1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
4 static struct edac_pci_ctl_info
*amd64_ctl_pci
;
6 static int report_gart_errors
;
7 module_param(report_gart_errors
, int, 0644);
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
13 static int ecc_enable_override
;
14 module_param(ecc_enable_override
, int, 0644);
16 static struct msr __percpu
*msrs
;
19 * count successfully initialized driver instances for setup_pci_device()
21 static atomic_t drv_instances
= ATOMIC_INIT(0);
23 /* Per-node driver instances */
24 static struct mem_ctl_info
**mcis
;
25 static struct ecc_settings
**ecc_stngs
;
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
32 *FIXME: Produce a better mapping/linearisation.
34 static const struct scrubrate
{
35 u32 scrubval
; /* bit pattern for scrub rate */
36 u32 bandwidth
; /* bandwidth consumed (bytes/sec) */
38 { 0x01, 1600000000UL},
60 { 0x00, 0UL}, /* scrubbing off */
63 int __amd64_read_pci_cfg_dword(struct pci_dev
*pdev
, int offset
,
64 u32
*val
, const char *func
)
68 err
= pci_read_config_dword(pdev
, offset
, val
);
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func
, PCI_FUNC(pdev
->devfn
), offset
);
76 int __amd64_write_pci_cfg_dword(struct pci_dev
*pdev
, int offset
,
77 u32 val
, const char *func
)
81 err
= pci_write_config_dword(pdev
, offset
, val
);
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func
, PCI_FUNC(pdev
->devfn
), offset
);
91 * Depending on the family, F2 DCT reads need special handling:
93 * K8: has a single DCT only
95 * F10h: each DCT has its own set of regs
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
101 * F16h: has only 1 DCT
103 static int k8_read_dct_pci_cfg(struct amd64_pvt
*pvt
, int addr
, u32
*val
,
109 return __amd64_read_pci_cfg_dword(pvt
->F2
, addr
, val
, func
);
112 static int f10_read_dct_pci_cfg(struct amd64_pvt
*pvt
, int addr
, u32
*val
,
115 return __amd64_read_pci_cfg_dword(pvt
->F2
, addr
, val
, func
);
119 * Select DCT to which PCI cfg accesses are routed
121 static void f15h_select_dct(struct amd64_pvt
*pvt
, u8 dct
)
125 amd64_read_pci_cfg(pvt
->F1
, DCT_CFG_SEL
, ®
);
126 reg
&= (pvt
->model
>= 0x30) ? ~3 : ~1;
128 amd64_write_pci_cfg(pvt
->F1
, DCT_CFG_SEL
, reg
);
131 static int f15_read_dct_pci_cfg(struct amd64_pvt
*pvt
, int addr
, u32
*val
,
136 /* For F15 M30h, the second dct is DCT 3, refer to BKDG Section 2.10 */
137 if (addr
>= 0x140 && addr
<= 0x1a0) {
138 dct
= (pvt
->model
>= 0x30) ? 3 : 1;
142 f15h_select_dct(pvt
, dct
);
144 return __amd64_read_pci_cfg_dword(pvt
->F2
, addr
, val
, func
);
148 * Memory scrubber control interface. For K8, memory scrubbing is handled by
149 * hardware and can involve L2 cache, dcache as well as the main memory. With
150 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
153 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
154 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
155 * bytes/sec for the setting.
157 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
158 * other archs, we might not have access to the caches directly.
162 * scan the scrub rate mapping table for a close or matching bandwidth value to
163 * issue. If requested is too big, then use last maximum value found.
165 static int __amd64_set_scrub_rate(struct pci_dev
*ctl
, u32 new_bw
, u32 min_rate
)
171 * map the configured rate (new_bw) to a value specific to the AMD64
172 * memory controller and apply to register. Search for the first
173 * bandwidth entry that is greater or equal than the setting requested
174 * and program that. If at last entry, turn off DRAM scrubbing.
176 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
177 * by falling back to the last element in scrubrates[].
179 for (i
= 0; i
< ARRAY_SIZE(scrubrates
) - 1; i
++) {
181 * skip scrub rates which aren't recommended
182 * (see F10 BKDG, F3x58)
184 if (scrubrates
[i
].scrubval
< min_rate
)
187 if (scrubrates
[i
].bandwidth
<= new_bw
)
191 scrubval
= scrubrates
[i
].scrubval
;
193 pci_write_bits32(ctl
, SCRCTRL
, scrubval
, 0x001F);
196 return scrubrates
[i
].bandwidth
;
201 static int amd64_set_scrub_rate(struct mem_ctl_info
*mci
, u32 bw
)
203 struct amd64_pvt
*pvt
= mci
->pvt_info
;
204 u32 min_scrubrate
= 0x5;
210 if (pvt
->fam
== 0x15 && pvt
->model
< 0x10)
211 f15h_select_dct(pvt
, 0);
213 return __amd64_set_scrub_rate(pvt
->F3
, bw
, min_scrubrate
);
216 static int amd64_get_scrub_rate(struct mem_ctl_info
*mci
)
218 struct amd64_pvt
*pvt
= mci
->pvt_info
;
220 int i
, retval
= -EINVAL
;
223 if (pvt
->fam
== 0x15 && pvt
->model
< 0x10)
224 f15h_select_dct(pvt
, 0);
226 amd64_read_pci_cfg(pvt
->F3
, SCRCTRL
, &scrubval
);
228 scrubval
= scrubval
& 0x001F;
230 for (i
= 0; i
< ARRAY_SIZE(scrubrates
); i
++) {
231 if (scrubrates
[i
].scrubval
== scrubval
) {
232 retval
= scrubrates
[i
].bandwidth
;
240 * returns true if the SysAddr given by sys_addr matches the
241 * DRAM base/limit associated with node_id
243 static bool amd64_base_limit_match(struct amd64_pvt
*pvt
, u64 sys_addr
,
248 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
249 * all ones if the most significant implemented address bit is 1.
250 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
251 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
252 * Application Programming.
254 addr
= sys_addr
& 0x000000ffffffffffull
;
256 return ((addr
>= get_dram_base(pvt
, nid
)) &&
257 (addr
<= get_dram_limit(pvt
, nid
)));
261 * Attempt to map a SysAddr to a node. On success, return a pointer to the
262 * mem_ctl_info structure for the node that the SysAddr maps to.
264 * On failure, return NULL.
266 static struct mem_ctl_info
*find_mc_by_sys_addr(struct mem_ctl_info
*mci
,
269 struct amd64_pvt
*pvt
;
274 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
275 * 3.4.4.2) registers to map the SysAddr to a node ID.
280 * The value of this field should be the same for all DRAM Base
281 * registers. Therefore we arbitrarily choose to read it from the
282 * register for node 0.
284 intlv_en
= dram_intlv_en(pvt
, 0);
287 for (node_id
= 0; node_id
< DRAM_RANGES
; node_id
++) {
288 if (amd64_base_limit_match(pvt
, sys_addr
, node_id
))
294 if (unlikely((intlv_en
!= 0x01) &&
295 (intlv_en
!= 0x03) &&
296 (intlv_en
!= 0x07))) {
297 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en
);
301 bits
= (((u32
) sys_addr
) >> 12) & intlv_en
;
303 for (node_id
= 0; ; ) {
304 if ((dram_intlv_sel(pvt
, node_id
) & intlv_en
) == bits
)
305 break; /* intlv_sel field matches */
307 if (++node_id
>= DRAM_RANGES
)
311 /* sanity test for sys_addr */
312 if (unlikely(!amd64_base_limit_match(pvt
, sys_addr
, node_id
))) {
313 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
314 "range for node %d with node interleaving enabled.\n",
315 __func__
, sys_addr
, node_id
);
320 return edac_mc_find((int)node_id
);
323 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
324 (unsigned long)sys_addr
);
330 * compute the CS base address of the @csrow on the DRAM controller @dct.
331 * For details see F2x[5C:40] in the processor's BKDG
333 static void get_cs_base_and_mask(struct amd64_pvt
*pvt
, int csrow
, u8 dct
,
334 u64
*base
, u64
*mask
)
336 u64 csbase
, csmask
, base_bits
, mask_bits
;
339 if (pvt
->fam
== 0xf && pvt
->ext_model
< K8_REV_F
) {
340 csbase
= pvt
->csels
[dct
].csbases
[csrow
];
341 csmask
= pvt
->csels
[dct
].csmasks
[csrow
];
342 base_bits
= GENMASK(21, 31) | GENMASK(9, 15);
343 mask_bits
= GENMASK(21, 29) | GENMASK(9, 15);
347 * F16h and F15h, models 30h and later need two addr_shift values:
348 * 8 for high and 6 for low (cf. F16h BKDG).
350 } else if (pvt
->fam
== 0x16 ||
351 (pvt
->fam
== 0x15 && pvt
->model
>= 0x30)) {
352 csbase
= pvt
->csels
[dct
].csbases
[csrow
];
353 csmask
= pvt
->csels
[dct
].csmasks
[csrow
>> 1];
355 *base
= (csbase
& GENMASK(5, 15)) << 6;
356 *base
|= (csbase
& GENMASK(19, 30)) << 8;
359 /* poke holes for the csmask */
360 *mask
&= ~((GENMASK(5, 15) << 6) |
361 (GENMASK(19, 30) << 8));
363 *mask
|= (csmask
& GENMASK(5, 15)) << 6;
364 *mask
|= (csmask
& GENMASK(19, 30)) << 8;
368 csbase
= pvt
->csels
[dct
].csbases
[csrow
];
369 csmask
= pvt
->csels
[dct
].csmasks
[csrow
>> 1];
372 if (pvt
->fam
== 0x15)
373 base_bits
= mask_bits
= GENMASK(19,30) | GENMASK(5,13);
375 base_bits
= mask_bits
= GENMASK(19,28) | GENMASK(5,13);
378 *base
= (csbase
& base_bits
) << addr_shift
;
381 /* poke holes for the csmask */
382 *mask
&= ~(mask_bits
<< addr_shift
);
384 *mask
|= (csmask
& mask_bits
) << addr_shift
;
387 #define for_each_chip_select(i, dct, pvt) \
388 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
390 #define chip_select_base(i, dct, pvt) \
391 pvt->csels[dct].csbases[i]
393 #define for_each_chip_select_mask(i, dct, pvt) \
394 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
397 * @input_addr is an InputAddr associated with the node given by mci. Return the
398 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
400 static int input_addr_to_csrow(struct mem_ctl_info
*mci
, u64 input_addr
)
402 struct amd64_pvt
*pvt
;
408 for_each_chip_select(csrow
, 0, pvt
) {
409 if (!csrow_enabled(csrow
, 0, pvt
))
412 get_cs_base_and_mask(pvt
, csrow
, 0, &base
, &mask
);
416 if ((input_addr
& mask
) == (base
& mask
)) {
417 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
418 (unsigned long)input_addr
, csrow
,
424 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
425 (unsigned long)input_addr
, pvt
->mc_node_id
);
431 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
432 * for the node represented by mci. Info is passed back in *hole_base,
433 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
434 * info is invalid. Info may be invalid for either of the following reasons:
436 * - The revision of the node is not E or greater. In this case, the DRAM Hole
437 * Address Register does not exist.
439 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
440 * indicating that its contents are not valid.
442 * The values passed back in *hole_base, *hole_offset, and *hole_size are
443 * complete 32-bit values despite the fact that the bitfields in the DHAR
444 * only represent bits 31-24 of the base and offset values.
446 int amd64_get_dram_hole_info(struct mem_ctl_info
*mci
, u64
*hole_base
,
447 u64
*hole_offset
, u64
*hole_size
)
449 struct amd64_pvt
*pvt
= mci
->pvt_info
;
451 /* only revE and later have the DRAM Hole Address Register */
452 if (pvt
->fam
== 0xf && pvt
->ext_model
< K8_REV_E
) {
453 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
454 pvt
->ext_model
, pvt
->mc_node_id
);
458 /* valid for Fam10h and above */
459 if (pvt
->fam
>= 0x10 && !dhar_mem_hoist_valid(pvt
)) {
460 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
464 if (!dhar_valid(pvt
)) {
465 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
470 /* This node has Memory Hoisting */
472 /* +------------------+--------------------+--------------------+-----
473 * | memory | DRAM hole | relocated |
474 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
476 * | | | [0x100000000, |
477 * | | | (0x100000000+ |
478 * | | | (0xffffffff-x))] |
479 * +------------------+--------------------+--------------------+-----
481 * Above is a diagram of physical memory showing the DRAM hole and the
482 * relocated addresses from the DRAM hole. As shown, the DRAM hole
483 * starts at address x (the base address) and extends through address
484 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
485 * addresses in the hole so that they start at 0x100000000.
488 *hole_base
= dhar_base(pvt
);
489 *hole_size
= (1ULL << 32) - *hole_base
;
491 *hole_offset
= (pvt
->fam
> 0xf) ? f10_dhar_offset(pvt
)
492 : k8_dhar_offset(pvt
);
494 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
495 pvt
->mc_node_id
, (unsigned long)*hole_base
,
496 (unsigned long)*hole_offset
, (unsigned long)*hole_size
);
500 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info
);
503 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
504 * assumed that sys_addr maps to the node given by mci.
506 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
507 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
508 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
509 * then it is also involved in translating a SysAddr to a DramAddr. Sections
510 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
511 * These parts of the documentation are unclear. I interpret them as follows:
513 * When node n receives a SysAddr, it processes the SysAddr as follows:
515 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
516 * Limit registers for node n. If the SysAddr is not within the range
517 * specified by the base and limit values, then node n ignores the Sysaddr
518 * (since it does not map to node n). Otherwise continue to step 2 below.
520 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
521 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
522 * the range of relocated addresses (starting at 0x100000000) from the DRAM
523 * hole. If not, skip to step 3 below. Else get the value of the
524 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
525 * offset defined by this value from the SysAddr.
527 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
528 * Base register for node n. To obtain the DramAddr, subtract the base
529 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
531 static u64
sys_addr_to_dram_addr(struct mem_ctl_info
*mci
, u64 sys_addr
)
533 struct amd64_pvt
*pvt
= mci
->pvt_info
;
534 u64 dram_base
, hole_base
, hole_offset
, hole_size
, dram_addr
;
537 dram_base
= get_dram_base(pvt
, pvt
->mc_node_id
);
539 ret
= amd64_get_dram_hole_info(mci
, &hole_base
, &hole_offset
,
542 if ((sys_addr
>= (1ULL << 32)) &&
543 (sys_addr
< ((1ULL << 32) + hole_size
))) {
544 /* use DHAR to translate SysAddr to DramAddr */
545 dram_addr
= sys_addr
- hole_offset
;
547 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
548 (unsigned long)sys_addr
,
549 (unsigned long)dram_addr
);
556 * Translate the SysAddr to a DramAddr as shown near the start of
557 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
558 * only deals with 40-bit values. Therefore we discard bits 63-40 of
559 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
560 * discard are all 1s. Otherwise the bits we discard are all 0s. See
561 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
562 * Programmer's Manual Volume 1 Application Programming.
564 dram_addr
= (sys_addr
& GENMASK(0, 39)) - dram_base
;
566 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
567 (unsigned long)sys_addr
, (unsigned long)dram_addr
);
572 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
573 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
574 * for node interleaving.
576 static int num_node_interleave_bits(unsigned intlv_en
)
578 static const int intlv_shift_table
[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
581 BUG_ON(intlv_en
> 7);
582 n
= intlv_shift_table
[intlv_en
];
586 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
587 static u64
dram_addr_to_input_addr(struct mem_ctl_info
*mci
, u64 dram_addr
)
589 struct amd64_pvt
*pvt
;
596 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
597 * concerning translating a DramAddr to an InputAddr.
599 intlv_shift
= num_node_interleave_bits(dram_intlv_en(pvt
, 0));
600 input_addr
= ((dram_addr
>> intlv_shift
) & GENMASK(12, 35)) +
603 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
604 intlv_shift
, (unsigned long)dram_addr
,
605 (unsigned long)input_addr
);
611 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
612 * assumed that @sys_addr maps to the node given by mci.
614 static u64
sys_addr_to_input_addr(struct mem_ctl_info
*mci
, u64 sys_addr
)
619 dram_addr_to_input_addr(mci
, sys_addr_to_dram_addr(mci
, sys_addr
));
621 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
622 (unsigned long)sys_addr
, (unsigned long)input_addr
);
627 /* Map the Error address to a PAGE and PAGE OFFSET. */
628 static inline void error_address_to_page_and_offset(u64 error_address
,
629 struct err_info
*err
)
631 err
->page
= (u32
) (error_address
>> PAGE_SHIFT
);
632 err
->offset
= ((u32
) error_address
) & ~PAGE_MASK
;
636 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
637 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
638 * of a node that detected an ECC memory error. mci represents the node that
639 * the error address maps to (possibly different from the node that detected
640 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
643 static int sys_addr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
)
647 csrow
= input_addr_to_csrow(mci
, sys_addr_to_input_addr(mci
, sys_addr
));
650 amd64_mc_err(mci
, "Failed to translate InputAddr to csrow for "
651 "address 0x%lx\n", (unsigned long)sys_addr
);
655 static int get_channel_from_ecc_syndrome(struct mem_ctl_info
*, u16
);
658 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
661 static unsigned long amd64_determine_edac_cap(struct amd64_pvt
*pvt
)
664 unsigned long edac_cap
= EDAC_FLAG_NONE
;
666 bit
= (pvt
->fam
> 0xf || pvt
->ext_model
>= K8_REV_F
)
670 if (pvt
->dclr0
& BIT(bit
))
671 edac_cap
= EDAC_FLAG_SECDED
;
676 static void amd64_debug_display_dimm_sizes(struct amd64_pvt
*, u8
);
678 static void amd64_dump_dramcfg_low(struct amd64_pvt
*pvt
, u32 dclr
, int chan
)
680 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan
, dclr
);
682 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
683 (dclr
& BIT(16)) ? "un" : "",
684 (dclr
& BIT(19)) ? "yes" : "no");
686 edac_dbg(1, " PAR/ERR parity: %s\n",
687 (dclr
& BIT(8)) ? "enabled" : "disabled");
689 if (pvt
->fam
== 0x10)
690 edac_dbg(1, " DCT 128bit mode width: %s\n",
691 (dclr
& BIT(11)) ? "128b" : "64b");
693 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
694 (dclr
& BIT(12)) ? "yes" : "no",
695 (dclr
& BIT(13)) ? "yes" : "no",
696 (dclr
& BIT(14)) ? "yes" : "no",
697 (dclr
& BIT(15)) ? "yes" : "no");
700 /* Display and decode various NB registers for debug purposes. */
701 static void dump_misc_regs(struct amd64_pvt
*pvt
)
703 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt
->nbcap
);
705 edac_dbg(1, " NB two channel DRAM capable: %s\n",
706 (pvt
->nbcap
& NBCAP_DCT_DUAL
) ? "yes" : "no");
708 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
709 (pvt
->nbcap
& NBCAP_SECDED
) ? "yes" : "no",
710 (pvt
->nbcap
& NBCAP_CHIPKILL
) ? "yes" : "no");
712 amd64_dump_dramcfg_low(pvt
, pvt
->dclr0
, 0);
714 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt
->online_spare
);
716 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
717 pvt
->dhar
, dhar_base(pvt
),
718 (pvt
->fam
== 0xf) ? k8_dhar_offset(pvt
)
719 : f10_dhar_offset(pvt
));
721 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt
) ? "yes" : "no");
723 amd64_debug_display_dimm_sizes(pvt
, 0);
725 /* everything below this point is Fam10h and above */
729 amd64_debug_display_dimm_sizes(pvt
, 1);
731 amd64_info("using %s syndromes.\n", ((pvt
->ecc_sym_sz
== 8) ? "x8" : "x4"));
733 /* Only if NOT ganged does dclr1 have valid info */
734 if (!dct_ganging_enabled(pvt
))
735 amd64_dump_dramcfg_low(pvt
, pvt
->dclr1
, 1);
739 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
741 static void prep_chip_selects(struct amd64_pvt
*pvt
)
743 if (pvt
->fam
== 0xf && pvt
->ext_model
< K8_REV_F
) {
744 pvt
->csels
[0].b_cnt
= pvt
->csels
[1].b_cnt
= 8;
745 pvt
->csels
[0].m_cnt
= pvt
->csels
[1].m_cnt
= 8;
746 } else if (pvt
->fam
== 0x15 && pvt
->model
>= 0x30) {
747 pvt
->csels
[0].b_cnt
= pvt
->csels
[1].b_cnt
= 4;
748 pvt
->csels
[0].m_cnt
= pvt
->csels
[1].m_cnt
= 2;
750 pvt
->csels
[0].b_cnt
= pvt
->csels
[1].b_cnt
= 8;
751 pvt
->csels
[0].m_cnt
= pvt
->csels
[1].m_cnt
= 4;
756 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
758 static void read_dct_base_mask(struct amd64_pvt
*pvt
)
762 prep_chip_selects(pvt
);
764 for_each_chip_select(cs
, 0, pvt
) {
765 int reg0
= DCSB0
+ (cs
* 4);
766 int reg1
= DCSB1
+ (cs
* 4);
767 u32
*base0
= &pvt
->csels
[0].csbases
[cs
];
768 u32
*base1
= &pvt
->csels
[1].csbases
[cs
];
770 if (!amd64_read_dct_pci_cfg(pvt
, reg0
, base0
))
771 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
774 if (pvt
->fam
== 0xf || dct_ganging_enabled(pvt
))
777 if (!amd64_read_dct_pci_cfg(pvt
, reg1
, base1
))
778 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
782 for_each_chip_select_mask(cs
, 0, pvt
) {
783 int reg0
= DCSM0
+ (cs
* 4);
784 int reg1
= DCSM1
+ (cs
* 4);
785 u32
*mask0
= &pvt
->csels
[0].csmasks
[cs
];
786 u32
*mask1
= &pvt
->csels
[1].csmasks
[cs
];
788 if (!amd64_read_dct_pci_cfg(pvt
, reg0
, mask0
))
789 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
792 if (pvt
->fam
== 0xf || dct_ganging_enabled(pvt
))
795 if (!amd64_read_dct_pci_cfg(pvt
, reg1
, mask1
))
796 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
801 static enum mem_type
amd64_determine_memory_type(struct amd64_pvt
*pvt
, int cs
)
805 /* F15h supports only DDR3 */
806 if (pvt
->fam
>= 0x15)
807 type
= (pvt
->dclr0
& BIT(16)) ? MEM_DDR3
: MEM_RDDR3
;
808 else if (pvt
->fam
== 0x10 || pvt
->ext_model
>= K8_REV_F
) {
809 if (pvt
->dchr0
& DDR3_MODE
)
810 type
= (pvt
->dclr0
& BIT(16)) ? MEM_DDR3
: MEM_RDDR3
;
812 type
= (pvt
->dclr0
& BIT(16)) ? MEM_DDR2
: MEM_RDDR2
;
814 type
= (pvt
->dclr0
& BIT(18)) ? MEM_DDR
: MEM_RDDR
;
817 amd64_info("CS%d: %s\n", cs
, edac_mem_types
[type
]);
822 /* Get the number of DCT channels the memory controller is using. */
823 static int k8_early_channel_count(struct amd64_pvt
*pvt
)
827 if (pvt
->ext_model
>= K8_REV_F
)
828 /* RevF (NPT) and later */
829 flag
= pvt
->dclr0
& WIDTH_128
;
831 /* RevE and earlier */
832 flag
= pvt
->dclr0
& REVE_WIDTH_128
;
837 return (flag
) ? 2 : 1;
840 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
841 static u64
get_error_address(struct amd64_pvt
*pvt
, struct mce
*m
)
847 if (pvt
->fam
== 0xf) {
852 addr
= m
->addr
& GENMASK(start_bit
, end_bit
);
855 * Erratum 637 workaround
857 if (pvt
->fam
== 0x15) {
858 struct amd64_pvt
*pvt
;
859 u64 cc6_base
, tmp_addr
;
864 if ((addr
& GENMASK(24, 47)) >> 24 != 0x00fdf7)
867 mce_nid
= amd_get_nb_id(m
->extcpu
);
868 pvt
= mcis
[mce_nid
]->pvt_info
;
870 amd64_read_pci_cfg(pvt
->F1
, DRAM_LOCAL_NODE_LIM
, &tmp
);
871 intlv_en
= tmp
>> 21 & 0x7;
873 /* add [47:27] + 3 trailing bits */
874 cc6_base
= (tmp
& GENMASK(0, 20)) << 3;
876 /* reverse and add DramIntlvEn */
877 cc6_base
|= intlv_en
^ 0x7;
883 return cc6_base
| (addr
& GENMASK(0, 23));
885 amd64_read_pci_cfg(pvt
->F1
, DRAM_LOCAL_NODE_BASE
, &tmp
);
888 tmp_addr
= (addr
& GENMASK(12, 23)) << __fls(intlv_en
+ 1);
890 /* OR DramIntlvSel into bits [14:12] */
891 tmp_addr
|= (tmp
& GENMASK(21, 23)) >> 9;
893 /* add remaining [11:0] bits from original MC4_ADDR */
894 tmp_addr
|= addr
& GENMASK(0, 11);
896 return cc6_base
| tmp_addr
;
902 static struct pci_dev
*pci_get_related_function(unsigned int vendor
,
904 struct pci_dev
*related
)
906 struct pci_dev
*dev
= NULL
;
908 while ((dev
= pci_get_device(vendor
, device
, dev
))) {
909 if (pci_domain_nr(dev
->bus
) == pci_domain_nr(related
->bus
) &&
910 (dev
->bus
->number
== related
->bus
->number
) &&
911 (PCI_SLOT(dev
->devfn
) == PCI_SLOT(related
->devfn
)))
918 static void read_dram_base_limit_regs(struct amd64_pvt
*pvt
, unsigned range
)
920 struct amd_northbridge
*nb
;
921 struct pci_dev
*f1
= NULL
;
922 unsigned int pci_func
;
923 int off
= range
<< 3;
926 amd64_read_pci_cfg(pvt
->F1
, DRAM_BASE_LO
+ off
, &pvt
->ranges
[range
].base
.lo
);
927 amd64_read_pci_cfg(pvt
->F1
, DRAM_LIMIT_LO
+ off
, &pvt
->ranges
[range
].lim
.lo
);
932 if (!dram_rw(pvt
, range
))
935 amd64_read_pci_cfg(pvt
->F1
, DRAM_BASE_HI
+ off
, &pvt
->ranges
[range
].base
.hi
);
936 amd64_read_pci_cfg(pvt
->F1
, DRAM_LIMIT_HI
+ off
, &pvt
->ranges
[range
].lim
.hi
);
938 /* F15h: factor in CC6 save area by reading dst node's limit reg */
939 if (pvt
->fam
!= 0x15)
942 nb
= node_to_amd_nb(dram_dst_node(pvt
, range
));
946 pci_func
= (pvt
->model
== 0x30) ? PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
947 : PCI_DEVICE_ID_AMD_15H_NB_F1
;
949 f1
= pci_get_related_function(nb
->misc
->vendor
, pci_func
, nb
->misc
);
953 amd64_read_pci_cfg(f1
, DRAM_LOCAL_NODE_LIM
, &llim
);
955 pvt
->ranges
[range
].lim
.lo
&= GENMASK(0, 15);
958 pvt
->ranges
[range
].lim
.lo
|= ((llim
& 0x1fff) << 3 | 0x7) << 16;
960 pvt
->ranges
[range
].lim
.hi
&= GENMASK(0, 7);
963 pvt
->ranges
[range
].lim
.hi
|= llim
>> 13;
968 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
,
969 struct err_info
*err
)
971 struct amd64_pvt
*pvt
= mci
->pvt_info
;
973 error_address_to_page_and_offset(sys_addr
, err
);
976 * Find out which node the error address belongs to. This may be
977 * different from the node that detected the error.
979 err
->src_mci
= find_mc_by_sys_addr(mci
, sys_addr
);
981 amd64_mc_err(mci
, "failed to map error addr 0x%lx to a node\n",
982 (unsigned long)sys_addr
);
983 err
->err_code
= ERR_NODE
;
987 /* Now map the sys_addr to a CSROW */
988 err
->csrow
= sys_addr_to_csrow(err
->src_mci
, sys_addr
);
989 if (err
->csrow
< 0) {
990 err
->err_code
= ERR_CSROW
;
994 /* CHIPKILL enabled */
995 if (pvt
->nbcfg
& NBCFG_CHIPKILL
) {
996 err
->channel
= get_channel_from_ecc_syndrome(mci
, err
->syndrome
);
997 if (err
->channel
< 0) {
999 * Syndrome didn't map, so we don't know which of the
1000 * 2 DIMMs is in error. So we need to ID 'both' of them
1003 amd64_mc_warn(err
->src_mci
, "unknown syndrome 0x%04x - "
1004 "possible error reporting race\n",
1006 err
->err_code
= ERR_CHANNEL
;
1011 * non-chipkill ecc mode
1013 * The k8 documentation is unclear about how to determine the
1014 * channel number when using non-chipkill memory. This method
1015 * was obtained from email communication with someone at AMD.
1016 * (Wish the email was placed in this comment - norsk)
1018 err
->channel
= ((sys_addr
& BIT(3)) != 0);
1022 static int ddr2_cs_size(unsigned i
, bool dct_width
)
1028 else if (!(i
& 0x1))
1031 shift
= (i
+ 1) >> 1;
1033 return 128 << (shift
+ !!dct_width
);
1036 static int k8_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1039 u32 dclr
= dct
? pvt
->dclr1
: pvt
->dclr0
;
1041 if (pvt
->ext_model
>= K8_REV_F
) {
1042 WARN_ON(cs_mode
> 11);
1043 return ddr2_cs_size(cs_mode
, dclr
& WIDTH_128
);
1045 else if (pvt
->ext_model
>= K8_REV_D
) {
1047 WARN_ON(cs_mode
> 10);
1050 * the below calculation, besides trying to win an obfuscated C
1051 * contest, maps cs_mode values to DIMM chip select sizes. The
1054 * cs_mode CS size (mb)
1055 * ======= ============
1068 * Basically, it calculates a value with which to shift the
1069 * smallest CS size of 32MB.
1071 * ddr[23]_cs_size have a similar purpose.
1073 diff
= cs_mode
/3 + (unsigned)(cs_mode
> 5);
1075 return 32 << (cs_mode
- diff
);
1078 WARN_ON(cs_mode
> 6);
1079 return 32 << cs_mode
;
1084 * Get the number of DCT channels in use.
1087 * number of Memory Channels in operation
1089 * contents of the DCL0_LOW register
1091 static int f1x_early_channel_count(struct amd64_pvt
*pvt
)
1093 int i
, j
, channels
= 0;
1095 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1096 if (pvt
->fam
== 0x10 && (pvt
->dclr0
& WIDTH_128
))
1100 * Need to check if in unganged mode: In such, there are 2 channels,
1101 * but they are not in 128 bit mode and thus the above 'dclr0' status
1104 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1105 * their CSEnable bit on. If so, then SINGLE DIMM case.
1107 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1110 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1111 * is more than just one DIMM present in unganged mode. Need to check
1112 * both controllers since DIMMs can be placed in either one.
1114 for (i
= 0; i
< 2; i
++) {
1115 u32 dbam
= (i
? pvt
->dbam1
: pvt
->dbam0
);
1117 for (j
= 0; j
< 4; j
++) {
1118 if (DBAM_DIMM(j
, dbam
) > 0) {
1128 amd64_info("MCT channel count: %d\n", channels
);
1133 static int ddr3_cs_size(unsigned i
, bool dct_width
)
1138 if (i
== 0 || i
== 3 || i
== 4)
1144 else if (!(i
& 0x1))
1147 shift
= (i
+ 1) >> 1;
1150 cs_size
= (128 * (1 << !!dct_width
)) << shift
;
1155 static int f10_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1158 u32 dclr
= dct
? pvt
->dclr1
: pvt
->dclr0
;
1160 WARN_ON(cs_mode
> 11);
1162 if (pvt
->dchr0
& DDR3_MODE
|| pvt
->dchr1
& DDR3_MODE
)
1163 return ddr3_cs_size(cs_mode
, dclr
& WIDTH_128
);
1165 return ddr2_cs_size(cs_mode
, dclr
& WIDTH_128
);
1169 * F15h supports only 64bit DCT interfaces
1171 static int f15_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1174 WARN_ON(cs_mode
> 12);
1176 return ddr3_cs_size(cs_mode
, false);
1180 * F16h and F15h model 30h have only limited cs_modes.
1182 static int f16_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1185 WARN_ON(cs_mode
> 12);
1187 if (cs_mode
== 6 || cs_mode
== 8 ||
1188 cs_mode
== 9 || cs_mode
== 12)
1191 return ddr3_cs_size(cs_mode
, false);
1194 static void read_dram_ctl_register(struct amd64_pvt
*pvt
)
1197 if (pvt
->fam
== 0xf)
1200 if (!amd64_read_dct_pci_cfg(pvt
, DCT_SEL_LO
, &pvt
->dct_sel_lo
)) {
1201 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1202 pvt
->dct_sel_lo
, dct_sel_baseaddr(pvt
));
1204 edac_dbg(0, " DCTs operate in %s mode\n",
1205 (dct_ganging_enabled(pvt
) ? "ganged" : "unganged"));
1207 if (!dct_ganging_enabled(pvt
))
1208 edac_dbg(0, " Address range split per DCT: %s\n",
1209 (dct_high_range_enabled(pvt
) ? "yes" : "no"));
1211 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1212 (dct_data_intlv_enabled(pvt
) ? "enabled" : "disabled"),
1213 (dct_memory_cleared(pvt
) ? "yes" : "no"));
1215 edac_dbg(0, " channel interleave: %s, "
1216 "interleave bits selector: 0x%x\n",
1217 (dct_interleave_enabled(pvt
) ? "enabled" : "disabled"),
1218 dct_sel_interleave_addr(pvt
));
1221 amd64_read_dct_pci_cfg(pvt
, DCT_SEL_HI
, &pvt
->dct_sel_hi
);
1225 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1226 * 2.10.12 Memory Interleaving Modes).
1228 static u8
f15_m30h_determine_channel(struct amd64_pvt
*pvt
, u64 sys_addr
,
1229 u8 intlv_en
, int num_dcts_intlv
,
1236 return (u8
)(dct_sel
);
1238 if (num_dcts_intlv
== 2) {
1239 select
= (sys_addr
>> 8) & 0x3;
1240 channel
= select
? 0x3 : 0;
1241 } else if (num_dcts_intlv
== 4)
1242 channel
= (sys_addr
>> 8) & 0x7;
1248 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1249 * Interleaving Modes.
1251 static u8
f1x_determine_channel(struct amd64_pvt
*pvt
, u64 sys_addr
,
1252 bool hi_range_sel
, u8 intlv_en
)
1254 u8 dct_sel_high
= (pvt
->dct_sel_lo
>> 1) & 1;
1256 if (dct_ganging_enabled(pvt
))
1260 return dct_sel_high
;
1263 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1265 if (dct_interleave_enabled(pvt
)) {
1266 u8 intlv_addr
= dct_sel_interleave_addr(pvt
);
1268 /* return DCT select function: 0=DCT0, 1=DCT1 */
1270 return sys_addr
>> 6 & 1;
1272 if (intlv_addr
& 0x2) {
1273 u8 shift
= intlv_addr
& 0x1 ? 9 : 6;
1274 u32 temp
= hweight_long((u32
) ((sys_addr
>> 16) & 0x1F)) % 2;
1276 return ((sys_addr
>> shift
) & 1) ^ temp
;
1279 return (sys_addr
>> (12 + hweight8(intlv_en
))) & 1;
1282 if (dct_high_range_enabled(pvt
))
1283 return ~dct_sel_high
& 1;
1288 /* Convert the sys_addr to the normalized DCT address */
1289 static u64
f1x_get_norm_dct_addr(struct amd64_pvt
*pvt
, u8 range
,
1290 u64 sys_addr
, bool hi_rng
,
1291 u32 dct_sel_base_addr
)
1294 u64 dram_base
= get_dram_base(pvt
, range
);
1295 u64 hole_off
= f10_dhar_offset(pvt
);
1296 u64 dct_sel_base_off
= (pvt
->dct_sel_hi
& 0xFFFFFC00) << 16;
1301 * base address of high range is below 4Gb
1302 * (bits [47:27] at [31:11])
1303 * DRAM address space on this DCT is hoisted above 4Gb &&
1306 * remove hole offset from sys_addr
1308 * remove high range offset from sys_addr
1310 if ((!(dct_sel_base_addr
>> 16) ||
1311 dct_sel_base_addr
< dhar_base(pvt
)) &&
1313 (sys_addr
>= BIT_64(32)))
1314 chan_off
= hole_off
;
1316 chan_off
= dct_sel_base_off
;
1320 * we have a valid hole &&
1325 * remove dram base to normalize to DCT address
1327 if (dhar_valid(pvt
) && (sys_addr
>= BIT_64(32)))
1328 chan_off
= hole_off
;
1330 chan_off
= dram_base
;
1333 return (sys_addr
& GENMASK(6,47)) - (chan_off
& GENMASK(23,47));
1337 * checks if the csrow passed in is marked as SPARED, if so returns the new
1340 static int f10_process_possible_spare(struct amd64_pvt
*pvt
, u8 dct
, int csrow
)
1344 if (online_spare_swap_done(pvt
, dct
) &&
1345 csrow
== online_spare_bad_dramcs(pvt
, dct
)) {
1347 for_each_chip_select(tmp_cs
, dct
, pvt
) {
1348 if (chip_select_base(tmp_cs
, dct
, pvt
) & 0x2) {
1358 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1359 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1362 * -EINVAL: NOT FOUND
1363 * 0..csrow = Chip-Select Row
1365 static int f1x_lookup_addr_in_dct(u64 in_addr
, u8 nid
, u8 dct
)
1367 struct mem_ctl_info
*mci
;
1368 struct amd64_pvt
*pvt
;
1369 u64 cs_base
, cs_mask
;
1370 int cs_found
= -EINVAL
;
1377 pvt
= mci
->pvt_info
;
1379 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr
, dct
);
1381 for_each_chip_select(csrow
, dct
, pvt
) {
1382 if (!csrow_enabled(csrow
, dct
, pvt
))
1385 get_cs_base_and_mask(pvt
, csrow
, dct
, &cs_base
, &cs_mask
);
1387 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1388 csrow
, cs_base
, cs_mask
);
1392 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1393 (in_addr
& cs_mask
), (cs_base
& cs_mask
));
1395 if ((in_addr
& cs_mask
) == (cs_base
& cs_mask
)) {
1396 if (pvt
->fam
== 0x15 && pvt
->model
>= 0x30) {
1400 cs_found
= f10_process_possible_spare(pvt
, dct
, csrow
);
1402 edac_dbg(1, " MATCH csrow=%d\n", cs_found
);
1410 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1411 * swapped with a region located at the bottom of memory so that the GPU can use
1412 * the interleaved region and thus two channels.
1414 static u64
f1x_swap_interleaved_region(struct amd64_pvt
*pvt
, u64 sys_addr
)
1416 u32 swap_reg
, swap_base
, swap_limit
, rgn_size
, tmp_addr
;
1418 if (pvt
->fam
== 0x10) {
1419 /* only revC3 and revE have that feature */
1420 if (pvt
->model
< 4 || (pvt
->model
< 0xa && pvt
->stepping
< 3))
1424 amd64_read_dct_pci_cfg(pvt
, SWAP_INTLV_REG
, &swap_reg
);
1426 if (!(swap_reg
& 0x1))
1429 swap_base
= (swap_reg
>> 3) & 0x7f;
1430 swap_limit
= (swap_reg
>> 11) & 0x7f;
1431 rgn_size
= (swap_reg
>> 20) & 0x7f;
1432 tmp_addr
= sys_addr
>> 27;
1434 if (!(sys_addr
>> 34) &&
1435 (((tmp_addr
>= swap_base
) &&
1436 (tmp_addr
<= swap_limit
)) ||
1437 (tmp_addr
< rgn_size
)))
1438 return sys_addr
^ (u64
)swap_base
<< 27;
1443 /* For a given @dram_range, check if @sys_addr falls within it. */
1444 static int f1x_match_to_this_node(struct amd64_pvt
*pvt
, unsigned range
,
1445 u64 sys_addr
, int *chan_sel
)
1447 int cs_found
= -EINVAL
;
1451 bool high_range
= false;
1453 u8 node_id
= dram_dst_node(pvt
, range
);
1454 u8 intlv_en
= dram_intlv_en(pvt
, range
);
1455 u32 intlv_sel
= dram_intlv_sel(pvt
, range
);
1457 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1458 range
, sys_addr
, get_dram_limit(pvt
, range
));
1460 if (dhar_valid(pvt
) &&
1461 dhar_base(pvt
) <= sys_addr
&&
1462 sys_addr
< BIT_64(32)) {
1463 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1468 if (intlv_en
&& (intlv_sel
!= ((sys_addr
>> 12) & intlv_en
)))
1471 sys_addr
= f1x_swap_interleaved_region(pvt
, sys_addr
);
1473 dct_sel_base
= dct_sel_baseaddr(pvt
);
1476 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1477 * select between DCT0 and DCT1.
1479 if (dct_high_range_enabled(pvt
) &&
1480 !dct_ganging_enabled(pvt
) &&
1481 ((sys_addr
>> 27) >= (dct_sel_base
>> 11)))
1484 channel
= f1x_determine_channel(pvt
, sys_addr
, high_range
, intlv_en
);
1486 chan_addr
= f1x_get_norm_dct_addr(pvt
, range
, sys_addr
,
1487 high_range
, dct_sel_base
);
1489 /* Remove node interleaving, see F1x120 */
1491 chan_addr
= ((chan_addr
>> (12 + hweight8(intlv_en
))) << 12) |
1492 (chan_addr
& 0xfff);
1494 /* remove channel interleave */
1495 if (dct_interleave_enabled(pvt
) &&
1496 !dct_high_range_enabled(pvt
) &&
1497 !dct_ganging_enabled(pvt
)) {
1499 if (dct_sel_interleave_addr(pvt
) != 1) {
1500 if (dct_sel_interleave_addr(pvt
) == 0x3)
1502 chan_addr
= ((chan_addr
>> 10) << 9) |
1503 (chan_addr
& 0x1ff);
1505 /* A[6] or hash 6 */
1506 chan_addr
= ((chan_addr
>> 7) << 6) |
1510 chan_addr
= ((chan_addr
>> 13) << 12) |
1511 (chan_addr
& 0xfff);
1514 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr
);
1516 cs_found
= f1x_lookup_addr_in_dct(chan_addr
, node_id
, channel
);
1519 *chan_sel
= channel
;
1524 static int f15_m30h_match_to_this_node(struct amd64_pvt
*pvt
, unsigned range
,
1525 u64 sys_addr
, int *chan_sel
)
1527 int cs_found
= -EINVAL
;
1528 int num_dcts_intlv
= 0;
1529 u64 chan_addr
, chan_offset
;
1530 u64 dct_base
, dct_limit
;
1531 u32 dct_cont_base_reg
, dct_cont_limit_reg
, tmp
;
1532 u8 channel
, alias_channel
, leg_mmio_hole
, dct_sel
, dct_offset_en
;
1534 u64 dhar_offset
= f10_dhar_offset(pvt
);
1535 u8 intlv_addr
= dct_sel_interleave_addr(pvt
);
1536 u8 node_id
= dram_dst_node(pvt
, range
);
1537 u8 intlv_en
= dram_intlv_en(pvt
, range
);
1539 amd64_read_pci_cfg(pvt
->F1
, DRAM_CONT_BASE
, &dct_cont_base_reg
);
1540 amd64_read_pci_cfg(pvt
->F1
, DRAM_CONT_LIMIT
, &dct_cont_limit_reg
);
1542 dct_offset_en
= (u8
) ((dct_cont_base_reg
>> 3) & BIT(0));
1543 dct_sel
= (u8
) ((dct_cont_base_reg
>> 4) & 0x7);
1545 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1546 range
, sys_addr
, get_dram_limit(pvt
, range
));
1548 if (!(get_dram_base(pvt
, range
) <= sys_addr
) &&
1549 !(get_dram_limit(pvt
, range
) >= sys_addr
))
1552 if (dhar_valid(pvt
) &&
1553 dhar_base(pvt
) <= sys_addr
&&
1554 sys_addr
< BIT_64(32)) {
1555 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1560 /* Verify sys_addr is within DCT Range. */
1561 dct_base
= (u64
) dct_sel_baseaddr(pvt
);
1562 dct_limit
= (dct_cont_limit_reg
>> 11) & 0x1FFF;
1564 if (!(dct_cont_base_reg
& BIT(0)) &&
1565 !(dct_base
<= (sys_addr
>> 27) &&
1566 dct_limit
>= (sys_addr
>> 27)))
1569 /* Verify number of dct's that participate in channel interleaving. */
1570 num_dcts_intlv
= (int) hweight8(intlv_en
);
1572 if (!(num_dcts_intlv
% 2 == 0) || (num_dcts_intlv
> 4))
1575 channel
= f15_m30h_determine_channel(pvt
, sys_addr
, intlv_en
,
1576 num_dcts_intlv
, dct_sel
);
1578 /* Verify we stay within the MAX number of channels allowed */
1579 if (channel
> 4 || channel
< 0)
1582 leg_mmio_hole
= (u8
) (dct_cont_base_reg
>> 1 & BIT(0));
1584 /* Get normalized DCT addr */
1585 if (leg_mmio_hole
&& (sys_addr
>= BIT_64(32)))
1586 chan_offset
= dhar_offset
;
1588 chan_offset
= dct_base
<< 27;
1590 chan_addr
= sys_addr
- chan_offset
;
1592 /* remove channel interleave */
1593 if (num_dcts_intlv
== 2) {
1594 if (intlv_addr
== 0x4)
1595 chan_addr
= ((chan_addr
>> 9) << 8) |
1597 else if (intlv_addr
== 0x5)
1598 chan_addr
= ((chan_addr
>> 10) << 9) |
1599 (chan_addr
& 0x1ff);
1603 } else if (num_dcts_intlv
== 4) {
1604 if (intlv_addr
== 0x4)
1605 chan_addr
= ((chan_addr
>> 10) << 8) |
1607 else if (intlv_addr
== 0x5)
1608 chan_addr
= ((chan_addr
>> 11) << 9) |
1609 (chan_addr
& 0x1ff);
1614 if (dct_offset_en
) {
1615 amd64_read_pci_cfg(pvt
->F1
,
1616 DRAM_CONT_HIGH_OFF
+ (int) channel
* 4,
1618 chan_addr
+= (u64
) ((tmp
>> 11) & 0xfff) << 27;
1621 f15h_select_dct(pvt
, channel
);
1623 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr
);
1627 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
1628 * there is support for 4 DCT's, but only 2 are currently functional.
1629 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
1630 * pvt->csels[1]. So we need to use '1' here to get correct info.
1631 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
1633 alias_channel
= (channel
== 3) ? 1 : channel
;
1635 cs_found
= f1x_lookup_addr_in_dct(chan_addr
, node_id
, alias_channel
);
1638 *chan_sel
= alias_channel
;
1643 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt
*pvt
,
1647 int cs_found
= -EINVAL
;
1650 for (range
= 0; range
< DRAM_RANGES
; range
++) {
1651 if (!dram_rw(pvt
, range
))
1654 if (pvt
->fam
== 0x15 && pvt
->model
>= 0x30)
1655 cs_found
= f15_m30h_match_to_this_node(pvt
, range
,
1659 else if ((get_dram_base(pvt
, range
) <= sys_addr
) &&
1660 (get_dram_limit(pvt
, range
) >= sys_addr
)) {
1661 cs_found
= f1x_match_to_this_node(pvt
, range
,
1662 sys_addr
, chan_sel
);
1671 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1672 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1674 * The @sys_addr is usually an error address received from the hardware
1677 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
,
1678 struct err_info
*err
)
1680 struct amd64_pvt
*pvt
= mci
->pvt_info
;
1682 error_address_to_page_and_offset(sys_addr
, err
);
1684 err
->csrow
= f1x_translate_sysaddr_to_cs(pvt
, sys_addr
, &err
->channel
);
1685 if (err
->csrow
< 0) {
1686 err
->err_code
= ERR_CSROW
;
1691 * We need the syndromes for channel detection only when we're
1692 * ganged. Otherwise @chan should already contain the channel at
1695 if (dct_ganging_enabled(pvt
))
1696 err
->channel
= get_channel_from_ecc_syndrome(mci
, err
->syndrome
);
1700 * debug routine to display the memory sizes of all logical DIMMs and its
1703 static void amd64_debug_display_dimm_sizes(struct amd64_pvt
*pvt
, u8 ctrl
)
1705 int dimm
, size0
, size1
;
1706 u32
*dcsb
= ctrl
? pvt
->csels
[1].csbases
: pvt
->csels
[0].csbases
;
1707 u32 dbam
= ctrl
? pvt
->dbam1
: pvt
->dbam0
;
1709 if (pvt
->fam
== 0xf) {
1710 /* K8 families < revF not supported yet */
1711 if (pvt
->ext_model
< K8_REV_F
)
1717 dbam
= (ctrl
&& !dct_ganging_enabled(pvt
)) ? pvt
->dbam1
: pvt
->dbam0
;
1718 dcsb
= (ctrl
&& !dct_ganging_enabled(pvt
)) ? pvt
->csels
[1].csbases
1719 : pvt
->csels
[0].csbases
;
1721 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1724 edac_printk(KERN_DEBUG
, EDAC_MC
, "DCT%d chip selects:\n", ctrl
);
1726 /* Dump memory sizes for DIMM and its CSROWs */
1727 for (dimm
= 0; dimm
< 4; dimm
++) {
1730 if (dcsb
[dimm
*2] & DCSB_CS_ENABLE
)
1731 size0
= pvt
->ops
->dbam_to_cs(pvt
, ctrl
,
1732 DBAM_DIMM(dimm
, dbam
));
1735 if (dcsb
[dimm
*2 + 1] & DCSB_CS_ENABLE
)
1736 size1
= pvt
->ops
->dbam_to_cs(pvt
, ctrl
,
1737 DBAM_DIMM(dimm
, dbam
));
1739 amd64_info(EDAC_MC
": %d: %5dMB %d: %5dMB\n",
1741 dimm
* 2 + 1, size1
);
1745 static struct amd64_family_type amd64_family_types
[] = {
1748 .f1_id
= PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP
,
1749 .f3_id
= PCI_DEVICE_ID_AMD_K8_NB_MISC
,
1751 .early_channel_count
= k8_early_channel_count
,
1752 .map_sysaddr_to_csrow
= k8_map_sysaddr_to_csrow
,
1753 .dbam_to_cs
= k8_dbam_to_chip_select
,
1754 .read_dct_pci_cfg
= k8_read_dct_pci_cfg
,
1759 .f1_id
= PCI_DEVICE_ID_AMD_10H_NB_MAP
,
1760 .f3_id
= PCI_DEVICE_ID_AMD_10H_NB_MISC
,
1762 .early_channel_count
= f1x_early_channel_count
,
1763 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
1764 .dbam_to_cs
= f10_dbam_to_chip_select
,
1765 .read_dct_pci_cfg
= f10_read_dct_pci_cfg
,
1770 .f1_id
= PCI_DEVICE_ID_AMD_15H_NB_F1
,
1771 .f3_id
= PCI_DEVICE_ID_AMD_15H_NB_F3
,
1773 .early_channel_count
= f1x_early_channel_count
,
1774 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
1775 .dbam_to_cs
= f15_dbam_to_chip_select
,
1776 .read_dct_pci_cfg
= f15_read_dct_pci_cfg
,
1780 .ctl_name
= "F15h_M30h",
1781 .f1_id
= PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
,
1782 .f3_id
= PCI_DEVICE_ID_AMD_15H_M30H_NB_F3
,
1784 .early_channel_count
= f1x_early_channel_count
,
1785 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
1786 .dbam_to_cs
= f16_dbam_to_chip_select
,
1787 .read_dct_pci_cfg
= f15_read_dct_pci_cfg
,
1792 .f1_id
= PCI_DEVICE_ID_AMD_16H_NB_F1
,
1793 .f3_id
= PCI_DEVICE_ID_AMD_16H_NB_F3
,
1795 .early_channel_count
= f1x_early_channel_count
,
1796 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
1797 .dbam_to_cs
= f16_dbam_to_chip_select
,
1798 .read_dct_pci_cfg
= f10_read_dct_pci_cfg
,
1804 * These are tables of eigenvectors (one per line) which can be used for the
1805 * construction of the syndrome tables. The modified syndrome search algorithm
1806 * uses those to find the symbol in error and thus the DIMM.
1808 * Algorithm courtesy of Ross LaFetra from AMD.
1810 static const u16 x4_vectors
[] = {
1811 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1812 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1813 0x0001, 0x0002, 0x0004, 0x0008,
1814 0x1013, 0x3032, 0x4044, 0x8088,
1815 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1816 0x4857, 0xc4fe, 0x13cc, 0x3288,
1817 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1818 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1819 0x15c1, 0x2a42, 0x89ac, 0x4758,
1820 0x2b03, 0x1602, 0x4f0c, 0xca08,
1821 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1822 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1823 0x2b87, 0x164e, 0x642c, 0xdc18,
1824 0x40b9, 0x80de, 0x1094, 0x20e8,
1825 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1826 0x11c1, 0x2242, 0x84ac, 0x4c58,
1827 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1828 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1829 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1830 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1831 0x16b3, 0x3d62, 0x4f34, 0x8518,
1832 0x1e2f, 0x391a, 0x5cac, 0xf858,
1833 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1834 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1835 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1836 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1837 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1838 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1839 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1840 0x185d, 0x2ca6, 0x7914, 0x9e28,
1841 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1842 0x4199, 0x82ee, 0x19f4, 0x2e58,
1843 0x4807, 0xc40e, 0x130c, 0x3208,
1844 0x1905, 0x2e0a, 0x5804, 0xac08,
1845 0x213f, 0x132a, 0xadfc, 0x5ba8,
1846 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1849 static const u16 x8_vectors
[] = {
1850 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1851 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1852 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1853 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1854 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1855 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1856 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1857 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1858 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1859 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1860 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1861 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1862 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1863 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1864 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1865 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1866 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1867 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1868 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1871 static int decode_syndrome(u16 syndrome
, const u16
*vectors
, unsigned num_vecs
,
1874 unsigned int i
, err_sym
;
1876 for (err_sym
= 0; err_sym
< num_vecs
/ v_dim
; err_sym
++) {
1878 unsigned v_idx
= err_sym
* v_dim
;
1879 unsigned v_end
= (err_sym
+ 1) * v_dim
;
1881 /* walk over all 16 bits of the syndrome */
1882 for (i
= 1; i
< (1U << 16); i
<<= 1) {
1884 /* if bit is set in that eigenvector... */
1885 if (v_idx
< v_end
&& vectors
[v_idx
] & i
) {
1886 u16 ev_comp
= vectors
[v_idx
++];
1888 /* ... and bit set in the modified syndrome, */
1898 /* can't get to zero, move to next symbol */
1903 edac_dbg(0, "syndrome(%x) not found\n", syndrome
);
1907 static int map_err_sym_to_channel(int err_sym
, int sym_size
)
1920 return err_sym
>> 4;
1926 /* imaginary bits not in a DIMM */
1928 WARN(1, KERN_ERR
"Invalid error symbol: 0x%x\n",
1940 return err_sym
>> 3;
1946 static int get_channel_from_ecc_syndrome(struct mem_ctl_info
*mci
, u16 syndrome
)
1948 struct amd64_pvt
*pvt
= mci
->pvt_info
;
1951 if (pvt
->ecc_sym_sz
== 8)
1952 err_sym
= decode_syndrome(syndrome
, x8_vectors
,
1953 ARRAY_SIZE(x8_vectors
),
1955 else if (pvt
->ecc_sym_sz
== 4)
1956 err_sym
= decode_syndrome(syndrome
, x4_vectors
,
1957 ARRAY_SIZE(x4_vectors
),
1960 amd64_warn("Illegal syndrome type: %u\n", pvt
->ecc_sym_sz
);
1964 return map_err_sym_to_channel(err_sym
, pvt
->ecc_sym_sz
);
1967 static void __log_bus_error(struct mem_ctl_info
*mci
, struct err_info
*err
,
1970 enum hw_event_mc_err_type err_type
;
1974 err_type
= HW_EVENT_ERR_CORRECTED
;
1975 else if (ecc_type
== 1)
1976 err_type
= HW_EVENT_ERR_UNCORRECTED
;
1978 WARN(1, "Something is rotten in the state of Denmark.\n");
1982 switch (err
->err_code
) {
1987 string
= "Failed to map error addr to a node";
1990 string
= "Failed to map error addr to a csrow";
1993 string
= "unknown syndrome - possible error reporting race";
1996 string
= "WTF error";
2000 edac_mc_handle_error(err_type
, mci
, 1,
2001 err
->page
, err
->offset
, err
->syndrome
,
2002 err
->csrow
, err
->channel
, -1,
2006 static inline void __amd64_decode_bus_error(struct mem_ctl_info
*mci
,
2009 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2010 u8 ecc_type
= (m
->status
>> 45) & 0x3;
2011 u8 xec
= XEC(m
->status
, 0x1f);
2012 u16 ec
= EC(m
->status
);
2014 struct err_info err
;
2016 /* Bail out early if this was an 'observed' error */
2017 if (PP(ec
) == NBSL_PP_OBS
)
2020 /* Do only ECC errors */
2021 if (xec
&& xec
!= F10_NBSL_EXT_ERR_ECC
)
2024 memset(&err
, 0, sizeof(err
));
2026 sys_addr
= get_error_address(pvt
, m
);
2029 err
.syndrome
= extract_syndrome(m
->status
);
2031 pvt
->ops
->map_sysaddr_to_csrow(mci
, sys_addr
, &err
);
2033 __log_bus_error(mci
, &err
, ecc_type
);
2036 void amd64_decode_bus_error(int node_id
, struct mce
*m
)
2038 __amd64_decode_bus_error(mcis
[node_id
], m
);
2042 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2043 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2045 static int reserve_mc_sibling_devs(struct amd64_pvt
*pvt
, u16 f1_id
, u16 f3_id
)
2047 /* Reserve the ADDRESS MAP Device */
2048 pvt
->F1
= pci_get_related_function(pvt
->F2
->vendor
, f1_id
, pvt
->F2
);
2050 amd64_err("error address map device not found: "
2051 "vendor %x device 0x%x (broken BIOS?)\n",
2052 PCI_VENDOR_ID_AMD
, f1_id
);
2056 /* Reserve the MISC Device */
2057 pvt
->F3
= pci_get_related_function(pvt
->F2
->vendor
, f3_id
, pvt
->F2
);
2059 pci_dev_put(pvt
->F1
);
2062 amd64_err("error F3 device not found: "
2063 "vendor %x device 0x%x (broken BIOS?)\n",
2064 PCI_VENDOR_ID_AMD
, f3_id
);
2068 edac_dbg(1, "F1: %s\n", pci_name(pvt
->F1
));
2069 edac_dbg(1, "F2: %s\n", pci_name(pvt
->F2
));
2070 edac_dbg(1, "F3: %s\n", pci_name(pvt
->F3
));
2075 static void free_mc_sibling_devs(struct amd64_pvt
*pvt
)
2077 pci_dev_put(pvt
->F1
);
2078 pci_dev_put(pvt
->F3
);
2082 * Retrieve the hardware registers of the memory controller (this includes the
2083 * 'Address Map' and 'Misc' device regs)
2085 static void read_mc_regs(struct amd64_pvt
*pvt
)
2092 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2093 * those are Read-As-Zero
2095 rdmsrl(MSR_K8_TOP_MEM1
, pvt
->top_mem
);
2096 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt
->top_mem
);
2098 /* check first whether TOP_MEM2 is enabled */
2099 rdmsrl(MSR_K8_SYSCFG
, msr_val
);
2100 if (msr_val
& (1U << 21)) {
2101 rdmsrl(MSR_K8_TOP_MEM2
, pvt
->top_mem2
);
2102 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt
->top_mem2
);
2104 edac_dbg(0, " TOP_MEM2 disabled\n");
2106 amd64_read_pci_cfg(pvt
->F3
, NBCAP
, &pvt
->nbcap
);
2108 read_dram_ctl_register(pvt
);
2110 for (range
= 0; range
< DRAM_RANGES
; range
++) {
2113 /* read settings for this DRAM range */
2114 read_dram_base_limit_regs(pvt
, range
);
2116 rw
= dram_rw(pvt
, range
);
2120 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2122 get_dram_base(pvt
, range
),
2123 get_dram_limit(pvt
, range
));
2125 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2126 dram_intlv_en(pvt
, range
) ? "Enabled" : "Disabled",
2127 (rw
& 0x1) ? "R" : "-",
2128 (rw
& 0x2) ? "W" : "-",
2129 dram_intlv_sel(pvt
, range
),
2130 dram_dst_node(pvt
, range
));
2133 read_dct_base_mask(pvt
);
2135 amd64_read_pci_cfg(pvt
->F1
, DHAR
, &pvt
->dhar
);
2136 amd64_read_dct_pci_cfg(pvt
, DBAM0
, &pvt
->dbam0
);
2138 amd64_read_pci_cfg(pvt
->F3
, F10_ONLINE_SPARE
, &pvt
->online_spare
);
2140 amd64_read_dct_pci_cfg(pvt
, DCLR0
, &pvt
->dclr0
);
2141 amd64_read_dct_pci_cfg(pvt
, DCHR0
, &pvt
->dchr0
);
2143 if (!dct_ganging_enabled(pvt
)) {
2144 amd64_read_dct_pci_cfg(pvt
, DCLR1
, &pvt
->dclr1
);
2145 amd64_read_dct_pci_cfg(pvt
, DCHR1
, &pvt
->dchr1
);
2148 pvt
->ecc_sym_sz
= 4;
2150 if (pvt
->fam
>= 0x10) {
2151 amd64_read_pci_cfg(pvt
->F3
, EXT_NB_MCA_CFG
, &tmp
);
2152 if (pvt
->fam
!= 0x16)
2153 /* F16h has only DCT0 */
2154 amd64_read_dct_pci_cfg(pvt
, DBAM1
, &pvt
->dbam1
);
2156 /* F10h, revD and later can do x8 ECC too */
2157 if ((pvt
->fam
> 0x10 || pvt
->model
> 7) && tmp
& BIT(25))
2158 pvt
->ecc_sym_sz
= 8;
2160 dump_misc_regs(pvt
);
2164 * NOTE: CPU Revision Dependent code
2167 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2168 * k8 private pointer to -->
2169 * DRAM Bank Address mapping register
2171 * DCL register where dual_channel_active is
2173 * The DBAM register consists of 4 sets of 4 bits each definitions:
2176 * 0-3 CSROWs 0 and 1
2177 * 4-7 CSROWs 2 and 3
2178 * 8-11 CSROWs 4 and 5
2179 * 12-15 CSROWs 6 and 7
2181 * Values range from: 0 to 15
2182 * The meaning of the values depends on CPU revision and dual-channel state,
2183 * see relevant BKDG more info.
2185 * The memory controller provides for total of only 8 CSROWs in its current
2186 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2187 * single channel or two (2) DIMMs in dual channel mode.
2189 * The following code logic collapses the various tables for CSROW based on CPU
2193 * The number of PAGE_SIZE pages on the specified CSROW number it
2197 static u32
amd64_csrow_nr_pages(struct amd64_pvt
*pvt
, u8 dct
, int csrow_nr
)
2199 u32 cs_mode
, nr_pages
;
2200 u32 dbam
= dct
? pvt
->dbam1
: pvt
->dbam0
;
2204 * The math on this doesn't look right on the surface because x/2*4 can
2205 * be simplified to x*2 but this expression makes use of the fact that
2206 * it is integral math where 1/2=0. This intermediate value becomes the
2207 * number of bits to shift the DBAM register to extract the proper CSROW
2210 cs_mode
= DBAM_DIMM(csrow_nr
/ 2, dbam
);
2212 nr_pages
= pvt
->ops
->dbam_to_cs(pvt
, dct
, cs_mode
) << (20 - PAGE_SHIFT
);
2214 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2215 csrow_nr
, dct
, cs_mode
);
2216 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages
);
2222 * Initialize the array of csrow attribute instances, based on the values
2223 * from pci config hardware registers.
2225 static int init_csrows(struct mem_ctl_info
*mci
)
2227 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2228 struct csrow_info
*csrow
;
2229 struct dimm_info
*dimm
;
2230 enum edac_type edac_mode
;
2231 enum mem_type mtype
;
2232 int i
, j
, empty
= 1;
2236 amd64_read_pci_cfg(pvt
->F3
, NBCFG
, &val
);
2240 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2241 pvt
->mc_node_id
, val
,
2242 !!(val
& NBCFG_CHIPKILL
), !!(val
& NBCFG_ECC_ENABLE
));
2245 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2247 for_each_chip_select(i
, 0, pvt
) {
2248 bool row_dct0
= !!csrow_enabled(i
, 0, pvt
);
2249 bool row_dct1
= false;
2251 if (pvt
->fam
!= 0xf)
2252 row_dct1
= !!csrow_enabled(i
, 1, pvt
);
2254 if (!row_dct0
&& !row_dct1
)
2257 csrow
= mci
->csrows
[i
];
2260 edac_dbg(1, "MC node: %d, csrow: %d\n",
2261 pvt
->mc_node_id
, i
);
2264 nr_pages
= amd64_csrow_nr_pages(pvt
, 0, i
);
2265 csrow
->channels
[0]->dimm
->nr_pages
= nr_pages
;
2268 /* K8 has only one DCT */
2269 if (pvt
->fam
!= 0xf && row_dct1
) {
2270 int row_dct1_pages
= amd64_csrow_nr_pages(pvt
, 1, i
);
2272 csrow
->channels
[1]->dimm
->nr_pages
= row_dct1_pages
;
2273 nr_pages
+= row_dct1_pages
;
2276 mtype
= amd64_determine_memory_type(pvt
, i
);
2278 edac_dbg(1, "Total csrow%d pages: %u\n", i
, nr_pages
);
2281 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2283 if (pvt
->nbcfg
& NBCFG_ECC_ENABLE
)
2284 edac_mode
= (pvt
->nbcfg
& NBCFG_CHIPKILL
) ?
2285 EDAC_S4ECD4ED
: EDAC_SECDED
;
2287 edac_mode
= EDAC_NONE
;
2289 for (j
= 0; j
< pvt
->channel_count
; j
++) {
2290 dimm
= csrow
->channels
[j
]->dimm
;
2291 dimm
->mtype
= mtype
;
2292 dimm
->edac_mode
= edac_mode
;
2299 /* get all cores on this DCT */
2300 static void get_cpus_on_this_dct_cpumask(struct cpumask
*mask
, u16 nid
)
2304 for_each_online_cpu(cpu
)
2305 if (amd_get_nb_id(cpu
) == nid
)
2306 cpumask_set_cpu(cpu
, mask
);
2309 /* check MCG_CTL on all the cpus on this node */
2310 static bool amd64_nb_mce_bank_enabled_on_node(u16 nid
)
2316 if (!zalloc_cpumask_var(&mask
, GFP_KERNEL
)) {
2317 amd64_warn("%s: Error allocating mask\n", __func__
);
2321 get_cpus_on_this_dct_cpumask(mask
, nid
);
2323 rdmsr_on_cpus(mask
, MSR_IA32_MCG_CTL
, msrs
);
2325 for_each_cpu(cpu
, mask
) {
2326 struct msr
*reg
= per_cpu_ptr(msrs
, cpu
);
2327 nbe
= reg
->l
& MSR_MCGCTL_NBE
;
2329 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2331 (nbe
? "enabled" : "disabled"));
2339 free_cpumask_var(mask
);
2343 static int toggle_ecc_err_reporting(struct ecc_settings
*s
, u16 nid
, bool on
)
2345 cpumask_var_t cmask
;
2348 if (!zalloc_cpumask_var(&cmask
, GFP_KERNEL
)) {
2349 amd64_warn("%s: error allocating mask\n", __func__
);
2353 get_cpus_on_this_dct_cpumask(cmask
, nid
);
2355 rdmsr_on_cpus(cmask
, MSR_IA32_MCG_CTL
, msrs
);
2357 for_each_cpu(cpu
, cmask
) {
2359 struct msr
*reg
= per_cpu_ptr(msrs
, cpu
);
2362 if (reg
->l
& MSR_MCGCTL_NBE
)
2363 s
->flags
.nb_mce_enable
= 1;
2365 reg
->l
|= MSR_MCGCTL_NBE
;
2368 * Turn off NB MCE reporting only when it was off before
2370 if (!s
->flags
.nb_mce_enable
)
2371 reg
->l
&= ~MSR_MCGCTL_NBE
;
2374 wrmsr_on_cpus(cmask
, MSR_IA32_MCG_CTL
, msrs
);
2376 free_cpumask_var(cmask
);
2381 static bool enable_ecc_error_reporting(struct ecc_settings
*s
, u16 nid
,
2385 u32 value
, mask
= 0x3; /* UECC/CECC enable */
2387 if (toggle_ecc_err_reporting(s
, nid
, ON
)) {
2388 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2392 amd64_read_pci_cfg(F3
, NBCTL
, &value
);
2394 s
->old_nbctl
= value
& mask
;
2395 s
->nbctl_valid
= true;
2398 amd64_write_pci_cfg(F3
, NBCTL
, value
);
2400 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
2402 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2403 nid
, value
, !!(value
& NBCFG_ECC_ENABLE
));
2405 if (!(value
& NBCFG_ECC_ENABLE
)) {
2406 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2408 s
->flags
.nb_ecc_prev
= 0;
2410 /* Attempt to turn on DRAM ECC Enable */
2411 value
|= NBCFG_ECC_ENABLE
;
2412 amd64_write_pci_cfg(F3
, NBCFG
, value
);
2414 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
2416 if (!(value
& NBCFG_ECC_ENABLE
)) {
2417 amd64_warn("Hardware rejected DRAM ECC enable,"
2418 "check memory DIMM configuration.\n");
2421 amd64_info("Hardware accepted DRAM ECC Enable\n");
2424 s
->flags
.nb_ecc_prev
= 1;
2427 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2428 nid
, value
, !!(value
& NBCFG_ECC_ENABLE
));
2433 static void restore_ecc_error_reporting(struct ecc_settings
*s
, u16 nid
,
2436 u32 value
, mask
= 0x3; /* UECC/CECC enable */
2439 if (!s
->nbctl_valid
)
2442 amd64_read_pci_cfg(F3
, NBCTL
, &value
);
2444 value
|= s
->old_nbctl
;
2446 amd64_write_pci_cfg(F3
, NBCTL
, value
);
2448 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2449 if (!s
->flags
.nb_ecc_prev
) {
2450 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
2451 value
&= ~NBCFG_ECC_ENABLE
;
2452 amd64_write_pci_cfg(F3
, NBCFG
, value
);
2455 /* restore the NB Enable MCGCTL bit */
2456 if (toggle_ecc_err_reporting(s
, nid
, OFF
))
2457 amd64_warn("Error restoring NB MCGCTL settings!\n");
2461 * EDAC requires that the BIOS have ECC enabled before
2462 * taking over the processing of ECC errors. A command line
2463 * option allows to force-enable hardware ECC later in
2464 * enable_ecc_error_reporting().
2466 static const char *ecc_msg
=
2467 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2468 " Either enable ECC checking or force module loading by setting "
2469 "'ecc_enable_override'.\n"
2470 " (Note that use of the override may cause unknown side effects.)\n";
2472 static bool ecc_enabled(struct pci_dev
*F3
, u16 nid
)
2476 bool nb_mce_en
= false;
2478 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
2480 ecc_en
= !!(value
& NBCFG_ECC_ENABLE
);
2481 amd64_info("DRAM ECC %s.\n", (ecc_en
? "enabled" : "disabled"));
2483 nb_mce_en
= amd64_nb_mce_bank_enabled_on_node(nid
);
2485 amd64_notice("NB MCE bank disabled, set MSR "
2486 "0x%08x[4] on node %d to enable.\n",
2487 MSR_IA32_MCG_CTL
, nid
);
2489 if (!ecc_en
|| !nb_mce_en
) {
2490 amd64_notice("%s", ecc_msg
);
2496 static int set_mc_sysfs_attrs(struct mem_ctl_info
*mci
)
2498 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2501 rc
= amd64_create_sysfs_dbg_files(mci
);
2505 if (pvt
->fam
>= 0x10) {
2506 rc
= amd64_create_sysfs_inject_files(mci
);
2514 static void del_mc_sysfs_attrs(struct mem_ctl_info
*mci
)
2516 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2518 amd64_remove_sysfs_dbg_files(mci
);
2520 if (pvt
->fam
>= 0x10)
2521 amd64_remove_sysfs_inject_files(mci
);
2524 static void setup_mci_misc_attrs(struct mem_ctl_info
*mci
,
2525 struct amd64_family_type
*fam
)
2527 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2529 mci
->mtype_cap
= MEM_FLAG_DDR2
| MEM_FLAG_RDDR2
;
2530 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
2532 if (pvt
->nbcap
& NBCAP_SECDED
)
2533 mci
->edac_ctl_cap
|= EDAC_FLAG_SECDED
;
2535 if (pvt
->nbcap
& NBCAP_CHIPKILL
)
2536 mci
->edac_ctl_cap
|= EDAC_FLAG_S4ECD4ED
;
2538 mci
->edac_cap
= amd64_determine_edac_cap(pvt
);
2539 mci
->mod_name
= EDAC_MOD_STR
;
2540 mci
->mod_ver
= EDAC_AMD64_VERSION
;
2541 mci
->ctl_name
= fam
->ctl_name
;
2542 mci
->dev_name
= pci_name(pvt
->F2
);
2543 mci
->ctl_page_to_phys
= NULL
;
2545 /* memory scrubber interface */
2546 mci
->set_sdram_scrub_rate
= amd64_set_scrub_rate
;
2547 mci
->get_sdram_scrub_rate
= amd64_get_scrub_rate
;
2551 * returns a pointer to the family descriptor on success, NULL otherwise.
2553 static struct amd64_family_type
*amd64_per_family_init(struct amd64_pvt
*pvt
)
2555 struct amd64_family_type
*fam_type
= NULL
;
2557 pvt
->ext_model
= boot_cpu_data
.x86_model
>> 4;
2558 pvt
->stepping
= boot_cpu_data
.x86_mask
;
2559 pvt
->model
= boot_cpu_data
.x86_model
;
2560 pvt
->fam
= boot_cpu_data
.x86
;
2564 fam_type
= &amd64_family_types
[K8_CPUS
];
2565 pvt
->ops
= &amd64_family_types
[K8_CPUS
].ops
;
2569 fam_type
= &amd64_family_types
[F10_CPUS
];
2570 pvt
->ops
= &amd64_family_types
[F10_CPUS
].ops
;
2574 if (pvt
->model
== 0x30) {
2575 fam_type
= &amd64_family_types
[F15_M30H_CPUS
];
2576 pvt
->ops
= &amd64_family_types
[F15_M30H_CPUS
].ops
;
2580 fam_type
= &amd64_family_types
[F15_CPUS
];
2581 pvt
->ops
= &amd64_family_types
[F15_CPUS
].ops
;
2585 fam_type
= &amd64_family_types
[F16_CPUS
];
2586 pvt
->ops
= &amd64_family_types
[F16_CPUS
].ops
;
2590 amd64_err("Unsupported family!\n");
2594 amd64_info("%s %sdetected (node %d).\n", fam_type
->ctl_name
,
2596 (pvt
->ext_model
>= K8_REV_F
? "revF or later "
2597 : "revE or earlier ")
2598 : ""), pvt
->mc_node_id
);
2602 static int amd64_init_one_instance(struct pci_dev
*F2
)
2604 struct amd64_pvt
*pvt
= NULL
;
2605 struct amd64_family_type
*fam_type
= NULL
;
2606 struct mem_ctl_info
*mci
= NULL
;
2607 struct edac_mc_layer layers
[2];
2609 u16 nid
= amd_get_node_id(F2
);
2612 pvt
= kzalloc(sizeof(struct amd64_pvt
), GFP_KERNEL
);
2616 pvt
->mc_node_id
= nid
;
2620 fam_type
= amd64_per_family_init(pvt
);
2625 err
= reserve_mc_sibling_devs(pvt
, fam_type
->f1_id
, fam_type
->f3_id
);
2632 * We need to determine how many memory channels there are. Then use
2633 * that information for calculating the size of the dynamic instance
2634 * tables in the 'mci' structure.
2637 pvt
->channel_count
= pvt
->ops
->early_channel_count(pvt
);
2638 if (pvt
->channel_count
< 0)
2642 layers
[0].type
= EDAC_MC_LAYER_CHIP_SELECT
;
2643 layers
[0].size
= pvt
->csels
[0].b_cnt
;
2644 layers
[0].is_virt_csrow
= true;
2645 layers
[1].type
= EDAC_MC_LAYER_CHANNEL
;
2648 * Always allocate two channels since we can have setups with DIMMs on
2649 * only one channel. Also, this simplifies handling later for the price
2650 * of a couple of KBs tops.
2653 layers
[1].is_virt_csrow
= false;
2655 mci
= edac_mc_alloc(nid
, ARRAY_SIZE(layers
), layers
, 0);
2659 mci
->pvt_info
= pvt
;
2660 mci
->pdev
= &pvt
->F2
->dev
;
2662 setup_mci_misc_attrs(mci
, fam_type
);
2664 if (init_csrows(mci
))
2665 mci
->edac_cap
= EDAC_FLAG_NONE
;
2668 if (edac_mc_add_mc(mci
)) {
2669 edac_dbg(1, "failed edac_mc_add_mc()\n");
2672 if (set_mc_sysfs_attrs(mci
)) {
2673 edac_dbg(1, "failed edac_mc_add_mc()\n");
2677 /* register stuff with EDAC MCE */
2678 if (report_gart_errors
)
2679 amd_report_gart_errors(true);
2681 amd_register_ecc_decoder(amd64_decode_bus_error
);
2685 atomic_inc(&drv_instances
);
2690 edac_mc_del_mc(mci
->pdev
);
2695 free_mc_sibling_devs(pvt
);
2704 static int amd64_probe_one_instance(struct pci_dev
*pdev
,
2705 const struct pci_device_id
*mc_type
)
2707 u16 nid
= amd_get_node_id(pdev
);
2708 struct pci_dev
*F3
= node_to_amd_nb(nid
)->misc
;
2709 struct ecc_settings
*s
;
2712 ret
= pci_enable_device(pdev
);
2714 edac_dbg(0, "ret=%d\n", ret
);
2719 s
= kzalloc(sizeof(struct ecc_settings
), GFP_KERNEL
);
2725 if (!ecc_enabled(F3
, nid
)) {
2728 if (!ecc_enable_override
)
2731 amd64_warn("Forcing ECC on!\n");
2733 if (!enable_ecc_error_reporting(s
, nid
, F3
))
2737 ret
= amd64_init_one_instance(pdev
);
2739 amd64_err("Error probing instance: %d\n", nid
);
2740 restore_ecc_error_reporting(s
, nid
, F3
);
2747 ecc_stngs
[nid
] = NULL
;
2753 static void amd64_remove_one_instance(struct pci_dev
*pdev
)
2755 struct mem_ctl_info
*mci
;
2756 struct amd64_pvt
*pvt
;
2757 u16 nid
= amd_get_node_id(pdev
);
2758 struct pci_dev
*F3
= node_to_amd_nb(nid
)->misc
;
2759 struct ecc_settings
*s
= ecc_stngs
[nid
];
2761 mci
= find_mci_by_dev(&pdev
->dev
);
2764 del_mc_sysfs_attrs(mci
);
2765 /* Remove from EDAC CORE tracking list */
2766 mci
= edac_mc_del_mc(&pdev
->dev
);
2770 pvt
= mci
->pvt_info
;
2772 restore_ecc_error_reporting(s
, nid
, F3
);
2774 free_mc_sibling_devs(pvt
);
2776 /* unregister from EDAC MCE */
2777 amd_report_gart_errors(false);
2778 amd_unregister_ecc_decoder(amd64_decode_bus_error
);
2780 kfree(ecc_stngs
[nid
]);
2781 ecc_stngs
[nid
] = NULL
;
2783 /* Free the EDAC CORE resources */
2784 mci
->pvt_info
= NULL
;
2792 * This table is part of the interface for loading drivers for PCI devices. The
2793 * PCI core identifies what devices are on a system during boot, and then
2794 * inquiry this table to see if this driver is for a given device found.
2796 static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table
) = {
2798 .vendor
= PCI_VENDOR_ID_AMD
,
2799 .device
= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL
,
2800 .subvendor
= PCI_ANY_ID
,
2801 .subdevice
= PCI_ANY_ID
,
2806 .vendor
= PCI_VENDOR_ID_AMD
,
2807 .device
= PCI_DEVICE_ID_AMD_10H_NB_DRAM
,
2808 .subvendor
= PCI_ANY_ID
,
2809 .subdevice
= PCI_ANY_ID
,
2814 .vendor
= PCI_VENDOR_ID_AMD
,
2815 .device
= PCI_DEVICE_ID_AMD_15H_NB_F2
,
2816 .subvendor
= PCI_ANY_ID
,
2817 .subdevice
= PCI_ANY_ID
,
2822 .vendor
= PCI_VENDOR_ID_AMD
,
2823 .device
= PCI_DEVICE_ID_AMD_15H_M30H_NB_F2
,
2824 .subvendor
= PCI_ANY_ID
,
2825 .subdevice
= PCI_ANY_ID
,
2830 .vendor
= PCI_VENDOR_ID_AMD
,
2831 .device
= PCI_DEVICE_ID_AMD_16H_NB_F2
,
2832 .subvendor
= PCI_ANY_ID
,
2833 .subdevice
= PCI_ANY_ID
,
2840 MODULE_DEVICE_TABLE(pci
, amd64_pci_table
);
2842 static struct pci_driver amd64_pci_driver
= {
2843 .name
= EDAC_MOD_STR
,
2844 .probe
= amd64_probe_one_instance
,
2845 .remove
= amd64_remove_one_instance
,
2846 .id_table
= amd64_pci_table
,
2849 static void setup_pci_device(void)
2851 struct mem_ctl_info
*mci
;
2852 struct amd64_pvt
*pvt
;
2860 pvt
= mci
->pvt_info
;
2862 edac_pci_create_generic_ctl(&pvt
->F2
->dev
, EDAC_MOD_STR
);
2864 if (!amd64_ctl_pci
) {
2865 pr_warning("%s(): Unable to create PCI control\n",
2868 pr_warning("%s(): PCI error report via EDAC not set\n",
2874 static int __init
amd64_edac_init(void)
2878 printk(KERN_INFO
"AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION
);
2882 if (amd_cache_northbridges() < 0)
2886 mcis
= kzalloc(amd_nb_num() * sizeof(mcis
[0]), GFP_KERNEL
);
2887 ecc_stngs
= kzalloc(amd_nb_num() * sizeof(ecc_stngs
[0]), GFP_KERNEL
);
2888 if (!(mcis
&& ecc_stngs
))
2891 msrs
= msrs_alloc();
2895 err
= pci_register_driver(&amd64_pci_driver
);
2900 if (!atomic_read(&drv_instances
))
2901 goto err_no_instances
;
2907 pci_unregister_driver(&amd64_pci_driver
);
2924 static void __exit
amd64_edac_exit(void)
2927 edac_pci_release_generic_ctl(amd64_ctl_pci
);
2929 pci_unregister_driver(&amd64_pci_driver
);
2941 module_init(amd64_edac_init
);
2942 module_exit(amd64_edac_exit
);
2944 MODULE_LICENSE("GPL");
2945 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2946 "Dave Peterson, Thayne Harbaugh");
2947 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2948 EDAC_AMD64_VERSION
);
2950 module_param(edac_op_state
, int, 0444);
2951 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");