perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / mm / mmap.c
blob6c04292e16a70cd05c383c34d6cb2892d7fc6d5f
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
49 #include <linux/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlb.h>
52 #include <asm/mmu_context.h>
54 #include "internal.h"
56 #ifndef arch_mmap_check
57 #define arch_mmap_check(addr, len, flags) (0)
58 #endif
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
62 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
63 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
67 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
68 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
69 #endif
71 static bool ignore_rlimit_data;
72 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
74 static void unmap_region(struct mm_struct *mm,
75 struct vm_area_struct *vma, struct vm_area_struct *prev,
76 unsigned long start, unsigned long end);
78 /* description of effects of mapping type and prot in current implementation.
79 * this is due to the limited x86 page protection hardware. The expected
80 * behavior is in parens:
82 * map_type prot
83 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
84 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
85 * w: (no) no w: (no) no w: (yes) yes w: (no) no
86 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
88 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
89 * w: (no) no w: (no) no w: (copy) copy w: (no) no
90 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
92 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
93 * MAP_PRIVATE:
94 * r: (no) no
95 * w: (no) no
96 * x: (yes) yes
98 pgprot_t protection_map[16] __ro_after_init = {
99 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
100 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
103 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
104 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
106 return prot;
108 #endif
110 pgprot_t vm_get_page_prot(unsigned long vm_flags)
112 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
113 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
114 pgprot_val(arch_vm_get_page_prot(vm_flags)));
116 return arch_filter_pgprot(ret);
118 EXPORT_SYMBOL(vm_get_page_prot);
120 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
122 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
125 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
126 void vma_set_page_prot(struct vm_area_struct *vma)
128 unsigned long vm_flags = vma->vm_flags;
129 pgprot_t vm_page_prot;
131 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
132 if (vma_wants_writenotify(vma, vm_page_prot)) {
133 vm_flags &= ~VM_SHARED;
134 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
136 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
137 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
141 * Requires inode->i_mapping->i_mmap_rwsem
143 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
144 struct file *file, struct address_space *mapping)
146 if (vma->vm_flags & VM_DENYWRITE)
147 atomic_inc(&file_inode(file)->i_writecount);
148 if (vma->vm_flags & VM_SHARED)
149 mapping_unmap_writable(mapping);
151 flush_dcache_mmap_lock(mapping);
152 vma_interval_tree_remove(vma, &mapping->i_mmap);
153 flush_dcache_mmap_unlock(mapping);
157 * Unlink a file-based vm structure from its interval tree, to hide
158 * vma from rmap and vmtruncate before freeing its page tables.
160 void unlink_file_vma(struct vm_area_struct *vma)
162 struct file *file = vma->vm_file;
164 if (file) {
165 struct address_space *mapping = file->f_mapping;
166 i_mmap_lock_write(mapping);
167 __remove_shared_vm_struct(vma, file, mapping);
168 i_mmap_unlock_write(mapping);
173 * Close a vm structure and free it, returning the next.
175 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
177 struct vm_area_struct *next = vma->vm_next;
179 might_sleep();
180 if (vma->vm_ops && vma->vm_ops->close)
181 vma->vm_ops->close(vma);
182 if (vma->vm_file)
183 fput(vma->vm_file);
184 mpol_put(vma_policy(vma));
185 vm_area_free(vma);
186 return next;
189 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
190 struct list_head *uf);
191 SYSCALL_DEFINE1(brk, unsigned long, brk)
193 unsigned long retval;
194 unsigned long newbrk, oldbrk, origbrk;
195 struct mm_struct *mm = current->mm;
196 struct vm_area_struct *next;
197 unsigned long min_brk;
198 bool populate;
199 bool downgraded = false;
200 LIST_HEAD(uf);
202 if (down_write_killable(&mm->mmap_sem))
203 return -EINTR;
205 origbrk = mm->brk;
207 #ifdef CONFIG_COMPAT_BRK
209 * CONFIG_COMPAT_BRK can still be overridden by setting
210 * randomize_va_space to 2, which will still cause mm->start_brk
211 * to be arbitrarily shifted
213 if (current->brk_randomized)
214 min_brk = mm->start_brk;
215 else
216 min_brk = mm->end_data;
217 #else
218 min_brk = mm->start_brk;
219 #endif
220 if (brk < min_brk)
221 goto out;
224 * Check against rlimit here. If this check is done later after the test
225 * of oldbrk with newbrk then it can escape the test and let the data
226 * segment grow beyond its set limit the in case where the limit is
227 * not page aligned -Ram Gupta
229 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
230 mm->end_data, mm->start_data))
231 goto out;
233 newbrk = PAGE_ALIGN(brk);
234 oldbrk = PAGE_ALIGN(mm->brk);
235 if (oldbrk == newbrk) {
236 mm->brk = brk;
237 goto success;
241 * Always allow shrinking brk.
242 * __do_munmap() may downgrade mmap_sem to read.
244 if (brk <= mm->brk) {
245 int ret;
248 * mm->brk must to be protected by write mmap_sem so update it
249 * before downgrading mmap_sem. When __do_munmap() fails,
250 * mm->brk will be restored from origbrk.
252 mm->brk = brk;
253 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
254 if (ret < 0) {
255 mm->brk = origbrk;
256 goto out;
257 } else if (ret == 1) {
258 downgraded = true;
260 goto success;
263 /* Check against existing mmap mappings. */
264 next = find_vma(mm, oldbrk);
265 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
266 goto out;
268 /* Ok, looks good - let it rip. */
269 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
270 goto out;
271 mm->brk = brk;
273 success:
274 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
275 if (downgraded)
276 up_read(&mm->mmap_sem);
277 else
278 up_write(&mm->mmap_sem);
279 userfaultfd_unmap_complete(mm, &uf);
280 if (populate)
281 mm_populate(oldbrk, newbrk - oldbrk);
282 return brk;
284 out:
285 retval = origbrk;
286 up_write(&mm->mmap_sem);
287 return retval;
290 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
292 unsigned long max, prev_end, subtree_gap;
295 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
296 * allow two stack_guard_gaps between them here, and when choosing
297 * an unmapped area; whereas when expanding we only require one.
298 * That's a little inconsistent, but keeps the code here simpler.
300 max = vm_start_gap(vma);
301 if (vma->vm_prev) {
302 prev_end = vm_end_gap(vma->vm_prev);
303 if (max > prev_end)
304 max -= prev_end;
305 else
306 max = 0;
308 if (vma->vm_rb.rb_left) {
309 subtree_gap = rb_entry(vma->vm_rb.rb_left,
310 struct vm_area_struct, vm_rb)->rb_subtree_gap;
311 if (subtree_gap > max)
312 max = subtree_gap;
314 if (vma->vm_rb.rb_right) {
315 subtree_gap = rb_entry(vma->vm_rb.rb_right,
316 struct vm_area_struct, vm_rb)->rb_subtree_gap;
317 if (subtree_gap > max)
318 max = subtree_gap;
320 return max;
323 #ifdef CONFIG_DEBUG_VM_RB
324 static int browse_rb(struct mm_struct *mm)
326 struct rb_root *root = &mm->mm_rb;
327 int i = 0, j, bug = 0;
328 struct rb_node *nd, *pn = NULL;
329 unsigned long prev = 0, pend = 0;
331 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
332 struct vm_area_struct *vma;
333 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
334 if (vma->vm_start < prev) {
335 pr_emerg("vm_start %lx < prev %lx\n",
336 vma->vm_start, prev);
337 bug = 1;
339 if (vma->vm_start < pend) {
340 pr_emerg("vm_start %lx < pend %lx\n",
341 vma->vm_start, pend);
342 bug = 1;
344 if (vma->vm_start > vma->vm_end) {
345 pr_emerg("vm_start %lx > vm_end %lx\n",
346 vma->vm_start, vma->vm_end);
347 bug = 1;
349 spin_lock(&mm->page_table_lock);
350 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
351 pr_emerg("free gap %lx, correct %lx\n",
352 vma->rb_subtree_gap,
353 vma_compute_subtree_gap(vma));
354 bug = 1;
356 spin_unlock(&mm->page_table_lock);
357 i++;
358 pn = nd;
359 prev = vma->vm_start;
360 pend = vma->vm_end;
362 j = 0;
363 for (nd = pn; nd; nd = rb_prev(nd))
364 j++;
365 if (i != j) {
366 pr_emerg("backwards %d, forwards %d\n", j, i);
367 bug = 1;
369 return bug ? -1 : i;
372 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
374 struct rb_node *nd;
376 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
377 struct vm_area_struct *vma;
378 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
379 VM_BUG_ON_VMA(vma != ignore &&
380 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
381 vma);
385 static void validate_mm(struct mm_struct *mm)
387 int bug = 0;
388 int i = 0;
389 unsigned long highest_address = 0;
390 struct vm_area_struct *vma = mm->mmap;
392 while (vma) {
393 struct anon_vma *anon_vma = vma->anon_vma;
394 struct anon_vma_chain *avc;
396 if (anon_vma) {
397 anon_vma_lock_read(anon_vma);
398 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
399 anon_vma_interval_tree_verify(avc);
400 anon_vma_unlock_read(anon_vma);
403 highest_address = vm_end_gap(vma);
404 vma = vma->vm_next;
405 i++;
407 if (i != mm->map_count) {
408 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
409 bug = 1;
411 if (highest_address != mm->highest_vm_end) {
412 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
413 mm->highest_vm_end, highest_address);
414 bug = 1;
416 i = browse_rb(mm);
417 if (i != mm->map_count) {
418 if (i != -1)
419 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
420 bug = 1;
422 VM_BUG_ON_MM(bug, mm);
424 #else
425 #define validate_mm_rb(root, ignore) do { } while (0)
426 #define validate_mm(mm) do { } while (0)
427 #endif
429 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
430 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
433 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
434 * vma->vm_prev->vm_end values changed, without modifying the vma's position
435 * in the rbtree.
437 static void vma_gap_update(struct vm_area_struct *vma)
440 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
441 * function that does exacltly what we want.
443 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
446 static inline void vma_rb_insert(struct vm_area_struct *vma,
447 struct rb_root *root)
449 /* All rb_subtree_gap values must be consistent prior to insertion */
450 validate_mm_rb(root, NULL);
452 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
455 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
458 * Note rb_erase_augmented is a fairly large inline function,
459 * so make sure we instantiate it only once with our desired
460 * augmented rbtree callbacks.
462 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
465 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
466 struct rb_root *root,
467 struct vm_area_struct *ignore)
470 * All rb_subtree_gap values must be consistent prior to erase,
471 * with the possible exception of the "next" vma being erased if
472 * next->vm_start was reduced.
474 validate_mm_rb(root, ignore);
476 __vma_rb_erase(vma, root);
479 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
480 struct rb_root *root)
483 * All rb_subtree_gap values must be consistent prior to erase,
484 * with the possible exception of the vma being erased.
486 validate_mm_rb(root, vma);
488 __vma_rb_erase(vma, root);
492 * vma has some anon_vma assigned, and is already inserted on that
493 * anon_vma's interval trees.
495 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
496 * vma must be removed from the anon_vma's interval trees using
497 * anon_vma_interval_tree_pre_update_vma().
499 * After the update, the vma will be reinserted using
500 * anon_vma_interval_tree_post_update_vma().
502 * The entire update must be protected by exclusive mmap_sem and by
503 * the root anon_vma's mutex.
505 static inline void
506 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
508 struct anon_vma_chain *avc;
510 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
511 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
514 static inline void
515 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
517 struct anon_vma_chain *avc;
519 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
520 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
523 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
524 unsigned long end, struct vm_area_struct **pprev,
525 struct rb_node ***rb_link, struct rb_node **rb_parent)
527 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
529 __rb_link = &mm->mm_rb.rb_node;
530 rb_prev = __rb_parent = NULL;
532 while (*__rb_link) {
533 struct vm_area_struct *vma_tmp;
535 __rb_parent = *__rb_link;
536 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
538 if (vma_tmp->vm_end > addr) {
539 /* Fail if an existing vma overlaps the area */
540 if (vma_tmp->vm_start < end)
541 return -ENOMEM;
542 __rb_link = &__rb_parent->rb_left;
543 } else {
544 rb_prev = __rb_parent;
545 __rb_link = &__rb_parent->rb_right;
549 *pprev = NULL;
550 if (rb_prev)
551 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
552 *rb_link = __rb_link;
553 *rb_parent = __rb_parent;
554 return 0;
557 static unsigned long count_vma_pages_range(struct mm_struct *mm,
558 unsigned long addr, unsigned long end)
560 unsigned long nr_pages = 0;
561 struct vm_area_struct *vma;
563 /* Find first overlaping mapping */
564 vma = find_vma_intersection(mm, addr, end);
565 if (!vma)
566 return 0;
568 nr_pages = (min(end, vma->vm_end) -
569 max(addr, vma->vm_start)) >> PAGE_SHIFT;
571 /* Iterate over the rest of the overlaps */
572 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
573 unsigned long overlap_len;
575 if (vma->vm_start > end)
576 break;
578 overlap_len = min(end, vma->vm_end) - vma->vm_start;
579 nr_pages += overlap_len >> PAGE_SHIFT;
582 return nr_pages;
585 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
586 struct rb_node **rb_link, struct rb_node *rb_parent)
588 /* Update tracking information for the gap following the new vma. */
589 if (vma->vm_next)
590 vma_gap_update(vma->vm_next);
591 else
592 mm->highest_vm_end = vm_end_gap(vma);
595 * vma->vm_prev wasn't known when we followed the rbtree to find the
596 * correct insertion point for that vma. As a result, we could not
597 * update the vma vm_rb parents rb_subtree_gap values on the way down.
598 * So, we first insert the vma with a zero rb_subtree_gap value
599 * (to be consistent with what we did on the way down), and then
600 * immediately update the gap to the correct value. Finally we
601 * rebalance the rbtree after all augmented values have been set.
603 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
604 vma->rb_subtree_gap = 0;
605 vma_gap_update(vma);
606 vma_rb_insert(vma, &mm->mm_rb);
609 static void __vma_link_file(struct vm_area_struct *vma)
611 struct file *file;
613 file = vma->vm_file;
614 if (file) {
615 struct address_space *mapping = file->f_mapping;
617 if (vma->vm_flags & VM_DENYWRITE)
618 atomic_dec(&file_inode(file)->i_writecount);
619 if (vma->vm_flags & VM_SHARED)
620 atomic_inc(&mapping->i_mmap_writable);
622 flush_dcache_mmap_lock(mapping);
623 vma_interval_tree_insert(vma, &mapping->i_mmap);
624 flush_dcache_mmap_unlock(mapping);
628 static void
629 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630 struct vm_area_struct *prev, struct rb_node **rb_link,
631 struct rb_node *rb_parent)
633 __vma_link_list(mm, vma, prev, rb_parent);
634 __vma_link_rb(mm, vma, rb_link, rb_parent);
637 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638 struct vm_area_struct *prev, struct rb_node **rb_link,
639 struct rb_node *rb_parent)
641 struct address_space *mapping = NULL;
643 if (vma->vm_file) {
644 mapping = vma->vm_file->f_mapping;
645 i_mmap_lock_write(mapping);
648 __vma_link(mm, vma, prev, rb_link, rb_parent);
649 __vma_link_file(vma);
651 if (mapping)
652 i_mmap_unlock_write(mapping);
654 mm->map_count++;
655 validate_mm(mm);
659 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
660 * mm's list and rbtree. It has already been inserted into the interval tree.
662 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
664 struct vm_area_struct *prev;
665 struct rb_node **rb_link, *rb_parent;
667 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
668 &prev, &rb_link, &rb_parent))
669 BUG();
670 __vma_link(mm, vma, prev, rb_link, rb_parent);
671 mm->map_count++;
674 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
675 struct vm_area_struct *vma,
676 struct vm_area_struct *prev,
677 bool has_prev,
678 struct vm_area_struct *ignore)
680 struct vm_area_struct *next;
682 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
683 next = vma->vm_next;
684 if (has_prev)
685 prev->vm_next = next;
686 else {
687 prev = vma->vm_prev;
688 if (prev)
689 prev->vm_next = next;
690 else
691 mm->mmap = next;
693 if (next)
694 next->vm_prev = prev;
696 /* Kill the cache */
697 vmacache_invalidate(mm);
700 static inline void __vma_unlink_prev(struct mm_struct *mm,
701 struct vm_area_struct *vma,
702 struct vm_area_struct *prev)
704 __vma_unlink_common(mm, vma, prev, true, vma);
708 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
709 * is already present in an i_mmap tree without adjusting the tree.
710 * The following helper function should be used when such adjustments
711 * are necessary. The "insert" vma (if any) is to be inserted
712 * before we drop the necessary locks.
714 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
715 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
716 struct vm_area_struct *expand)
718 struct mm_struct *mm = vma->vm_mm;
719 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
720 struct address_space *mapping = NULL;
721 struct rb_root_cached *root = NULL;
722 struct anon_vma *anon_vma = NULL;
723 struct file *file = vma->vm_file;
724 bool start_changed = false, end_changed = false;
725 long adjust_next = 0;
726 int remove_next = 0;
728 if (next && !insert) {
729 struct vm_area_struct *exporter = NULL, *importer = NULL;
731 if (end >= next->vm_end) {
733 * vma expands, overlapping all the next, and
734 * perhaps the one after too (mprotect case 6).
735 * The only other cases that gets here are
736 * case 1, case 7 and case 8.
738 if (next == expand) {
740 * The only case where we don't expand "vma"
741 * and we expand "next" instead is case 8.
743 VM_WARN_ON(end != next->vm_end);
745 * remove_next == 3 means we're
746 * removing "vma" and that to do so we
747 * swapped "vma" and "next".
749 remove_next = 3;
750 VM_WARN_ON(file != next->vm_file);
751 swap(vma, next);
752 } else {
753 VM_WARN_ON(expand != vma);
755 * case 1, 6, 7, remove_next == 2 is case 6,
756 * remove_next == 1 is case 1 or 7.
758 remove_next = 1 + (end > next->vm_end);
759 VM_WARN_ON(remove_next == 2 &&
760 end != next->vm_next->vm_end);
761 VM_WARN_ON(remove_next == 1 &&
762 end != next->vm_end);
763 /* trim end to next, for case 6 first pass */
764 end = next->vm_end;
767 exporter = next;
768 importer = vma;
771 * If next doesn't have anon_vma, import from vma after
772 * next, if the vma overlaps with it.
774 if (remove_next == 2 && !next->anon_vma)
775 exporter = next->vm_next;
777 } else if (end > next->vm_start) {
779 * vma expands, overlapping part of the next:
780 * mprotect case 5 shifting the boundary up.
782 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
783 exporter = next;
784 importer = vma;
785 VM_WARN_ON(expand != importer);
786 } else if (end < vma->vm_end) {
788 * vma shrinks, and !insert tells it's not
789 * split_vma inserting another: so it must be
790 * mprotect case 4 shifting the boundary down.
792 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
793 exporter = vma;
794 importer = next;
795 VM_WARN_ON(expand != importer);
799 * Easily overlooked: when mprotect shifts the boundary,
800 * make sure the expanding vma has anon_vma set if the
801 * shrinking vma had, to cover any anon pages imported.
803 if (exporter && exporter->anon_vma && !importer->anon_vma) {
804 int error;
806 importer->anon_vma = exporter->anon_vma;
807 error = anon_vma_clone(importer, exporter);
808 if (error)
809 return error;
812 again:
813 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
815 if (file) {
816 mapping = file->f_mapping;
817 root = &mapping->i_mmap;
818 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
820 if (adjust_next)
821 uprobe_munmap(next, next->vm_start, next->vm_end);
823 i_mmap_lock_write(mapping);
824 if (insert) {
826 * Put into interval tree now, so instantiated pages
827 * are visible to arm/parisc __flush_dcache_page
828 * throughout; but we cannot insert into address
829 * space until vma start or end is updated.
831 __vma_link_file(insert);
835 anon_vma = vma->anon_vma;
836 if (!anon_vma && adjust_next)
837 anon_vma = next->anon_vma;
838 if (anon_vma) {
839 VM_WARN_ON(adjust_next && next->anon_vma &&
840 anon_vma != next->anon_vma);
841 anon_vma_lock_write(anon_vma);
842 anon_vma_interval_tree_pre_update_vma(vma);
843 if (adjust_next)
844 anon_vma_interval_tree_pre_update_vma(next);
847 if (root) {
848 flush_dcache_mmap_lock(mapping);
849 vma_interval_tree_remove(vma, root);
850 if (adjust_next)
851 vma_interval_tree_remove(next, root);
854 if (start != vma->vm_start) {
855 vma->vm_start = start;
856 start_changed = true;
858 if (end != vma->vm_end) {
859 vma->vm_end = end;
860 end_changed = true;
862 vma->vm_pgoff = pgoff;
863 if (adjust_next) {
864 next->vm_start += adjust_next << PAGE_SHIFT;
865 next->vm_pgoff += adjust_next;
868 if (root) {
869 if (adjust_next)
870 vma_interval_tree_insert(next, root);
871 vma_interval_tree_insert(vma, root);
872 flush_dcache_mmap_unlock(mapping);
875 if (remove_next) {
877 * vma_merge has merged next into vma, and needs
878 * us to remove next before dropping the locks.
880 if (remove_next != 3)
881 __vma_unlink_prev(mm, next, vma);
882 else
884 * vma is not before next if they've been
885 * swapped.
887 * pre-swap() next->vm_start was reduced so
888 * tell validate_mm_rb to ignore pre-swap()
889 * "next" (which is stored in post-swap()
890 * "vma").
892 __vma_unlink_common(mm, next, NULL, false, vma);
893 if (file)
894 __remove_shared_vm_struct(next, file, mapping);
895 } else if (insert) {
897 * split_vma has split insert from vma, and needs
898 * us to insert it before dropping the locks
899 * (it may either follow vma or precede it).
901 __insert_vm_struct(mm, insert);
902 } else {
903 if (start_changed)
904 vma_gap_update(vma);
905 if (end_changed) {
906 if (!next)
907 mm->highest_vm_end = vm_end_gap(vma);
908 else if (!adjust_next)
909 vma_gap_update(next);
913 if (anon_vma) {
914 anon_vma_interval_tree_post_update_vma(vma);
915 if (adjust_next)
916 anon_vma_interval_tree_post_update_vma(next);
917 anon_vma_unlock_write(anon_vma);
919 if (mapping)
920 i_mmap_unlock_write(mapping);
922 if (root) {
923 uprobe_mmap(vma);
925 if (adjust_next)
926 uprobe_mmap(next);
929 if (remove_next) {
930 if (file) {
931 uprobe_munmap(next, next->vm_start, next->vm_end);
932 fput(file);
934 if (next->anon_vma)
935 anon_vma_merge(vma, next);
936 mm->map_count--;
937 mpol_put(vma_policy(next));
938 vm_area_free(next);
940 * In mprotect's case 6 (see comments on vma_merge),
941 * we must remove another next too. It would clutter
942 * up the code too much to do both in one go.
944 if (remove_next != 3) {
946 * If "next" was removed and vma->vm_end was
947 * expanded (up) over it, in turn
948 * "next->vm_prev->vm_end" changed and the
949 * "vma->vm_next" gap must be updated.
951 next = vma->vm_next;
952 } else {
954 * For the scope of the comment "next" and
955 * "vma" considered pre-swap(): if "vma" was
956 * removed, next->vm_start was expanded (down)
957 * over it and the "next" gap must be updated.
958 * Because of the swap() the post-swap() "vma"
959 * actually points to pre-swap() "next"
960 * (post-swap() "next" as opposed is now a
961 * dangling pointer).
963 next = vma;
965 if (remove_next == 2) {
966 remove_next = 1;
967 end = next->vm_end;
968 goto again;
970 else if (next)
971 vma_gap_update(next);
972 else {
974 * If remove_next == 2 we obviously can't
975 * reach this path.
977 * If remove_next == 3 we can't reach this
978 * path because pre-swap() next is always not
979 * NULL. pre-swap() "next" is not being
980 * removed and its next->vm_end is not altered
981 * (and furthermore "end" already matches
982 * next->vm_end in remove_next == 3).
984 * We reach this only in the remove_next == 1
985 * case if the "next" vma that was removed was
986 * the highest vma of the mm. However in such
987 * case next->vm_end == "end" and the extended
988 * "vma" has vma->vm_end == next->vm_end so
989 * mm->highest_vm_end doesn't need any update
990 * in remove_next == 1 case.
992 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
995 if (insert && file)
996 uprobe_mmap(insert);
998 validate_mm(mm);
1000 return 0;
1004 * If the vma has a ->close operation then the driver probably needs to release
1005 * per-vma resources, so we don't attempt to merge those.
1007 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1008 struct file *file, unsigned long vm_flags,
1009 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1012 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1013 * match the flags but dirty bit -- the caller should mark
1014 * merged VMA as dirty. If dirty bit won't be excluded from
1015 * comparison, we increase pressue on the memory system forcing
1016 * the kernel to generate new VMAs when old one could be
1017 * extended instead.
1019 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1020 return 0;
1021 if (vma->vm_file != file)
1022 return 0;
1023 if (vma->vm_ops && vma->vm_ops->close)
1024 return 0;
1025 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1026 return 0;
1027 return 1;
1030 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1031 struct anon_vma *anon_vma2,
1032 struct vm_area_struct *vma)
1035 * The list_is_singular() test is to avoid merging VMA cloned from
1036 * parents. This can improve scalability caused by anon_vma lock.
1038 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1039 list_is_singular(&vma->anon_vma_chain)))
1040 return 1;
1041 return anon_vma1 == anon_vma2;
1045 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1046 * in front of (at a lower virtual address and file offset than) the vma.
1048 * We cannot merge two vmas if they have differently assigned (non-NULL)
1049 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1051 * We don't check here for the merged mmap wrapping around the end of pagecache
1052 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1053 * wrap, nor mmaps which cover the final page at index -1UL.
1055 static int
1056 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1057 struct anon_vma *anon_vma, struct file *file,
1058 pgoff_t vm_pgoff,
1059 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1061 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1062 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1063 if (vma->vm_pgoff == vm_pgoff)
1064 return 1;
1066 return 0;
1070 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1071 * beyond (at a higher virtual address and file offset than) the vma.
1073 * We cannot merge two vmas if they have differently assigned (non-NULL)
1074 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1076 static int
1077 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1078 struct anon_vma *anon_vma, struct file *file,
1079 pgoff_t vm_pgoff,
1080 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1082 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1083 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1084 pgoff_t vm_pglen;
1085 vm_pglen = vma_pages(vma);
1086 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1087 return 1;
1089 return 0;
1093 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1094 * whether that can be merged with its predecessor or its successor.
1095 * Or both (it neatly fills a hole).
1097 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1098 * certain not to be mapped by the time vma_merge is called; but when
1099 * called for mprotect, it is certain to be already mapped (either at
1100 * an offset within prev, or at the start of next), and the flags of
1101 * this area are about to be changed to vm_flags - and the no-change
1102 * case has already been eliminated.
1104 * The following mprotect cases have to be considered, where AAAA is
1105 * the area passed down from mprotect_fixup, never extending beyond one
1106 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1108 * AAAA AAAA AAAA AAAA
1109 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1110 * cannot merge might become might become might become
1111 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1112 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1113 * mremap move: PPPPXXXXXXXX 8
1114 * AAAA
1115 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1116 * might become case 1 below case 2 below case 3 below
1118 * It is important for case 8 that the the vma NNNN overlapping the
1119 * region AAAA is never going to extended over XXXX. Instead XXXX must
1120 * be extended in region AAAA and NNNN must be removed. This way in
1121 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1122 * rmap_locks, the properties of the merged vma will be already
1123 * correct for the whole merged range. Some of those properties like
1124 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1125 * be correct for the whole merged range immediately after the
1126 * rmap_locks are released. Otherwise if XXXX would be removed and
1127 * NNNN would be extended over the XXXX range, remove_migration_ptes
1128 * or other rmap walkers (if working on addresses beyond the "end"
1129 * parameter) may establish ptes with the wrong permissions of NNNN
1130 * instead of the right permissions of XXXX.
1132 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1133 struct vm_area_struct *prev, unsigned long addr,
1134 unsigned long end, unsigned long vm_flags,
1135 struct anon_vma *anon_vma, struct file *file,
1136 pgoff_t pgoff, struct mempolicy *policy,
1137 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1139 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1140 struct vm_area_struct *area, *next;
1141 int err;
1144 * We later require that vma->vm_flags == vm_flags,
1145 * so this tests vma->vm_flags & VM_SPECIAL, too.
1147 if (vm_flags & VM_SPECIAL)
1148 return NULL;
1150 if (prev)
1151 next = prev->vm_next;
1152 else
1153 next = mm->mmap;
1154 area = next;
1155 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1156 next = next->vm_next;
1158 /* verify some invariant that must be enforced by the caller */
1159 VM_WARN_ON(prev && addr <= prev->vm_start);
1160 VM_WARN_ON(area && end > area->vm_end);
1161 VM_WARN_ON(addr >= end);
1164 * Can it merge with the predecessor?
1166 if (prev && prev->vm_end == addr &&
1167 mpol_equal(vma_policy(prev), policy) &&
1168 can_vma_merge_after(prev, vm_flags,
1169 anon_vma, file, pgoff,
1170 vm_userfaultfd_ctx)) {
1172 * OK, it can. Can we now merge in the successor as well?
1174 if (next && end == next->vm_start &&
1175 mpol_equal(policy, vma_policy(next)) &&
1176 can_vma_merge_before(next, vm_flags,
1177 anon_vma, file,
1178 pgoff+pglen,
1179 vm_userfaultfd_ctx) &&
1180 is_mergeable_anon_vma(prev->anon_vma,
1181 next->anon_vma, NULL)) {
1182 /* cases 1, 6 */
1183 err = __vma_adjust(prev, prev->vm_start,
1184 next->vm_end, prev->vm_pgoff, NULL,
1185 prev);
1186 } else /* cases 2, 5, 7 */
1187 err = __vma_adjust(prev, prev->vm_start,
1188 end, prev->vm_pgoff, NULL, prev);
1189 if (err)
1190 return NULL;
1191 khugepaged_enter_vma_merge(prev, vm_flags);
1192 return prev;
1196 * Can this new request be merged in front of next?
1198 if (next && end == next->vm_start &&
1199 mpol_equal(policy, vma_policy(next)) &&
1200 can_vma_merge_before(next, vm_flags,
1201 anon_vma, file, pgoff+pglen,
1202 vm_userfaultfd_ctx)) {
1203 if (prev && addr < prev->vm_end) /* case 4 */
1204 err = __vma_adjust(prev, prev->vm_start,
1205 addr, prev->vm_pgoff, NULL, next);
1206 else { /* cases 3, 8 */
1207 err = __vma_adjust(area, addr, next->vm_end,
1208 next->vm_pgoff - pglen, NULL, next);
1210 * In case 3 area is already equal to next and
1211 * this is a noop, but in case 8 "area" has
1212 * been removed and next was expanded over it.
1214 area = next;
1216 if (err)
1217 return NULL;
1218 khugepaged_enter_vma_merge(area, vm_flags);
1219 return area;
1222 return NULL;
1226 * Rough compatbility check to quickly see if it's even worth looking
1227 * at sharing an anon_vma.
1229 * They need to have the same vm_file, and the flags can only differ
1230 * in things that mprotect may change.
1232 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1233 * we can merge the two vma's. For example, we refuse to merge a vma if
1234 * there is a vm_ops->close() function, because that indicates that the
1235 * driver is doing some kind of reference counting. But that doesn't
1236 * really matter for the anon_vma sharing case.
1238 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1240 return a->vm_end == b->vm_start &&
1241 mpol_equal(vma_policy(a), vma_policy(b)) &&
1242 a->vm_file == b->vm_file &&
1243 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1244 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1248 * Do some basic sanity checking to see if we can re-use the anon_vma
1249 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1250 * the same as 'old', the other will be the new one that is trying
1251 * to share the anon_vma.
1253 * NOTE! This runs with mm_sem held for reading, so it is possible that
1254 * the anon_vma of 'old' is concurrently in the process of being set up
1255 * by another page fault trying to merge _that_. But that's ok: if it
1256 * is being set up, that automatically means that it will be a singleton
1257 * acceptable for merging, so we can do all of this optimistically. But
1258 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1260 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1261 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1262 * is to return an anon_vma that is "complex" due to having gone through
1263 * a fork).
1265 * We also make sure that the two vma's are compatible (adjacent,
1266 * and with the same memory policies). That's all stable, even with just
1267 * a read lock on the mm_sem.
1269 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1271 if (anon_vma_compatible(a, b)) {
1272 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1274 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1275 return anon_vma;
1277 return NULL;
1281 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1282 * neighbouring vmas for a suitable anon_vma, before it goes off
1283 * to allocate a new anon_vma. It checks because a repetitive
1284 * sequence of mprotects and faults may otherwise lead to distinct
1285 * anon_vmas being allocated, preventing vma merge in subsequent
1286 * mprotect.
1288 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1290 struct anon_vma *anon_vma;
1291 struct vm_area_struct *near;
1293 near = vma->vm_next;
1294 if (!near)
1295 goto try_prev;
1297 anon_vma = reusable_anon_vma(near, vma, near);
1298 if (anon_vma)
1299 return anon_vma;
1300 try_prev:
1301 near = vma->vm_prev;
1302 if (!near)
1303 goto none;
1305 anon_vma = reusable_anon_vma(near, near, vma);
1306 if (anon_vma)
1307 return anon_vma;
1308 none:
1310 * There's no absolute need to look only at touching neighbours:
1311 * we could search further afield for "compatible" anon_vmas.
1312 * But it would probably just be a waste of time searching,
1313 * or lead to too many vmas hanging off the same anon_vma.
1314 * We're trying to allow mprotect remerging later on,
1315 * not trying to minimize memory used for anon_vmas.
1317 return NULL;
1321 * If a hint addr is less than mmap_min_addr change hint to be as
1322 * low as possible but still greater than mmap_min_addr
1324 static inline unsigned long round_hint_to_min(unsigned long hint)
1326 hint &= PAGE_MASK;
1327 if (((void *)hint != NULL) &&
1328 (hint < mmap_min_addr))
1329 return PAGE_ALIGN(mmap_min_addr);
1330 return hint;
1333 static inline int mlock_future_check(struct mm_struct *mm,
1334 unsigned long flags,
1335 unsigned long len)
1337 unsigned long locked, lock_limit;
1339 /* mlock MCL_FUTURE? */
1340 if (flags & VM_LOCKED) {
1341 locked = len >> PAGE_SHIFT;
1342 locked += mm->locked_vm;
1343 lock_limit = rlimit(RLIMIT_MEMLOCK);
1344 lock_limit >>= PAGE_SHIFT;
1345 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1346 return -EAGAIN;
1348 return 0;
1351 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1353 if (S_ISREG(inode->i_mode))
1354 return MAX_LFS_FILESIZE;
1356 if (S_ISBLK(inode->i_mode))
1357 return MAX_LFS_FILESIZE;
1359 /* Special "we do even unsigned file positions" case */
1360 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1361 return 0;
1363 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1364 return ULONG_MAX;
1367 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1368 unsigned long pgoff, unsigned long len)
1370 u64 maxsize = file_mmap_size_max(file, inode);
1372 if (maxsize && len > maxsize)
1373 return false;
1374 maxsize -= len;
1375 if (pgoff > maxsize >> PAGE_SHIFT)
1376 return false;
1377 return true;
1381 * The caller must hold down_write(&current->mm->mmap_sem).
1383 unsigned long do_mmap(struct file *file, unsigned long addr,
1384 unsigned long len, unsigned long prot,
1385 unsigned long flags, vm_flags_t vm_flags,
1386 unsigned long pgoff, unsigned long *populate,
1387 struct list_head *uf)
1389 struct mm_struct *mm = current->mm;
1390 int pkey = 0;
1392 *populate = 0;
1394 if (!len)
1395 return -EINVAL;
1398 * Does the application expect PROT_READ to imply PROT_EXEC?
1400 * (the exception is when the underlying filesystem is noexec
1401 * mounted, in which case we dont add PROT_EXEC.)
1403 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1404 if (!(file && path_noexec(&file->f_path)))
1405 prot |= PROT_EXEC;
1407 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1408 if (flags & MAP_FIXED_NOREPLACE)
1409 flags |= MAP_FIXED;
1411 if (!(flags & MAP_FIXED))
1412 addr = round_hint_to_min(addr);
1414 /* Careful about overflows.. */
1415 len = PAGE_ALIGN(len);
1416 if (!len)
1417 return -ENOMEM;
1419 /* offset overflow? */
1420 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1421 return -EOVERFLOW;
1423 /* Too many mappings? */
1424 if (mm->map_count > sysctl_max_map_count)
1425 return -ENOMEM;
1427 /* Obtain the address to map to. we verify (or select) it and ensure
1428 * that it represents a valid section of the address space.
1430 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1431 if (offset_in_page(addr))
1432 return addr;
1434 if (flags & MAP_FIXED_NOREPLACE) {
1435 struct vm_area_struct *vma = find_vma(mm, addr);
1437 if (vma && vma->vm_start < addr + len)
1438 return -EEXIST;
1441 if (prot == PROT_EXEC) {
1442 pkey = execute_only_pkey(mm);
1443 if (pkey < 0)
1444 pkey = 0;
1447 /* Do simple checking here so the lower-level routines won't have
1448 * to. we assume access permissions have been handled by the open
1449 * of the memory object, so we don't do any here.
1451 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1452 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1454 if (flags & MAP_LOCKED)
1455 if (!can_do_mlock())
1456 return -EPERM;
1458 if (mlock_future_check(mm, vm_flags, len))
1459 return -EAGAIN;
1461 if (file) {
1462 struct inode *inode = file_inode(file);
1463 unsigned long flags_mask;
1465 if (!file_mmap_ok(file, inode, pgoff, len))
1466 return -EOVERFLOW;
1468 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1470 switch (flags & MAP_TYPE) {
1471 case MAP_SHARED:
1473 * Force use of MAP_SHARED_VALIDATE with non-legacy
1474 * flags. E.g. MAP_SYNC is dangerous to use with
1475 * MAP_SHARED as you don't know which consistency model
1476 * you will get. We silently ignore unsupported flags
1477 * with MAP_SHARED to preserve backward compatibility.
1479 flags &= LEGACY_MAP_MASK;
1480 /* fall through */
1481 case MAP_SHARED_VALIDATE:
1482 if (flags & ~flags_mask)
1483 return -EOPNOTSUPP;
1484 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1485 return -EACCES;
1488 * Make sure we don't allow writing to an append-only
1489 * file..
1491 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1492 return -EACCES;
1495 * Make sure there are no mandatory locks on the file.
1497 if (locks_verify_locked(file))
1498 return -EAGAIN;
1500 vm_flags |= VM_SHARED | VM_MAYSHARE;
1501 if (!(file->f_mode & FMODE_WRITE))
1502 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1504 /* fall through */
1505 case MAP_PRIVATE:
1506 if (!(file->f_mode & FMODE_READ))
1507 return -EACCES;
1508 if (path_noexec(&file->f_path)) {
1509 if (vm_flags & VM_EXEC)
1510 return -EPERM;
1511 vm_flags &= ~VM_MAYEXEC;
1514 if (!file->f_op->mmap)
1515 return -ENODEV;
1516 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1517 return -EINVAL;
1518 break;
1520 default:
1521 return -EINVAL;
1523 } else {
1524 switch (flags & MAP_TYPE) {
1525 case MAP_SHARED:
1526 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1527 return -EINVAL;
1529 * Ignore pgoff.
1531 pgoff = 0;
1532 vm_flags |= VM_SHARED | VM_MAYSHARE;
1533 break;
1534 case MAP_PRIVATE:
1536 * Set pgoff according to addr for anon_vma.
1538 pgoff = addr >> PAGE_SHIFT;
1539 break;
1540 default:
1541 return -EINVAL;
1546 * Set 'VM_NORESERVE' if we should not account for the
1547 * memory use of this mapping.
1549 if (flags & MAP_NORESERVE) {
1550 /* We honor MAP_NORESERVE if allowed to overcommit */
1551 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1552 vm_flags |= VM_NORESERVE;
1554 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1555 if (file && is_file_hugepages(file))
1556 vm_flags |= VM_NORESERVE;
1559 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1560 if (!IS_ERR_VALUE(addr) &&
1561 ((vm_flags & VM_LOCKED) ||
1562 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1563 *populate = len;
1564 return addr;
1567 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1568 unsigned long prot, unsigned long flags,
1569 unsigned long fd, unsigned long pgoff)
1571 struct file *file = NULL;
1572 unsigned long retval;
1574 if (!(flags & MAP_ANONYMOUS)) {
1575 audit_mmap_fd(fd, flags);
1576 file = fget(fd);
1577 if (!file)
1578 return -EBADF;
1579 if (is_file_hugepages(file))
1580 len = ALIGN(len, huge_page_size(hstate_file(file)));
1581 retval = -EINVAL;
1582 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1583 goto out_fput;
1584 } else if (flags & MAP_HUGETLB) {
1585 struct user_struct *user = NULL;
1586 struct hstate *hs;
1588 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1589 if (!hs)
1590 return -EINVAL;
1592 len = ALIGN(len, huge_page_size(hs));
1594 * VM_NORESERVE is used because the reservations will be
1595 * taken when vm_ops->mmap() is called
1596 * A dummy user value is used because we are not locking
1597 * memory so no accounting is necessary
1599 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1600 VM_NORESERVE,
1601 &user, HUGETLB_ANONHUGE_INODE,
1602 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1603 if (IS_ERR(file))
1604 return PTR_ERR(file);
1607 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1609 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1610 out_fput:
1611 if (file)
1612 fput(file);
1613 return retval;
1616 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1617 unsigned long, prot, unsigned long, flags,
1618 unsigned long, fd, unsigned long, pgoff)
1620 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1623 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1624 struct mmap_arg_struct {
1625 unsigned long addr;
1626 unsigned long len;
1627 unsigned long prot;
1628 unsigned long flags;
1629 unsigned long fd;
1630 unsigned long offset;
1633 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1635 struct mmap_arg_struct a;
1637 if (copy_from_user(&a, arg, sizeof(a)))
1638 return -EFAULT;
1639 if (offset_in_page(a.offset))
1640 return -EINVAL;
1642 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1643 a.offset >> PAGE_SHIFT);
1645 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1648 * Some shared mappigns will want the pages marked read-only
1649 * to track write events. If so, we'll downgrade vm_page_prot
1650 * to the private version (using protection_map[] without the
1651 * VM_SHARED bit).
1653 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1655 vm_flags_t vm_flags = vma->vm_flags;
1656 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1658 /* If it was private or non-writable, the write bit is already clear */
1659 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1660 return 0;
1662 /* The backer wishes to know when pages are first written to? */
1663 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1664 return 1;
1666 /* The open routine did something to the protections that pgprot_modify
1667 * won't preserve? */
1668 if (pgprot_val(vm_page_prot) !=
1669 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1670 return 0;
1672 /* Do we need to track softdirty? */
1673 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1674 return 1;
1676 /* Specialty mapping? */
1677 if (vm_flags & VM_PFNMAP)
1678 return 0;
1680 /* Can the mapping track the dirty pages? */
1681 return vma->vm_file && vma->vm_file->f_mapping &&
1682 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1686 * We account for memory if it's a private writeable mapping,
1687 * not hugepages and VM_NORESERVE wasn't set.
1689 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1692 * hugetlb has its own accounting separate from the core VM
1693 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1695 if (file && is_file_hugepages(file))
1696 return 0;
1698 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1701 unsigned long mmap_region(struct file *file, unsigned long addr,
1702 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1703 struct list_head *uf)
1705 struct mm_struct *mm = current->mm;
1706 struct vm_area_struct *vma, *prev;
1707 int error;
1708 struct rb_node **rb_link, *rb_parent;
1709 unsigned long charged = 0;
1711 /* Check against address space limit. */
1712 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1713 unsigned long nr_pages;
1716 * MAP_FIXED may remove pages of mappings that intersects with
1717 * requested mapping. Account for the pages it would unmap.
1719 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1721 if (!may_expand_vm(mm, vm_flags,
1722 (len >> PAGE_SHIFT) - nr_pages))
1723 return -ENOMEM;
1726 /* Clear old maps */
1727 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1728 &rb_parent)) {
1729 if (do_munmap(mm, addr, len, uf))
1730 return -ENOMEM;
1734 * Private writable mapping: check memory availability
1736 if (accountable_mapping(file, vm_flags)) {
1737 charged = len >> PAGE_SHIFT;
1738 if (security_vm_enough_memory_mm(mm, charged))
1739 return -ENOMEM;
1740 vm_flags |= VM_ACCOUNT;
1744 * Can we just expand an old mapping?
1746 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1747 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1748 if (vma)
1749 goto out;
1752 * Determine the object being mapped and call the appropriate
1753 * specific mapper. the address has already been validated, but
1754 * not unmapped, but the maps are removed from the list.
1756 vma = vm_area_alloc(mm);
1757 if (!vma) {
1758 error = -ENOMEM;
1759 goto unacct_error;
1762 vma->vm_start = addr;
1763 vma->vm_end = addr + len;
1764 vma->vm_flags = vm_flags;
1765 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1766 vma->vm_pgoff = pgoff;
1768 if (file) {
1769 if (vm_flags & VM_DENYWRITE) {
1770 error = deny_write_access(file);
1771 if (error)
1772 goto free_vma;
1774 if (vm_flags & VM_SHARED) {
1775 error = mapping_map_writable(file->f_mapping);
1776 if (error)
1777 goto allow_write_and_free_vma;
1780 /* ->mmap() can change vma->vm_file, but must guarantee that
1781 * vma_link() below can deny write-access if VM_DENYWRITE is set
1782 * and map writably if VM_SHARED is set. This usually means the
1783 * new file must not have been exposed to user-space, yet.
1785 vma->vm_file = get_file(file);
1786 error = call_mmap(file, vma);
1787 if (error)
1788 goto unmap_and_free_vma;
1790 /* Can addr have changed??
1792 * Answer: Yes, several device drivers can do it in their
1793 * f_op->mmap method. -DaveM
1794 * Bug: If addr is changed, prev, rb_link, rb_parent should
1795 * be updated for vma_link()
1797 WARN_ON_ONCE(addr != vma->vm_start);
1799 addr = vma->vm_start;
1800 vm_flags = vma->vm_flags;
1801 } else if (vm_flags & VM_SHARED) {
1802 error = shmem_zero_setup(vma);
1803 if (error)
1804 goto free_vma;
1805 } else {
1806 vma_set_anonymous(vma);
1809 vma_link(mm, vma, prev, rb_link, rb_parent);
1810 /* Once vma denies write, undo our temporary denial count */
1811 if (file) {
1812 if (vm_flags & VM_SHARED)
1813 mapping_unmap_writable(file->f_mapping);
1814 if (vm_flags & VM_DENYWRITE)
1815 allow_write_access(file);
1817 file = vma->vm_file;
1818 out:
1819 perf_event_mmap(vma);
1821 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1822 if (vm_flags & VM_LOCKED) {
1823 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1824 is_vm_hugetlb_page(vma) ||
1825 vma == get_gate_vma(current->mm))
1826 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1827 else
1828 mm->locked_vm += (len >> PAGE_SHIFT);
1831 if (file)
1832 uprobe_mmap(vma);
1835 * New (or expanded) vma always get soft dirty status.
1836 * Otherwise user-space soft-dirty page tracker won't
1837 * be able to distinguish situation when vma area unmapped,
1838 * then new mapped in-place (which must be aimed as
1839 * a completely new data area).
1841 vma->vm_flags |= VM_SOFTDIRTY;
1843 vma_set_page_prot(vma);
1845 return addr;
1847 unmap_and_free_vma:
1848 vma->vm_file = NULL;
1849 fput(file);
1851 /* Undo any partial mapping done by a device driver. */
1852 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1853 charged = 0;
1854 if (vm_flags & VM_SHARED)
1855 mapping_unmap_writable(file->f_mapping);
1856 allow_write_and_free_vma:
1857 if (vm_flags & VM_DENYWRITE)
1858 allow_write_access(file);
1859 free_vma:
1860 vm_area_free(vma);
1861 unacct_error:
1862 if (charged)
1863 vm_unacct_memory(charged);
1864 return error;
1867 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1870 * We implement the search by looking for an rbtree node that
1871 * immediately follows a suitable gap. That is,
1872 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1873 * - gap_end = vma->vm_start >= info->low_limit + length;
1874 * - gap_end - gap_start >= length
1877 struct mm_struct *mm = current->mm;
1878 struct vm_area_struct *vma;
1879 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1881 /* Adjust search length to account for worst case alignment overhead */
1882 length = info->length + info->align_mask;
1883 if (length < info->length)
1884 return -ENOMEM;
1886 /* Adjust search limits by the desired length */
1887 if (info->high_limit < length)
1888 return -ENOMEM;
1889 high_limit = info->high_limit - length;
1891 if (info->low_limit > high_limit)
1892 return -ENOMEM;
1893 low_limit = info->low_limit + length;
1895 /* Check if rbtree root looks promising */
1896 if (RB_EMPTY_ROOT(&mm->mm_rb))
1897 goto check_highest;
1898 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1899 if (vma->rb_subtree_gap < length)
1900 goto check_highest;
1902 while (true) {
1903 /* Visit left subtree if it looks promising */
1904 gap_end = vm_start_gap(vma);
1905 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1906 struct vm_area_struct *left =
1907 rb_entry(vma->vm_rb.rb_left,
1908 struct vm_area_struct, vm_rb);
1909 if (left->rb_subtree_gap >= length) {
1910 vma = left;
1911 continue;
1915 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1916 check_current:
1917 /* Check if current node has a suitable gap */
1918 if (gap_start > high_limit)
1919 return -ENOMEM;
1920 if (gap_end >= low_limit &&
1921 gap_end > gap_start && gap_end - gap_start >= length)
1922 goto found;
1924 /* Visit right subtree if it looks promising */
1925 if (vma->vm_rb.rb_right) {
1926 struct vm_area_struct *right =
1927 rb_entry(vma->vm_rb.rb_right,
1928 struct vm_area_struct, vm_rb);
1929 if (right->rb_subtree_gap >= length) {
1930 vma = right;
1931 continue;
1935 /* Go back up the rbtree to find next candidate node */
1936 while (true) {
1937 struct rb_node *prev = &vma->vm_rb;
1938 if (!rb_parent(prev))
1939 goto check_highest;
1940 vma = rb_entry(rb_parent(prev),
1941 struct vm_area_struct, vm_rb);
1942 if (prev == vma->vm_rb.rb_left) {
1943 gap_start = vm_end_gap(vma->vm_prev);
1944 gap_end = vm_start_gap(vma);
1945 goto check_current;
1950 check_highest:
1951 /* Check highest gap, which does not precede any rbtree node */
1952 gap_start = mm->highest_vm_end;
1953 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1954 if (gap_start > high_limit)
1955 return -ENOMEM;
1957 found:
1958 /* We found a suitable gap. Clip it with the original low_limit. */
1959 if (gap_start < info->low_limit)
1960 gap_start = info->low_limit;
1962 /* Adjust gap address to the desired alignment */
1963 gap_start += (info->align_offset - gap_start) & info->align_mask;
1965 VM_BUG_ON(gap_start + info->length > info->high_limit);
1966 VM_BUG_ON(gap_start + info->length > gap_end);
1967 return gap_start;
1970 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1972 struct mm_struct *mm = current->mm;
1973 struct vm_area_struct *vma;
1974 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1976 /* Adjust search length to account for worst case alignment overhead */
1977 length = info->length + info->align_mask;
1978 if (length < info->length)
1979 return -ENOMEM;
1982 * Adjust search limits by the desired length.
1983 * See implementation comment at top of unmapped_area().
1985 gap_end = info->high_limit;
1986 if (gap_end < length)
1987 return -ENOMEM;
1988 high_limit = gap_end - length;
1990 if (info->low_limit > high_limit)
1991 return -ENOMEM;
1992 low_limit = info->low_limit + length;
1994 /* Check highest gap, which does not precede any rbtree node */
1995 gap_start = mm->highest_vm_end;
1996 if (gap_start <= high_limit)
1997 goto found_highest;
1999 /* Check if rbtree root looks promising */
2000 if (RB_EMPTY_ROOT(&mm->mm_rb))
2001 return -ENOMEM;
2002 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2003 if (vma->rb_subtree_gap < length)
2004 return -ENOMEM;
2006 while (true) {
2007 /* Visit right subtree if it looks promising */
2008 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2009 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2010 struct vm_area_struct *right =
2011 rb_entry(vma->vm_rb.rb_right,
2012 struct vm_area_struct, vm_rb);
2013 if (right->rb_subtree_gap >= length) {
2014 vma = right;
2015 continue;
2019 check_current:
2020 /* Check if current node has a suitable gap */
2021 gap_end = vm_start_gap(vma);
2022 if (gap_end < low_limit)
2023 return -ENOMEM;
2024 if (gap_start <= high_limit &&
2025 gap_end > gap_start && gap_end - gap_start >= length)
2026 goto found;
2028 /* Visit left subtree if it looks promising */
2029 if (vma->vm_rb.rb_left) {
2030 struct vm_area_struct *left =
2031 rb_entry(vma->vm_rb.rb_left,
2032 struct vm_area_struct, vm_rb);
2033 if (left->rb_subtree_gap >= length) {
2034 vma = left;
2035 continue;
2039 /* Go back up the rbtree to find next candidate node */
2040 while (true) {
2041 struct rb_node *prev = &vma->vm_rb;
2042 if (!rb_parent(prev))
2043 return -ENOMEM;
2044 vma = rb_entry(rb_parent(prev),
2045 struct vm_area_struct, vm_rb);
2046 if (prev == vma->vm_rb.rb_right) {
2047 gap_start = vma->vm_prev ?
2048 vm_end_gap(vma->vm_prev) : 0;
2049 goto check_current;
2054 found:
2055 /* We found a suitable gap. Clip it with the original high_limit. */
2056 if (gap_end > info->high_limit)
2057 gap_end = info->high_limit;
2059 found_highest:
2060 /* Compute highest gap address at the desired alignment */
2061 gap_end -= info->length;
2062 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2064 VM_BUG_ON(gap_end < info->low_limit);
2065 VM_BUG_ON(gap_end < gap_start);
2066 return gap_end;
2069 /* Get an address range which is currently unmapped.
2070 * For shmat() with addr=0.
2072 * Ugly calling convention alert:
2073 * Return value with the low bits set means error value,
2074 * ie
2075 * if (ret & ~PAGE_MASK)
2076 * error = ret;
2078 * This function "knows" that -ENOMEM has the bits set.
2080 #ifndef HAVE_ARCH_UNMAPPED_AREA
2081 unsigned long
2082 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2083 unsigned long len, unsigned long pgoff, unsigned long flags)
2085 struct mm_struct *mm = current->mm;
2086 struct vm_area_struct *vma, *prev;
2087 struct vm_unmapped_area_info info;
2089 if (len > TASK_SIZE - mmap_min_addr)
2090 return -ENOMEM;
2092 if (flags & MAP_FIXED)
2093 return addr;
2095 if (addr) {
2096 addr = PAGE_ALIGN(addr);
2097 vma = find_vma_prev(mm, addr, &prev);
2098 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2099 (!vma || addr + len <= vm_start_gap(vma)) &&
2100 (!prev || addr >= vm_end_gap(prev)))
2101 return addr;
2104 info.flags = 0;
2105 info.length = len;
2106 info.low_limit = mm->mmap_base;
2107 info.high_limit = TASK_SIZE;
2108 info.align_mask = 0;
2109 return vm_unmapped_area(&info);
2111 #endif
2114 * This mmap-allocator allocates new areas top-down from below the
2115 * stack's low limit (the base):
2117 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2118 unsigned long
2119 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2120 const unsigned long len, const unsigned long pgoff,
2121 const unsigned long flags)
2123 struct vm_area_struct *vma, *prev;
2124 struct mm_struct *mm = current->mm;
2125 unsigned long addr = addr0;
2126 struct vm_unmapped_area_info info;
2128 /* requested length too big for entire address space */
2129 if (len > TASK_SIZE - mmap_min_addr)
2130 return -ENOMEM;
2132 if (flags & MAP_FIXED)
2133 return addr;
2135 /* requesting a specific address */
2136 if (addr) {
2137 addr = PAGE_ALIGN(addr);
2138 vma = find_vma_prev(mm, addr, &prev);
2139 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2140 (!vma || addr + len <= vm_start_gap(vma)) &&
2141 (!prev || addr >= vm_end_gap(prev)))
2142 return addr;
2145 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2146 info.length = len;
2147 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2148 info.high_limit = mm->mmap_base;
2149 info.align_mask = 0;
2150 addr = vm_unmapped_area(&info);
2153 * A failed mmap() very likely causes application failure,
2154 * so fall back to the bottom-up function here. This scenario
2155 * can happen with large stack limits and large mmap()
2156 * allocations.
2158 if (offset_in_page(addr)) {
2159 VM_BUG_ON(addr != -ENOMEM);
2160 info.flags = 0;
2161 info.low_limit = TASK_UNMAPPED_BASE;
2162 info.high_limit = TASK_SIZE;
2163 addr = vm_unmapped_area(&info);
2166 return addr;
2168 #endif
2170 unsigned long
2171 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2172 unsigned long pgoff, unsigned long flags)
2174 unsigned long (*get_area)(struct file *, unsigned long,
2175 unsigned long, unsigned long, unsigned long);
2177 unsigned long error = arch_mmap_check(addr, len, flags);
2178 if (error)
2179 return error;
2181 /* Careful about overflows.. */
2182 if (len > TASK_SIZE)
2183 return -ENOMEM;
2185 get_area = current->mm->get_unmapped_area;
2186 if (file) {
2187 if (file->f_op->get_unmapped_area)
2188 get_area = file->f_op->get_unmapped_area;
2189 } else if (flags & MAP_SHARED) {
2191 * mmap_region() will call shmem_zero_setup() to create a file,
2192 * so use shmem's get_unmapped_area in case it can be huge.
2193 * do_mmap_pgoff() will clear pgoff, so match alignment.
2195 pgoff = 0;
2196 get_area = shmem_get_unmapped_area;
2199 addr = get_area(file, addr, len, pgoff, flags);
2200 if (IS_ERR_VALUE(addr))
2201 return addr;
2203 if (addr > TASK_SIZE - len)
2204 return -ENOMEM;
2205 if (offset_in_page(addr))
2206 return -EINVAL;
2208 error = security_mmap_addr(addr);
2209 return error ? error : addr;
2212 EXPORT_SYMBOL(get_unmapped_area);
2214 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2215 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2217 struct rb_node *rb_node;
2218 struct vm_area_struct *vma;
2220 /* Check the cache first. */
2221 vma = vmacache_find(mm, addr);
2222 if (likely(vma))
2223 return vma;
2225 rb_node = mm->mm_rb.rb_node;
2227 while (rb_node) {
2228 struct vm_area_struct *tmp;
2230 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2232 if (tmp->vm_end > addr) {
2233 vma = tmp;
2234 if (tmp->vm_start <= addr)
2235 break;
2236 rb_node = rb_node->rb_left;
2237 } else
2238 rb_node = rb_node->rb_right;
2241 if (vma)
2242 vmacache_update(addr, vma);
2243 return vma;
2246 EXPORT_SYMBOL(find_vma);
2249 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2251 struct vm_area_struct *
2252 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2253 struct vm_area_struct **pprev)
2255 struct vm_area_struct *vma;
2257 vma = find_vma(mm, addr);
2258 if (vma) {
2259 *pprev = vma->vm_prev;
2260 } else {
2261 struct rb_node *rb_node = mm->mm_rb.rb_node;
2262 *pprev = NULL;
2263 while (rb_node) {
2264 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2265 rb_node = rb_node->rb_right;
2268 return vma;
2272 * Verify that the stack growth is acceptable and
2273 * update accounting. This is shared with both the
2274 * grow-up and grow-down cases.
2276 static int acct_stack_growth(struct vm_area_struct *vma,
2277 unsigned long size, unsigned long grow)
2279 struct mm_struct *mm = vma->vm_mm;
2280 unsigned long new_start;
2282 /* address space limit tests */
2283 if (!may_expand_vm(mm, vma->vm_flags, grow))
2284 return -ENOMEM;
2286 /* Stack limit test */
2287 if (size > rlimit(RLIMIT_STACK))
2288 return -ENOMEM;
2290 /* mlock limit tests */
2291 if (vma->vm_flags & VM_LOCKED) {
2292 unsigned long locked;
2293 unsigned long limit;
2294 locked = mm->locked_vm + grow;
2295 limit = rlimit(RLIMIT_MEMLOCK);
2296 limit >>= PAGE_SHIFT;
2297 if (locked > limit && !capable(CAP_IPC_LOCK))
2298 return -ENOMEM;
2301 /* Check to ensure the stack will not grow into a hugetlb-only region */
2302 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2303 vma->vm_end - size;
2304 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2305 return -EFAULT;
2308 * Overcommit.. This must be the final test, as it will
2309 * update security statistics.
2311 if (security_vm_enough_memory_mm(mm, grow))
2312 return -ENOMEM;
2314 return 0;
2317 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2319 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2320 * vma is the last one with address > vma->vm_end. Have to extend vma.
2322 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2324 struct mm_struct *mm = vma->vm_mm;
2325 struct vm_area_struct *next;
2326 unsigned long gap_addr;
2327 int error = 0;
2329 if (!(vma->vm_flags & VM_GROWSUP))
2330 return -EFAULT;
2332 /* Guard against exceeding limits of the address space. */
2333 address &= PAGE_MASK;
2334 if (address >= (TASK_SIZE & PAGE_MASK))
2335 return -ENOMEM;
2336 address += PAGE_SIZE;
2338 /* Enforce stack_guard_gap */
2339 gap_addr = address + stack_guard_gap;
2341 /* Guard against overflow */
2342 if (gap_addr < address || gap_addr > TASK_SIZE)
2343 gap_addr = TASK_SIZE;
2345 next = vma->vm_next;
2346 if (next && next->vm_start < gap_addr &&
2347 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2348 if (!(next->vm_flags & VM_GROWSUP))
2349 return -ENOMEM;
2350 /* Check that both stack segments have the same anon_vma? */
2353 /* We must make sure the anon_vma is allocated. */
2354 if (unlikely(anon_vma_prepare(vma)))
2355 return -ENOMEM;
2358 * vma->vm_start/vm_end cannot change under us because the caller
2359 * is required to hold the mmap_sem in read mode. We need the
2360 * anon_vma lock to serialize against concurrent expand_stacks.
2362 anon_vma_lock_write(vma->anon_vma);
2364 /* Somebody else might have raced and expanded it already */
2365 if (address > vma->vm_end) {
2366 unsigned long size, grow;
2368 size = address - vma->vm_start;
2369 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2371 error = -ENOMEM;
2372 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2373 error = acct_stack_growth(vma, size, grow);
2374 if (!error) {
2376 * vma_gap_update() doesn't support concurrent
2377 * updates, but we only hold a shared mmap_sem
2378 * lock here, so we need to protect against
2379 * concurrent vma expansions.
2380 * anon_vma_lock_write() doesn't help here, as
2381 * we don't guarantee that all growable vmas
2382 * in a mm share the same root anon vma.
2383 * So, we reuse mm->page_table_lock to guard
2384 * against concurrent vma expansions.
2386 spin_lock(&mm->page_table_lock);
2387 if (vma->vm_flags & VM_LOCKED)
2388 mm->locked_vm += grow;
2389 vm_stat_account(mm, vma->vm_flags, grow);
2390 anon_vma_interval_tree_pre_update_vma(vma);
2391 vma->vm_end = address;
2392 anon_vma_interval_tree_post_update_vma(vma);
2393 if (vma->vm_next)
2394 vma_gap_update(vma->vm_next);
2395 else
2396 mm->highest_vm_end = vm_end_gap(vma);
2397 spin_unlock(&mm->page_table_lock);
2399 perf_event_mmap(vma);
2403 anon_vma_unlock_write(vma->anon_vma);
2404 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2405 validate_mm(mm);
2406 return error;
2408 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2411 * vma is the first one with address < vma->vm_start. Have to extend vma.
2413 int expand_downwards(struct vm_area_struct *vma,
2414 unsigned long address)
2416 struct mm_struct *mm = vma->vm_mm;
2417 struct vm_area_struct *prev;
2418 int error;
2420 address &= PAGE_MASK;
2421 error = security_mmap_addr(address);
2422 if (error)
2423 return error;
2425 /* Enforce stack_guard_gap */
2426 prev = vma->vm_prev;
2427 /* Check that both stack segments have the same anon_vma? */
2428 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2429 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2430 if (address - prev->vm_end < stack_guard_gap)
2431 return -ENOMEM;
2434 /* We must make sure the anon_vma is allocated. */
2435 if (unlikely(anon_vma_prepare(vma)))
2436 return -ENOMEM;
2439 * vma->vm_start/vm_end cannot change under us because the caller
2440 * is required to hold the mmap_sem in read mode. We need the
2441 * anon_vma lock to serialize against concurrent expand_stacks.
2443 anon_vma_lock_write(vma->anon_vma);
2445 /* Somebody else might have raced and expanded it already */
2446 if (address < vma->vm_start) {
2447 unsigned long size, grow;
2449 size = vma->vm_end - address;
2450 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2452 error = -ENOMEM;
2453 if (grow <= vma->vm_pgoff) {
2454 error = acct_stack_growth(vma, size, grow);
2455 if (!error) {
2457 * vma_gap_update() doesn't support concurrent
2458 * updates, but we only hold a shared mmap_sem
2459 * lock here, so we need to protect against
2460 * concurrent vma expansions.
2461 * anon_vma_lock_write() doesn't help here, as
2462 * we don't guarantee that all growable vmas
2463 * in a mm share the same root anon vma.
2464 * So, we reuse mm->page_table_lock to guard
2465 * against concurrent vma expansions.
2467 spin_lock(&mm->page_table_lock);
2468 if (vma->vm_flags & VM_LOCKED)
2469 mm->locked_vm += grow;
2470 vm_stat_account(mm, vma->vm_flags, grow);
2471 anon_vma_interval_tree_pre_update_vma(vma);
2472 vma->vm_start = address;
2473 vma->vm_pgoff -= grow;
2474 anon_vma_interval_tree_post_update_vma(vma);
2475 vma_gap_update(vma);
2476 spin_unlock(&mm->page_table_lock);
2478 perf_event_mmap(vma);
2482 anon_vma_unlock_write(vma->anon_vma);
2483 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2484 validate_mm(mm);
2485 return error;
2488 /* enforced gap between the expanding stack and other mappings. */
2489 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2491 static int __init cmdline_parse_stack_guard_gap(char *p)
2493 unsigned long val;
2494 char *endptr;
2496 val = simple_strtoul(p, &endptr, 10);
2497 if (!*endptr)
2498 stack_guard_gap = val << PAGE_SHIFT;
2500 return 0;
2502 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2504 #ifdef CONFIG_STACK_GROWSUP
2505 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2507 return expand_upwards(vma, address);
2510 struct vm_area_struct *
2511 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2513 struct vm_area_struct *vma, *prev;
2515 addr &= PAGE_MASK;
2516 vma = find_vma_prev(mm, addr, &prev);
2517 if (vma && (vma->vm_start <= addr))
2518 return vma;
2519 if (!prev || expand_stack(prev, addr))
2520 return NULL;
2521 if (prev->vm_flags & VM_LOCKED)
2522 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2523 return prev;
2525 #else
2526 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2528 return expand_downwards(vma, address);
2531 struct vm_area_struct *
2532 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2534 struct vm_area_struct *vma;
2535 unsigned long start;
2537 addr &= PAGE_MASK;
2538 vma = find_vma(mm, addr);
2539 if (!vma)
2540 return NULL;
2541 if (vma->vm_start <= addr)
2542 return vma;
2543 if (!(vma->vm_flags & VM_GROWSDOWN))
2544 return NULL;
2545 start = vma->vm_start;
2546 if (expand_stack(vma, addr))
2547 return NULL;
2548 if (vma->vm_flags & VM_LOCKED)
2549 populate_vma_page_range(vma, addr, start, NULL);
2550 return vma;
2552 #endif
2554 EXPORT_SYMBOL_GPL(find_extend_vma);
2557 * Ok - we have the memory areas we should free on the vma list,
2558 * so release them, and do the vma updates.
2560 * Called with the mm semaphore held.
2562 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2564 unsigned long nr_accounted = 0;
2566 /* Update high watermark before we lower total_vm */
2567 update_hiwater_vm(mm);
2568 do {
2569 long nrpages = vma_pages(vma);
2571 if (vma->vm_flags & VM_ACCOUNT)
2572 nr_accounted += nrpages;
2573 vm_stat_account(mm, vma->vm_flags, -nrpages);
2574 vma = remove_vma(vma);
2575 } while (vma);
2576 vm_unacct_memory(nr_accounted);
2577 validate_mm(mm);
2581 * Get rid of page table information in the indicated region.
2583 * Called with the mm semaphore held.
2585 static void unmap_region(struct mm_struct *mm,
2586 struct vm_area_struct *vma, struct vm_area_struct *prev,
2587 unsigned long start, unsigned long end)
2589 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2590 struct mmu_gather tlb;
2592 lru_add_drain();
2593 tlb_gather_mmu(&tlb, mm, start, end);
2594 update_hiwater_rss(mm);
2595 unmap_vmas(&tlb, vma, start, end);
2596 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2597 next ? next->vm_start : USER_PGTABLES_CEILING);
2598 tlb_finish_mmu(&tlb, start, end);
2602 * Create a list of vma's touched by the unmap, removing them from the mm's
2603 * vma list as we go..
2605 static void
2606 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2607 struct vm_area_struct *prev, unsigned long end)
2609 struct vm_area_struct **insertion_point;
2610 struct vm_area_struct *tail_vma = NULL;
2612 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2613 vma->vm_prev = NULL;
2614 do {
2615 vma_rb_erase(vma, &mm->mm_rb);
2616 mm->map_count--;
2617 tail_vma = vma;
2618 vma = vma->vm_next;
2619 } while (vma && vma->vm_start < end);
2620 *insertion_point = vma;
2621 if (vma) {
2622 vma->vm_prev = prev;
2623 vma_gap_update(vma);
2624 } else
2625 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2626 tail_vma->vm_next = NULL;
2628 /* Kill the cache */
2629 vmacache_invalidate(mm);
2633 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2634 * has already been checked or doesn't make sense to fail.
2636 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2637 unsigned long addr, int new_below)
2639 struct vm_area_struct *new;
2640 int err;
2642 if (vma->vm_ops && vma->vm_ops->split) {
2643 err = vma->vm_ops->split(vma, addr);
2644 if (err)
2645 return err;
2648 new = vm_area_dup(vma);
2649 if (!new)
2650 return -ENOMEM;
2652 if (new_below)
2653 new->vm_end = addr;
2654 else {
2655 new->vm_start = addr;
2656 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2659 err = vma_dup_policy(vma, new);
2660 if (err)
2661 goto out_free_vma;
2663 err = anon_vma_clone(new, vma);
2664 if (err)
2665 goto out_free_mpol;
2667 if (new->vm_file)
2668 get_file(new->vm_file);
2670 if (new->vm_ops && new->vm_ops->open)
2671 new->vm_ops->open(new);
2673 if (new_below)
2674 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2675 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2676 else
2677 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2679 /* Success. */
2680 if (!err)
2681 return 0;
2683 /* Clean everything up if vma_adjust failed. */
2684 if (new->vm_ops && new->vm_ops->close)
2685 new->vm_ops->close(new);
2686 if (new->vm_file)
2687 fput(new->vm_file);
2688 unlink_anon_vmas(new);
2689 out_free_mpol:
2690 mpol_put(vma_policy(new));
2691 out_free_vma:
2692 vm_area_free(new);
2693 return err;
2697 * Split a vma into two pieces at address 'addr', a new vma is allocated
2698 * either for the first part or the tail.
2700 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2701 unsigned long addr, int new_below)
2703 if (mm->map_count >= sysctl_max_map_count)
2704 return -ENOMEM;
2706 return __split_vma(mm, vma, addr, new_below);
2709 /* Munmap is split into 2 main parts -- this part which finds
2710 * what needs doing, and the areas themselves, which do the
2711 * work. This now handles partial unmappings.
2712 * Jeremy Fitzhardinge <jeremy@goop.org>
2714 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2715 struct list_head *uf, bool downgrade)
2717 unsigned long end;
2718 struct vm_area_struct *vma, *prev, *last;
2720 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2721 return -EINVAL;
2723 len = PAGE_ALIGN(len);
2724 if (len == 0)
2725 return -EINVAL;
2727 /* Find the first overlapping VMA */
2728 vma = find_vma(mm, start);
2729 if (!vma)
2730 return 0;
2731 prev = vma->vm_prev;
2732 /* we have start < vma->vm_end */
2734 /* if it doesn't overlap, we have nothing.. */
2735 end = start + len;
2736 if (vma->vm_start >= end)
2737 return 0;
2740 * If we need to split any vma, do it now to save pain later.
2742 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2743 * unmapped vm_area_struct will remain in use: so lower split_vma
2744 * places tmp vma above, and higher split_vma places tmp vma below.
2746 if (start > vma->vm_start) {
2747 int error;
2750 * Make sure that map_count on return from munmap() will
2751 * not exceed its limit; but let map_count go just above
2752 * its limit temporarily, to help free resources as expected.
2754 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2755 return -ENOMEM;
2757 error = __split_vma(mm, vma, start, 0);
2758 if (error)
2759 return error;
2760 prev = vma;
2763 /* Does it split the last one? */
2764 last = find_vma(mm, end);
2765 if (last && end > last->vm_start) {
2766 int error = __split_vma(mm, last, end, 1);
2767 if (error)
2768 return error;
2770 vma = prev ? prev->vm_next : mm->mmap;
2772 if (unlikely(uf)) {
2774 * If userfaultfd_unmap_prep returns an error the vmas
2775 * will remain splitted, but userland will get a
2776 * highly unexpected error anyway. This is no
2777 * different than the case where the first of the two
2778 * __split_vma fails, but we don't undo the first
2779 * split, despite we could. This is unlikely enough
2780 * failure that it's not worth optimizing it for.
2782 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2783 if (error)
2784 return error;
2788 * unlock any mlock()ed ranges before detaching vmas
2790 if (mm->locked_vm) {
2791 struct vm_area_struct *tmp = vma;
2792 while (tmp && tmp->vm_start < end) {
2793 if (tmp->vm_flags & VM_LOCKED) {
2794 mm->locked_vm -= vma_pages(tmp);
2795 munlock_vma_pages_all(tmp);
2798 tmp = tmp->vm_next;
2802 /* Detach vmas from rbtree */
2803 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2806 * mpx unmap needs to be called with mmap_sem held for write.
2807 * It is safe to call it before unmap_region().
2809 arch_unmap(mm, vma, start, end);
2811 if (downgrade)
2812 downgrade_write(&mm->mmap_sem);
2814 unmap_region(mm, vma, prev, start, end);
2816 /* Fix up all other VM information */
2817 remove_vma_list(mm, vma);
2819 return downgrade ? 1 : 0;
2822 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2823 struct list_head *uf)
2825 return __do_munmap(mm, start, len, uf, false);
2828 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2830 int ret;
2831 struct mm_struct *mm = current->mm;
2832 LIST_HEAD(uf);
2834 if (down_write_killable(&mm->mmap_sem))
2835 return -EINTR;
2837 ret = __do_munmap(mm, start, len, &uf, downgrade);
2839 * Returning 1 indicates mmap_sem is downgraded.
2840 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2841 * it to 0 before return.
2843 if (ret == 1) {
2844 up_read(&mm->mmap_sem);
2845 ret = 0;
2846 } else
2847 up_write(&mm->mmap_sem);
2849 userfaultfd_unmap_complete(mm, &uf);
2850 return ret;
2853 int vm_munmap(unsigned long start, size_t len)
2855 return __vm_munmap(start, len, false);
2857 EXPORT_SYMBOL(vm_munmap);
2859 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2861 profile_munmap(addr);
2862 return __vm_munmap(addr, len, true);
2867 * Emulation of deprecated remap_file_pages() syscall.
2869 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2870 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2873 struct mm_struct *mm = current->mm;
2874 struct vm_area_struct *vma;
2875 unsigned long populate = 0;
2876 unsigned long ret = -EINVAL;
2877 struct file *file;
2879 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2880 current->comm, current->pid);
2882 if (prot)
2883 return ret;
2884 start = start & PAGE_MASK;
2885 size = size & PAGE_MASK;
2887 if (start + size <= start)
2888 return ret;
2890 /* Does pgoff wrap? */
2891 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2892 return ret;
2894 if (down_write_killable(&mm->mmap_sem))
2895 return -EINTR;
2897 vma = find_vma(mm, start);
2899 if (!vma || !(vma->vm_flags & VM_SHARED))
2900 goto out;
2902 if (start < vma->vm_start)
2903 goto out;
2905 if (start + size > vma->vm_end) {
2906 struct vm_area_struct *next;
2908 for (next = vma->vm_next; next; next = next->vm_next) {
2909 /* hole between vmas ? */
2910 if (next->vm_start != next->vm_prev->vm_end)
2911 goto out;
2913 if (next->vm_file != vma->vm_file)
2914 goto out;
2916 if (next->vm_flags != vma->vm_flags)
2917 goto out;
2919 if (start + size <= next->vm_end)
2920 break;
2923 if (!next)
2924 goto out;
2927 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2928 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2929 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2931 flags &= MAP_NONBLOCK;
2932 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2933 if (vma->vm_flags & VM_LOCKED) {
2934 struct vm_area_struct *tmp;
2935 flags |= MAP_LOCKED;
2937 /* drop PG_Mlocked flag for over-mapped range */
2938 for (tmp = vma; tmp->vm_start >= start + size;
2939 tmp = tmp->vm_next) {
2941 * Split pmd and munlock page on the border
2942 * of the range.
2944 vma_adjust_trans_huge(tmp, start, start + size, 0);
2946 munlock_vma_pages_range(tmp,
2947 max(tmp->vm_start, start),
2948 min(tmp->vm_end, start + size));
2952 file = get_file(vma->vm_file);
2953 ret = do_mmap_pgoff(vma->vm_file, start, size,
2954 prot, flags, pgoff, &populate, NULL);
2955 fput(file);
2956 out:
2957 up_write(&mm->mmap_sem);
2958 if (populate)
2959 mm_populate(ret, populate);
2960 if (!IS_ERR_VALUE(ret))
2961 ret = 0;
2962 return ret;
2965 static inline void verify_mm_writelocked(struct mm_struct *mm)
2967 #ifdef CONFIG_DEBUG_VM
2968 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2969 WARN_ON(1);
2970 up_read(&mm->mmap_sem);
2972 #endif
2976 * this is really a simplified "do_mmap". it only handles
2977 * anonymous maps. eventually we may be able to do some
2978 * brk-specific accounting here.
2980 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2982 struct mm_struct *mm = current->mm;
2983 struct vm_area_struct *vma, *prev;
2984 struct rb_node **rb_link, *rb_parent;
2985 pgoff_t pgoff = addr >> PAGE_SHIFT;
2986 int error;
2988 /* Until we need other flags, refuse anything except VM_EXEC. */
2989 if ((flags & (~VM_EXEC)) != 0)
2990 return -EINVAL;
2991 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2993 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2994 if (offset_in_page(error))
2995 return error;
2997 error = mlock_future_check(mm, mm->def_flags, len);
2998 if (error)
2999 return error;
3002 * mm->mmap_sem is required to protect against another thread
3003 * changing the mappings in case we sleep.
3005 verify_mm_writelocked(mm);
3008 * Clear old maps. this also does some error checking for us
3010 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3011 &rb_parent)) {
3012 if (do_munmap(mm, addr, len, uf))
3013 return -ENOMEM;
3016 /* Check against address space limits *after* clearing old maps... */
3017 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3018 return -ENOMEM;
3020 if (mm->map_count > sysctl_max_map_count)
3021 return -ENOMEM;
3023 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3024 return -ENOMEM;
3026 /* Can we just expand an old private anonymous mapping? */
3027 vma = vma_merge(mm, prev, addr, addr + len, flags,
3028 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3029 if (vma)
3030 goto out;
3033 * create a vma struct for an anonymous mapping
3035 vma = vm_area_alloc(mm);
3036 if (!vma) {
3037 vm_unacct_memory(len >> PAGE_SHIFT);
3038 return -ENOMEM;
3041 vma_set_anonymous(vma);
3042 vma->vm_start = addr;
3043 vma->vm_end = addr + len;
3044 vma->vm_pgoff = pgoff;
3045 vma->vm_flags = flags;
3046 vma->vm_page_prot = vm_get_page_prot(flags);
3047 vma_link(mm, vma, prev, rb_link, rb_parent);
3048 out:
3049 perf_event_mmap(vma);
3050 mm->total_vm += len >> PAGE_SHIFT;
3051 mm->data_vm += len >> PAGE_SHIFT;
3052 if (flags & VM_LOCKED)
3053 mm->locked_vm += (len >> PAGE_SHIFT);
3054 vma->vm_flags |= VM_SOFTDIRTY;
3055 return 0;
3058 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3060 struct mm_struct *mm = current->mm;
3061 unsigned long len;
3062 int ret;
3063 bool populate;
3064 LIST_HEAD(uf);
3066 len = PAGE_ALIGN(request);
3067 if (len < request)
3068 return -ENOMEM;
3069 if (!len)
3070 return 0;
3072 if (down_write_killable(&mm->mmap_sem))
3073 return -EINTR;
3075 ret = do_brk_flags(addr, len, flags, &uf);
3076 populate = ((mm->def_flags & VM_LOCKED) != 0);
3077 up_write(&mm->mmap_sem);
3078 userfaultfd_unmap_complete(mm, &uf);
3079 if (populate && !ret)
3080 mm_populate(addr, len);
3081 return ret;
3083 EXPORT_SYMBOL(vm_brk_flags);
3085 int vm_brk(unsigned long addr, unsigned long len)
3087 return vm_brk_flags(addr, len, 0);
3089 EXPORT_SYMBOL(vm_brk);
3091 /* Release all mmaps. */
3092 void exit_mmap(struct mm_struct *mm)
3094 struct mmu_gather tlb;
3095 struct vm_area_struct *vma;
3096 unsigned long nr_accounted = 0;
3098 /* mm's last user has gone, and its about to be pulled down */
3099 mmu_notifier_release(mm);
3101 if (unlikely(mm_is_oom_victim(mm))) {
3103 * Manually reap the mm to free as much memory as possible.
3104 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3105 * this mm from further consideration. Taking mm->mmap_sem for
3106 * write after setting MMF_OOM_SKIP will guarantee that the oom
3107 * reaper will not run on this mm again after mmap_sem is
3108 * dropped.
3110 * Nothing can be holding mm->mmap_sem here and the above call
3111 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3112 * __oom_reap_task_mm() will not block.
3114 * This needs to be done before calling munlock_vma_pages_all(),
3115 * which clears VM_LOCKED, otherwise the oom reaper cannot
3116 * reliably test it.
3118 (void)__oom_reap_task_mm(mm);
3120 set_bit(MMF_OOM_SKIP, &mm->flags);
3121 down_write(&mm->mmap_sem);
3122 up_write(&mm->mmap_sem);
3125 if (mm->locked_vm) {
3126 vma = mm->mmap;
3127 while (vma) {
3128 if (vma->vm_flags & VM_LOCKED)
3129 munlock_vma_pages_all(vma);
3130 vma = vma->vm_next;
3134 arch_exit_mmap(mm);
3136 vma = mm->mmap;
3137 if (!vma) /* Can happen if dup_mmap() received an OOM */
3138 return;
3140 lru_add_drain();
3141 flush_cache_mm(mm);
3142 tlb_gather_mmu(&tlb, mm, 0, -1);
3143 /* update_hiwater_rss(mm) here? but nobody should be looking */
3144 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3145 unmap_vmas(&tlb, vma, 0, -1);
3146 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3147 tlb_finish_mmu(&tlb, 0, -1);
3150 * Walk the list again, actually closing and freeing it,
3151 * with preemption enabled, without holding any MM locks.
3153 while (vma) {
3154 if (vma->vm_flags & VM_ACCOUNT)
3155 nr_accounted += vma_pages(vma);
3156 vma = remove_vma(vma);
3158 vm_unacct_memory(nr_accounted);
3161 /* Insert vm structure into process list sorted by address
3162 * and into the inode's i_mmap tree. If vm_file is non-NULL
3163 * then i_mmap_rwsem is taken here.
3165 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3167 struct vm_area_struct *prev;
3168 struct rb_node **rb_link, *rb_parent;
3170 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3171 &prev, &rb_link, &rb_parent))
3172 return -ENOMEM;
3173 if ((vma->vm_flags & VM_ACCOUNT) &&
3174 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3175 return -ENOMEM;
3178 * The vm_pgoff of a purely anonymous vma should be irrelevant
3179 * until its first write fault, when page's anon_vma and index
3180 * are set. But now set the vm_pgoff it will almost certainly
3181 * end up with (unless mremap moves it elsewhere before that
3182 * first wfault), so /proc/pid/maps tells a consistent story.
3184 * By setting it to reflect the virtual start address of the
3185 * vma, merges and splits can happen in a seamless way, just
3186 * using the existing file pgoff checks and manipulations.
3187 * Similarly in do_mmap_pgoff and in do_brk.
3189 if (vma_is_anonymous(vma)) {
3190 BUG_ON(vma->anon_vma);
3191 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3194 vma_link(mm, vma, prev, rb_link, rb_parent);
3195 return 0;
3199 * Copy the vma structure to a new location in the same mm,
3200 * prior to moving page table entries, to effect an mremap move.
3202 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3203 unsigned long addr, unsigned long len, pgoff_t pgoff,
3204 bool *need_rmap_locks)
3206 struct vm_area_struct *vma = *vmap;
3207 unsigned long vma_start = vma->vm_start;
3208 struct mm_struct *mm = vma->vm_mm;
3209 struct vm_area_struct *new_vma, *prev;
3210 struct rb_node **rb_link, *rb_parent;
3211 bool faulted_in_anon_vma = true;
3214 * If anonymous vma has not yet been faulted, update new pgoff
3215 * to match new location, to increase its chance of merging.
3217 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3218 pgoff = addr >> PAGE_SHIFT;
3219 faulted_in_anon_vma = false;
3222 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3223 return NULL; /* should never get here */
3224 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3225 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3226 vma->vm_userfaultfd_ctx);
3227 if (new_vma) {
3229 * Source vma may have been merged into new_vma
3231 if (unlikely(vma_start >= new_vma->vm_start &&
3232 vma_start < new_vma->vm_end)) {
3234 * The only way we can get a vma_merge with
3235 * self during an mremap is if the vma hasn't
3236 * been faulted in yet and we were allowed to
3237 * reset the dst vma->vm_pgoff to the
3238 * destination address of the mremap to allow
3239 * the merge to happen. mremap must change the
3240 * vm_pgoff linearity between src and dst vmas
3241 * (in turn preventing a vma_merge) to be
3242 * safe. It is only safe to keep the vm_pgoff
3243 * linear if there are no pages mapped yet.
3245 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3246 *vmap = vma = new_vma;
3248 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3249 } else {
3250 new_vma = vm_area_dup(vma);
3251 if (!new_vma)
3252 goto out;
3253 new_vma->vm_start = addr;
3254 new_vma->vm_end = addr + len;
3255 new_vma->vm_pgoff = pgoff;
3256 if (vma_dup_policy(vma, new_vma))
3257 goto out_free_vma;
3258 if (anon_vma_clone(new_vma, vma))
3259 goto out_free_mempol;
3260 if (new_vma->vm_file)
3261 get_file(new_vma->vm_file);
3262 if (new_vma->vm_ops && new_vma->vm_ops->open)
3263 new_vma->vm_ops->open(new_vma);
3264 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3265 *need_rmap_locks = false;
3267 return new_vma;
3269 out_free_mempol:
3270 mpol_put(vma_policy(new_vma));
3271 out_free_vma:
3272 vm_area_free(new_vma);
3273 out:
3274 return NULL;
3278 * Return true if the calling process may expand its vm space by the passed
3279 * number of pages
3281 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3283 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3284 return false;
3286 if (is_data_mapping(flags) &&
3287 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3288 /* Workaround for Valgrind */
3289 if (rlimit(RLIMIT_DATA) == 0 &&
3290 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3291 return true;
3293 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3294 current->comm, current->pid,
3295 (mm->data_vm + npages) << PAGE_SHIFT,
3296 rlimit(RLIMIT_DATA),
3297 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3299 if (!ignore_rlimit_data)
3300 return false;
3303 return true;
3306 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3308 mm->total_vm += npages;
3310 if (is_exec_mapping(flags))
3311 mm->exec_vm += npages;
3312 else if (is_stack_mapping(flags))
3313 mm->stack_vm += npages;
3314 else if (is_data_mapping(flags))
3315 mm->data_vm += npages;
3318 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3321 * Having a close hook prevents vma merging regardless of flags.
3323 static void special_mapping_close(struct vm_area_struct *vma)
3327 static const char *special_mapping_name(struct vm_area_struct *vma)
3329 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3332 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3334 struct vm_special_mapping *sm = new_vma->vm_private_data;
3336 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3337 return -EFAULT;
3339 if (sm->mremap)
3340 return sm->mremap(sm, new_vma);
3342 return 0;
3345 static const struct vm_operations_struct special_mapping_vmops = {
3346 .close = special_mapping_close,
3347 .fault = special_mapping_fault,
3348 .mremap = special_mapping_mremap,
3349 .name = special_mapping_name,
3352 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3353 .close = special_mapping_close,
3354 .fault = special_mapping_fault,
3357 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3359 struct vm_area_struct *vma = vmf->vma;
3360 pgoff_t pgoff;
3361 struct page **pages;
3363 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3364 pages = vma->vm_private_data;
3365 } else {
3366 struct vm_special_mapping *sm = vma->vm_private_data;
3368 if (sm->fault)
3369 return sm->fault(sm, vmf->vma, vmf);
3371 pages = sm->pages;
3374 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3375 pgoff--;
3377 if (*pages) {
3378 struct page *page = *pages;
3379 get_page(page);
3380 vmf->page = page;
3381 return 0;
3384 return VM_FAULT_SIGBUS;
3387 static struct vm_area_struct *__install_special_mapping(
3388 struct mm_struct *mm,
3389 unsigned long addr, unsigned long len,
3390 unsigned long vm_flags, void *priv,
3391 const struct vm_operations_struct *ops)
3393 int ret;
3394 struct vm_area_struct *vma;
3396 vma = vm_area_alloc(mm);
3397 if (unlikely(vma == NULL))
3398 return ERR_PTR(-ENOMEM);
3400 vma->vm_start = addr;
3401 vma->vm_end = addr + len;
3403 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3404 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3406 vma->vm_ops = ops;
3407 vma->vm_private_data = priv;
3409 ret = insert_vm_struct(mm, vma);
3410 if (ret)
3411 goto out;
3413 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3415 perf_event_mmap(vma);
3417 return vma;
3419 out:
3420 vm_area_free(vma);
3421 return ERR_PTR(ret);
3424 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3425 const struct vm_special_mapping *sm)
3427 return vma->vm_private_data == sm &&
3428 (vma->vm_ops == &special_mapping_vmops ||
3429 vma->vm_ops == &legacy_special_mapping_vmops);
3433 * Called with mm->mmap_sem held for writing.
3434 * Insert a new vma covering the given region, with the given flags.
3435 * Its pages are supplied by the given array of struct page *.
3436 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3437 * The region past the last page supplied will always produce SIGBUS.
3438 * The array pointer and the pages it points to are assumed to stay alive
3439 * for as long as this mapping might exist.
3441 struct vm_area_struct *_install_special_mapping(
3442 struct mm_struct *mm,
3443 unsigned long addr, unsigned long len,
3444 unsigned long vm_flags, const struct vm_special_mapping *spec)
3446 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3447 &special_mapping_vmops);
3450 int install_special_mapping(struct mm_struct *mm,
3451 unsigned long addr, unsigned long len,
3452 unsigned long vm_flags, struct page **pages)
3454 struct vm_area_struct *vma = __install_special_mapping(
3455 mm, addr, len, vm_flags, (void *)pages,
3456 &legacy_special_mapping_vmops);
3458 return PTR_ERR_OR_ZERO(vma);
3461 static DEFINE_MUTEX(mm_all_locks_mutex);
3463 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3465 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3467 * The LSB of head.next can't change from under us
3468 * because we hold the mm_all_locks_mutex.
3470 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3472 * We can safely modify head.next after taking the
3473 * anon_vma->root->rwsem. If some other vma in this mm shares
3474 * the same anon_vma we won't take it again.
3476 * No need of atomic instructions here, head.next
3477 * can't change from under us thanks to the
3478 * anon_vma->root->rwsem.
3480 if (__test_and_set_bit(0, (unsigned long *)
3481 &anon_vma->root->rb_root.rb_root.rb_node))
3482 BUG();
3486 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3488 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3490 * AS_MM_ALL_LOCKS can't change from under us because
3491 * we hold the mm_all_locks_mutex.
3493 * Operations on ->flags have to be atomic because
3494 * even if AS_MM_ALL_LOCKS is stable thanks to the
3495 * mm_all_locks_mutex, there may be other cpus
3496 * changing other bitflags in parallel to us.
3498 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3499 BUG();
3500 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3505 * This operation locks against the VM for all pte/vma/mm related
3506 * operations that could ever happen on a certain mm. This includes
3507 * vmtruncate, try_to_unmap, and all page faults.
3509 * The caller must take the mmap_sem in write mode before calling
3510 * mm_take_all_locks(). The caller isn't allowed to release the
3511 * mmap_sem until mm_drop_all_locks() returns.
3513 * mmap_sem in write mode is required in order to block all operations
3514 * that could modify pagetables and free pages without need of
3515 * altering the vma layout. It's also needed in write mode to avoid new
3516 * anon_vmas to be associated with existing vmas.
3518 * A single task can't take more than one mm_take_all_locks() in a row
3519 * or it would deadlock.
3521 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3522 * mapping->flags avoid to take the same lock twice, if more than one
3523 * vma in this mm is backed by the same anon_vma or address_space.
3525 * We take locks in following order, accordingly to comment at beginning
3526 * of mm/rmap.c:
3527 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3528 * hugetlb mapping);
3529 * - all i_mmap_rwsem locks;
3530 * - all anon_vma->rwseml
3532 * We can take all locks within these types randomly because the VM code
3533 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3534 * mm_all_locks_mutex.
3536 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3537 * that may have to take thousand of locks.
3539 * mm_take_all_locks() can fail if it's interrupted by signals.
3541 int mm_take_all_locks(struct mm_struct *mm)
3543 struct vm_area_struct *vma;
3544 struct anon_vma_chain *avc;
3546 BUG_ON(down_read_trylock(&mm->mmap_sem));
3548 mutex_lock(&mm_all_locks_mutex);
3550 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3551 if (signal_pending(current))
3552 goto out_unlock;
3553 if (vma->vm_file && vma->vm_file->f_mapping &&
3554 is_vm_hugetlb_page(vma))
3555 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3558 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3559 if (signal_pending(current))
3560 goto out_unlock;
3561 if (vma->vm_file && vma->vm_file->f_mapping &&
3562 !is_vm_hugetlb_page(vma))
3563 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3566 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3567 if (signal_pending(current))
3568 goto out_unlock;
3569 if (vma->anon_vma)
3570 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3571 vm_lock_anon_vma(mm, avc->anon_vma);
3574 return 0;
3576 out_unlock:
3577 mm_drop_all_locks(mm);
3578 return -EINTR;
3581 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3583 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3585 * The LSB of head.next can't change to 0 from under
3586 * us because we hold the mm_all_locks_mutex.
3588 * We must however clear the bitflag before unlocking
3589 * the vma so the users using the anon_vma->rb_root will
3590 * never see our bitflag.
3592 * No need of atomic instructions here, head.next
3593 * can't change from under us until we release the
3594 * anon_vma->root->rwsem.
3596 if (!__test_and_clear_bit(0, (unsigned long *)
3597 &anon_vma->root->rb_root.rb_root.rb_node))
3598 BUG();
3599 anon_vma_unlock_write(anon_vma);
3603 static void vm_unlock_mapping(struct address_space *mapping)
3605 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3607 * AS_MM_ALL_LOCKS can't change to 0 from under us
3608 * because we hold the mm_all_locks_mutex.
3610 i_mmap_unlock_write(mapping);
3611 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3612 &mapping->flags))
3613 BUG();
3618 * The mmap_sem cannot be released by the caller until
3619 * mm_drop_all_locks() returns.
3621 void mm_drop_all_locks(struct mm_struct *mm)
3623 struct vm_area_struct *vma;
3624 struct anon_vma_chain *avc;
3626 BUG_ON(down_read_trylock(&mm->mmap_sem));
3627 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3629 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3630 if (vma->anon_vma)
3631 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3632 vm_unlock_anon_vma(avc->anon_vma);
3633 if (vma->vm_file && vma->vm_file->f_mapping)
3634 vm_unlock_mapping(vma->vm_file->f_mapping);
3637 mutex_unlock(&mm_all_locks_mutex);
3641 * initialise the percpu counter for VM
3643 void __init mmap_init(void)
3645 int ret;
3647 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3648 VM_BUG_ON(ret);
3652 * Initialise sysctl_user_reserve_kbytes.
3654 * This is intended to prevent a user from starting a single memory hogging
3655 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3656 * mode.
3658 * The default value is min(3% of free memory, 128MB)
3659 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3661 static int init_user_reserve(void)
3663 unsigned long free_kbytes;
3665 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3667 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3668 return 0;
3670 subsys_initcall(init_user_reserve);
3673 * Initialise sysctl_admin_reserve_kbytes.
3675 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3676 * to log in and kill a memory hogging process.
3678 * Systems with more than 256MB will reserve 8MB, enough to recover
3679 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3680 * only reserve 3% of free pages by default.
3682 static int init_admin_reserve(void)
3684 unsigned long free_kbytes;
3686 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3688 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3689 return 0;
3691 subsys_initcall(init_admin_reserve);
3694 * Reinititalise user and admin reserves if memory is added or removed.
3696 * The default user reserve max is 128MB, and the default max for the
3697 * admin reserve is 8MB. These are usually, but not always, enough to
3698 * enable recovery from a memory hogging process using login/sshd, a shell,
3699 * and tools like top. It may make sense to increase or even disable the
3700 * reserve depending on the existence of swap or variations in the recovery
3701 * tools. So, the admin may have changed them.
3703 * If memory is added and the reserves have been eliminated or increased above
3704 * the default max, then we'll trust the admin.
3706 * If memory is removed and there isn't enough free memory, then we
3707 * need to reset the reserves.
3709 * Otherwise keep the reserve set by the admin.
3711 static int reserve_mem_notifier(struct notifier_block *nb,
3712 unsigned long action, void *data)
3714 unsigned long tmp, free_kbytes;
3716 switch (action) {
3717 case MEM_ONLINE:
3718 /* Default max is 128MB. Leave alone if modified by operator. */
3719 tmp = sysctl_user_reserve_kbytes;
3720 if (0 < tmp && tmp < (1UL << 17))
3721 init_user_reserve();
3723 /* Default max is 8MB. Leave alone if modified by operator. */
3724 tmp = sysctl_admin_reserve_kbytes;
3725 if (0 < tmp && tmp < (1UL << 13))
3726 init_admin_reserve();
3728 break;
3729 case MEM_OFFLINE:
3730 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3732 if (sysctl_user_reserve_kbytes > free_kbytes) {
3733 init_user_reserve();
3734 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3735 sysctl_user_reserve_kbytes);
3738 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3739 init_admin_reserve();
3740 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3741 sysctl_admin_reserve_kbytes);
3743 break;
3744 default:
3745 break;
3747 return NOTIFY_OK;
3750 static struct notifier_block reserve_mem_nb = {
3751 .notifier_call = reserve_mem_notifier,
3754 static int __meminit init_reserve_notifier(void)
3756 if (register_hotmemory_notifier(&reserve_mem_nb))
3757 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3759 return 0;
3761 subsys_initcall(init_reserve_notifier);