GFP_USER user allocation,
2082 * %GFP_KERNEL kernel allocation,
2083 * %GFP_HIGHMEM highmem allocation,
2084 * %GFP_FS don't call back into a file system.
2085 * %GFP_ATOMIC don't sleep.
2086 * @order: Power of two of allocation size in pages. 0 is a single page.
2088 * Allocate a page from the kernel page pool. When not in
2089 * interrupt context and apply the current process NUMA policy.
2090 * Returns NULL when no page can be allocated.
2092 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2094 struct mempolicy *pol = &default_policy;
2095 struct page *page;
2097 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2098 pol = get_task_policy(current);
2101 * No reference counting needed for current->mempolicy
2102 * nor system default_policy
2104 if (pol->mode == MPOL_INTERLEAVE)
2105 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2106 else
2107 page = __alloc_pages_nodemask(gfp, order,
2108 policy_node(gfp, pol, numa_node_id()),
2109 policy_nodemask(gfp, pol));
2111 return page;
2113 EXPORT_SYMBOL(alloc_pages_current);
2115 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2117 struct mempolicy *pol = mpol_dup(vma_policy(src));
2119 if (IS_ERR(pol))
2120 return PTR_ERR(pol);
2121 dst->vm_policy = pol;
2122 return 0;
2126 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2127 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2128 * with the mems_allowed returned by cpuset_mems_allowed(). This
2129 * keeps mempolicies cpuset relative after its cpuset moves. See
2130 * further kernel/cpuset.c update_nodemask().
2132 * current's mempolicy may be rebinded by the other task(the task that changes
2133 * cpuset's mems), so we needn't do rebind work for current task.
2136 /* Slow path of a mempolicy duplicate */
2137 struct mempolicy *__mpol_dup(struct mempolicy *old)
2139 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2141 if (!new)
2142 return ERR_PTR(-ENOMEM);
2144 /* task's mempolicy is protected by alloc_lock */
2145 if (old == current->mempolicy) {
2146 task_lock(current);
2147 *new = *old;
2148 task_unlock(current);
2149 } else
2150 *new = *old;
2152 if (current_cpuset_is_being_rebound()) {
2153 nodemask_t mems = cpuset_mems_allowed(current);
2154 mpol_rebind_policy(new, &mems);
2156 atomic_set(&new->refcnt, 1);
2157 return new;
2160 /* Slow path of a mempolicy comparison */
2161 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2163 if (!a || !b)
2164 return false;
2165 if (a->mode != b->mode)
2166 return false;
2167 if (a->flags != b->flags)
2168 return false;
2169 if (mpol_store_user_nodemask(a))
2170 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2171 return false;
2173 switch (a->mode) {
2174 case MPOL_BIND:
2175 /* Fall through */
2176 case MPOL_INTERLEAVE:
2177 return !!nodes_equal(a->v.nodes, b->v.nodes);
2178 case MPOL_PREFERRED:
2179 /* a's ->flags is the same as b's */
2180 if (a->flags & MPOL_F_LOCAL)
2181 return true;
2182 return a->v.preferred_node == b->v.preferred_node;
2183 default:
2184 BUG();
2185 return false;
2190 * Shared memory backing store policy support.
2192 * Remember policies even when nobody has shared memory mapped.
2193 * The policies are kept in Red-Black tree linked from the inode.
2194 * They are protected by the sp->lock rwlock, which should be held
2195 * for any accesses to the tree.
2199 * lookup first element intersecting start-end. Caller holds sp->lock for
2200 * reading or for writing
2202 static struct sp_node *
2203 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2205 struct rb_node *n = sp->root.rb_node;
2207 while (n) {
2208 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2210 if (start >= p->end)
2211 n = n->rb_right;
2212 else if (end <= p->start)
2213 n = n->rb_left;
2214 else
2215 break;
2217 if (!n)
2218 return NULL;
2219 for (;;) {
2220 struct sp_node *w = NULL;
2221 struct rb_node *prev = rb_prev(n);
2222 if (!prev)
2223 break;
2224 w = rb_entry(prev, struct sp_node, nd);
2225 if (w->end <= start)
2226 break;
2227 n = prev;
2229 return rb_entry(n, struct sp_node, nd);
2233 * Insert a new shared policy into the list. Caller holds sp->lock for
2234 * writing.
2236 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2238 struct rb_node **p = &sp->root.rb_node;
2239 struct rb_node *parent = NULL;
2240 struct sp_node *nd;
2242 while (*p) {
2243 parent = *p;
2244 nd = rb_entry(parent, struct sp_node, nd);
2245 if (new->start < nd->start)
2246 p = &(*p)->rb_left;
2247 else if (new->end > nd->end)
2248 p = &(*p)->rb_right;
2249 else
2250 BUG();
2252 rb_link_node(&new->nd, parent, p);
2253 rb_insert_color(&new->nd, &sp->root);
2254 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2255 new->policy ? new->policy->mode : 0);
2258 /* Find shared policy intersecting idx */
2259 struct mempolicy *
2260 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2262 struct mempolicy *pol = NULL;
2263 struct sp_node *sn;
2265 if (!sp->root.rb_node)
2266 return NULL;
2267 read_lock(&sp->lock);
2268 sn = sp_lookup(sp, idx, idx+1);
2269 if (sn) {
2270 mpol_get(sn->policy);
2271 pol = sn->policy;
2273 read_unlock(&sp->lock);
2274 return pol;
2277 static void sp_free(struct sp_node *n)
2279 mpol_put(n->policy);
2280 kmem_cache_free(sn_cache, n);
2284 * mpol_misplaced - check whether current page node is valid in policy
2286 * @page: page to be checked
2287 * @vma: vm area where page mapped
2288 * @addr: virtual address where page mapped
2290 * Lookup current policy node id for vma,addr and "compare to" page's
2291 * node id.
2293 * Returns:
2294 * -1 - not misplaced, page is in the right node
2295 * node - node id where the page should be
2297 * Policy determination "mimics" alloc_page_vma().
2298 * Called from fault path where we know the vma and faulting address.
2300 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2302 struct mempolicy *pol;
2303 struct zoneref *z;
2304 int curnid = page_to_nid(page);
2305 unsigned long pgoff;
2306 int thiscpu = raw_smp_processor_id();
2307 int thisnid = cpu_to_node(thiscpu);
2308 int polnid = -1;
2309 int ret = -1;
2311 pol = get_vma_policy(vma, addr);
2312 if (!(pol->flags & MPOL_F_MOF))
2313 goto out;
2315 switch (pol->mode) {
2316 case MPOL_INTERLEAVE:
2317 pgoff = vma->vm_pgoff;
2318 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2319 polnid = offset_il_node(pol, pgoff);
2320 break;
2322 case MPOL_PREFERRED:
2323 if (pol->flags & MPOL_F_LOCAL)
2324 polnid = numa_node_id();
2325 else
2326 polnid = pol->v.preferred_node;
2327 break;
2329 case MPOL_BIND:
2332 * allows binding to multiple nodes.
2333 * use current page if in policy nodemask,
2334 * else select nearest allowed node, if any.
2335 * If no allowed nodes, use current [!misplaced].
2337 if (node_isset(curnid, pol->v.nodes))
2338 goto out;
2339 z = first_zones_zonelist(
2340 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2341 gfp_zone(GFP_HIGHUSER),
2342 &pol->v.nodes);
2343 polnid = zone_to_nid(z->zone);
2344 break;
2346 default:
2347 BUG();
2350 /* Migrate the page towards the node whose CPU is referencing it */
2351 if (pol->flags & MPOL_F_MORON) {
2352 polnid = thisnid;
2354 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2355 goto out;
2358 if (curnid != polnid)
2359 ret = polnid;
2360 out:
2361 mpol_cond_put(pol);
2363 return ret;
2367 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2368 * dropped after task->mempolicy is set to NULL so that any allocation done as
2369 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2370 * policy.
2372 void mpol_put_task_policy(struct task_struct *task)
2374 struct mempolicy *pol;
2376 task_lock(task);
2377 pol = task->mempolicy;
2378 task->mempolicy = NULL;
2379 task_unlock(task);
2380 mpol_put(pol);
2383 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2385 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2386 rb_erase(&n->nd, &sp->root);
2387 sp_free(n);
2390 static void sp_node_init(struct sp_node *node, unsigned long start,
2391 unsigned long end, struct mempolicy *pol)
2393 node->start = start;
2394 node->end = end;
2395 node->policy = pol;
2398 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2399 struct mempolicy *pol)
2401 struct sp_node *n;
2402 struct mempolicy *newpol;
2404 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2405 if (!n)
2406 return NULL;
2408 newpol = mpol_dup(pol);
2409 if (IS_ERR(newpol)) {
2410 kmem_cache_free(sn_cache, n);
2411 return NULL;
2413 newpol->flags |= MPOL_F_SHARED;
2414 sp_node_init(n, start, end, newpol);
2416 return n;
2419 /* Replace a policy range. */
2420 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2421 unsigned long end, struct sp_node *new)
2423 struct sp_node *n;
2424 struct sp_node *n_new = NULL;
2425 struct mempolicy *mpol_new = NULL;
2426 int ret = 0;
2428 restart:
2429 write_lock(&sp->lock);
2430 n = sp_lookup(sp, start, end);
2431 /* Take care of old policies in the same range. */
2432 while (n && n->start < end) {
2433 struct rb_node *next = rb_next(&n->nd);
2434 if (n->start >= start) {
2435 if (n->end <= end)
2436 sp_delete(sp, n);
2437 else
2438 n->start = end;
2439 } else {
2440 /* Old policy spanning whole new range. */
2441 if (n->end > end) {
2442 if (!n_new)
2443 goto alloc_new;
2445 *mpol_new = *n->policy;
2446 atomic_set(&mpol_new->refcnt, 1);
2447 sp_node_init(n_new, end, n->end, mpol_new);
2448 n->end = start;
2449 sp_insert(sp, n_new);
2450 n_new = NULL;
2451 mpol_new = NULL;
2452 break;
2453 } else
2454 n->end = start;
2456 if (!next)
2457 break;
2458 n = rb_entry(next, struct sp_node, nd);
2460 if (new)
2461 sp_insert(sp, new);
2462 write_unlock(&sp->lock);
2463 ret = 0;
2465 err_out:
2466 if (mpol_new)
2467 mpol_put(mpol_new);
2468 if (n_new)
2469 kmem_cache_free(sn_cache, n_new);
2471 return ret;
2473 alloc_new:
2474 write_unlock(&sp->lock);
2475 ret = -ENOMEM;
2476 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2477 if (!n_new)
2478 goto err_out;
2479 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2480 if (!mpol_new)
2481 goto err_out;
2482 goto restart;
2486 * mpol_shared_policy_init - initialize shared policy for inode
2487 * @sp: pointer to inode shared policy
2488 * @mpol: struct mempolicy to install
2490 * Install non-NULL @mpol in inode's shared policy rb-tree.
2491 * On entry, the current task has a reference on a non-NULL @mpol.
2492 * This must be released on exit.
2493 * This is called at get_inode() calls and we can use GFP_KERNEL.
2495 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2497 int ret;
2499 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2500 rwlock_init(&sp->lock);
2502 if (mpol) {
2503 struct vm_area_struct pvma;
2504 struct mempolicy *new;
2505 NODEMASK_SCRATCH(scratch);
2507 if (!scratch)
2508 goto put_mpol;
2509 /* contextualize the tmpfs mount point mempolicy */
2510 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2511 if (IS_ERR(new))
2512 goto free_scratch; /* no valid nodemask intersection */
2514 task_lock(current);
2515 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2516 task_unlock(current);
2517 if (ret)
2518 goto put_new;
2520 /* Create pseudo-vma that contains just the policy */
2521 vma_init(&pvma, NULL);
2522 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2523 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2525 put_new:
2526 mpol_put(new); /* drop initial ref */
2527 free_scratch:
2528 NODEMASK_SCRATCH_FREE(scratch);
2529 put_mpol:
2530 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2534 int mpol_set_shared_policy(struct shared_policy *info,
2535 struct vm_area_struct *vma, struct mempolicy *npol)
2537 int err;
2538 struct sp_node *new = NULL;
2539 unsigned long sz = vma_pages(vma);
2541 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2542 vma->vm_pgoff,
2543 sz, npol ? npol->mode : -1,
2544 npol ? npol->flags : -1,
2545 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2547 if (npol) {
2548 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2549 if (!new)
2550 return -ENOMEM;
2552 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2553 if (err && new)
2554 sp_free(new);
2555 return err;
2558 /* Free a backing policy store on inode delete. */
2559 void mpol_free_shared_policy(struct shared_policy *p)
2561 struct sp_node *n;
2562 struct rb_node *next;
2564 if (!p->root.rb_node)
2565 return;
2566 write_lock(&p->lock);
2567 next = rb_first(&p->root);
2568 while (next) {
2569 n = rb_entry(next, struct sp_node, nd);
2570 next = rb_next(&n->nd);
2571 sp_delete(p, n);
2573 write_unlock(&p->lock);
2576 #ifdef CONFIG_NUMA_BALANCING
2577 static int __initdata numabalancing_override;
2579 static void __init check_numabalancing_enable(void)
2581 bool numabalancing_default = false;
2583 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2584 numabalancing_default = true;
2586 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2587 if (numabalancing_override)
2588 set_numabalancing_state(numabalancing_override == 1);
2590 if (num_online_nodes() > 1 && !numabalancing_override) {
2591 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2592 numabalancing_default ? "Enabling" : "Disabling");
2593 set_numabalancing_state(numabalancing_default);
2597 static int __init setup_numabalancing(char *str)
2599 int ret = 0;
2600 if (!str)
2601 goto out;
2603 if (!strcmp(str, "enable")) {
2604 numabalancing_override = 1;
2605 ret = 1;
2606 } else if (!strcmp(str, "disable")) {
2607 numabalancing_override = -1;
2608 ret = 1;
2610 out:
2611 if (!ret)
2612 pr_warn("Unable to parse numa_balancing=\n");
2614 return ret;
2616 __setup("numa_balancing=", setup_numabalancing);
2617 #else
2618 static inline void __init check_numabalancing_enable(void)
2621 #endif /* CONFIG_NUMA_BALANCING */
2623 /* assumes fs == KERNEL_DS */
2624 void __init numa_policy_init(void)
2626 nodemask_t interleave_nodes;
2627 unsigned long largest = 0;
2628 int nid, prefer = 0;
2630 policy_cache = kmem_cache_create("numa_policy",
2631 sizeof(struct mempolicy),
2632 0, SLAB_PANIC, NULL);
2634 sn_cache = kmem_cache_create("shared_policy_node",
2635 sizeof(struct sp_node),
2636 0, SLAB_PANIC, NULL);
2638 for_each_node(nid) {
2639 preferred_node_policy[nid] = (struct mempolicy) {
2640 .refcnt = ATOMIC_INIT(1),
2641 .mode = MPOL_PREFERRED,
2642 .flags = MPOL_F_MOF | MPOL_F_MORON,
2643 .v = { .preferred_node = nid, },
2648 * Set interleaving policy for system init. Interleaving is only
2649 * enabled across suitably sized nodes (default is >= 16MB), or
2650 * fall back to the largest node if they're all smaller.
2652 nodes_clear(interleave_nodes);
2653 for_each_node_state(nid, N_MEMORY) {
2654 unsigned long total_pages = node_present_pages(nid);
2656 /* Preserve the largest node */
2657 if (largest < total_pages) {
2658 largest = total_pages;
2659 prefer = nid;
2662 /* Interleave this node? */
2663 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2664 node_set(nid, interleave_nodes);
2667 /* All too small, use the largest */
2668 if (unlikely(nodes_empty(interleave_nodes)))
2669 node_set(prefer, interleave_nodes);
2671 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2672 pr_err("%s: interleaving failed\n", __func__);
2674 check_numabalancing_enable();
2677 /* Reset policy of current process to default */
2678 void numa_default_policy(void)
2680 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2684 * Parse and format mempolicy from/to strings
2688 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2690 static const char * const policy_modes[] =
2692 [MPOL_DEFAULT] = "default",
2693 [MPOL_PREFERRED] = "prefer",
2694 [MPOL_BIND] = "bind",
2695 [MPOL_INTERLEAVE] = "interleave",
2696 [MPOL_LOCAL] = "local",
2700 #ifdef CONFIG_TMPFS
2702 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2703 * @str: string containing mempolicy to parse
2704 * @mpol: pointer to struct mempolicy pointer, returned on success.
2706 * Format of input:
2707 * <mode>[=<flags>][:<nodelist>]
2709 * On success, returns 0, else 1
2711 int mpol_parse_str(char *str, struct mempolicy **mpol)
2713 struct mempolicy *new = NULL;
2714 unsigned short mode_flags;
2715 nodemask_t nodes;
2716 char *nodelist = strchr(str, ':');
2717 char *flags = strchr(str, '=');
2718 int err = 1, mode;
2720 if (nodelist) {
2721 /* NUL-terminate mode or flags string */
2722 *nodelist++ = '\0';
2723 if (nodelist_parse(nodelist, nodes))
2724 goto out;
2725 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2726 goto out;
2727 } else
2728 nodes_clear(nodes);
2730 if (flags)
2731 *flags++ = '\0'; /* terminate mode string */
2733 mode = match_string(policy_modes, MPOL_MAX, str);
2734 if (mode < 0)
2735 goto out;
2737 switch (mode) {
2738 case MPOL_PREFERRED:
2740 * Insist on a nodelist of one node only
2742 if (nodelist) {
2743 char *rest = nodelist;
2744 while (isdigit(*rest))
2745 rest++;
2746 if (*rest)
2747 goto out;
2749 break;
2750 case MPOL_INTERLEAVE:
2752 * Default to online nodes with memory if no nodelist
2754 if (!nodelist)
2755 nodes = node_states[N_MEMORY];
2756 break;
2757 case MPOL_LOCAL:
2759 * Don't allow a nodelist; mpol_new() checks flags
2761 if (nodelist)
2762 goto out;
2763 mode = MPOL_PREFERRED;
2764 break;
2765 case MPOL_DEFAULT:
2767 * Insist on a empty nodelist
2769 if (!nodelist)
2770 err = 0;
2771 goto out;
2772 case MPOL_BIND:
2774 * Insist on a nodelist
2776 if (!nodelist)
2777 goto out;
2780 mode_flags = 0;
2781 if (flags) {
2783 * Currently, we only support two mutually exclusive
2784 * mode flags.
2786 if (!strcmp(flags, "static"))
2787 mode_flags |= MPOL_F_STATIC_NODES;
2788 else if (!strcmp(flags, "relative"))
2789 mode_flags |= MPOL_F_RELATIVE_NODES;
2790 else
2791 goto out;
2794 new = mpol_new(mode, mode_flags, &nodes);
2795 if (IS_ERR(new))
2796 goto out;
2799 * Save nodes for mpol_to_str() to show the tmpfs mount options
2800 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2802 if (mode != MPOL_PREFERRED)
2803 new->v.nodes = nodes;
2804 else if (nodelist)
2805 new->v.preferred_node = first_node(nodes);
2806 else
2807 new->flags |= MPOL_F_LOCAL;
2810 * Save nodes for contextualization: this will be used to "clone"
2811 * the mempolicy in a specific context [cpuset] at a later time.
2813 new->w.user_nodemask = nodes;
2815 err = 0;
2817 out:
2818 /* Restore string for error message */
2819 if (nodelist)
2820 *--nodelist = ':';
2821 if (flags)
2822 *--flags = '=';
2823 if (!err)
2824 *mpol = new;
2825 return err;
2827 #endif /* CONFIG_TMPFS */
2830 * mpol_to_str - format a mempolicy structure for printing
2831 * @buffer: to contain formatted mempolicy string
2832 * @maxlen: length of @buffer
2833 * @pol: pointer to mempolicy to be formatted
2835 * Convert @pol into a string. If @buffer is too short, truncate the string.
2836 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2837 * longest flag, "relative", and to display at least a few node ids.
2839 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2841 char *p = buffer;
2842 nodemask_t nodes = NODE_MASK_NONE;
2843 unsigned short mode = MPOL_DEFAULT;
2844 unsigned short flags = 0;
2846 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2847 mode = pol->mode;
2848 flags = pol->flags;
2851 switch (mode) {
2852 case MPOL_DEFAULT:
2853 break;
2854 case MPOL_PREFERRED:
2855 if (flags & MPOL_F_LOCAL)
2856 mode = MPOL_LOCAL;
2857 else
2858 node_set(pol->v.preferred_node, nodes);
2859 break;
2860 case MPOL_BIND:
2861 case MPOL_INTERLEAVE:
2862 nodes = pol->v.nodes;
2863 break;
2864 default:
2865 WARN_ON_ONCE(1);
2866 snprintf(p, maxlen, "unknown");
2867 return;
2870 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2872 if (flags & MPOL_MODE_FLAGS) {
2873 p += snprintf(p, buffer + maxlen - p, "=");
2876 * Currently, the only defined flags are mutually exclusive
2878 if (flags & MPOL_F_STATIC_NODES)
2879 p += snprintf(p, buffer + maxlen - p, "static");
2880 else if (flags & MPOL_F_RELATIVE_NODES)
2881 p += snprintf(p, buffer + maxlen - p, "relative");
2884 if (!nodes_empty(nodes))
2885 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2886 nodemask_pr_args(&nodes));