perf tools: Don't clone maps from parent when synthesizing forks
[linux/fpc-iii.git] / net / sunrpc / svc_xprt.c
blob87533fbb96cfa89b2fdbc9bfa4ba240d881903d4
1 /*
2 * linux/net/sunrpc/svc_xprt.c
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/addr.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
17 #include <linux/sunrpc/xprt.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <trace/events/sunrpc.h>
22 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
24 static unsigned int svc_rpc_per_connection_limit __read_mostly;
25 module_param(svc_rpc_per_connection_limit, uint, 0644);
28 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
29 static int svc_deferred_recv(struct svc_rqst *rqstp);
30 static struct cache_deferred_req *svc_defer(struct cache_req *req);
31 static void svc_age_temp_xprts(struct timer_list *t);
32 static void svc_delete_xprt(struct svc_xprt *xprt);
34 /* apparently the "standard" is that clients close
35 * idle connections after 5 minutes, servers after
36 * 6 minutes
37 * http://www.connectathon.org/talks96/nfstcp.pdf
39 static int svc_conn_age_period = 6*60;
41 /* List of registered transport classes */
42 static DEFINE_SPINLOCK(svc_xprt_class_lock);
43 static LIST_HEAD(svc_xprt_class_list);
45 /* SMP locking strategy:
47 * svc_pool->sp_lock protects most of the fields of that pool.
48 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
49 * when both need to be taken (rare), svc_serv->sv_lock is first.
50 * The "service mutex" protects svc_serv->sv_nrthread.
51 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
52 * and the ->sk_info_authunix cache.
54 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
55 * enqueued multiply. During normal transport processing this bit
56 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
57 * Providers should not manipulate this bit directly.
59 * Some flags can be set to certain values at any time
60 * providing that certain rules are followed:
62 * XPT_CONN, XPT_DATA:
63 * - Can be set or cleared at any time.
64 * - After a set, svc_xprt_enqueue must be called to enqueue
65 * the transport for processing.
66 * - After a clear, the transport must be read/accepted.
67 * If this succeeds, it must be set again.
68 * XPT_CLOSE:
69 * - Can set at any time. It is never cleared.
70 * XPT_DEAD:
71 * - Can only be set while XPT_BUSY is held which ensures
72 * that no other thread will be using the transport or will
73 * try to set XPT_DEAD.
75 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
77 struct svc_xprt_class *cl;
78 int res = -EEXIST;
80 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
82 INIT_LIST_HEAD(&xcl->xcl_list);
83 spin_lock(&svc_xprt_class_lock);
84 /* Make sure there isn't already a class with the same name */
85 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
86 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
87 goto out;
89 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
90 res = 0;
91 out:
92 spin_unlock(&svc_xprt_class_lock);
93 return res;
95 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
97 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
99 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
100 spin_lock(&svc_xprt_class_lock);
101 list_del_init(&xcl->xcl_list);
102 spin_unlock(&svc_xprt_class_lock);
104 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
107 * Format the transport list for printing
109 int svc_print_xprts(char *buf, int maxlen)
111 struct svc_xprt_class *xcl;
112 char tmpstr[80];
113 int len = 0;
114 buf[0] = '\0';
116 spin_lock(&svc_xprt_class_lock);
117 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
118 int slen;
120 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
121 slen = strlen(tmpstr);
122 if (len + slen > maxlen)
123 break;
124 len += slen;
125 strcat(buf, tmpstr);
127 spin_unlock(&svc_xprt_class_lock);
129 return len;
132 static void svc_xprt_free(struct kref *kref)
134 struct svc_xprt *xprt =
135 container_of(kref, struct svc_xprt, xpt_ref);
136 struct module *owner = xprt->xpt_class->xcl_owner;
137 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
138 svcauth_unix_info_release(xprt);
139 put_net(xprt->xpt_net);
140 /* See comment on corresponding get in xs_setup_bc_tcp(): */
141 if (xprt->xpt_bc_xprt)
142 xprt_put(xprt->xpt_bc_xprt);
143 if (xprt->xpt_bc_xps)
144 xprt_switch_put(xprt->xpt_bc_xps);
145 xprt->xpt_ops->xpo_free(xprt);
146 module_put(owner);
149 void svc_xprt_put(struct svc_xprt *xprt)
151 kref_put(&xprt->xpt_ref, svc_xprt_free);
153 EXPORT_SYMBOL_GPL(svc_xprt_put);
156 * Called by transport drivers to initialize the transport independent
157 * portion of the transport instance.
159 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
160 struct svc_xprt *xprt, struct svc_serv *serv)
162 memset(xprt, 0, sizeof(*xprt));
163 xprt->xpt_class = xcl;
164 xprt->xpt_ops = xcl->xcl_ops;
165 kref_init(&xprt->xpt_ref);
166 xprt->xpt_server = serv;
167 INIT_LIST_HEAD(&xprt->xpt_list);
168 INIT_LIST_HEAD(&xprt->xpt_ready);
169 INIT_LIST_HEAD(&xprt->xpt_deferred);
170 INIT_LIST_HEAD(&xprt->xpt_users);
171 mutex_init(&xprt->xpt_mutex);
172 spin_lock_init(&xprt->xpt_lock);
173 set_bit(XPT_BUSY, &xprt->xpt_flags);
174 xprt->xpt_net = get_net(net);
175 strcpy(xprt->xpt_remotebuf, "uninitialized");
177 EXPORT_SYMBOL_GPL(svc_xprt_init);
179 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
180 struct svc_serv *serv,
181 struct net *net,
182 const int family,
183 const unsigned short port,
184 int flags)
186 struct sockaddr_in sin = {
187 .sin_family = AF_INET,
188 .sin_addr.s_addr = htonl(INADDR_ANY),
189 .sin_port = htons(port),
191 #if IS_ENABLED(CONFIG_IPV6)
192 struct sockaddr_in6 sin6 = {
193 .sin6_family = AF_INET6,
194 .sin6_addr = IN6ADDR_ANY_INIT,
195 .sin6_port = htons(port),
197 #endif
198 struct sockaddr *sap;
199 size_t len;
201 switch (family) {
202 case PF_INET:
203 sap = (struct sockaddr *)&sin;
204 len = sizeof(sin);
205 break;
206 #if IS_ENABLED(CONFIG_IPV6)
207 case PF_INET6:
208 sap = (struct sockaddr *)&sin6;
209 len = sizeof(sin6);
210 break;
211 #endif
212 default:
213 return ERR_PTR(-EAFNOSUPPORT);
216 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
220 * svc_xprt_received conditionally queues the transport for processing
221 * by another thread. The caller must hold the XPT_BUSY bit and must
222 * not thereafter touch transport data.
224 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
225 * insufficient) data.
227 static void svc_xprt_received(struct svc_xprt *xprt)
229 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
230 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
231 return;
234 /* As soon as we clear busy, the xprt could be closed and
235 * 'put', so we need a reference to call svc_enqueue_xprt with:
237 svc_xprt_get(xprt);
238 smp_mb__before_atomic();
239 clear_bit(XPT_BUSY, &xprt->xpt_flags);
240 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
241 svc_xprt_put(xprt);
244 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
246 clear_bit(XPT_TEMP, &new->xpt_flags);
247 spin_lock_bh(&serv->sv_lock);
248 list_add(&new->xpt_list, &serv->sv_permsocks);
249 spin_unlock_bh(&serv->sv_lock);
250 svc_xprt_received(new);
253 static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
254 struct net *net, const int family,
255 const unsigned short port, int flags)
257 struct svc_xprt_class *xcl;
259 spin_lock(&svc_xprt_class_lock);
260 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
261 struct svc_xprt *newxprt;
262 unsigned short newport;
264 if (strcmp(xprt_name, xcl->xcl_name))
265 continue;
267 if (!try_module_get(xcl->xcl_owner))
268 goto err;
270 spin_unlock(&svc_xprt_class_lock);
271 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
272 if (IS_ERR(newxprt)) {
273 module_put(xcl->xcl_owner);
274 return PTR_ERR(newxprt);
276 svc_add_new_perm_xprt(serv, newxprt);
277 newport = svc_xprt_local_port(newxprt);
278 return newport;
280 err:
281 spin_unlock(&svc_xprt_class_lock);
282 /* This errno is exposed to user space. Provide a reasonable
283 * perror msg for a bad transport. */
284 return -EPROTONOSUPPORT;
287 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
288 struct net *net, const int family,
289 const unsigned short port, int flags)
291 int err;
293 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
294 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
295 if (err == -EPROTONOSUPPORT) {
296 request_module("svc%s", xprt_name);
297 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
299 if (err)
300 dprintk("svc: transport %s not found, err %d\n",
301 xprt_name, err);
302 return err;
304 EXPORT_SYMBOL_GPL(svc_create_xprt);
307 * Copy the local and remote xprt addresses to the rqstp structure
309 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
311 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
312 rqstp->rq_addrlen = xprt->xpt_remotelen;
315 * Destination address in request is needed for binding the
316 * source address in RPC replies/callbacks later.
318 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
319 rqstp->rq_daddrlen = xprt->xpt_locallen;
321 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
324 * svc_print_addr - Format rq_addr field for printing
325 * @rqstp: svc_rqst struct containing address to print
326 * @buf: target buffer for formatted address
327 * @len: length of target buffer
330 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
332 return __svc_print_addr(svc_addr(rqstp), buf, len);
334 EXPORT_SYMBOL_GPL(svc_print_addr);
336 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
338 unsigned int limit = svc_rpc_per_connection_limit;
339 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
341 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
344 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
346 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
347 if (!svc_xprt_slots_in_range(xprt))
348 return false;
349 atomic_inc(&xprt->xpt_nr_rqsts);
350 set_bit(RQ_DATA, &rqstp->rq_flags);
352 return true;
355 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
357 struct svc_xprt *xprt = rqstp->rq_xprt;
358 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
359 atomic_dec(&xprt->xpt_nr_rqsts);
360 svc_xprt_enqueue(xprt);
364 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
366 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
367 return true;
368 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) {
369 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
370 svc_xprt_slots_in_range(xprt))
371 return true;
372 trace_svc_xprt_no_write_space(xprt);
373 return false;
375 return false;
378 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
380 struct svc_pool *pool;
381 struct svc_rqst *rqstp = NULL;
382 int cpu;
384 if (!svc_xprt_has_something_to_do(xprt))
385 return;
387 /* Mark transport as busy. It will remain in this state until
388 * the provider calls svc_xprt_received. We update XPT_BUSY
389 * atomically because it also guards against trying to enqueue
390 * the transport twice.
392 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
393 return;
395 cpu = get_cpu();
396 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
398 atomic_long_inc(&pool->sp_stats.packets);
400 spin_lock_bh(&pool->sp_lock);
401 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
402 pool->sp_stats.sockets_queued++;
403 spin_unlock_bh(&pool->sp_lock);
405 /* find a thread for this xprt */
406 rcu_read_lock();
407 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
408 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
409 continue;
410 atomic_long_inc(&pool->sp_stats.threads_woken);
411 rqstp->rq_qtime = ktime_get();
412 wake_up_process(rqstp->rq_task);
413 goto out_unlock;
415 set_bit(SP_CONGESTED, &pool->sp_flags);
416 rqstp = NULL;
417 out_unlock:
418 rcu_read_unlock();
419 put_cpu();
420 trace_svc_xprt_do_enqueue(xprt, rqstp);
422 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
425 * Queue up a transport with data pending. If there are idle nfsd
426 * processes, wake 'em up.
429 void svc_xprt_enqueue(struct svc_xprt *xprt)
431 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
432 return;
433 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
435 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
438 * Dequeue the first transport, if there is one.
440 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
442 struct svc_xprt *xprt = NULL;
444 if (list_empty(&pool->sp_sockets))
445 goto out;
447 spin_lock_bh(&pool->sp_lock);
448 if (likely(!list_empty(&pool->sp_sockets))) {
449 xprt = list_first_entry(&pool->sp_sockets,
450 struct svc_xprt, xpt_ready);
451 list_del_init(&xprt->xpt_ready);
452 svc_xprt_get(xprt);
454 spin_unlock_bh(&pool->sp_lock);
455 out:
456 return xprt;
460 * svc_reserve - change the space reserved for the reply to a request.
461 * @rqstp: The request in question
462 * @space: new max space to reserve
464 * Each request reserves some space on the output queue of the transport
465 * to make sure the reply fits. This function reduces that reserved
466 * space to be the amount of space used already, plus @space.
469 void svc_reserve(struct svc_rqst *rqstp, int space)
471 space += rqstp->rq_res.head[0].iov_len;
473 if (space < rqstp->rq_reserved) {
474 struct svc_xprt *xprt = rqstp->rq_xprt;
475 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
476 rqstp->rq_reserved = space;
478 svc_xprt_enqueue(xprt);
481 EXPORT_SYMBOL_GPL(svc_reserve);
483 static void svc_xprt_release(struct svc_rqst *rqstp)
485 struct svc_xprt *xprt = rqstp->rq_xprt;
487 xprt->xpt_ops->xpo_release_rqst(rqstp);
489 kfree(rqstp->rq_deferred);
490 rqstp->rq_deferred = NULL;
492 svc_free_res_pages(rqstp);
493 rqstp->rq_res.page_len = 0;
494 rqstp->rq_res.page_base = 0;
496 /* Reset response buffer and release
497 * the reservation.
498 * But first, check that enough space was reserved
499 * for the reply, otherwise we have a bug!
501 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
502 printk(KERN_ERR "RPC request reserved %d but used %d\n",
503 rqstp->rq_reserved,
504 rqstp->rq_res.len);
506 rqstp->rq_res.head[0].iov_len = 0;
507 svc_reserve(rqstp, 0);
508 svc_xprt_release_slot(rqstp);
509 rqstp->rq_xprt = NULL;
510 svc_xprt_put(xprt);
514 * Some svc_serv's will have occasional work to do, even when a xprt is not
515 * waiting to be serviced. This function is there to "kick" a task in one of
516 * those services so that it can wake up and do that work. Note that we only
517 * bother with pool 0 as we don't need to wake up more than one thread for
518 * this purpose.
520 void svc_wake_up(struct svc_serv *serv)
522 struct svc_rqst *rqstp;
523 struct svc_pool *pool;
525 pool = &serv->sv_pools[0];
527 rcu_read_lock();
528 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
529 /* skip any that aren't queued */
530 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
531 continue;
532 rcu_read_unlock();
533 wake_up_process(rqstp->rq_task);
534 trace_svc_wake_up(rqstp->rq_task->pid);
535 return;
537 rcu_read_unlock();
539 /* No free entries available */
540 set_bit(SP_TASK_PENDING, &pool->sp_flags);
541 smp_wmb();
542 trace_svc_wake_up(0);
544 EXPORT_SYMBOL_GPL(svc_wake_up);
546 int svc_port_is_privileged(struct sockaddr *sin)
548 switch (sin->sa_family) {
549 case AF_INET:
550 return ntohs(((struct sockaddr_in *)sin)->sin_port)
551 < PROT_SOCK;
552 case AF_INET6:
553 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
554 < PROT_SOCK;
555 default:
556 return 0;
561 * Make sure that we don't have too many active connections. If we have,
562 * something must be dropped. It's not clear what will happen if we allow
563 * "too many" connections, but when dealing with network-facing software,
564 * we have to code defensively. Here we do that by imposing hard limits.
566 * There's no point in trying to do random drop here for DoS
567 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
568 * attacker can easily beat that.
570 * The only somewhat efficient mechanism would be if drop old
571 * connections from the same IP first. But right now we don't even
572 * record the client IP in svc_sock.
574 * single-threaded services that expect a lot of clients will probably
575 * need to set sv_maxconn to override the default value which is based
576 * on the number of threads
578 static void svc_check_conn_limits(struct svc_serv *serv)
580 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
581 (serv->sv_nrthreads+3) * 20;
583 if (serv->sv_tmpcnt > limit) {
584 struct svc_xprt *xprt = NULL;
585 spin_lock_bh(&serv->sv_lock);
586 if (!list_empty(&serv->sv_tempsocks)) {
587 /* Try to help the admin */
588 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
589 serv->sv_name, serv->sv_maxconn ?
590 "max number of connections" :
591 "number of threads");
593 * Always select the oldest connection. It's not fair,
594 * but so is life
596 xprt = list_entry(serv->sv_tempsocks.prev,
597 struct svc_xprt,
598 xpt_list);
599 set_bit(XPT_CLOSE, &xprt->xpt_flags);
600 svc_xprt_get(xprt);
602 spin_unlock_bh(&serv->sv_lock);
604 if (xprt) {
605 svc_xprt_enqueue(xprt);
606 svc_xprt_put(xprt);
611 static int svc_alloc_arg(struct svc_rqst *rqstp)
613 struct svc_serv *serv = rqstp->rq_server;
614 struct xdr_buf *arg;
615 int pages;
616 int i;
618 /* now allocate needed pages. If we get a failure, sleep briefly */
619 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
620 if (pages > RPCSVC_MAXPAGES) {
621 pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
622 pages, RPCSVC_MAXPAGES);
623 /* use as many pages as possible */
624 pages = RPCSVC_MAXPAGES;
626 for (i = 0; i < pages ; i++)
627 while (rqstp->rq_pages[i] == NULL) {
628 struct page *p = alloc_page(GFP_KERNEL);
629 if (!p) {
630 set_current_state(TASK_INTERRUPTIBLE);
631 if (signalled() || kthread_should_stop()) {
632 set_current_state(TASK_RUNNING);
633 return -EINTR;
635 schedule_timeout(msecs_to_jiffies(500));
637 rqstp->rq_pages[i] = p;
639 rqstp->rq_page_end = &rqstp->rq_pages[i];
640 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
642 /* Make arg->head point to first page and arg->pages point to rest */
643 arg = &rqstp->rq_arg;
644 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
645 arg->head[0].iov_len = PAGE_SIZE;
646 arg->pages = rqstp->rq_pages + 1;
647 arg->page_base = 0;
648 /* save at least one page for response */
649 arg->page_len = (pages-2)*PAGE_SIZE;
650 arg->len = (pages-1)*PAGE_SIZE;
651 arg->tail[0].iov_len = 0;
652 return 0;
655 static bool
656 rqst_should_sleep(struct svc_rqst *rqstp)
658 struct svc_pool *pool = rqstp->rq_pool;
660 /* did someone call svc_wake_up? */
661 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
662 return false;
664 /* was a socket queued? */
665 if (!list_empty(&pool->sp_sockets))
666 return false;
668 /* are we shutting down? */
669 if (signalled() || kthread_should_stop())
670 return false;
672 /* are we freezing? */
673 if (freezing(current))
674 return false;
676 return true;
679 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
681 struct svc_pool *pool = rqstp->rq_pool;
682 long time_left = 0;
684 /* rq_xprt should be clear on entry */
685 WARN_ON_ONCE(rqstp->rq_xprt);
687 rqstp->rq_xprt = svc_xprt_dequeue(pool);
688 if (rqstp->rq_xprt)
689 goto out_found;
692 * We have to be able to interrupt this wait
693 * to bring down the daemons ...
695 set_current_state(TASK_INTERRUPTIBLE);
696 smp_mb__before_atomic();
697 clear_bit(SP_CONGESTED, &pool->sp_flags);
698 clear_bit(RQ_BUSY, &rqstp->rq_flags);
699 smp_mb__after_atomic();
701 if (likely(rqst_should_sleep(rqstp)))
702 time_left = schedule_timeout(timeout);
703 else
704 __set_current_state(TASK_RUNNING);
706 try_to_freeze();
708 set_bit(RQ_BUSY, &rqstp->rq_flags);
709 smp_mb__after_atomic();
710 rqstp->rq_xprt = svc_xprt_dequeue(pool);
711 if (rqstp->rq_xprt)
712 goto out_found;
714 if (!time_left)
715 atomic_long_inc(&pool->sp_stats.threads_timedout);
717 if (signalled() || kthread_should_stop())
718 return ERR_PTR(-EINTR);
719 return ERR_PTR(-EAGAIN);
720 out_found:
721 /* Normally we will wait up to 5 seconds for any required
722 * cache information to be provided.
724 if (!test_bit(SP_CONGESTED, &pool->sp_flags))
725 rqstp->rq_chandle.thread_wait = 5*HZ;
726 else
727 rqstp->rq_chandle.thread_wait = 1*HZ;
728 trace_svc_xprt_dequeue(rqstp);
729 return rqstp->rq_xprt;
732 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
734 spin_lock_bh(&serv->sv_lock);
735 set_bit(XPT_TEMP, &newxpt->xpt_flags);
736 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
737 serv->sv_tmpcnt++;
738 if (serv->sv_temptimer.function == NULL) {
739 /* setup timer to age temp transports */
740 serv->sv_temptimer.function = svc_age_temp_xprts;
741 mod_timer(&serv->sv_temptimer,
742 jiffies + svc_conn_age_period * HZ);
744 spin_unlock_bh(&serv->sv_lock);
745 svc_xprt_received(newxpt);
748 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
750 struct svc_serv *serv = rqstp->rq_server;
751 int len = 0;
753 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
754 dprintk("svc_recv: found XPT_CLOSE\n");
755 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
756 xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
757 svc_delete_xprt(xprt);
758 /* Leave XPT_BUSY set on the dead xprt: */
759 goto out;
761 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
762 struct svc_xprt *newxpt;
764 * We know this module_get will succeed because the
765 * listener holds a reference too
767 __module_get(xprt->xpt_class->xcl_owner);
768 svc_check_conn_limits(xprt->xpt_server);
769 newxpt = xprt->xpt_ops->xpo_accept(xprt);
770 if (newxpt)
771 svc_add_new_temp_xprt(serv, newxpt);
772 else
773 module_put(xprt->xpt_class->xcl_owner);
774 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
775 /* XPT_DATA|XPT_DEFERRED case: */
776 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
777 rqstp, rqstp->rq_pool->sp_id, xprt,
778 kref_read(&xprt->xpt_ref));
779 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
780 if (rqstp->rq_deferred)
781 len = svc_deferred_recv(rqstp);
782 else
783 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
784 rqstp->rq_stime = ktime_get();
785 rqstp->rq_reserved = serv->sv_max_mesg;
786 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
788 /* clear XPT_BUSY: */
789 svc_xprt_received(xprt);
790 out:
791 trace_svc_handle_xprt(xprt, len);
792 return len;
796 * Receive the next request on any transport. This code is carefully
797 * organised not to touch any cachelines in the shared svc_serv
798 * structure, only cachelines in the local svc_pool.
800 int svc_recv(struct svc_rqst *rqstp, long timeout)
802 struct svc_xprt *xprt = NULL;
803 struct svc_serv *serv = rqstp->rq_server;
804 int len, err;
806 dprintk("svc: server %p waiting for data (to = %ld)\n",
807 rqstp, timeout);
809 if (rqstp->rq_xprt)
810 printk(KERN_ERR
811 "svc_recv: service %p, transport not NULL!\n",
812 rqstp);
814 err = svc_alloc_arg(rqstp);
815 if (err)
816 goto out;
818 try_to_freeze();
819 cond_resched();
820 err = -EINTR;
821 if (signalled() || kthread_should_stop())
822 goto out;
824 xprt = svc_get_next_xprt(rqstp, timeout);
825 if (IS_ERR(xprt)) {
826 err = PTR_ERR(xprt);
827 goto out;
830 len = svc_handle_xprt(rqstp, xprt);
832 /* No data, incomplete (TCP) read, or accept() */
833 err = -EAGAIN;
834 if (len <= 0)
835 goto out_release;
837 clear_bit(XPT_OLD, &xprt->xpt_flags);
839 xprt->xpt_ops->xpo_secure_port(rqstp);
840 rqstp->rq_chandle.defer = svc_defer;
841 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
843 if (serv->sv_stats)
844 serv->sv_stats->netcnt++;
845 trace_svc_recv(rqstp, len);
846 return len;
847 out_release:
848 rqstp->rq_res.len = 0;
849 svc_xprt_release(rqstp);
850 out:
851 return err;
853 EXPORT_SYMBOL_GPL(svc_recv);
856 * Drop request
858 void svc_drop(struct svc_rqst *rqstp)
860 trace_svc_drop(rqstp);
861 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
862 svc_xprt_release(rqstp);
864 EXPORT_SYMBOL_GPL(svc_drop);
867 * Return reply to client.
869 int svc_send(struct svc_rqst *rqstp)
871 struct svc_xprt *xprt;
872 int len = -EFAULT;
873 struct xdr_buf *xb;
875 xprt = rqstp->rq_xprt;
876 if (!xprt)
877 goto out;
879 /* release the receive skb before sending the reply */
880 xprt->xpt_ops->xpo_release_rqst(rqstp);
882 /* calculate over-all length */
883 xb = &rqstp->rq_res;
884 xb->len = xb->head[0].iov_len +
885 xb->page_len +
886 xb->tail[0].iov_len;
888 /* Grab mutex to serialize outgoing data. */
889 mutex_lock(&xprt->xpt_mutex);
890 trace_svc_stats_latency(rqstp);
891 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
892 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
893 len = -ENOTCONN;
894 else
895 len = xprt->xpt_ops->xpo_sendto(rqstp);
896 mutex_unlock(&xprt->xpt_mutex);
897 trace_svc_send(rqstp, len);
898 svc_xprt_release(rqstp);
900 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
901 len = 0;
902 out:
903 return len;
907 * Timer function to close old temporary transports, using
908 * a mark-and-sweep algorithm.
910 static void svc_age_temp_xprts(struct timer_list *t)
912 struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
913 struct svc_xprt *xprt;
914 struct list_head *le, *next;
916 dprintk("svc_age_temp_xprts\n");
918 if (!spin_trylock_bh(&serv->sv_lock)) {
919 /* busy, try again 1 sec later */
920 dprintk("svc_age_temp_xprts: busy\n");
921 mod_timer(&serv->sv_temptimer, jiffies + HZ);
922 return;
925 list_for_each_safe(le, next, &serv->sv_tempsocks) {
926 xprt = list_entry(le, struct svc_xprt, xpt_list);
928 /* First time through, just mark it OLD. Second time
929 * through, close it. */
930 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
931 continue;
932 if (kref_read(&xprt->xpt_ref) > 1 ||
933 test_bit(XPT_BUSY, &xprt->xpt_flags))
934 continue;
935 list_del_init(le);
936 set_bit(XPT_CLOSE, &xprt->xpt_flags);
937 dprintk("queuing xprt %p for closing\n", xprt);
939 /* a thread will dequeue and close it soon */
940 svc_xprt_enqueue(xprt);
942 spin_unlock_bh(&serv->sv_lock);
944 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
947 /* Close temporary transports whose xpt_local matches server_addr immediately
948 * instead of waiting for them to be picked up by the timer.
950 * This is meant to be called from a notifier_block that runs when an ip
951 * address is deleted.
953 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
955 struct svc_xprt *xprt;
956 struct list_head *le, *next;
957 LIST_HEAD(to_be_closed);
959 spin_lock_bh(&serv->sv_lock);
960 list_for_each_safe(le, next, &serv->sv_tempsocks) {
961 xprt = list_entry(le, struct svc_xprt, xpt_list);
962 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
963 &xprt->xpt_local)) {
964 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
965 list_move(le, &to_be_closed);
968 spin_unlock_bh(&serv->sv_lock);
970 while (!list_empty(&to_be_closed)) {
971 le = to_be_closed.next;
972 list_del_init(le);
973 xprt = list_entry(le, struct svc_xprt, xpt_list);
974 set_bit(XPT_CLOSE, &xprt->xpt_flags);
975 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
976 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
977 xprt);
978 svc_xprt_enqueue(xprt);
981 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
983 static void call_xpt_users(struct svc_xprt *xprt)
985 struct svc_xpt_user *u;
987 spin_lock(&xprt->xpt_lock);
988 while (!list_empty(&xprt->xpt_users)) {
989 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
990 list_del(&u->list);
991 u->callback(u);
993 spin_unlock(&xprt->xpt_lock);
997 * Remove a dead transport
999 static void svc_delete_xprt(struct svc_xprt *xprt)
1001 struct svc_serv *serv = xprt->xpt_server;
1002 struct svc_deferred_req *dr;
1004 /* Only do this once */
1005 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1006 BUG();
1008 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1009 xprt->xpt_ops->xpo_detach(xprt);
1011 spin_lock_bh(&serv->sv_lock);
1012 list_del_init(&xprt->xpt_list);
1013 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1014 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1015 serv->sv_tmpcnt--;
1016 spin_unlock_bh(&serv->sv_lock);
1018 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1019 kfree(dr);
1021 call_xpt_users(xprt);
1022 svc_xprt_put(xprt);
1025 void svc_close_xprt(struct svc_xprt *xprt)
1027 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1028 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1029 /* someone else will have to effect the close */
1030 return;
1032 * We expect svc_close_xprt() to work even when no threads are
1033 * running (e.g., while configuring the server before starting
1034 * any threads), so if the transport isn't busy, we delete
1035 * it ourself:
1037 svc_delete_xprt(xprt);
1039 EXPORT_SYMBOL_GPL(svc_close_xprt);
1041 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1043 struct svc_xprt *xprt;
1044 int ret = 0;
1046 spin_lock(&serv->sv_lock);
1047 list_for_each_entry(xprt, xprt_list, xpt_list) {
1048 if (xprt->xpt_net != net)
1049 continue;
1050 ret++;
1051 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1052 svc_xprt_enqueue(xprt);
1054 spin_unlock(&serv->sv_lock);
1055 return ret;
1058 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1060 struct svc_pool *pool;
1061 struct svc_xprt *xprt;
1062 struct svc_xprt *tmp;
1063 int i;
1065 for (i = 0; i < serv->sv_nrpools; i++) {
1066 pool = &serv->sv_pools[i];
1068 spin_lock_bh(&pool->sp_lock);
1069 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1070 if (xprt->xpt_net != net)
1071 continue;
1072 list_del_init(&xprt->xpt_ready);
1073 spin_unlock_bh(&pool->sp_lock);
1074 return xprt;
1076 spin_unlock_bh(&pool->sp_lock);
1078 return NULL;
1081 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1083 struct svc_xprt *xprt;
1085 while ((xprt = svc_dequeue_net(serv, net))) {
1086 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1087 svc_delete_xprt(xprt);
1092 * Server threads may still be running (especially in the case where the
1093 * service is still running in other network namespaces).
1095 * So we shut down sockets the same way we would on a running server, by
1096 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1097 * the close. In the case there are no such other threads,
1098 * threads running, svc_clean_up_xprts() does a simple version of a
1099 * server's main event loop, and in the case where there are other
1100 * threads, we may need to wait a little while and then check again to
1101 * see if they're done.
1103 void svc_close_net(struct svc_serv *serv, struct net *net)
1105 int delay = 0;
1107 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1108 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1110 svc_clean_up_xprts(serv, net);
1111 msleep(delay++);
1116 * Handle defer and revisit of requests
1119 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1121 struct svc_deferred_req *dr =
1122 container_of(dreq, struct svc_deferred_req, handle);
1123 struct svc_xprt *xprt = dr->xprt;
1125 spin_lock(&xprt->xpt_lock);
1126 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1127 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1128 spin_unlock(&xprt->xpt_lock);
1129 dprintk("revisit canceled\n");
1130 svc_xprt_put(xprt);
1131 trace_svc_drop_deferred(dr);
1132 kfree(dr);
1133 return;
1135 dprintk("revisit queued\n");
1136 dr->xprt = NULL;
1137 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1138 spin_unlock(&xprt->xpt_lock);
1139 svc_xprt_enqueue(xprt);
1140 svc_xprt_put(xprt);
1144 * Save the request off for later processing. The request buffer looks
1145 * like this:
1147 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1149 * This code can only handle requests that consist of an xprt-header
1150 * and rpc-header.
1152 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1154 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1155 struct svc_deferred_req *dr;
1157 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1158 return NULL; /* if more than a page, give up FIXME */
1159 if (rqstp->rq_deferred) {
1160 dr = rqstp->rq_deferred;
1161 rqstp->rq_deferred = NULL;
1162 } else {
1163 size_t skip;
1164 size_t size;
1165 /* FIXME maybe discard if size too large */
1166 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1167 dr = kmalloc(size, GFP_KERNEL);
1168 if (dr == NULL)
1169 return NULL;
1171 dr->handle.owner = rqstp->rq_server;
1172 dr->prot = rqstp->rq_prot;
1173 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1174 dr->addrlen = rqstp->rq_addrlen;
1175 dr->daddr = rqstp->rq_daddr;
1176 dr->argslen = rqstp->rq_arg.len >> 2;
1177 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1179 /* back up head to the start of the buffer and copy */
1180 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1181 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1182 dr->argslen << 2);
1184 svc_xprt_get(rqstp->rq_xprt);
1185 dr->xprt = rqstp->rq_xprt;
1186 set_bit(RQ_DROPME, &rqstp->rq_flags);
1188 dr->handle.revisit = svc_revisit;
1189 trace_svc_defer(rqstp);
1190 return &dr->handle;
1194 * recv data from a deferred request into an active one
1196 static int svc_deferred_recv(struct svc_rqst *rqstp)
1198 struct svc_deferred_req *dr = rqstp->rq_deferred;
1200 /* setup iov_base past transport header */
1201 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1202 /* The iov_len does not include the transport header bytes */
1203 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1204 rqstp->rq_arg.page_len = 0;
1205 /* The rq_arg.len includes the transport header bytes */
1206 rqstp->rq_arg.len = dr->argslen<<2;
1207 rqstp->rq_prot = dr->prot;
1208 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1209 rqstp->rq_addrlen = dr->addrlen;
1210 /* Save off transport header len in case we get deferred again */
1211 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1212 rqstp->rq_daddr = dr->daddr;
1213 rqstp->rq_respages = rqstp->rq_pages;
1214 return (dr->argslen<<2) - dr->xprt_hlen;
1218 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1220 struct svc_deferred_req *dr = NULL;
1222 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1223 return NULL;
1224 spin_lock(&xprt->xpt_lock);
1225 if (!list_empty(&xprt->xpt_deferred)) {
1226 dr = list_entry(xprt->xpt_deferred.next,
1227 struct svc_deferred_req,
1228 handle.recent);
1229 list_del_init(&dr->handle.recent);
1230 trace_svc_revisit_deferred(dr);
1231 } else
1232 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1233 spin_unlock(&xprt->xpt_lock);
1234 return dr;
1238 * svc_find_xprt - find an RPC transport instance
1239 * @serv: pointer to svc_serv to search
1240 * @xcl_name: C string containing transport's class name
1241 * @net: owner net pointer
1242 * @af: Address family of transport's local address
1243 * @port: transport's IP port number
1245 * Return the transport instance pointer for the endpoint accepting
1246 * connections/peer traffic from the specified transport class,
1247 * address family and port.
1249 * Specifying 0 for the address family or port is effectively a
1250 * wild-card, and will result in matching the first transport in the
1251 * service's list that has a matching class name.
1253 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1254 struct net *net, const sa_family_t af,
1255 const unsigned short port)
1257 struct svc_xprt *xprt;
1258 struct svc_xprt *found = NULL;
1260 /* Sanity check the args */
1261 if (serv == NULL || xcl_name == NULL)
1262 return found;
1264 spin_lock_bh(&serv->sv_lock);
1265 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1266 if (xprt->xpt_net != net)
1267 continue;
1268 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1269 continue;
1270 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1271 continue;
1272 if (port != 0 && port != svc_xprt_local_port(xprt))
1273 continue;
1274 found = xprt;
1275 svc_xprt_get(xprt);
1276 break;
1278 spin_unlock_bh(&serv->sv_lock);
1279 return found;
1281 EXPORT_SYMBOL_GPL(svc_find_xprt);
1283 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1284 char *pos, int remaining)
1286 int len;
1288 len = snprintf(pos, remaining, "%s %u\n",
1289 xprt->xpt_class->xcl_name,
1290 svc_xprt_local_port(xprt));
1291 if (len >= remaining)
1292 return -ENAMETOOLONG;
1293 return len;
1297 * svc_xprt_names - format a buffer with a list of transport names
1298 * @serv: pointer to an RPC service
1299 * @buf: pointer to a buffer to be filled in
1300 * @buflen: length of buffer to be filled in
1302 * Fills in @buf with a string containing a list of transport names,
1303 * each name terminated with '\n'.
1305 * Returns positive length of the filled-in string on success; otherwise
1306 * a negative errno value is returned if an error occurs.
1308 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1310 struct svc_xprt *xprt;
1311 int len, totlen;
1312 char *pos;
1314 /* Sanity check args */
1315 if (!serv)
1316 return 0;
1318 spin_lock_bh(&serv->sv_lock);
1320 pos = buf;
1321 totlen = 0;
1322 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1323 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1324 if (len < 0) {
1325 *buf = '\0';
1326 totlen = len;
1328 if (len <= 0)
1329 break;
1331 pos += len;
1332 totlen += len;
1335 spin_unlock_bh(&serv->sv_lock);
1336 return totlen;
1338 EXPORT_SYMBOL_GPL(svc_xprt_names);
1341 /*----------------------------------------------------------------------------*/
1343 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1345 unsigned int pidx = (unsigned int)*pos;
1346 struct svc_serv *serv = m->private;
1348 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1350 if (!pidx)
1351 return SEQ_START_TOKEN;
1352 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1355 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1357 struct svc_pool *pool = p;
1358 struct svc_serv *serv = m->private;
1360 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1362 if (p == SEQ_START_TOKEN) {
1363 pool = &serv->sv_pools[0];
1364 } else {
1365 unsigned int pidx = (pool - &serv->sv_pools[0]);
1366 if (pidx < serv->sv_nrpools-1)
1367 pool = &serv->sv_pools[pidx+1];
1368 else
1369 pool = NULL;
1371 ++*pos;
1372 return pool;
1375 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1379 static int svc_pool_stats_show(struct seq_file *m, void *p)
1381 struct svc_pool *pool = p;
1383 if (p == SEQ_START_TOKEN) {
1384 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1385 return 0;
1388 seq_printf(m, "%u %lu %lu %lu %lu\n",
1389 pool->sp_id,
1390 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1391 pool->sp_stats.sockets_queued,
1392 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1393 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1395 return 0;
1398 static const struct seq_operations svc_pool_stats_seq_ops = {
1399 .start = svc_pool_stats_start,
1400 .next = svc_pool_stats_next,
1401 .stop = svc_pool_stats_stop,
1402 .show = svc_pool_stats_show,
1405 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1407 int err;
1409 err = seq_open(file, &svc_pool_stats_seq_ops);
1410 if (!err)
1411 ((struct seq_file *) file->private_data)->private = serv;
1412 return err;
1414 EXPORT_SYMBOL(svc_pool_stats_open);
1416 /*----------------------------------------------------------------------------*/