4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/perf_event.h>
81 #include <linux/posix-timers.h>
82 #include <linux/user-return-notifier.h>
83 #include <linux/oom.h>
84 #include <linux/khugepaged.h>
85 #include <linux/signalfd.h>
86 #include <linux/uprobes.h>
87 #include <linux/aio.h>
88 #include <linux/compiler.h>
89 #include <linux/sysctl.h>
90 #include <linux/kcov.h>
91 #include <linux/livepatch.h>
92 #include <linux/thread_info.h>
94 #include <asm/pgtable.h>
95 #include <asm/pgalloc.h>
96 #include <linux/uaccess.h>
97 #include <asm/mmu_context.h>
98 #include <asm/cacheflush.h>
99 #include <asm/tlbflush.h>
101 #include <trace/events/sched.h>
103 #define CREATE_TRACE_POINTS
104 #include <trace/events/task.h>
107 * Minimum number of threads to boot the kernel
109 #define MIN_THREADS 20
112 * Maximum number of threads
114 #define MAX_THREADS FUTEX_TID_MASK
117 * Protected counters by write_lock_irq(&tasklist_lock)
119 unsigned long total_forks
; /* Handle normal Linux uptimes. */
120 int nr_threads
; /* The idle threads do not count.. */
122 int max_threads
; /* tunable limit on nr_threads */
124 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
126 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
128 #ifdef CONFIG_PROVE_RCU
129 int lockdep_tasklist_lock_is_held(void)
131 return lockdep_is_held(&tasklist_lock
);
133 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held
);
134 #endif /* #ifdef CONFIG_PROVE_RCU */
136 int nr_processes(void)
141 for_each_possible_cpu(cpu
)
142 total
+= per_cpu(process_counts
, cpu
);
147 void __weak
arch_release_task_struct(struct task_struct
*tsk
)
151 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
152 static struct kmem_cache
*task_struct_cachep
;
154 static inline struct task_struct
*alloc_task_struct_node(int node
)
156 return kmem_cache_alloc_node(task_struct_cachep
, GFP_KERNEL
, node
);
159 static inline void free_task_struct(struct task_struct
*tsk
)
161 kmem_cache_free(task_struct_cachep
, tsk
);
165 void __weak
arch_release_thread_stack(unsigned long *stack
)
169 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
172 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
173 * kmemcache based allocator.
175 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177 #ifdef CONFIG_VMAP_STACK
179 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
180 * flush. Try to minimize the number of calls by caching stacks.
182 #define NR_CACHED_STACKS 2
183 static DEFINE_PER_CPU(struct vm_struct
*, cached_stacks
[NR_CACHED_STACKS
]);
185 static int free_vm_stack_cache(unsigned int cpu
)
187 struct vm_struct
**cached_vm_stacks
= per_cpu_ptr(cached_stacks
, cpu
);
190 for (i
= 0; i
< NR_CACHED_STACKS
; i
++) {
191 struct vm_struct
*vm_stack
= cached_vm_stacks
[i
];
196 vfree(vm_stack
->addr
);
197 cached_vm_stacks
[i
] = NULL
;
204 static unsigned long *alloc_thread_stack_node(struct task_struct
*tsk
, int node
)
206 #ifdef CONFIG_VMAP_STACK
210 for (i
= 0; i
< NR_CACHED_STACKS
; i
++) {
213 s
= this_cpu_xchg(cached_stacks
[i
], NULL
);
218 tsk
->stack_vm_area
= s
;
222 stack
= __vmalloc_node_range(THREAD_SIZE
, THREAD_ALIGN
,
223 VMALLOC_START
, VMALLOC_END
,
226 0, node
, __builtin_return_address(0));
229 * We can't call find_vm_area() in interrupt context, and
230 * free_thread_stack() can be called in interrupt context,
231 * so cache the vm_struct.
234 tsk
->stack_vm_area
= find_vm_area(stack
);
237 struct page
*page
= alloc_pages_node(node
, THREADINFO_GFP
,
240 return page
? page_address(page
) : NULL
;
244 static inline void free_thread_stack(struct task_struct
*tsk
)
246 #ifdef CONFIG_VMAP_STACK
247 if (task_stack_vm_area(tsk
)) {
250 for (i
= 0; i
< NR_CACHED_STACKS
; i
++) {
251 if (this_cpu_cmpxchg(cached_stacks
[i
],
252 NULL
, tsk
->stack_vm_area
) != NULL
)
258 vfree_atomic(tsk
->stack
);
263 __free_pages(virt_to_page(tsk
->stack
), THREAD_SIZE_ORDER
);
266 static struct kmem_cache
*thread_stack_cache
;
268 static unsigned long *alloc_thread_stack_node(struct task_struct
*tsk
,
271 return kmem_cache_alloc_node(thread_stack_cache
, THREADINFO_GFP
, node
);
274 static void free_thread_stack(struct task_struct
*tsk
)
276 kmem_cache_free(thread_stack_cache
, tsk
->stack
);
279 void thread_stack_cache_init(void)
281 thread_stack_cache
= kmem_cache_create("thread_stack", THREAD_SIZE
,
282 THREAD_SIZE
, 0, NULL
);
283 BUG_ON(thread_stack_cache
== NULL
);
288 /* SLAB cache for signal_struct structures (tsk->signal) */
289 static struct kmem_cache
*signal_cachep
;
291 /* SLAB cache for sighand_struct structures (tsk->sighand) */
292 struct kmem_cache
*sighand_cachep
;
294 /* SLAB cache for files_struct structures (tsk->files) */
295 struct kmem_cache
*files_cachep
;
297 /* SLAB cache for fs_struct structures (tsk->fs) */
298 struct kmem_cache
*fs_cachep
;
300 /* SLAB cache for vm_area_struct structures */
301 struct kmem_cache
*vm_area_cachep
;
303 /* SLAB cache for mm_struct structures (tsk->mm) */
304 static struct kmem_cache
*mm_cachep
;
306 static void account_kernel_stack(struct task_struct
*tsk
, int account
)
308 void *stack
= task_stack_page(tsk
);
309 struct vm_struct
*vm
= task_stack_vm_area(tsk
);
311 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK
) && PAGE_SIZE
% 1024 != 0);
316 BUG_ON(vm
->nr_pages
!= THREAD_SIZE
/ PAGE_SIZE
);
318 for (i
= 0; i
< THREAD_SIZE
/ PAGE_SIZE
; i
++) {
319 mod_zone_page_state(page_zone(vm
->pages
[i
]),
321 PAGE_SIZE
/ 1024 * account
);
324 /* All stack pages belong to the same memcg. */
325 mod_memcg_page_state(vm
->pages
[0], MEMCG_KERNEL_STACK_KB
,
326 account
* (THREAD_SIZE
/ 1024));
329 * All stack pages are in the same zone and belong to the
332 struct page
*first_page
= virt_to_page(stack
);
334 mod_zone_page_state(page_zone(first_page
), NR_KERNEL_STACK_KB
,
335 THREAD_SIZE
/ 1024 * account
);
337 mod_memcg_page_state(first_page
, MEMCG_KERNEL_STACK_KB
,
338 account
* (THREAD_SIZE
/ 1024));
342 static void release_task_stack(struct task_struct
*tsk
)
344 if (WARN_ON(tsk
->state
!= TASK_DEAD
))
345 return; /* Better to leak the stack than to free prematurely */
347 account_kernel_stack(tsk
, -1);
348 arch_release_thread_stack(tsk
->stack
);
349 free_thread_stack(tsk
);
351 #ifdef CONFIG_VMAP_STACK
352 tsk
->stack_vm_area
= NULL
;
356 #ifdef CONFIG_THREAD_INFO_IN_TASK
357 void put_task_stack(struct task_struct
*tsk
)
359 if (atomic_dec_and_test(&tsk
->stack_refcount
))
360 release_task_stack(tsk
);
364 void free_task(struct task_struct
*tsk
)
366 #ifndef CONFIG_THREAD_INFO_IN_TASK
368 * The task is finally done with both the stack and thread_info,
371 release_task_stack(tsk
);
374 * If the task had a separate stack allocation, it should be gone
377 WARN_ON_ONCE(atomic_read(&tsk
->stack_refcount
) != 0);
379 rt_mutex_debug_task_free(tsk
);
380 ftrace_graph_exit_task(tsk
);
381 put_seccomp_filter(tsk
);
382 arch_release_task_struct(tsk
);
383 if (tsk
->flags
& PF_KTHREAD
)
384 free_kthread_struct(tsk
);
385 free_task_struct(tsk
);
387 EXPORT_SYMBOL(free_task
);
389 static inline void free_signal_struct(struct signal_struct
*sig
)
391 taskstats_tgid_free(sig
);
392 sched_autogroup_exit(sig
);
394 * __mmdrop is not safe to call from softirq context on x86 due to
395 * pgd_dtor so postpone it to the async context
398 mmdrop_async(sig
->oom_mm
);
399 kmem_cache_free(signal_cachep
, sig
);
402 static inline void put_signal_struct(struct signal_struct
*sig
)
404 if (atomic_dec_and_test(&sig
->sigcnt
))
405 free_signal_struct(sig
);
408 void __put_task_struct(struct task_struct
*tsk
)
410 WARN_ON(!tsk
->exit_state
);
411 WARN_ON(atomic_read(&tsk
->usage
));
412 WARN_ON(tsk
== current
);
416 security_task_free(tsk
);
418 delayacct_tsk_free(tsk
);
419 put_signal_struct(tsk
->signal
);
421 if (!profile_handoff_task(tsk
))
424 EXPORT_SYMBOL_GPL(__put_task_struct
);
426 void __init __weak
arch_task_cache_init(void) { }
431 static void set_max_threads(unsigned int max_threads_suggested
)
436 * The number of threads shall be limited such that the thread
437 * structures may only consume a small part of the available memory.
439 if (fls64(totalram_pages
) + fls64(PAGE_SIZE
) > 64)
440 threads
= MAX_THREADS
;
442 threads
= div64_u64((u64
) totalram_pages
* (u64
) PAGE_SIZE
,
443 (u64
) THREAD_SIZE
* 8UL);
445 if (threads
> max_threads_suggested
)
446 threads
= max_threads_suggested
;
448 max_threads
= clamp_t(u64
, threads
, MIN_THREADS
, MAX_THREADS
);
451 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
452 /* Initialized by the architecture: */
453 int arch_task_struct_size __read_mostly
;
456 void __init
fork_init(void)
459 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
460 #ifndef ARCH_MIN_TASKALIGN
461 #define ARCH_MIN_TASKALIGN 0
463 int align
= max_t(int, L1_CACHE_BYTES
, ARCH_MIN_TASKALIGN
);
465 /* create a slab on which task_structs can be allocated */
466 task_struct_cachep
= kmem_cache_create("task_struct",
467 arch_task_struct_size
, align
,
468 SLAB_PANIC
|SLAB_NOTRACK
|SLAB_ACCOUNT
, NULL
);
471 /* do the arch specific task caches init */
472 arch_task_cache_init();
474 set_max_threads(MAX_THREADS
);
476 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
477 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
478 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
479 init_task
.signal
->rlim
[RLIMIT_NPROC
];
481 for (i
= 0; i
< UCOUNT_COUNTS
; i
++) {
482 init_user_ns
.ucount_max
[i
] = max_threads
/2;
485 #ifdef CONFIG_VMAP_STACK
486 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN
, "fork:vm_stack_cache",
487 NULL
, free_vm_stack_cache
);
490 lockdep_init_task(&init_task
);
493 int __weak
arch_dup_task_struct(struct task_struct
*dst
,
494 struct task_struct
*src
)
500 void set_task_stack_end_magic(struct task_struct
*tsk
)
502 unsigned long *stackend
;
504 stackend
= end_of_stack(tsk
);
505 *stackend
= STACK_END_MAGIC
; /* for overflow detection */
508 static struct task_struct
*dup_task_struct(struct task_struct
*orig
, int node
)
510 struct task_struct
*tsk
;
511 unsigned long *stack
;
512 struct vm_struct
*stack_vm_area
;
515 if (node
== NUMA_NO_NODE
)
516 node
= tsk_fork_get_node(orig
);
517 tsk
= alloc_task_struct_node(node
);
521 stack
= alloc_thread_stack_node(tsk
, node
);
525 stack_vm_area
= task_stack_vm_area(tsk
);
527 err
= arch_dup_task_struct(tsk
, orig
);
530 * arch_dup_task_struct() clobbers the stack-related fields. Make
531 * sure they're properly initialized before using any stack-related
535 #ifdef CONFIG_VMAP_STACK
536 tsk
->stack_vm_area
= stack_vm_area
;
538 #ifdef CONFIG_THREAD_INFO_IN_TASK
539 atomic_set(&tsk
->stack_refcount
, 1);
545 #ifdef CONFIG_SECCOMP
547 * We must handle setting up seccomp filters once we're under
548 * the sighand lock in case orig has changed between now and
549 * then. Until then, filter must be NULL to avoid messing up
550 * the usage counts on the error path calling free_task.
552 tsk
->seccomp
.filter
= NULL
;
555 setup_thread_stack(tsk
, orig
);
556 clear_user_return_notifier(tsk
);
557 clear_tsk_need_resched(tsk
);
558 set_task_stack_end_magic(tsk
);
560 #ifdef CONFIG_CC_STACKPROTECTOR
561 tsk
->stack_canary
= get_random_canary();
565 * One for us, one for whoever does the "release_task()" (usually
568 atomic_set(&tsk
->usage
, 2);
569 #ifdef CONFIG_BLK_DEV_IO_TRACE
572 tsk
->splice_pipe
= NULL
;
573 tsk
->task_frag
.page
= NULL
;
574 tsk
->wake_q
.next
= NULL
;
576 account_kernel_stack(tsk
, 1);
580 #ifdef CONFIG_FAULT_INJECTION
587 free_thread_stack(tsk
);
589 free_task_struct(tsk
);
594 static __latent_entropy
int dup_mmap(struct mm_struct
*mm
,
595 struct mm_struct
*oldmm
)
597 struct vm_area_struct
*mpnt
, *tmp
, *prev
, **pprev
;
598 struct rb_node
**rb_link
, *rb_parent
;
600 unsigned long charge
;
603 uprobe_start_dup_mmap();
604 if (down_write_killable(&oldmm
->mmap_sem
)) {
606 goto fail_uprobe_end
;
608 flush_cache_dup_mm(oldmm
);
609 uprobe_dup_mmap(oldmm
, mm
);
611 * Not linked in yet - no deadlock potential:
613 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
615 /* No ordering required: file already has been exposed. */
616 RCU_INIT_POINTER(mm
->exe_file
, get_mm_exe_file(oldmm
));
618 mm
->total_vm
= oldmm
->total_vm
;
619 mm
->data_vm
= oldmm
->data_vm
;
620 mm
->exec_vm
= oldmm
->exec_vm
;
621 mm
->stack_vm
= oldmm
->stack_vm
;
623 rb_link
= &mm
->mm_rb
.rb_node
;
626 retval
= ksm_fork(mm
, oldmm
);
629 retval
= khugepaged_fork(mm
, oldmm
);
634 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
637 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
638 vm_stat_account(mm
, mpnt
->vm_flags
, -vma_pages(mpnt
));
642 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
643 unsigned long len
= vma_pages(mpnt
);
645 if (security_vm_enough_memory_mm(oldmm
, len
)) /* sic */
649 tmp
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
653 INIT_LIST_HEAD(&tmp
->anon_vma_chain
);
654 retval
= vma_dup_policy(mpnt
, tmp
);
656 goto fail_nomem_policy
;
658 retval
= dup_userfaultfd(tmp
, &uf
);
660 goto fail_nomem_anon_vma_fork
;
661 if (tmp
->vm_flags
& VM_WIPEONFORK
) {
662 /* VM_WIPEONFORK gets a clean slate in the child. */
663 tmp
->anon_vma
= NULL
;
664 if (anon_vma_prepare(tmp
))
665 goto fail_nomem_anon_vma_fork
;
666 } else if (anon_vma_fork(tmp
, mpnt
))
667 goto fail_nomem_anon_vma_fork
;
668 tmp
->vm_flags
&= ~(VM_LOCKED
| VM_LOCKONFAULT
);
669 tmp
->vm_next
= tmp
->vm_prev
= NULL
;
672 struct inode
*inode
= file_inode(file
);
673 struct address_space
*mapping
= file
->f_mapping
;
676 if (tmp
->vm_flags
& VM_DENYWRITE
)
677 atomic_dec(&inode
->i_writecount
);
678 i_mmap_lock_write(mapping
);
679 if (tmp
->vm_flags
& VM_SHARED
)
680 atomic_inc(&mapping
->i_mmap_writable
);
681 flush_dcache_mmap_lock(mapping
);
682 /* insert tmp into the share list, just after mpnt */
683 vma_interval_tree_insert_after(tmp
, mpnt
,
685 flush_dcache_mmap_unlock(mapping
);
686 i_mmap_unlock_write(mapping
);
690 * Clear hugetlb-related page reserves for children. This only
691 * affects MAP_PRIVATE mappings. Faults generated by the child
692 * are not guaranteed to succeed, even if read-only
694 if (is_vm_hugetlb_page(tmp
))
695 reset_vma_resv_huge_pages(tmp
);
698 * Link in the new vma and copy the page table entries.
701 pprev
= &tmp
->vm_next
;
705 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
706 rb_link
= &tmp
->vm_rb
.rb_right
;
707 rb_parent
= &tmp
->vm_rb
;
710 if (!(tmp
->vm_flags
& VM_WIPEONFORK
))
711 retval
= copy_page_range(mm
, oldmm
, mpnt
);
713 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
714 tmp
->vm_ops
->open(tmp
);
719 /* a new mm has just been created */
720 arch_dup_mmap(oldmm
, mm
);
723 up_write(&mm
->mmap_sem
);
725 up_write(&oldmm
->mmap_sem
);
726 dup_userfaultfd_complete(&uf
);
728 uprobe_end_dup_mmap();
730 fail_nomem_anon_vma_fork
:
731 mpol_put(vma_policy(tmp
));
733 kmem_cache_free(vm_area_cachep
, tmp
);
736 vm_unacct_memory(charge
);
740 static inline int mm_alloc_pgd(struct mm_struct
*mm
)
742 mm
->pgd
= pgd_alloc(mm
);
743 if (unlikely(!mm
->pgd
))
748 static inline void mm_free_pgd(struct mm_struct
*mm
)
750 pgd_free(mm
, mm
->pgd
);
753 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
755 down_write(&oldmm
->mmap_sem
);
756 RCU_INIT_POINTER(mm
->exe_file
, get_mm_exe_file(oldmm
));
757 up_write(&oldmm
->mmap_sem
);
760 #define mm_alloc_pgd(mm) (0)
761 #define mm_free_pgd(mm)
762 #endif /* CONFIG_MMU */
764 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
766 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
767 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
769 static unsigned long default_dump_filter
= MMF_DUMP_FILTER_DEFAULT
;
771 static int __init
coredump_filter_setup(char *s
)
773 default_dump_filter
=
774 (simple_strtoul(s
, NULL
, 0) << MMF_DUMP_FILTER_SHIFT
) &
775 MMF_DUMP_FILTER_MASK
;
779 __setup("coredump_filter=", coredump_filter_setup
);
781 #include <linux/init_task.h>
783 static void mm_init_aio(struct mm_struct
*mm
)
786 spin_lock_init(&mm
->ioctx_lock
);
787 mm
->ioctx_table
= NULL
;
791 static void mm_init_owner(struct mm_struct
*mm
, struct task_struct
*p
)
798 static void mm_init_uprobes_state(struct mm_struct
*mm
)
800 #ifdef CONFIG_UPROBES
801 mm
->uprobes_state
.xol_area
= NULL
;
805 static struct mm_struct
*mm_init(struct mm_struct
*mm
, struct task_struct
*p
,
806 struct user_namespace
*user_ns
)
810 mm
->vmacache_seqnum
= 0;
811 atomic_set(&mm
->mm_users
, 1);
812 atomic_set(&mm
->mm_count
, 1);
813 init_rwsem(&mm
->mmap_sem
);
814 INIT_LIST_HEAD(&mm
->mmlist
);
815 mm
->core_state
= NULL
;
816 atomic_long_set(&mm
->nr_ptes
, 0);
821 memset(&mm
->rss_stat
, 0, sizeof(mm
->rss_stat
));
822 spin_lock_init(&mm
->page_table_lock
);
825 mm_init_owner(mm
, p
);
826 RCU_INIT_POINTER(mm
->exe_file
, NULL
);
827 mmu_notifier_mm_init(mm
);
829 init_tlb_flush_pending(mm
);
830 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
831 mm
->pmd_huge_pte
= NULL
;
833 mm_init_uprobes_state(mm
);
836 mm
->flags
= current
->mm
->flags
& MMF_INIT_MASK
;
837 mm
->def_flags
= current
->mm
->def_flags
& VM_INIT_DEF_MASK
;
839 mm
->flags
= default_dump_filter
;
843 if (mm_alloc_pgd(mm
))
846 if (init_new_context(p
, mm
))
849 mm
->user_ns
= get_user_ns(user_ns
);
859 static void check_mm(struct mm_struct
*mm
)
863 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
864 long x
= atomic_long_read(&mm
->rss_stat
.count
[i
]);
867 printk(KERN_ALERT
"BUG: Bad rss-counter state "
868 "mm:%p idx:%d val:%ld\n", mm
, i
, x
);
871 if (atomic_long_read(&mm
->nr_ptes
))
872 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
873 atomic_long_read(&mm
->nr_ptes
));
875 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
878 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
879 VM_BUG_ON_MM(mm
->pmd_huge_pte
, mm
);
884 * Allocate and initialize an mm_struct.
886 struct mm_struct
*mm_alloc(void)
888 struct mm_struct
*mm
;
894 memset(mm
, 0, sizeof(*mm
));
895 return mm_init(mm
, current
, current_user_ns());
899 * Called when the last reference to the mm
900 * is dropped: either by a lazy thread or by
901 * mmput. Free the page directory and the mm.
903 void __mmdrop(struct mm_struct
*mm
)
905 BUG_ON(mm
== &init_mm
);
909 mmu_notifier_mm_destroy(mm
);
911 put_user_ns(mm
->user_ns
);
914 EXPORT_SYMBOL_GPL(__mmdrop
);
916 static inline void __mmput(struct mm_struct
*mm
)
918 VM_BUG_ON(atomic_read(&mm
->mm_users
));
920 uprobe_clear_state(mm
);
923 khugepaged_exit(mm
); /* must run before exit_mmap */
925 mm_put_huge_zero_page(mm
);
926 set_mm_exe_file(mm
, NULL
);
927 if (!list_empty(&mm
->mmlist
)) {
928 spin_lock(&mmlist_lock
);
929 list_del(&mm
->mmlist
);
930 spin_unlock(&mmlist_lock
);
933 module_put(mm
->binfmt
->module
);
938 * Decrement the use count and release all resources for an mm.
940 void mmput(struct mm_struct
*mm
)
944 if (atomic_dec_and_test(&mm
->mm_users
))
947 EXPORT_SYMBOL_GPL(mmput
);
950 * set_mm_exe_file - change a reference to the mm's executable file
952 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
954 * Main users are mmput() and sys_execve(). Callers prevent concurrent
955 * invocations: in mmput() nobody alive left, in execve task is single
956 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
957 * mm->exe_file, but does so without using set_mm_exe_file() in order
958 * to do avoid the need for any locks.
960 void set_mm_exe_file(struct mm_struct
*mm
, struct file
*new_exe_file
)
962 struct file
*old_exe_file
;
965 * It is safe to dereference the exe_file without RCU as
966 * this function is only called if nobody else can access
967 * this mm -- see comment above for justification.
969 old_exe_file
= rcu_dereference_raw(mm
->exe_file
);
972 get_file(new_exe_file
);
973 rcu_assign_pointer(mm
->exe_file
, new_exe_file
);
979 * get_mm_exe_file - acquire a reference to the mm's executable file
981 * Returns %NULL if mm has no associated executable file.
982 * User must release file via fput().
984 struct file
*get_mm_exe_file(struct mm_struct
*mm
)
986 struct file
*exe_file
;
989 exe_file
= rcu_dereference(mm
->exe_file
);
990 if (exe_file
&& !get_file_rcu(exe_file
))
995 EXPORT_SYMBOL(get_mm_exe_file
);
998 * get_task_exe_file - acquire a reference to the task's executable file
1000 * Returns %NULL if task's mm (if any) has no associated executable file or
1001 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1002 * User must release file via fput().
1004 struct file
*get_task_exe_file(struct task_struct
*task
)
1006 struct file
*exe_file
= NULL
;
1007 struct mm_struct
*mm
;
1012 if (!(task
->flags
& PF_KTHREAD
))
1013 exe_file
= get_mm_exe_file(mm
);
1018 EXPORT_SYMBOL(get_task_exe_file
);
1021 * get_task_mm - acquire a reference to the task's mm
1023 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1024 * this kernel workthread has transiently adopted a user mm with use_mm,
1025 * to do its AIO) is not set and if so returns a reference to it, after
1026 * bumping up the use count. User must release the mm via mmput()
1027 * after use. Typically used by /proc and ptrace.
1029 struct mm_struct
*get_task_mm(struct task_struct
*task
)
1031 struct mm_struct
*mm
;
1036 if (task
->flags
& PF_KTHREAD
)
1044 EXPORT_SYMBOL_GPL(get_task_mm
);
1046 struct mm_struct
*mm_access(struct task_struct
*task
, unsigned int mode
)
1048 struct mm_struct
*mm
;
1051 err
= mutex_lock_killable(&task
->signal
->cred_guard_mutex
);
1053 return ERR_PTR(err
);
1055 mm
= get_task_mm(task
);
1056 if (mm
&& mm
!= current
->mm
&&
1057 !ptrace_may_access(task
, mode
)) {
1059 mm
= ERR_PTR(-EACCES
);
1061 mutex_unlock(&task
->signal
->cred_guard_mutex
);
1066 static void complete_vfork_done(struct task_struct
*tsk
)
1068 struct completion
*vfork
;
1071 vfork
= tsk
->vfork_done
;
1072 if (likely(vfork
)) {
1073 tsk
->vfork_done
= NULL
;
1079 static int wait_for_vfork_done(struct task_struct
*child
,
1080 struct completion
*vfork
)
1084 freezer_do_not_count();
1085 killed
= wait_for_completion_killable(vfork
);
1090 child
->vfork_done
= NULL
;
1094 put_task_struct(child
);
1098 /* Please note the differences between mmput and mm_release.
1099 * mmput is called whenever we stop holding onto a mm_struct,
1100 * error success whatever.
1102 * mm_release is called after a mm_struct has been removed
1103 * from the current process.
1105 * This difference is important for error handling, when we
1106 * only half set up a mm_struct for a new process and need to restore
1107 * the old one. Because we mmput the new mm_struct before
1108 * restoring the old one. . .
1109 * Eric Biederman 10 January 1998
1111 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
1113 /* Get rid of any futexes when releasing the mm */
1115 if (unlikely(tsk
->robust_list
)) {
1116 exit_robust_list(tsk
);
1117 tsk
->robust_list
= NULL
;
1119 #ifdef CONFIG_COMPAT
1120 if (unlikely(tsk
->compat_robust_list
)) {
1121 compat_exit_robust_list(tsk
);
1122 tsk
->compat_robust_list
= NULL
;
1125 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
1126 exit_pi_state_list(tsk
);
1129 uprobe_free_utask(tsk
);
1131 /* Get rid of any cached register state */
1132 deactivate_mm(tsk
, mm
);
1135 * Signal userspace if we're not exiting with a core dump
1136 * because we want to leave the value intact for debugging
1139 if (tsk
->clear_child_tid
) {
1140 if (!(tsk
->signal
->flags
& SIGNAL_GROUP_COREDUMP
) &&
1141 atomic_read(&mm
->mm_users
) > 1) {
1143 * We don't check the error code - if userspace has
1144 * not set up a proper pointer then tough luck.
1146 put_user(0, tsk
->clear_child_tid
);
1147 sys_futex(tsk
->clear_child_tid
, FUTEX_WAKE
,
1150 tsk
->clear_child_tid
= NULL
;
1154 * All done, finally we can wake up parent and return this mm to him.
1155 * Also kthread_stop() uses this completion for synchronization.
1157 if (tsk
->vfork_done
)
1158 complete_vfork_done(tsk
);
1162 * Allocate a new mm structure and copy contents from the
1163 * mm structure of the passed in task structure.
1165 static struct mm_struct
*dup_mm(struct task_struct
*tsk
)
1167 struct mm_struct
*mm
, *oldmm
= current
->mm
;
1174 memcpy(mm
, oldmm
, sizeof(*mm
));
1176 if (!mm_init(mm
, tsk
, mm
->user_ns
))
1179 err
= dup_mmap(mm
, oldmm
);
1183 mm
->hiwater_rss
= get_mm_rss(mm
);
1184 mm
->hiwater_vm
= mm
->total_vm
;
1186 if (mm
->binfmt
&& !try_module_get(mm
->binfmt
->module
))
1192 /* don't put binfmt in mmput, we haven't got module yet */
1200 static int copy_mm(unsigned long clone_flags
, struct task_struct
*tsk
)
1202 struct mm_struct
*mm
, *oldmm
;
1205 tsk
->min_flt
= tsk
->maj_flt
= 0;
1206 tsk
->nvcsw
= tsk
->nivcsw
= 0;
1207 #ifdef CONFIG_DETECT_HUNG_TASK
1208 tsk
->last_switch_count
= tsk
->nvcsw
+ tsk
->nivcsw
;
1212 tsk
->active_mm
= NULL
;
1215 * Are we cloning a kernel thread?
1217 * We need to steal a active VM for that..
1219 oldmm
= current
->mm
;
1223 /* initialize the new vmacache entries */
1224 vmacache_flush(tsk
);
1226 if (clone_flags
& CLONE_VM
) {
1239 tsk
->active_mm
= mm
;
1246 static int copy_fs(unsigned long clone_flags
, struct task_struct
*tsk
)
1248 struct fs_struct
*fs
= current
->fs
;
1249 if (clone_flags
& CLONE_FS
) {
1250 /* tsk->fs is already what we want */
1251 spin_lock(&fs
->lock
);
1253 spin_unlock(&fs
->lock
);
1257 spin_unlock(&fs
->lock
);
1260 tsk
->fs
= copy_fs_struct(fs
);
1266 static int copy_files(unsigned long clone_flags
, struct task_struct
*tsk
)
1268 struct files_struct
*oldf
, *newf
;
1272 * A background process may not have any files ...
1274 oldf
= current
->files
;
1278 if (clone_flags
& CLONE_FILES
) {
1279 atomic_inc(&oldf
->count
);
1283 newf
= dup_fd(oldf
, &error
);
1293 static int copy_io(unsigned long clone_flags
, struct task_struct
*tsk
)
1296 struct io_context
*ioc
= current
->io_context
;
1297 struct io_context
*new_ioc
;
1302 * Share io context with parent, if CLONE_IO is set
1304 if (clone_flags
& CLONE_IO
) {
1306 tsk
->io_context
= ioc
;
1307 } else if (ioprio_valid(ioc
->ioprio
)) {
1308 new_ioc
= get_task_io_context(tsk
, GFP_KERNEL
, NUMA_NO_NODE
);
1309 if (unlikely(!new_ioc
))
1312 new_ioc
->ioprio
= ioc
->ioprio
;
1313 put_io_context(new_ioc
);
1319 static int copy_sighand(unsigned long clone_flags
, struct task_struct
*tsk
)
1321 struct sighand_struct
*sig
;
1323 if (clone_flags
& CLONE_SIGHAND
) {
1324 atomic_inc(¤t
->sighand
->count
);
1327 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1328 rcu_assign_pointer(tsk
->sighand
, sig
);
1332 atomic_set(&sig
->count
, 1);
1333 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
1337 void __cleanup_sighand(struct sighand_struct
*sighand
)
1339 if (atomic_dec_and_test(&sighand
->count
)) {
1340 signalfd_cleanup(sighand
);
1342 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1343 * without an RCU grace period, see __lock_task_sighand().
1345 kmem_cache_free(sighand_cachep
, sighand
);
1349 #ifdef CONFIG_POSIX_TIMERS
1351 * Initialize POSIX timer handling for a thread group.
1353 static void posix_cpu_timers_init_group(struct signal_struct
*sig
)
1355 unsigned long cpu_limit
;
1357 cpu_limit
= READ_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1358 if (cpu_limit
!= RLIM_INFINITY
) {
1359 sig
->cputime_expires
.prof_exp
= cpu_limit
* NSEC_PER_SEC
;
1360 sig
->cputimer
.running
= true;
1363 /* The timer lists. */
1364 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
1365 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
1366 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
1369 static inline void posix_cpu_timers_init_group(struct signal_struct
*sig
) { }
1372 static int copy_signal(unsigned long clone_flags
, struct task_struct
*tsk
)
1374 struct signal_struct
*sig
;
1376 if (clone_flags
& CLONE_THREAD
)
1379 sig
= kmem_cache_zalloc(signal_cachep
, GFP_KERNEL
);
1384 sig
->nr_threads
= 1;
1385 atomic_set(&sig
->live
, 1);
1386 atomic_set(&sig
->sigcnt
, 1);
1388 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1389 sig
->thread_head
= (struct list_head
)LIST_HEAD_INIT(tsk
->thread_node
);
1390 tsk
->thread_node
= (struct list_head
)LIST_HEAD_INIT(sig
->thread_head
);
1392 init_waitqueue_head(&sig
->wait_chldexit
);
1393 sig
->curr_target
= tsk
;
1394 init_sigpending(&sig
->shared_pending
);
1395 seqlock_init(&sig
->stats_lock
);
1396 prev_cputime_init(&sig
->prev_cputime
);
1398 #ifdef CONFIG_POSIX_TIMERS
1399 INIT_LIST_HEAD(&sig
->posix_timers
);
1400 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1401 sig
->real_timer
.function
= it_real_fn
;
1404 task_lock(current
->group_leader
);
1405 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
1406 task_unlock(current
->group_leader
);
1408 posix_cpu_timers_init_group(sig
);
1410 tty_audit_fork(sig
);
1411 sched_autogroup_fork(sig
);
1413 sig
->oom_score_adj
= current
->signal
->oom_score_adj
;
1414 sig
->oom_score_adj_min
= current
->signal
->oom_score_adj_min
;
1416 mutex_init(&sig
->cred_guard_mutex
);
1421 static void copy_seccomp(struct task_struct
*p
)
1423 #ifdef CONFIG_SECCOMP
1425 * Must be called with sighand->lock held, which is common to
1426 * all threads in the group. Holding cred_guard_mutex is not
1427 * needed because this new task is not yet running and cannot
1430 assert_spin_locked(¤t
->sighand
->siglock
);
1432 /* Ref-count the new filter user, and assign it. */
1433 get_seccomp_filter(current
);
1434 p
->seccomp
= current
->seccomp
;
1437 * Explicitly enable no_new_privs here in case it got set
1438 * between the task_struct being duplicated and holding the
1439 * sighand lock. The seccomp state and nnp must be in sync.
1441 if (task_no_new_privs(current
))
1442 task_set_no_new_privs(p
);
1445 * If the parent gained a seccomp mode after copying thread
1446 * flags and between before we held the sighand lock, we have
1447 * to manually enable the seccomp thread flag here.
1449 if (p
->seccomp
.mode
!= SECCOMP_MODE_DISABLED
)
1450 set_tsk_thread_flag(p
, TIF_SECCOMP
);
1454 SYSCALL_DEFINE1(set_tid_address
, int __user
*, tidptr
)
1456 current
->clear_child_tid
= tidptr
;
1458 return task_pid_vnr(current
);
1461 static void rt_mutex_init_task(struct task_struct
*p
)
1463 raw_spin_lock_init(&p
->pi_lock
);
1464 #ifdef CONFIG_RT_MUTEXES
1465 p
->pi_waiters
= RB_ROOT_CACHED
;
1466 p
->pi_top_task
= NULL
;
1467 p
->pi_blocked_on
= NULL
;
1471 #ifdef CONFIG_POSIX_TIMERS
1473 * Initialize POSIX timer handling for a single task.
1475 static void posix_cpu_timers_init(struct task_struct
*tsk
)
1477 tsk
->cputime_expires
.prof_exp
= 0;
1478 tsk
->cputime_expires
.virt_exp
= 0;
1479 tsk
->cputime_expires
.sched_exp
= 0;
1480 INIT_LIST_HEAD(&tsk
->cpu_timers
[0]);
1481 INIT_LIST_HEAD(&tsk
->cpu_timers
[1]);
1482 INIT_LIST_HEAD(&tsk
->cpu_timers
[2]);
1485 static inline void posix_cpu_timers_init(struct task_struct
*tsk
) { }
1489 init_task_pid(struct task_struct
*task
, enum pid_type type
, struct pid
*pid
)
1491 task
->pids
[type
].pid
= pid
;
1494 static inline void rcu_copy_process(struct task_struct
*p
)
1496 #ifdef CONFIG_PREEMPT_RCU
1497 p
->rcu_read_lock_nesting
= 0;
1498 p
->rcu_read_unlock_special
.s
= 0;
1499 p
->rcu_blocked_node
= NULL
;
1500 INIT_LIST_HEAD(&p
->rcu_node_entry
);
1501 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1502 #ifdef CONFIG_TASKS_RCU
1503 p
->rcu_tasks_holdout
= false;
1504 INIT_LIST_HEAD(&p
->rcu_tasks_holdout_list
);
1505 p
->rcu_tasks_idle_cpu
= -1;
1506 #endif /* #ifdef CONFIG_TASKS_RCU */
1510 * This creates a new process as a copy of the old one,
1511 * but does not actually start it yet.
1513 * It copies the registers, and all the appropriate
1514 * parts of the process environment (as per the clone
1515 * flags). The actual kick-off is left to the caller.
1517 static __latent_entropy
struct task_struct
*copy_process(
1518 unsigned long clone_flags
,
1519 unsigned long stack_start
,
1520 unsigned long stack_size
,
1521 int __user
*child_tidptr
,
1528 struct task_struct
*p
;
1530 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
1531 return ERR_PTR(-EINVAL
);
1533 if ((clone_flags
& (CLONE_NEWUSER
|CLONE_FS
)) == (CLONE_NEWUSER
|CLONE_FS
))
1534 return ERR_PTR(-EINVAL
);
1537 * Thread groups must share signals as well, and detached threads
1538 * can only be started up within the thread group.
1540 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
1541 return ERR_PTR(-EINVAL
);
1544 * Shared signal handlers imply shared VM. By way of the above,
1545 * thread groups also imply shared VM. Blocking this case allows
1546 * for various simplifications in other code.
1548 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
1549 return ERR_PTR(-EINVAL
);
1552 * Siblings of global init remain as zombies on exit since they are
1553 * not reaped by their parent (swapper). To solve this and to avoid
1554 * multi-rooted process trees, prevent global and container-inits
1555 * from creating siblings.
1557 if ((clone_flags
& CLONE_PARENT
) &&
1558 current
->signal
->flags
& SIGNAL_UNKILLABLE
)
1559 return ERR_PTR(-EINVAL
);
1562 * If the new process will be in a different pid or user namespace
1563 * do not allow it to share a thread group with the forking task.
1565 if (clone_flags
& CLONE_THREAD
) {
1566 if ((clone_flags
& (CLONE_NEWUSER
| CLONE_NEWPID
)) ||
1567 (task_active_pid_ns(current
) !=
1568 current
->nsproxy
->pid_ns_for_children
))
1569 return ERR_PTR(-EINVAL
);
1573 p
= dup_task_struct(current
, node
);
1578 * This _must_ happen before we call free_task(), i.e. before we jump
1579 * to any of the bad_fork_* labels. This is to avoid freeing
1580 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1581 * kernel threads (PF_KTHREAD).
1583 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1585 * Clear TID on mm_release()?
1587 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1589 ftrace_graph_init_task(p
);
1591 rt_mutex_init_task(p
);
1593 #ifdef CONFIG_PROVE_LOCKING
1594 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
1595 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
1598 if (atomic_read(&p
->real_cred
->user
->processes
) >=
1599 task_rlimit(p
, RLIMIT_NPROC
)) {
1600 if (p
->real_cred
->user
!= INIT_USER
&&
1601 !capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
))
1604 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1606 retval
= copy_creds(p
, clone_flags
);
1611 * If multiple threads are within copy_process(), then this check
1612 * triggers too late. This doesn't hurt, the check is only there
1613 * to stop root fork bombs.
1616 if (nr_threads
>= max_threads
)
1617 goto bad_fork_cleanup_count
;
1619 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1620 p
->flags
&= ~(PF_SUPERPRIV
| PF_WQ_WORKER
| PF_IDLE
);
1621 p
->flags
|= PF_FORKNOEXEC
;
1622 INIT_LIST_HEAD(&p
->children
);
1623 INIT_LIST_HEAD(&p
->sibling
);
1624 rcu_copy_process(p
);
1625 p
->vfork_done
= NULL
;
1626 spin_lock_init(&p
->alloc_lock
);
1628 init_sigpending(&p
->pending
);
1630 p
->utime
= p
->stime
= p
->gtime
= 0;
1631 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1632 p
->utimescaled
= p
->stimescaled
= 0;
1634 prev_cputime_init(&p
->prev_cputime
);
1636 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1637 seqcount_init(&p
->vtime
.seqcount
);
1638 p
->vtime
.starttime
= 0;
1639 p
->vtime
.state
= VTIME_INACTIVE
;
1642 #if defined(SPLIT_RSS_COUNTING)
1643 memset(&p
->rss_stat
, 0, sizeof(p
->rss_stat
));
1646 p
->default_timer_slack_ns
= current
->timer_slack_ns
;
1648 task_io_accounting_init(&p
->ioac
);
1649 acct_clear_integrals(p
);
1651 posix_cpu_timers_init(p
);
1653 p
->start_time
= ktime_get_ns();
1654 p
->real_start_time
= ktime_get_boot_ns();
1655 p
->io_context
= NULL
;
1656 p
->audit_context
= NULL
;
1659 p
->mempolicy
= mpol_dup(p
->mempolicy
);
1660 if (IS_ERR(p
->mempolicy
)) {
1661 retval
= PTR_ERR(p
->mempolicy
);
1662 p
->mempolicy
= NULL
;
1663 goto bad_fork_cleanup_threadgroup_lock
;
1666 #ifdef CONFIG_CPUSETS
1667 p
->cpuset_mem_spread_rotor
= NUMA_NO_NODE
;
1668 p
->cpuset_slab_spread_rotor
= NUMA_NO_NODE
;
1669 seqcount_init(&p
->mems_allowed_seq
);
1671 #ifdef CONFIG_TRACE_IRQFLAGS
1673 p
->hardirqs_enabled
= 0;
1674 p
->hardirq_enable_ip
= 0;
1675 p
->hardirq_enable_event
= 0;
1676 p
->hardirq_disable_ip
= _THIS_IP_
;
1677 p
->hardirq_disable_event
= 0;
1678 p
->softirqs_enabled
= 1;
1679 p
->softirq_enable_ip
= _THIS_IP_
;
1680 p
->softirq_enable_event
= 0;
1681 p
->softirq_disable_ip
= 0;
1682 p
->softirq_disable_event
= 0;
1683 p
->hardirq_context
= 0;
1684 p
->softirq_context
= 0;
1687 p
->pagefault_disabled
= 0;
1689 #ifdef CONFIG_LOCKDEP
1690 p
->lockdep_depth
= 0; /* no locks held yet */
1691 p
->curr_chain_key
= 0;
1692 p
->lockdep_recursion
= 0;
1693 lockdep_init_task(p
);
1696 #ifdef CONFIG_DEBUG_MUTEXES
1697 p
->blocked_on
= NULL
; /* not blocked yet */
1699 #ifdef CONFIG_BCACHE
1700 p
->sequential_io
= 0;
1701 p
->sequential_io_avg
= 0;
1704 /* Perform scheduler related setup. Assign this task to a CPU. */
1705 retval
= sched_fork(clone_flags
, p
);
1707 goto bad_fork_cleanup_policy
;
1709 retval
= perf_event_init_task(p
);
1711 goto bad_fork_cleanup_policy
;
1712 retval
= audit_alloc(p
);
1714 goto bad_fork_cleanup_perf
;
1715 /* copy all the process information */
1717 retval
= security_task_alloc(p
, clone_flags
);
1719 goto bad_fork_cleanup_audit
;
1720 retval
= copy_semundo(clone_flags
, p
);
1722 goto bad_fork_cleanup_security
;
1723 retval
= copy_files(clone_flags
, p
);
1725 goto bad_fork_cleanup_semundo
;
1726 retval
= copy_fs(clone_flags
, p
);
1728 goto bad_fork_cleanup_files
;
1729 retval
= copy_sighand(clone_flags
, p
);
1731 goto bad_fork_cleanup_fs
;
1732 retval
= copy_signal(clone_flags
, p
);
1734 goto bad_fork_cleanup_sighand
;
1735 retval
= copy_mm(clone_flags
, p
);
1737 goto bad_fork_cleanup_signal
;
1738 retval
= copy_namespaces(clone_flags
, p
);
1740 goto bad_fork_cleanup_mm
;
1741 retval
= copy_io(clone_flags
, p
);
1743 goto bad_fork_cleanup_namespaces
;
1744 retval
= copy_thread_tls(clone_flags
, stack_start
, stack_size
, p
, tls
);
1746 goto bad_fork_cleanup_io
;
1748 if (pid
!= &init_struct_pid
) {
1749 pid
= alloc_pid(p
->nsproxy
->pid_ns_for_children
);
1751 retval
= PTR_ERR(pid
);
1752 goto bad_fork_cleanup_thread
;
1760 p
->robust_list
= NULL
;
1761 #ifdef CONFIG_COMPAT
1762 p
->compat_robust_list
= NULL
;
1764 INIT_LIST_HEAD(&p
->pi_state_list
);
1765 p
->pi_state_cache
= NULL
;
1768 * sigaltstack should be cleared when sharing the same VM
1770 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1774 * Syscall tracing and stepping should be turned off in the
1775 * child regardless of CLONE_PTRACE.
1777 user_disable_single_step(p
);
1778 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1779 #ifdef TIF_SYSCALL_EMU
1780 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1782 clear_all_latency_tracing(p
);
1784 /* ok, now we should be set up.. */
1785 p
->pid
= pid_nr(pid
);
1786 if (clone_flags
& CLONE_THREAD
) {
1787 p
->exit_signal
= -1;
1788 p
->group_leader
= current
->group_leader
;
1789 p
->tgid
= current
->tgid
;
1791 if (clone_flags
& CLONE_PARENT
)
1792 p
->exit_signal
= current
->group_leader
->exit_signal
;
1794 p
->exit_signal
= (clone_flags
& CSIGNAL
);
1795 p
->group_leader
= p
;
1800 p
->nr_dirtied_pause
= 128 >> (PAGE_SHIFT
- 10);
1801 p
->dirty_paused_when
= 0;
1803 p
->pdeath_signal
= 0;
1804 INIT_LIST_HEAD(&p
->thread_group
);
1805 p
->task_works
= NULL
;
1807 cgroup_threadgroup_change_begin(current
);
1809 * Ensure that the cgroup subsystem policies allow the new process to be
1810 * forked. It should be noted the the new process's css_set can be changed
1811 * between here and cgroup_post_fork() if an organisation operation is in
1814 retval
= cgroup_can_fork(p
);
1816 goto bad_fork_free_pid
;
1819 * Make it visible to the rest of the system, but dont wake it up yet.
1820 * Need tasklist lock for parent etc handling!
1822 write_lock_irq(&tasklist_lock
);
1824 /* CLONE_PARENT re-uses the old parent */
1825 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
)) {
1826 p
->real_parent
= current
->real_parent
;
1827 p
->parent_exec_id
= current
->parent_exec_id
;
1829 p
->real_parent
= current
;
1830 p
->parent_exec_id
= current
->self_exec_id
;
1833 klp_copy_process(p
);
1835 spin_lock(¤t
->sighand
->siglock
);
1838 * Copy seccomp details explicitly here, in case they were changed
1839 * before holding sighand lock.
1844 * Process group and session signals need to be delivered to just the
1845 * parent before the fork or both the parent and the child after the
1846 * fork. Restart if a signal comes in before we add the new process to
1847 * it's process group.
1848 * A fatal signal pending means that current will exit, so the new
1849 * thread can't slip out of an OOM kill (or normal SIGKILL).
1851 recalc_sigpending();
1852 if (signal_pending(current
)) {
1853 retval
= -ERESTARTNOINTR
;
1854 goto bad_fork_cancel_cgroup
;
1856 if (unlikely(!(ns_of_pid(pid
)->nr_hashed
& PIDNS_HASH_ADDING
))) {
1858 goto bad_fork_cancel_cgroup
;
1861 if (likely(p
->pid
)) {
1862 ptrace_init_task(p
, (clone_flags
& CLONE_PTRACE
) || trace
);
1864 init_task_pid(p
, PIDTYPE_PID
, pid
);
1865 if (thread_group_leader(p
)) {
1866 init_task_pid(p
, PIDTYPE_PGID
, task_pgrp(current
));
1867 init_task_pid(p
, PIDTYPE_SID
, task_session(current
));
1869 if (is_child_reaper(pid
)) {
1870 ns_of_pid(pid
)->child_reaper
= p
;
1871 p
->signal
->flags
|= SIGNAL_UNKILLABLE
;
1874 p
->signal
->leader_pid
= pid
;
1875 p
->signal
->tty
= tty_kref_get(current
->signal
->tty
);
1877 * Inherit has_child_subreaper flag under the same
1878 * tasklist_lock with adding child to the process tree
1879 * for propagate_has_child_subreaper optimization.
1881 p
->signal
->has_child_subreaper
= p
->real_parent
->signal
->has_child_subreaper
||
1882 p
->real_parent
->signal
->is_child_subreaper
;
1883 list_add_tail(&p
->sibling
, &p
->real_parent
->children
);
1884 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
1885 attach_pid(p
, PIDTYPE_PGID
);
1886 attach_pid(p
, PIDTYPE_SID
);
1887 __this_cpu_inc(process_counts
);
1889 current
->signal
->nr_threads
++;
1890 atomic_inc(¤t
->signal
->live
);
1891 atomic_inc(¤t
->signal
->sigcnt
);
1892 list_add_tail_rcu(&p
->thread_group
,
1893 &p
->group_leader
->thread_group
);
1894 list_add_tail_rcu(&p
->thread_node
,
1895 &p
->signal
->thread_head
);
1897 attach_pid(p
, PIDTYPE_PID
);
1902 spin_unlock(¤t
->sighand
->siglock
);
1903 syscall_tracepoint_update(p
);
1904 write_unlock_irq(&tasklist_lock
);
1906 proc_fork_connector(p
);
1907 cgroup_post_fork(p
);
1908 cgroup_threadgroup_change_end(current
);
1911 trace_task_newtask(p
, clone_flags
);
1912 uprobe_copy_process(p
, clone_flags
);
1916 bad_fork_cancel_cgroup
:
1917 spin_unlock(¤t
->sighand
->siglock
);
1918 write_unlock_irq(&tasklist_lock
);
1919 cgroup_cancel_fork(p
);
1921 cgroup_threadgroup_change_end(current
);
1922 if (pid
!= &init_struct_pid
)
1924 bad_fork_cleanup_thread
:
1926 bad_fork_cleanup_io
:
1929 bad_fork_cleanup_namespaces
:
1930 exit_task_namespaces(p
);
1931 bad_fork_cleanup_mm
:
1934 bad_fork_cleanup_signal
:
1935 if (!(clone_flags
& CLONE_THREAD
))
1936 free_signal_struct(p
->signal
);
1937 bad_fork_cleanup_sighand
:
1938 __cleanup_sighand(p
->sighand
);
1939 bad_fork_cleanup_fs
:
1940 exit_fs(p
); /* blocking */
1941 bad_fork_cleanup_files
:
1942 exit_files(p
); /* blocking */
1943 bad_fork_cleanup_semundo
:
1945 bad_fork_cleanup_security
:
1946 security_task_free(p
);
1947 bad_fork_cleanup_audit
:
1949 bad_fork_cleanup_perf
:
1950 perf_event_free_task(p
);
1951 bad_fork_cleanup_policy
:
1952 lockdep_free_task(p
);
1954 mpol_put(p
->mempolicy
);
1955 bad_fork_cleanup_threadgroup_lock
:
1957 delayacct_tsk_free(p
);
1958 bad_fork_cleanup_count
:
1959 atomic_dec(&p
->cred
->user
->processes
);
1962 p
->state
= TASK_DEAD
;
1966 return ERR_PTR(retval
);
1969 static inline void init_idle_pids(struct pid_link
*links
)
1973 for (type
= PIDTYPE_PID
; type
< PIDTYPE_MAX
; ++type
) {
1974 INIT_HLIST_NODE(&links
[type
].node
); /* not really needed */
1975 links
[type
].pid
= &init_struct_pid
;
1979 struct task_struct
*fork_idle(int cpu
)
1981 struct task_struct
*task
;
1982 task
= copy_process(CLONE_VM
, 0, 0, NULL
, &init_struct_pid
, 0, 0,
1984 if (!IS_ERR(task
)) {
1985 init_idle_pids(task
->pids
);
1986 init_idle(task
, cpu
);
1993 * Ok, this is the main fork-routine.
1995 * It copies the process, and if successful kick-starts
1996 * it and waits for it to finish using the VM if required.
1998 long _do_fork(unsigned long clone_flags
,
1999 unsigned long stack_start
,
2000 unsigned long stack_size
,
2001 int __user
*parent_tidptr
,
2002 int __user
*child_tidptr
,
2005 struct task_struct
*p
;
2010 * Determine whether and which event to report to ptracer. When
2011 * called from kernel_thread or CLONE_UNTRACED is explicitly
2012 * requested, no event is reported; otherwise, report if the event
2013 * for the type of forking is enabled.
2015 if (!(clone_flags
& CLONE_UNTRACED
)) {
2016 if (clone_flags
& CLONE_VFORK
)
2017 trace
= PTRACE_EVENT_VFORK
;
2018 else if ((clone_flags
& CSIGNAL
) != SIGCHLD
)
2019 trace
= PTRACE_EVENT_CLONE
;
2021 trace
= PTRACE_EVENT_FORK
;
2023 if (likely(!ptrace_event_enabled(current
, trace
)))
2027 p
= copy_process(clone_flags
, stack_start
, stack_size
,
2028 child_tidptr
, NULL
, trace
, tls
, NUMA_NO_NODE
);
2029 add_latent_entropy();
2031 * Do this prior waking up the new thread - the thread pointer
2032 * might get invalid after that point, if the thread exits quickly.
2035 struct completion vfork
;
2038 trace_sched_process_fork(current
, p
);
2040 pid
= get_task_pid(p
, PIDTYPE_PID
);
2043 if (clone_flags
& CLONE_PARENT_SETTID
)
2044 put_user(nr
, parent_tidptr
);
2046 if (clone_flags
& CLONE_VFORK
) {
2047 p
->vfork_done
= &vfork
;
2048 init_completion(&vfork
);
2052 wake_up_new_task(p
);
2054 /* forking complete and child started to run, tell ptracer */
2055 if (unlikely(trace
))
2056 ptrace_event_pid(trace
, pid
);
2058 if (clone_flags
& CLONE_VFORK
) {
2059 if (!wait_for_vfork_done(p
, &vfork
))
2060 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE
, pid
);
2070 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2071 /* For compatibility with architectures that call do_fork directly rather than
2072 * using the syscall entry points below. */
2073 long do_fork(unsigned long clone_flags
,
2074 unsigned long stack_start
,
2075 unsigned long stack_size
,
2076 int __user
*parent_tidptr
,
2077 int __user
*child_tidptr
)
2079 return _do_fork(clone_flags
, stack_start
, stack_size
,
2080 parent_tidptr
, child_tidptr
, 0);
2085 * Create a kernel thread.
2087 pid_t
kernel_thread(int (*fn
)(void *), void *arg
, unsigned long flags
)
2089 return _do_fork(flags
|CLONE_VM
|CLONE_UNTRACED
, (unsigned long)fn
,
2090 (unsigned long)arg
, NULL
, NULL
, 0);
2093 #ifdef __ARCH_WANT_SYS_FORK
2094 SYSCALL_DEFINE0(fork
)
2097 return _do_fork(SIGCHLD
, 0, 0, NULL
, NULL
, 0);
2099 /* can not support in nommu mode */
2105 #ifdef __ARCH_WANT_SYS_VFORK
2106 SYSCALL_DEFINE0(vfork
)
2108 return _do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, 0,
2113 #ifdef __ARCH_WANT_SYS_CLONE
2114 #ifdef CONFIG_CLONE_BACKWARDS
2115 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
2116 int __user
*, parent_tidptr
,
2118 int __user
*, child_tidptr
)
2119 #elif defined(CONFIG_CLONE_BACKWARDS2)
2120 SYSCALL_DEFINE5(clone
, unsigned long, newsp
, unsigned long, clone_flags
,
2121 int __user
*, parent_tidptr
,
2122 int __user
*, child_tidptr
,
2124 #elif defined(CONFIG_CLONE_BACKWARDS3)
2125 SYSCALL_DEFINE6(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
2127 int __user
*, parent_tidptr
,
2128 int __user
*, child_tidptr
,
2131 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
2132 int __user
*, parent_tidptr
,
2133 int __user
*, child_tidptr
,
2137 return _do_fork(clone_flags
, newsp
, 0, parent_tidptr
, child_tidptr
, tls
);
2141 void walk_process_tree(struct task_struct
*top
, proc_visitor visitor
, void *data
)
2143 struct task_struct
*leader
, *parent
, *child
;
2146 read_lock(&tasklist_lock
);
2147 leader
= top
= top
->group_leader
;
2149 for_each_thread(leader
, parent
) {
2150 list_for_each_entry(child
, &parent
->children
, sibling
) {
2151 res
= visitor(child
, data
);
2163 if (leader
!= top
) {
2165 parent
= child
->real_parent
;
2166 leader
= parent
->group_leader
;
2170 read_unlock(&tasklist_lock
);
2173 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2174 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2177 static void sighand_ctor(void *data
)
2179 struct sighand_struct
*sighand
= data
;
2181 spin_lock_init(&sighand
->siglock
);
2182 init_waitqueue_head(&sighand
->signalfd_wqh
);
2185 void __init
proc_caches_init(void)
2187 sighand_cachep
= kmem_cache_create("sighand_cache",
2188 sizeof(struct sighand_struct
), 0,
2189 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_TYPESAFE_BY_RCU
|
2190 SLAB_NOTRACK
|SLAB_ACCOUNT
, sighand_ctor
);
2191 signal_cachep
= kmem_cache_create("signal_cache",
2192 sizeof(struct signal_struct
), 0,
2193 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
|SLAB_ACCOUNT
,
2195 files_cachep
= kmem_cache_create("files_cache",
2196 sizeof(struct files_struct
), 0,
2197 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
|SLAB_ACCOUNT
,
2199 fs_cachep
= kmem_cache_create("fs_cache",
2200 sizeof(struct fs_struct
), 0,
2201 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
|SLAB_ACCOUNT
,
2204 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2205 * whole struct cpumask for the OFFSTACK case. We could change
2206 * this to *only* allocate as much of it as required by the
2207 * maximum number of CPU's we can ever have. The cpumask_allocation
2208 * is at the end of the structure, exactly for that reason.
2210 mm_cachep
= kmem_cache_create("mm_struct",
2211 sizeof(struct mm_struct
), ARCH_MIN_MMSTRUCT_ALIGN
,
2212 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
|SLAB_ACCOUNT
,
2214 vm_area_cachep
= KMEM_CACHE(vm_area_struct
, SLAB_PANIC
|SLAB_ACCOUNT
);
2216 nsproxy_cache_init();
2220 * Check constraints on flags passed to the unshare system call.
2222 static int check_unshare_flags(unsigned long unshare_flags
)
2224 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
2225 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
|
2226 CLONE_NEWUTS
|CLONE_NEWIPC
|CLONE_NEWNET
|
2227 CLONE_NEWUSER
|CLONE_NEWPID
|CLONE_NEWCGROUP
))
2230 * Not implemented, but pretend it works if there is nothing
2231 * to unshare. Note that unsharing the address space or the
2232 * signal handlers also need to unshare the signal queues (aka
2235 if (unshare_flags
& (CLONE_THREAD
| CLONE_SIGHAND
| CLONE_VM
)) {
2236 if (!thread_group_empty(current
))
2239 if (unshare_flags
& (CLONE_SIGHAND
| CLONE_VM
)) {
2240 if (atomic_read(¤t
->sighand
->count
) > 1)
2243 if (unshare_flags
& CLONE_VM
) {
2244 if (!current_is_single_threaded())
2252 * Unshare the filesystem structure if it is being shared
2254 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
2256 struct fs_struct
*fs
= current
->fs
;
2258 if (!(unshare_flags
& CLONE_FS
) || !fs
)
2261 /* don't need lock here; in the worst case we'll do useless copy */
2265 *new_fsp
= copy_fs_struct(fs
);
2273 * Unshare file descriptor table if it is being shared
2275 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
2277 struct files_struct
*fd
= current
->files
;
2280 if ((unshare_flags
& CLONE_FILES
) &&
2281 (fd
&& atomic_read(&fd
->count
) > 1)) {
2282 *new_fdp
= dup_fd(fd
, &error
);
2291 * unshare allows a process to 'unshare' part of the process
2292 * context which was originally shared using clone. copy_*
2293 * functions used by do_fork() cannot be used here directly
2294 * because they modify an inactive task_struct that is being
2295 * constructed. Here we are modifying the current, active,
2298 SYSCALL_DEFINE1(unshare
, unsigned long, unshare_flags
)
2300 struct fs_struct
*fs
, *new_fs
= NULL
;
2301 struct files_struct
*fd
, *new_fd
= NULL
;
2302 struct cred
*new_cred
= NULL
;
2303 struct nsproxy
*new_nsproxy
= NULL
;
2308 * If unsharing a user namespace must also unshare the thread group
2309 * and unshare the filesystem root and working directories.
2311 if (unshare_flags
& CLONE_NEWUSER
)
2312 unshare_flags
|= CLONE_THREAD
| CLONE_FS
;
2314 * If unsharing vm, must also unshare signal handlers.
2316 if (unshare_flags
& CLONE_VM
)
2317 unshare_flags
|= CLONE_SIGHAND
;
2319 * If unsharing a signal handlers, must also unshare the signal queues.
2321 if (unshare_flags
& CLONE_SIGHAND
)
2322 unshare_flags
|= CLONE_THREAD
;
2324 * If unsharing namespace, must also unshare filesystem information.
2326 if (unshare_flags
& CLONE_NEWNS
)
2327 unshare_flags
|= CLONE_FS
;
2329 err
= check_unshare_flags(unshare_flags
);
2331 goto bad_unshare_out
;
2333 * CLONE_NEWIPC must also detach from the undolist: after switching
2334 * to a new ipc namespace, the semaphore arrays from the old
2335 * namespace are unreachable.
2337 if (unshare_flags
& (CLONE_NEWIPC
|CLONE_SYSVSEM
))
2339 err
= unshare_fs(unshare_flags
, &new_fs
);
2341 goto bad_unshare_out
;
2342 err
= unshare_fd(unshare_flags
, &new_fd
);
2344 goto bad_unshare_cleanup_fs
;
2345 err
= unshare_userns(unshare_flags
, &new_cred
);
2347 goto bad_unshare_cleanup_fd
;
2348 err
= unshare_nsproxy_namespaces(unshare_flags
, &new_nsproxy
,
2351 goto bad_unshare_cleanup_cred
;
2353 if (new_fs
|| new_fd
|| do_sysvsem
|| new_cred
|| new_nsproxy
) {
2356 * CLONE_SYSVSEM is equivalent to sys_exit().
2360 if (unshare_flags
& CLONE_NEWIPC
) {
2361 /* Orphan segments in old ns (see sem above). */
2363 shm_init_task(current
);
2367 switch_task_namespaces(current
, new_nsproxy
);
2373 spin_lock(&fs
->lock
);
2374 current
->fs
= new_fs
;
2379 spin_unlock(&fs
->lock
);
2383 fd
= current
->files
;
2384 current
->files
= new_fd
;
2388 task_unlock(current
);
2391 /* Install the new user namespace */
2392 commit_creds(new_cred
);
2397 perf_event_namespaces(current
);
2399 bad_unshare_cleanup_cred
:
2402 bad_unshare_cleanup_fd
:
2404 put_files_struct(new_fd
);
2406 bad_unshare_cleanup_fs
:
2408 free_fs_struct(new_fs
);
2415 * Helper to unshare the files of the current task.
2416 * We don't want to expose copy_files internals to
2417 * the exec layer of the kernel.
2420 int unshare_files(struct files_struct
**displaced
)
2422 struct task_struct
*task
= current
;
2423 struct files_struct
*copy
= NULL
;
2426 error
= unshare_fd(CLONE_FILES
, ©
);
2427 if (error
|| !copy
) {
2431 *displaced
= task
->files
;
2438 int sysctl_max_threads(struct ctl_table
*table
, int write
,
2439 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2443 int threads
= max_threads
;
2444 int min
= MIN_THREADS
;
2445 int max
= MAX_THREADS
;
2452 ret
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2456 set_max_threads(threads
);