2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
37 #include <linux/export.h>
38 #include <linux/time.h>
39 #include <linux/rds.h>
43 void rds_inc_init(struct rds_incoming
*inc
, struct rds_connection
*conn
,
44 struct in6_addr
*saddr
)
46 refcount_set(&inc
->i_refcount
, 1);
47 INIT_LIST_HEAD(&inc
->i_item
);
49 inc
->i_saddr
= *saddr
;
50 inc
->i_rdma_cookie
= 0;
51 inc
->i_rx_tstamp
= ktime_set(0, 0);
53 memset(inc
->i_rx_lat_trace
, 0, sizeof(inc
->i_rx_lat_trace
));
55 EXPORT_SYMBOL_GPL(rds_inc_init
);
57 void rds_inc_path_init(struct rds_incoming
*inc
, struct rds_conn_path
*cp
,
58 struct in6_addr
*saddr
)
60 refcount_set(&inc
->i_refcount
, 1);
61 INIT_LIST_HEAD(&inc
->i_item
);
62 inc
->i_conn
= cp
->cp_conn
;
63 inc
->i_conn_path
= cp
;
64 inc
->i_saddr
= *saddr
;
65 inc
->i_rdma_cookie
= 0;
66 inc
->i_rx_tstamp
= ktime_set(0, 0);
68 EXPORT_SYMBOL_GPL(rds_inc_path_init
);
70 static void rds_inc_addref(struct rds_incoming
*inc
)
72 rdsdebug("addref inc %p ref %d\n", inc
, refcount_read(&inc
->i_refcount
));
73 refcount_inc(&inc
->i_refcount
);
76 void rds_inc_put(struct rds_incoming
*inc
)
78 rdsdebug("put inc %p ref %d\n", inc
, refcount_read(&inc
->i_refcount
));
79 if (refcount_dec_and_test(&inc
->i_refcount
)) {
80 BUG_ON(!list_empty(&inc
->i_item
));
82 inc
->i_conn
->c_trans
->inc_free(inc
);
85 EXPORT_SYMBOL_GPL(rds_inc_put
);
87 static void rds_recv_rcvbuf_delta(struct rds_sock
*rs
, struct sock
*sk
,
88 struct rds_cong_map
*map
,
89 int delta
, __be16 port
)
96 rs
->rs_rcv_bytes
+= delta
;
98 rds_stats_add(s_recv_bytes_added_to_socket
, delta
);
100 rds_stats_add(s_recv_bytes_removed_from_socket
, -delta
);
102 /* loop transport doesn't send/recv congestion updates */
103 if (rs
->rs_transport
->t_type
== RDS_TRANS_LOOP
)
106 now_congested
= rs
->rs_rcv_bytes
> rds_sk_rcvbuf(rs
);
108 rdsdebug("rs %p (%pI6c:%u) recv bytes %d buf %d "
109 "now_cong %d delta %d\n",
110 rs
, &rs
->rs_bound_addr
,
111 ntohs(rs
->rs_bound_port
), rs
->rs_rcv_bytes
,
112 rds_sk_rcvbuf(rs
), now_congested
, delta
);
114 /* wasn't -> am congested */
115 if (!rs
->rs_congested
&& now_congested
) {
116 rs
->rs_congested
= 1;
117 rds_cong_set_bit(map
, port
);
118 rds_cong_queue_updates(map
);
120 /* was -> aren't congested */
121 /* Require more free space before reporting uncongested to prevent
122 bouncing cong/uncong state too often */
123 else if (rs
->rs_congested
&& (rs
->rs_rcv_bytes
< (rds_sk_rcvbuf(rs
)/2))) {
124 rs
->rs_congested
= 0;
125 rds_cong_clear_bit(map
, port
);
126 rds_cong_queue_updates(map
);
129 /* do nothing if no change in cong state */
132 static void rds_conn_peer_gen_update(struct rds_connection
*conn
,
136 struct rds_message
*rm
, *tmp
;
139 WARN_ON(conn
->c_trans
->t_type
!= RDS_TRANS_TCP
);
140 if (peer_gen_num
!= 0) {
141 if (conn
->c_peer_gen_num
!= 0 &&
142 peer_gen_num
!= conn
->c_peer_gen_num
) {
143 for (i
= 0; i
< RDS_MPATH_WORKERS
; i
++) {
144 struct rds_conn_path
*cp
;
146 cp
= &conn
->c_path
[i
];
147 spin_lock_irqsave(&cp
->cp_lock
, flags
);
148 cp
->cp_next_tx_seq
= 1;
149 cp
->cp_next_rx_seq
= 0;
150 list_for_each_entry_safe(rm
, tmp
,
153 set_bit(RDS_MSG_FLUSH
, &rm
->m_flags
);
155 spin_unlock_irqrestore(&cp
->cp_lock
, flags
);
158 conn
->c_peer_gen_num
= peer_gen_num
;
163 * Process all extension headers that come with this message.
165 static void rds_recv_incoming_exthdrs(struct rds_incoming
*inc
, struct rds_sock
*rs
)
167 struct rds_header
*hdr
= &inc
->i_hdr
;
168 unsigned int pos
= 0, type
, len
;
170 struct rds_ext_header_version version
;
171 struct rds_ext_header_rdma rdma
;
172 struct rds_ext_header_rdma_dest rdma_dest
;
176 len
= sizeof(buffer
);
177 type
= rds_message_next_extension(hdr
, &pos
, &buffer
, &len
);
178 if (type
== RDS_EXTHDR_NONE
)
180 /* Process extension header here */
182 case RDS_EXTHDR_RDMA
:
183 rds_rdma_unuse(rs
, be32_to_cpu(buffer
.rdma
.h_rdma_rkey
), 0);
186 case RDS_EXTHDR_RDMA_DEST
:
187 /* We ignore the size for now. We could stash it
188 * somewhere and use it for error checking. */
189 inc
->i_rdma_cookie
= rds_rdma_make_cookie(
190 be32_to_cpu(buffer
.rdma_dest
.h_rdma_rkey
),
191 be32_to_cpu(buffer
.rdma_dest
.h_rdma_offset
));
198 static void rds_recv_hs_exthdrs(struct rds_header
*hdr
,
199 struct rds_connection
*conn
)
201 unsigned int pos
= 0, type
, len
;
203 struct rds_ext_header_version version
;
207 u32 new_peer_gen_num
= 0;
210 len
= sizeof(buffer
);
211 type
= rds_message_next_extension(hdr
, &pos
, &buffer
, &len
);
212 if (type
== RDS_EXTHDR_NONE
)
214 /* Process extension header here */
216 case RDS_EXTHDR_NPATHS
:
217 conn
->c_npaths
= min_t(int, RDS_MPATH_WORKERS
,
218 be16_to_cpu(buffer
.rds_npaths
));
220 case RDS_EXTHDR_GEN_NUM
:
221 new_peer_gen_num
= be32_to_cpu(buffer
.rds_gen_num
);
224 pr_warn_ratelimited("ignoring unknown exthdr type "
228 /* if RDS_EXTHDR_NPATHS was not found, default to a single-path */
229 conn
->c_npaths
= max_t(int, conn
->c_npaths
, 1);
230 conn
->c_ping_triggered
= 0;
231 rds_conn_peer_gen_update(conn
, new_peer_gen_num
);
234 /* rds_start_mprds() will synchronously start multiple paths when appropriate.
235 * The scheme is based on the following rules:
237 * 1. rds_sendmsg on first connect attempt sends the probe ping, with the
238 * sender's npaths (s_npaths)
239 * 2. rcvr of probe-ping knows the mprds_paths = min(s_npaths, r_npaths). It
240 * sends back a probe-pong with r_npaths. After that, if rcvr is the
241 * smaller ip addr, it starts rds_conn_path_connect_if_down on all
243 * 3. sender gets woken up, and can move to rds_conn_path_connect_if_down.
244 * If it is the smaller ipaddr, rds_conn_path_connect_if_down can be
245 * called after reception of the probe-pong on all mprds_paths.
246 * Otherwise (sender of probe-ping is not the smaller ip addr): just call
247 * rds_conn_path_connect_if_down on the hashed path. (see rule 4)
248 * 4. rds_connect_worker must only trigger a connection if laddr < faddr.
249 * 5. sender may end up queuing the packet on the cp. will get sent out later.
250 * when connection is completed.
252 static void rds_start_mprds(struct rds_connection
*conn
)
255 struct rds_conn_path
*cp
;
257 if (conn
->c_npaths
> 1 &&
258 rds_addr_cmp(&conn
->c_laddr
, &conn
->c_faddr
) < 0) {
259 for (i
= 0; i
< conn
->c_npaths
; i
++) {
260 cp
= &conn
->c_path
[i
];
261 rds_conn_path_connect_if_down(cp
);
267 * The transport must make sure that this is serialized against other
268 * rx and conn reset on this specific conn.
270 * We currently assert that only one fragmented message will be sent
271 * down a connection at a time. This lets us reassemble in the conn
272 * instead of per-flow which means that we don't have to go digging through
273 * flows to tear down partial reassembly progress on conn failure and
274 * we save flow lookup and locking for each frag arrival. It does mean
275 * that small messages will wait behind large ones. Fragmenting at all
276 * is only to reduce the memory consumption of pre-posted buffers.
278 * The caller passes in saddr and daddr instead of us getting it from the
279 * conn. This lets loopback, who only has one conn for both directions,
280 * tell us which roles the addrs in the conn are playing for this message.
282 void rds_recv_incoming(struct rds_connection
*conn
, struct in6_addr
*saddr
,
283 struct in6_addr
*daddr
,
284 struct rds_incoming
*inc
, gfp_t gfp
)
286 struct rds_sock
*rs
= NULL
;
289 struct rds_conn_path
*cp
;
292 inc
->i_rx_jiffies
= jiffies
;
293 if (conn
->c_trans
->t_mp_capable
)
294 cp
= inc
->i_conn_path
;
296 cp
= &conn
->c_path
[0];
298 rdsdebug("conn %p next %llu inc %p seq %llu len %u sport %u dport %u "
299 "flags 0x%x rx_jiffies %lu\n", conn
,
300 (unsigned long long)cp
->cp_next_rx_seq
,
302 (unsigned long long)be64_to_cpu(inc
->i_hdr
.h_sequence
),
303 be32_to_cpu(inc
->i_hdr
.h_len
),
304 be16_to_cpu(inc
->i_hdr
.h_sport
),
305 be16_to_cpu(inc
->i_hdr
.h_dport
),
310 * Sequence numbers should only increase. Messages get their
311 * sequence number as they're queued in a sending conn. They
312 * can be dropped, though, if the sending socket is closed before
313 * they hit the wire. So sequence numbers can skip forward
314 * under normal operation. They can also drop back in the conn
315 * failover case as previously sent messages are resent down the
316 * new instance of a conn. We drop those, otherwise we have
317 * to assume that the next valid seq does not come after a
318 * hole in the fragment stream.
320 * The headers don't give us a way to realize if fragments of
321 * a message have been dropped. We assume that frags that arrive
322 * to a flow are part of the current message on the flow that is
323 * being reassembled. This means that senders can't drop messages
324 * from the sending conn until all their frags are sent.
326 * XXX we could spend more on the wire to get more robust failure
327 * detection, arguably worth it to avoid data corruption.
329 if (be64_to_cpu(inc
->i_hdr
.h_sequence
) < cp
->cp_next_rx_seq
&&
330 (inc
->i_hdr
.h_flags
& RDS_FLAG_RETRANSMITTED
)) {
331 rds_stats_inc(s_recv_drop_old_seq
);
334 cp
->cp_next_rx_seq
= be64_to_cpu(inc
->i_hdr
.h_sequence
) + 1;
336 if (rds_sysctl_ping_enable
&& inc
->i_hdr
.h_dport
== 0) {
337 if (inc
->i_hdr
.h_sport
== 0) {
338 rdsdebug("ignore ping with 0 sport from %pI6c\n",
342 rds_stats_inc(s_recv_ping
);
343 rds_send_pong(cp
, inc
->i_hdr
.h_sport
);
344 /* if this is a handshake ping, start multipath if necessary */
345 if (RDS_HS_PROBE(be16_to_cpu(inc
->i_hdr
.h_sport
),
346 be16_to_cpu(inc
->i_hdr
.h_dport
))) {
347 rds_recv_hs_exthdrs(&inc
->i_hdr
, cp
->cp_conn
);
348 rds_start_mprds(cp
->cp_conn
);
353 if (be16_to_cpu(inc
->i_hdr
.h_dport
) == RDS_FLAG_PROBE_PORT
&&
354 inc
->i_hdr
.h_sport
== 0) {
355 rds_recv_hs_exthdrs(&inc
->i_hdr
, cp
->cp_conn
);
356 /* if this is a handshake pong, start multipath if necessary */
357 rds_start_mprds(cp
->cp_conn
);
358 wake_up(&cp
->cp_conn
->c_hs_waitq
);
362 rs
= rds_find_bound(daddr
, inc
->i_hdr
.h_dport
, conn
->c_bound_if
);
364 rds_stats_inc(s_recv_drop_no_sock
);
368 /* Process extension headers */
369 rds_recv_incoming_exthdrs(inc
, rs
);
371 /* We can be racing with rds_release() which marks the socket dead. */
372 sk
= rds_rs_to_sk(rs
);
374 /* serialize with rds_release -> sock_orphan */
375 write_lock_irqsave(&rs
->rs_recv_lock
, flags
);
376 if (!sock_flag(sk
, SOCK_DEAD
)) {
377 rdsdebug("adding inc %p to rs %p's recv queue\n", inc
, rs
);
378 rds_stats_inc(s_recv_queued
);
379 rds_recv_rcvbuf_delta(rs
, sk
, inc
->i_conn
->c_lcong
,
380 be32_to_cpu(inc
->i_hdr
.h_len
),
382 if (sock_flag(sk
, SOCK_RCVTSTAMP
))
383 inc
->i_rx_tstamp
= ktime_get_real();
385 inc
->i_rx_lat_trace
[RDS_MSG_RX_END
] = local_clock();
386 list_add_tail(&inc
->i_item
, &rs
->rs_recv_queue
);
387 __rds_wake_sk_sleep(sk
);
389 rds_stats_inc(s_recv_drop_dead_sock
);
391 write_unlock_irqrestore(&rs
->rs_recv_lock
, flags
);
397 EXPORT_SYMBOL_GPL(rds_recv_incoming
);
400 * be very careful here. This is being called as the condition in
401 * wait_event_*() needs to cope with being called many times.
403 static int rds_next_incoming(struct rds_sock
*rs
, struct rds_incoming
**inc
)
408 read_lock_irqsave(&rs
->rs_recv_lock
, flags
);
409 if (!list_empty(&rs
->rs_recv_queue
)) {
410 *inc
= list_entry(rs
->rs_recv_queue
.next
,
413 rds_inc_addref(*inc
);
415 read_unlock_irqrestore(&rs
->rs_recv_lock
, flags
);
421 static int rds_still_queued(struct rds_sock
*rs
, struct rds_incoming
*inc
,
424 struct sock
*sk
= rds_rs_to_sk(rs
);
428 write_lock_irqsave(&rs
->rs_recv_lock
, flags
);
429 if (!list_empty(&inc
->i_item
)) {
432 /* XXX make sure this i_conn is reliable */
433 rds_recv_rcvbuf_delta(rs
, sk
, inc
->i_conn
->c_lcong
,
434 -be32_to_cpu(inc
->i_hdr
.h_len
),
436 list_del_init(&inc
->i_item
);
440 write_unlock_irqrestore(&rs
->rs_recv_lock
, flags
);
442 rdsdebug("inc %p rs %p still %d dropped %d\n", inc
, rs
, ret
, drop
);
447 * Pull errors off the error queue.
448 * If msghdr is NULL, we will just purge the error queue.
450 int rds_notify_queue_get(struct rds_sock
*rs
, struct msghdr
*msghdr
)
452 struct rds_notifier
*notifier
;
453 struct rds_rdma_notify cmsg
= { 0 }; /* fill holes with zero */
454 unsigned int count
= 0, max_messages
= ~0U;
460 /* put_cmsg copies to user space and thus may sleep. We can't do this
461 * with rs_lock held, so first grab as many notifications as we can stuff
462 * in the user provided cmsg buffer. We don't try to copy more, to avoid
463 * losing notifications - except when the buffer is so small that it wouldn't
464 * even hold a single notification. Then we give him as much of this single
465 * msg as we can squeeze in, and set MSG_CTRUNC.
468 max_messages
= msghdr
->msg_controllen
/ CMSG_SPACE(sizeof(cmsg
));
473 spin_lock_irqsave(&rs
->rs_lock
, flags
);
474 while (!list_empty(&rs
->rs_notify_queue
) && count
< max_messages
) {
475 notifier
= list_entry(rs
->rs_notify_queue
.next
,
476 struct rds_notifier
, n_list
);
477 list_move(¬ifier
->n_list
, ©
);
480 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
485 while (!list_empty(©
)) {
486 notifier
= list_entry(copy
.next
, struct rds_notifier
, n_list
);
489 cmsg
.user_token
= notifier
->n_user_token
;
490 cmsg
.status
= notifier
->n_status
;
492 err
= put_cmsg(msghdr
, SOL_RDS
, RDS_CMSG_RDMA_STATUS
,
493 sizeof(cmsg
), &cmsg
);
498 list_del_init(¬ifier
->n_list
);
502 /* If we bailed out because of an error in put_cmsg,
503 * we may be left with one or more notifications that we
504 * didn't process. Return them to the head of the list. */
505 if (!list_empty(©
)) {
506 spin_lock_irqsave(&rs
->rs_lock
, flags
);
507 list_splice(©
, &rs
->rs_notify_queue
);
508 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
515 * Queue a congestion notification
517 static int rds_notify_cong(struct rds_sock
*rs
, struct msghdr
*msghdr
)
519 uint64_t notify
= rs
->rs_cong_notify
;
523 err
= put_cmsg(msghdr
, SOL_RDS
, RDS_CMSG_CONG_UPDATE
,
524 sizeof(notify
), ¬ify
);
528 spin_lock_irqsave(&rs
->rs_lock
, flags
);
529 rs
->rs_cong_notify
&= ~notify
;
530 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
536 * Receive any control messages.
538 static int rds_cmsg_recv(struct rds_incoming
*inc
, struct msghdr
*msg
,
543 if (inc
->i_rdma_cookie
) {
544 ret
= put_cmsg(msg
, SOL_RDS
, RDS_CMSG_RDMA_DEST
,
545 sizeof(inc
->i_rdma_cookie
), &inc
->i_rdma_cookie
);
550 if ((inc
->i_rx_tstamp
!= 0) &&
551 sock_flag(rds_rs_to_sk(rs
), SOCK_RCVTSTAMP
)) {
552 struct timeval tv
= ktime_to_timeval(inc
->i_rx_tstamp
);
553 ret
= put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
559 if (rs
->rs_rx_traces
) {
560 struct rds_cmsg_rx_trace t
;
563 memset(&t
, 0, sizeof(t
));
564 inc
->i_rx_lat_trace
[RDS_MSG_RX_CMSG
] = local_clock();
565 t
.rx_traces
= rs
->rs_rx_traces
;
566 for (i
= 0; i
< rs
->rs_rx_traces
; i
++) {
567 j
= rs
->rs_rx_trace
[i
];
568 t
.rx_trace_pos
[i
] = j
;
569 t
.rx_trace
[i
] = inc
->i_rx_lat_trace
[j
+ 1] -
570 inc
->i_rx_lat_trace
[j
];
573 ret
= put_cmsg(msg
, SOL_RDS
, RDS_CMSG_RXPATH_LATENCY
,
583 static bool rds_recvmsg_zcookie(struct rds_sock
*rs
, struct msghdr
*msg
)
585 struct rds_msg_zcopy_queue
*q
= &rs
->rs_zcookie_queue
;
586 struct rds_msg_zcopy_info
*info
= NULL
;
587 struct rds_zcopy_cookies
*done
;
590 if (!msg
->msg_control
)
593 if (!sock_flag(rds_rs_to_sk(rs
), SOCK_ZEROCOPY
) ||
594 msg
->msg_controllen
< CMSG_SPACE(sizeof(*done
)))
597 spin_lock_irqsave(&q
->lock
, flags
);
598 if (!list_empty(&q
->zcookie_head
)) {
599 info
= list_entry(q
->zcookie_head
.next
,
600 struct rds_msg_zcopy_info
, rs_zcookie_next
);
601 list_del(&info
->rs_zcookie_next
);
603 spin_unlock_irqrestore(&q
->lock
, flags
);
606 done
= &info
->zcookies
;
607 if (put_cmsg(msg
, SOL_RDS
, RDS_CMSG_ZCOPY_COMPLETION
, sizeof(*done
),
609 spin_lock_irqsave(&q
->lock
, flags
);
610 list_add(&info
->rs_zcookie_next
, &q
->zcookie_head
);
611 spin_unlock_irqrestore(&q
->lock
, flags
);
618 int rds_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
,
621 struct sock
*sk
= sock
->sk
;
622 struct rds_sock
*rs
= rds_sk_to_rs(sk
);
624 int ret
= 0, nonblock
= msg_flags
& MSG_DONTWAIT
;
625 DECLARE_SOCKADDR(struct sockaddr_in6
*, sin6
, msg
->msg_name
);
626 DECLARE_SOCKADDR(struct sockaddr_in
*, sin
, msg
->msg_name
);
627 struct rds_incoming
*inc
= NULL
;
629 /* udp_recvmsg()->sock_recvtimeo() gets away without locking too.. */
630 timeo
= sock_rcvtimeo(sk
, nonblock
);
632 rdsdebug("size %zu flags 0x%x timeo %ld\n", size
, msg_flags
, timeo
);
634 if (msg_flags
& MSG_OOB
)
636 if (msg_flags
& MSG_ERRQUEUE
)
637 return sock_recv_errqueue(sk
, msg
, size
, SOL_IP
, IP_RECVERR
);
640 /* If there are pending notifications, do those - and nothing else */
641 if (!list_empty(&rs
->rs_notify_queue
)) {
642 ret
= rds_notify_queue_get(rs
, msg
);
646 if (rs
->rs_cong_notify
) {
647 ret
= rds_notify_cong(rs
, msg
);
651 if (!rds_next_incoming(rs
, &inc
)) {
653 bool reaped
= rds_recvmsg_zcookie(rs
, msg
);
655 ret
= reaped
? 0 : -EAGAIN
;
659 timeo
= wait_event_interruptible_timeout(*sk_sleep(sk
),
660 (!list_empty(&rs
->rs_notify_queue
) ||
661 rs
->rs_cong_notify
||
662 rds_next_incoming(rs
, &inc
)), timeo
);
663 rdsdebug("recvmsg woke inc %p timeo %ld\n", inc
,
665 if (timeo
> 0 || timeo
== MAX_SCHEDULE_TIMEOUT
)
674 rdsdebug("copying inc %p from %pI6c:%u to user\n", inc
,
675 &inc
->i_conn
->c_faddr
,
676 ntohs(inc
->i_hdr
.h_sport
));
677 ret
= inc
->i_conn
->c_trans
->inc_copy_to_user(inc
, &msg
->msg_iter
);
682 * if the message we just copied isn't at the head of the
683 * recv queue then someone else raced us to return it, try
684 * to get the next message.
686 if (!rds_still_queued(rs
, inc
, !(msg_flags
& MSG_PEEK
))) {
689 rds_stats_inc(s_recv_deliver_raced
);
690 iov_iter_revert(&msg
->msg_iter
, ret
);
694 if (ret
< be32_to_cpu(inc
->i_hdr
.h_len
)) {
695 if (msg_flags
& MSG_TRUNC
)
696 ret
= be32_to_cpu(inc
->i_hdr
.h_len
);
697 msg
->msg_flags
|= MSG_TRUNC
;
700 if (rds_cmsg_recv(inc
, msg
, rs
)) {
704 rds_recvmsg_zcookie(rs
, msg
);
706 rds_stats_inc(s_recv_delivered
);
709 if (ipv6_addr_v4mapped(&inc
->i_saddr
)) {
710 sin
= (struct sockaddr_in
*)msg
->msg_name
;
712 sin
->sin_family
= AF_INET
;
713 sin
->sin_port
= inc
->i_hdr
.h_sport
;
714 sin
->sin_addr
.s_addr
=
715 inc
->i_saddr
.s6_addr32
[3];
716 memset(sin
->sin_zero
, 0, sizeof(sin
->sin_zero
));
717 msg
->msg_namelen
= sizeof(*sin
);
719 sin6
= (struct sockaddr_in6
*)msg
->msg_name
;
721 sin6
->sin6_family
= AF_INET6
;
722 sin6
->sin6_port
= inc
->i_hdr
.h_sport
;
723 sin6
->sin6_addr
= inc
->i_saddr
;
724 sin6
->sin6_flowinfo
= 0;
725 sin6
->sin6_scope_id
= rs
->rs_bound_scope_id
;
726 msg
->msg_namelen
= sizeof(*sin6
);
740 * The socket is being shut down and we're asked to drop messages that were
741 * queued for recvmsg. The caller has unbound the socket so the receive path
742 * won't queue any more incoming fragments or messages on the socket.
744 void rds_clear_recv_queue(struct rds_sock
*rs
)
746 struct sock
*sk
= rds_rs_to_sk(rs
);
747 struct rds_incoming
*inc
, *tmp
;
750 write_lock_irqsave(&rs
->rs_recv_lock
, flags
);
751 list_for_each_entry_safe(inc
, tmp
, &rs
->rs_recv_queue
, i_item
) {
752 rds_recv_rcvbuf_delta(rs
, sk
, inc
->i_conn
->c_lcong
,
753 -be32_to_cpu(inc
->i_hdr
.h_len
),
755 list_del_init(&inc
->i_item
);
758 write_unlock_irqrestore(&rs
->rs_recv_lock
, flags
);
762 * inc->i_saddr isn't used here because it is only set in the receive
765 void rds_inc_info_copy(struct rds_incoming
*inc
,
766 struct rds_info_iterator
*iter
,
767 __be32 saddr
, __be32 daddr
, int flip
)
769 struct rds_info_message minfo
;
771 minfo
.seq
= be64_to_cpu(inc
->i_hdr
.h_sequence
);
772 minfo
.len
= be32_to_cpu(inc
->i_hdr
.h_len
);
777 minfo
.lport
= inc
->i_hdr
.h_dport
;
778 minfo
.fport
= inc
->i_hdr
.h_sport
;
782 minfo
.lport
= inc
->i_hdr
.h_sport
;
783 minfo
.fport
= inc
->i_hdr
.h_dport
;
788 rds_info_copy(iter
, &minfo
, sizeof(minfo
));
791 #if IS_ENABLED(CONFIG_IPV6)
792 void rds6_inc_info_copy(struct rds_incoming
*inc
,
793 struct rds_info_iterator
*iter
,
794 struct in6_addr
*saddr
, struct in6_addr
*daddr
,
797 struct rds6_info_message minfo6
;
799 minfo6
.seq
= be64_to_cpu(inc
->i_hdr
.h_sequence
);
800 minfo6
.len
= be32_to_cpu(inc
->i_hdr
.h_len
);
803 minfo6
.laddr
= *daddr
;
804 minfo6
.faddr
= *saddr
;
805 minfo6
.lport
= inc
->i_hdr
.h_dport
;
806 minfo6
.fport
= inc
->i_hdr
.h_sport
;
808 minfo6
.laddr
= *saddr
;
809 minfo6
.faddr
= *daddr
;
810 minfo6
.lport
= inc
->i_hdr
.h_sport
;
811 minfo6
.fport
= inc
->i_hdr
.h_dport
;
814 rds_info_copy(iter
, &minfo6
, sizeof(minfo6
));