staging: rtl8188eu: Replace function name in string with __func__
[linux/fpc-iii.git] / block / blk-mq.c
blobdf93102e21494dc7f98456e4376ce7c83fca56ab
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 int ddir, bytes, bucket;
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
51 bucket = ddir + 2*(ilog2(bytes) - 9);
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58 return bucket;
62 * Check if any of the ctx's have pending work in this hardware queue
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
72 * Mark this ctx as having pending work in this hardware queue
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
96 struct mq_inflight *mi = priv;
98 if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
100 * index[0] counts the specific partition that was asked
101 * for. index[1] counts the ones that are active on the
102 * whole device, so increment that if mi->part is indeed
103 * a partition, and not a whole device.
105 if (rq->part == mi->part)
106 mi->inflight[0]++;
107 if (mi->part->partno)
108 mi->inflight[1]++;
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113 unsigned int inflight[2])
115 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117 inflight[0] = inflight[1] = 0;
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121 void blk_freeze_queue_start(struct request_queue *q)
123 int freeze_depth;
125 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126 if (freeze_depth == 1) {
127 percpu_ref_kill(&q->q_usage_counter);
128 if (q->mq_ops)
129 blk_mq_run_hw_queues(q, false);
132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
134 void blk_mq_freeze_queue_wait(struct request_queue *q)
136 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
140 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141 unsigned long timeout)
143 return wait_event_timeout(q->mq_freeze_wq,
144 percpu_ref_is_zero(&q->q_usage_counter),
145 timeout);
147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
150 * Guarantee no request is in use, so we can change any data structure of
151 * the queue afterward.
153 void blk_freeze_queue(struct request_queue *q)
156 * In the !blk_mq case we are only calling this to kill the
157 * q_usage_counter, otherwise this increases the freeze depth
158 * and waits for it to return to zero. For this reason there is
159 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160 * exported to drivers as the only user for unfreeze is blk_mq.
162 blk_freeze_queue_start(q);
163 if (!q->mq_ops)
164 blk_drain_queue(q);
165 blk_mq_freeze_queue_wait(q);
168 void blk_mq_freeze_queue(struct request_queue *q)
171 * ...just an alias to keep freeze and unfreeze actions balanced
172 * in the blk_mq_* namespace
174 blk_freeze_queue(q);
176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178 void blk_mq_unfreeze_queue(struct request_queue *q)
180 int freeze_depth;
182 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
183 WARN_ON_ONCE(freeze_depth < 0);
184 if (!freeze_depth) {
185 percpu_ref_reinit(&q->q_usage_counter);
186 wake_up_all(&q->mq_freeze_wq);
189 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
192 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
193 * mpt3sas driver such that this function can be removed.
195 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
197 unsigned long flags;
199 spin_lock_irqsave(q->queue_lock, flags);
200 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
201 spin_unlock_irqrestore(q->queue_lock, flags);
203 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
206 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
207 * @q: request queue.
209 * Note: this function does not prevent that the struct request end_io()
210 * callback function is invoked. Once this function is returned, we make
211 * sure no dispatch can happen until the queue is unquiesced via
212 * blk_mq_unquiesce_queue().
214 void blk_mq_quiesce_queue(struct request_queue *q)
216 struct blk_mq_hw_ctx *hctx;
217 unsigned int i;
218 bool rcu = false;
220 blk_mq_quiesce_queue_nowait(q);
222 queue_for_each_hw_ctx(q, hctx, i) {
223 if (hctx->flags & BLK_MQ_F_BLOCKING)
224 synchronize_srcu(hctx->srcu);
225 else
226 rcu = true;
228 if (rcu)
229 synchronize_rcu();
231 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
234 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
235 * @q: request queue.
237 * This function recovers queue into the state before quiescing
238 * which is done by blk_mq_quiesce_queue.
240 void blk_mq_unquiesce_queue(struct request_queue *q)
242 unsigned long flags;
244 spin_lock_irqsave(q->queue_lock, flags);
245 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
246 spin_unlock_irqrestore(q->queue_lock, flags);
248 /* dispatch requests which are inserted during quiescing */
249 blk_mq_run_hw_queues(q, true);
251 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
253 void blk_mq_wake_waiters(struct request_queue *q)
255 struct blk_mq_hw_ctx *hctx;
256 unsigned int i;
258 queue_for_each_hw_ctx(q, hctx, i)
259 if (blk_mq_hw_queue_mapped(hctx))
260 blk_mq_tag_wakeup_all(hctx->tags, true);
263 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
265 return blk_mq_has_free_tags(hctx->tags);
267 EXPORT_SYMBOL(blk_mq_can_queue);
269 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
270 unsigned int tag, unsigned int op)
272 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
273 struct request *rq = tags->static_rqs[tag];
274 req_flags_t rq_flags = 0;
276 if (data->flags & BLK_MQ_REQ_INTERNAL) {
277 rq->tag = -1;
278 rq->internal_tag = tag;
279 } else {
280 if (blk_mq_tag_busy(data->hctx)) {
281 rq_flags = RQF_MQ_INFLIGHT;
282 atomic_inc(&data->hctx->nr_active);
284 rq->tag = tag;
285 rq->internal_tag = -1;
286 data->hctx->tags->rqs[rq->tag] = rq;
289 /* csd/requeue_work/fifo_time is initialized before use */
290 rq->q = data->q;
291 rq->mq_ctx = data->ctx;
292 rq->rq_flags = rq_flags;
293 rq->cpu = -1;
294 rq->cmd_flags = op;
295 if (data->flags & BLK_MQ_REQ_PREEMPT)
296 rq->rq_flags |= RQF_PREEMPT;
297 if (blk_queue_io_stat(data->q))
298 rq->rq_flags |= RQF_IO_STAT;
299 INIT_LIST_HEAD(&rq->queuelist);
300 INIT_HLIST_NODE(&rq->hash);
301 RB_CLEAR_NODE(&rq->rb_node);
302 rq->rq_disk = NULL;
303 rq->part = NULL;
304 rq->start_time = jiffies;
305 rq->nr_phys_segments = 0;
306 #if defined(CONFIG_BLK_DEV_INTEGRITY)
307 rq->nr_integrity_segments = 0;
308 #endif
309 rq->special = NULL;
310 /* tag was already set */
311 rq->extra_len = 0;
312 rq->__deadline = 0;
314 INIT_LIST_HEAD(&rq->timeout_list);
315 rq->timeout = 0;
317 rq->end_io = NULL;
318 rq->end_io_data = NULL;
319 rq->next_rq = NULL;
321 #ifdef CONFIG_BLK_CGROUP
322 rq->rl = NULL;
323 set_start_time_ns(rq);
324 rq->io_start_time_ns = 0;
325 #endif
327 data->ctx->rq_dispatched[op_is_sync(op)]++;
328 return rq;
331 static struct request *blk_mq_get_request(struct request_queue *q,
332 struct bio *bio, unsigned int op,
333 struct blk_mq_alloc_data *data)
335 struct elevator_queue *e = q->elevator;
336 struct request *rq;
337 unsigned int tag;
338 bool put_ctx_on_error = false;
340 blk_queue_enter_live(q);
341 data->q = q;
342 if (likely(!data->ctx)) {
343 data->ctx = blk_mq_get_ctx(q);
344 put_ctx_on_error = true;
346 if (likely(!data->hctx))
347 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
348 if (op & REQ_NOWAIT)
349 data->flags |= BLK_MQ_REQ_NOWAIT;
351 if (e) {
352 data->flags |= BLK_MQ_REQ_INTERNAL;
355 * Flush requests are special and go directly to the
356 * dispatch list.
358 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
359 e->type->ops.mq.limit_depth(op, data);
362 tag = blk_mq_get_tag(data);
363 if (tag == BLK_MQ_TAG_FAIL) {
364 if (put_ctx_on_error) {
365 blk_mq_put_ctx(data->ctx);
366 data->ctx = NULL;
368 blk_queue_exit(q);
369 return NULL;
372 rq = blk_mq_rq_ctx_init(data, tag, op);
373 if (!op_is_flush(op)) {
374 rq->elv.icq = NULL;
375 if (e && e->type->ops.mq.prepare_request) {
376 if (e->type->icq_cache && rq_ioc(bio))
377 blk_mq_sched_assign_ioc(rq, bio);
379 e->type->ops.mq.prepare_request(rq, bio);
380 rq->rq_flags |= RQF_ELVPRIV;
383 data->hctx->queued++;
384 return rq;
387 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
388 blk_mq_req_flags_t flags)
390 struct blk_mq_alloc_data alloc_data = { .flags = flags };
391 struct request *rq;
392 int ret;
394 ret = blk_queue_enter(q, flags);
395 if (ret)
396 return ERR_PTR(ret);
398 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
399 blk_queue_exit(q);
401 if (!rq)
402 return ERR_PTR(-EWOULDBLOCK);
404 blk_mq_put_ctx(alloc_data.ctx);
406 rq->__data_len = 0;
407 rq->__sector = (sector_t) -1;
408 rq->bio = rq->biotail = NULL;
409 return rq;
411 EXPORT_SYMBOL(blk_mq_alloc_request);
413 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
414 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
416 struct blk_mq_alloc_data alloc_data = { .flags = flags };
417 struct request *rq;
418 unsigned int cpu;
419 int ret;
422 * If the tag allocator sleeps we could get an allocation for a
423 * different hardware context. No need to complicate the low level
424 * allocator for this for the rare use case of a command tied to
425 * a specific queue.
427 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
428 return ERR_PTR(-EINVAL);
430 if (hctx_idx >= q->nr_hw_queues)
431 return ERR_PTR(-EIO);
433 ret = blk_queue_enter(q, flags);
434 if (ret)
435 return ERR_PTR(ret);
438 * Check if the hardware context is actually mapped to anything.
439 * If not tell the caller that it should skip this queue.
441 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
442 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
443 blk_queue_exit(q);
444 return ERR_PTR(-EXDEV);
446 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
447 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
449 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
450 blk_queue_exit(q);
452 if (!rq)
453 return ERR_PTR(-EWOULDBLOCK);
455 return rq;
457 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
459 void blk_mq_free_request(struct request *rq)
461 struct request_queue *q = rq->q;
462 struct elevator_queue *e = q->elevator;
463 struct blk_mq_ctx *ctx = rq->mq_ctx;
464 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
465 const int sched_tag = rq->internal_tag;
467 if (rq->rq_flags & RQF_ELVPRIV) {
468 if (e && e->type->ops.mq.finish_request)
469 e->type->ops.mq.finish_request(rq);
470 if (rq->elv.icq) {
471 put_io_context(rq->elv.icq->ioc);
472 rq->elv.icq = NULL;
476 ctx->rq_completed[rq_is_sync(rq)]++;
477 if (rq->rq_flags & RQF_MQ_INFLIGHT)
478 atomic_dec(&hctx->nr_active);
480 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
481 laptop_io_completion(q->backing_dev_info);
483 wbt_done(q->rq_wb, &rq->issue_stat);
485 if (blk_rq_rl(rq))
486 blk_put_rl(blk_rq_rl(rq));
488 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
489 if (rq->tag != -1)
490 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
491 if (sched_tag != -1)
492 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
493 blk_mq_sched_restart(hctx);
494 blk_queue_exit(q);
496 EXPORT_SYMBOL_GPL(blk_mq_free_request);
498 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
500 blk_account_io_done(rq);
502 if (rq->end_io) {
503 wbt_done(rq->q->rq_wb, &rq->issue_stat);
504 rq->end_io(rq, error);
505 } else {
506 if (unlikely(blk_bidi_rq(rq)))
507 blk_mq_free_request(rq->next_rq);
508 blk_mq_free_request(rq);
511 EXPORT_SYMBOL(__blk_mq_end_request);
513 void blk_mq_end_request(struct request *rq, blk_status_t error)
515 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
516 BUG();
517 __blk_mq_end_request(rq, error);
519 EXPORT_SYMBOL(blk_mq_end_request);
521 static void __blk_mq_complete_request_remote(void *data)
523 struct request *rq = data;
525 rq->q->softirq_done_fn(rq);
528 static void __blk_mq_complete_request(struct request *rq)
530 struct blk_mq_ctx *ctx = rq->mq_ctx;
531 bool shared = false;
532 int cpu;
534 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
535 blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
537 if (rq->internal_tag != -1)
538 blk_mq_sched_completed_request(rq);
539 if (rq->rq_flags & RQF_STATS) {
540 blk_mq_poll_stats_start(rq->q);
541 blk_stat_add(rq);
544 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
545 rq->q->softirq_done_fn(rq);
546 return;
549 cpu = get_cpu();
550 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
551 shared = cpus_share_cache(cpu, ctx->cpu);
553 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
554 rq->csd.func = __blk_mq_complete_request_remote;
555 rq->csd.info = rq;
556 rq->csd.flags = 0;
557 smp_call_function_single_async(ctx->cpu, &rq->csd);
558 } else {
559 rq->q->softirq_done_fn(rq);
561 put_cpu();
564 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
565 __releases(hctx->srcu)
567 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
568 rcu_read_unlock();
569 else
570 srcu_read_unlock(hctx->srcu, srcu_idx);
573 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
574 __acquires(hctx->srcu)
576 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
577 /* shut up gcc false positive */
578 *srcu_idx = 0;
579 rcu_read_lock();
580 } else
581 *srcu_idx = srcu_read_lock(hctx->srcu);
584 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
586 unsigned long flags;
589 * blk_mq_rq_aborted_gstate() is used from the completion path and
590 * can thus be called from irq context. u64_stats_fetch in the
591 * middle of update on the same CPU leads to lockup. Disable irq
592 * while updating.
594 local_irq_save(flags);
595 u64_stats_update_begin(&rq->aborted_gstate_sync);
596 rq->aborted_gstate = gstate;
597 u64_stats_update_end(&rq->aborted_gstate_sync);
598 local_irq_restore(flags);
601 static u64 blk_mq_rq_aborted_gstate(struct request *rq)
603 unsigned int start;
604 u64 aborted_gstate;
606 do {
607 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
608 aborted_gstate = rq->aborted_gstate;
609 } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
611 return aborted_gstate;
615 * blk_mq_complete_request - end I/O on a request
616 * @rq: the request being processed
618 * Description:
619 * Ends all I/O on a request. It does not handle partial completions.
620 * The actual completion happens out-of-order, through a IPI handler.
622 void blk_mq_complete_request(struct request *rq)
624 struct request_queue *q = rq->q;
625 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
626 int srcu_idx;
628 if (unlikely(blk_should_fake_timeout(q)))
629 return;
632 * If @rq->aborted_gstate equals the current instance, timeout is
633 * claiming @rq and we lost. This is synchronized through
634 * hctx_lock(). See blk_mq_timeout_work() for details.
636 * Completion path never blocks and we can directly use RCU here
637 * instead of hctx_lock() which can be either RCU or SRCU.
638 * However, that would complicate paths which want to synchronize
639 * against us. Let stay in sync with the issue path so that
640 * hctx_lock() covers both issue and completion paths.
642 hctx_lock(hctx, &srcu_idx);
643 if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
644 __blk_mq_complete_request(rq);
645 hctx_unlock(hctx, srcu_idx);
647 EXPORT_SYMBOL(blk_mq_complete_request);
649 int blk_mq_request_started(struct request *rq)
651 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
653 EXPORT_SYMBOL_GPL(blk_mq_request_started);
655 void blk_mq_start_request(struct request *rq)
657 struct request_queue *q = rq->q;
659 blk_mq_sched_started_request(rq);
661 trace_block_rq_issue(q, rq);
663 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
664 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
665 rq->rq_flags |= RQF_STATS;
666 wbt_issue(q->rq_wb, &rq->issue_stat);
669 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
672 * Mark @rq in-flight which also advances the generation number,
673 * and register for timeout. Protect with a seqcount to allow the
674 * timeout path to read both @rq->gstate and @rq->deadline
675 * coherently.
677 * This is the only place where a request is marked in-flight. If
678 * the timeout path reads an in-flight @rq->gstate, the
679 * @rq->deadline it reads together under @rq->gstate_seq is
680 * guaranteed to be the matching one.
682 preempt_disable();
683 write_seqcount_begin(&rq->gstate_seq);
685 blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
686 blk_add_timer(rq);
688 write_seqcount_end(&rq->gstate_seq);
689 preempt_enable();
691 if (q->dma_drain_size && blk_rq_bytes(rq)) {
693 * Make sure space for the drain appears. We know we can do
694 * this because max_hw_segments has been adjusted to be one
695 * fewer than the device can handle.
697 rq->nr_phys_segments++;
700 EXPORT_SYMBOL(blk_mq_start_request);
703 * When we reach here because queue is busy, it's safe to change the state
704 * to IDLE without checking @rq->aborted_gstate because we should still be
705 * holding the RCU read lock and thus protected against timeout.
707 static void __blk_mq_requeue_request(struct request *rq)
709 struct request_queue *q = rq->q;
711 blk_mq_put_driver_tag(rq);
713 trace_block_rq_requeue(q, rq);
714 wbt_requeue(q->rq_wb, &rq->issue_stat);
715 blk_mq_sched_requeue_request(rq);
717 if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
718 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
719 if (q->dma_drain_size && blk_rq_bytes(rq))
720 rq->nr_phys_segments--;
724 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
726 __blk_mq_requeue_request(rq);
728 BUG_ON(blk_queued_rq(rq));
729 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
731 EXPORT_SYMBOL(blk_mq_requeue_request);
733 static void blk_mq_requeue_work(struct work_struct *work)
735 struct request_queue *q =
736 container_of(work, struct request_queue, requeue_work.work);
737 LIST_HEAD(rq_list);
738 struct request *rq, *next;
740 spin_lock_irq(&q->requeue_lock);
741 list_splice_init(&q->requeue_list, &rq_list);
742 spin_unlock_irq(&q->requeue_lock);
744 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
745 if (!(rq->rq_flags & RQF_SOFTBARRIER))
746 continue;
748 rq->rq_flags &= ~RQF_SOFTBARRIER;
749 list_del_init(&rq->queuelist);
750 blk_mq_sched_insert_request(rq, true, false, false);
753 while (!list_empty(&rq_list)) {
754 rq = list_entry(rq_list.next, struct request, queuelist);
755 list_del_init(&rq->queuelist);
756 blk_mq_sched_insert_request(rq, false, false, false);
759 blk_mq_run_hw_queues(q, false);
762 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
763 bool kick_requeue_list)
765 struct request_queue *q = rq->q;
766 unsigned long flags;
769 * We abuse this flag that is otherwise used by the I/O scheduler to
770 * request head insertion from the workqueue.
772 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
774 spin_lock_irqsave(&q->requeue_lock, flags);
775 if (at_head) {
776 rq->rq_flags |= RQF_SOFTBARRIER;
777 list_add(&rq->queuelist, &q->requeue_list);
778 } else {
779 list_add_tail(&rq->queuelist, &q->requeue_list);
781 spin_unlock_irqrestore(&q->requeue_lock, flags);
783 if (kick_requeue_list)
784 blk_mq_kick_requeue_list(q);
786 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
788 void blk_mq_kick_requeue_list(struct request_queue *q)
790 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
792 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
794 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
795 unsigned long msecs)
797 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
798 msecs_to_jiffies(msecs));
800 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
802 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
804 if (tag < tags->nr_tags) {
805 prefetch(tags->rqs[tag]);
806 return tags->rqs[tag];
809 return NULL;
811 EXPORT_SYMBOL(blk_mq_tag_to_rq);
813 struct blk_mq_timeout_data {
814 unsigned long next;
815 unsigned int next_set;
816 unsigned int nr_expired;
819 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
821 const struct blk_mq_ops *ops = req->q->mq_ops;
822 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
824 req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
826 if (ops->timeout)
827 ret = ops->timeout(req, reserved);
829 switch (ret) {
830 case BLK_EH_HANDLED:
831 __blk_mq_complete_request(req);
832 break;
833 case BLK_EH_RESET_TIMER:
835 * As nothing prevents from completion happening while
836 * ->aborted_gstate is set, this may lead to ignored
837 * completions and further spurious timeouts.
839 blk_mq_rq_update_aborted_gstate(req, 0);
840 blk_add_timer(req);
841 break;
842 case BLK_EH_NOT_HANDLED:
843 break;
844 default:
845 printk(KERN_ERR "block: bad eh return: %d\n", ret);
846 break;
850 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
851 struct request *rq, void *priv, bool reserved)
853 struct blk_mq_timeout_data *data = priv;
854 unsigned long gstate, deadline;
855 int start;
857 might_sleep();
859 if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
860 return;
862 /* read coherent snapshots of @rq->state_gen and @rq->deadline */
863 while (true) {
864 start = read_seqcount_begin(&rq->gstate_seq);
865 gstate = READ_ONCE(rq->gstate);
866 deadline = blk_rq_deadline(rq);
867 if (!read_seqcount_retry(&rq->gstate_seq, start))
868 break;
869 cond_resched();
872 /* if in-flight && overdue, mark for abortion */
873 if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
874 time_after_eq(jiffies, deadline)) {
875 blk_mq_rq_update_aborted_gstate(rq, gstate);
876 data->nr_expired++;
877 hctx->nr_expired++;
878 } else if (!data->next_set || time_after(data->next, deadline)) {
879 data->next = deadline;
880 data->next_set = 1;
884 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
885 struct request *rq, void *priv, bool reserved)
888 * We marked @rq->aborted_gstate and waited for RCU. If there were
889 * completions that we lost to, they would have finished and
890 * updated @rq->gstate by now; otherwise, the completion path is
891 * now guaranteed to see @rq->aborted_gstate and yield. If
892 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
894 if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
895 READ_ONCE(rq->gstate) == rq->aborted_gstate)
896 blk_mq_rq_timed_out(rq, reserved);
899 static void blk_mq_timeout_work(struct work_struct *work)
901 struct request_queue *q =
902 container_of(work, struct request_queue, timeout_work);
903 struct blk_mq_timeout_data data = {
904 .next = 0,
905 .next_set = 0,
906 .nr_expired = 0,
908 struct blk_mq_hw_ctx *hctx;
909 int i;
911 /* A deadlock might occur if a request is stuck requiring a
912 * timeout at the same time a queue freeze is waiting
913 * completion, since the timeout code would not be able to
914 * acquire the queue reference here.
916 * That's why we don't use blk_queue_enter here; instead, we use
917 * percpu_ref_tryget directly, because we need to be able to
918 * obtain a reference even in the short window between the queue
919 * starting to freeze, by dropping the first reference in
920 * blk_freeze_queue_start, and the moment the last request is
921 * consumed, marked by the instant q_usage_counter reaches
922 * zero.
924 if (!percpu_ref_tryget(&q->q_usage_counter))
925 return;
927 /* scan for the expired ones and set their ->aborted_gstate */
928 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
930 if (data.nr_expired) {
931 bool has_rcu = false;
934 * Wait till everyone sees ->aborted_gstate. The
935 * sequential waits for SRCUs aren't ideal. If this ever
936 * becomes a problem, we can add per-hw_ctx rcu_head and
937 * wait in parallel.
939 queue_for_each_hw_ctx(q, hctx, i) {
940 if (!hctx->nr_expired)
941 continue;
943 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
944 has_rcu = true;
945 else
946 synchronize_srcu(hctx->srcu);
948 hctx->nr_expired = 0;
950 if (has_rcu)
951 synchronize_rcu();
953 /* terminate the ones we won */
954 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
957 if (data.next_set) {
958 data.next = blk_rq_timeout(round_jiffies_up(data.next));
959 mod_timer(&q->timeout, data.next);
960 } else {
962 * Request timeouts are handled as a forward rolling timer. If
963 * we end up here it means that no requests are pending and
964 * also that no request has been pending for a while. Mark
965 * each hctx as idle.
967 queue_for_each_hw_ctx(q, hctx, i) {
968 /* the hctx may be unmapped, so check it here */
969 if (blk_mq_hw_queue_mapped(hctx))
970 blk_mq_tag_idle(hctx);
973 blk_queue_exit(q);
976 struct flush_busy_ctx_data {
977 struct blk_mq_hw_ctx *hctx;
978 struct list_head *list;
981 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
983 struct flush_busy_ctx_data *flush_data = data;
984 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
985 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
987 sbitmap_clear_bit(sb, bitnr);
988 spin_lock(&ctx->lock);
989 list_splice_tail_init(&ctx->rq_list, flush_data->list);
990 spin_unlock(&ctx->lock);
991 return true;
995 * Process software queues that have been marked busy, splicing them
996 * to the for-dispatch
998 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1000 struct flush_busy_ctx_data data = {
1001 .hctx = hctx,
1002 .list = list,
1005 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1007 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1009 struct dispatch_rq_data {
1010 struct blk_mq_hw_ctx *hctx;
1011 struct request *rq;
1014 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1015 void *data)
1017 struct dispatch_rq_data *dispatch_data = data;
1018 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1019 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1021 spin_lock(&ctx->lock);
1022 if (unlikely(!list_empty(&ctx->rq_list))) {
1023 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1024 list_del_init(&dispatch_data->rq->queuelist);
1025 if (list_empty(&ctx->rq_list))
1026 sbitmap_clear_bit(sb, bitnr);
1028 spin_unlock(&ctx->lock);
1030 return !dispatch_data->rq;
1033 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1034 struct blk_mq_ctx *start)
1036 unsigned off = start ? start->index_hw : 0;
1037 struct dispatch_rq_data data = {
1038 .hctx = hctx,
1039 .rq = NULL,
1042 __sbitmap_for_each_set(&hctx->ctx_map, off,
1043 dispatch_rq_from_ctx, &data);
1045 return data.rq;
1048 static inline unsigned int queued_to_index(unsigned int queued)
1050 if (!queued)
1051 return 0;
1053 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1056 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1057 bool wait)
1059 struct blk_mq_alloc_data data = {
1060 .q = rq->q,
1061 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1062 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1065 might_sleep_if(wait);
1067 if (rq->tag != -1)
1068 goto done;
1070 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1071 data.flags |= BLK_MQ_REQ_RESERVED;
1073 rq->tag = blk_mq_get_tag(&data);
1074 if (rq->tag >= 0) {
1075 if (blk_mq_tag_busy(data.hctx)) {
1076 rq->rq_flags |= RQF_MQ_INFLIGHT;
1077 atomic_inc(&data.hctx->nr_active);
1079 data.hctx->tags->rqs[rq->tag] = rq;
1082 done:
1083 if (hctx)
1084 *hctx = data.hctx;
1085 return rq->tag != -1;
1088 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1089 int flags, void *key)
1091 struct blk_mq_hw_ctx *hctx;
1093 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1095 list_del_init(&wait->entry);
1096 blk_mq_run_hw_queue(hctx, true);
1097 return 1;
1101 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1102 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1103 * restart. For both cases, take care to check the condition again after
1104 * marking us as waiting.
1106 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1107 struct request *rq)
1109 struct blk_mq_hw_ctx *this_hctx = *hctx;
1110 struct sbq_wait_state *ws;
1111 wait_queue_entry_t *wait;
1112 bool ret;
1114 if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1115 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1116 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1119 * It's possible that a tag was freed in the window between the
1120 * allocation failure and adding the hardware queue to the wait
1121 * queue.
1123 * Don't clear RESTART here, someone else could have set it.
1124 * At most this will cost an extra queue run.
1126 return blk_mq_get_driver_tag(rq, hctx, false);
1129 wait = &this_hctx->dispatch_wait;
1130 if (!list_empty_careful(&wait->entry))
1131 return false;
1133 spin_lock(&this_hctx->lock);
1134 if (!list_empty(&wait->entry)) {
1135 spin_unlock(&this_hctx->lock);
1136 return false;
1139 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1140 add_wait_queue(&ws->wait, wait);
1143 * It's possible that a tag was freed in the window between the
1144 * allocation failure and adding the hardware queue to the wait
1145 * queue.
1147 ret = blk_mq_get_driver_tag(rq, hctx, false);
1148 if (!ret) {
1149 spin_unlock(&this_hctx->lock);
1150 return false;
1154 * We got a tag, remove ourselves from the wait queue to ensure
1155 * someone else gets the wakeup.
1157 spin_lock_irq(&ws->wait.lock);
1158 list_del_init(&wait->entry);
1159 spin_unlock_irq(&ws->wait.lock);
1160 spin_unlock(&this_hctx->lock);
1162 return true;
1165 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1167 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1168 bool got_budget)
1170 struct blk_mq_hw_ctx *hctx;
1171 struct request *rq, *nxt;
1172 bool no_tag = false;
1173 int errors, queued;
1174 blk_status_t ret = BLK_STS_OK;
1176 if (list_empty(list))
1177 return false;
1179 WARN_ON(!list_is_singular(list) && got_budget);
1182 * Now process all the entries, sending them to the driver.
1184 errors = queued = 0;
1185 do {
1186 struct blk_mq_queue_data bd;
1188 rq = list_first_entry(list, struct request, queuelist);
1189 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1191 * The initial allocation attempt failed, so we need to
1192 * rerun the hardware queue when a tag is freed. The
1193 * waitqueue takes care of that. If the queue is run
1194 * before we add this entry back on the dispatch list,
1195 * we'll re-run it below.
1197 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1198 if (got_budget)
1199 blk_mq_put_dispatch_budget(hctx);
1201 * For non-shared tags, the RESTART check
1202 * will suffice.
1204 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1205 no_tag = true;
1206 break;
1210 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1211 blk_mq_put_driver_tag(rq);
1212 break;
1215 list_del_init(&rq->queuelist);
1217 bd.rq = rq;
1220 * Flag last if we have no more requests, or if we have more
1221 * but can't assign a driver tag to it.
1223 if (list_empty(list))
1224 bd.last = true;
1225 else {
1226 nxt = list_first_entry(list, struct request, queuelist);
1227 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1230 ret = q->mq_ops->queue_rq(hctx, &bd);
1231 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1233 * If an I/O scheduler has been configured and we got a
1234 * driver tag for the next request already, free it
1235 * again.
1237 if (!list_empty(list)) {
1238 nxt = list_first_entry(list, struct request, queuelist);
1239 blk_mq_put_driver_tag(nxt);
1241 list_add(&rq->queuelist, list);
1242 __blk_mq_requeue_request(rq);
1243 break;
1246 if (unlikely(ret != BLK_STS_OK)) {
1247 errors++;
1248 blk_mq_end_request(rq, BLK_STS_IOERR);
1249 continue;
1252 queued++;
1253 } while (!list_empty(list));
1255 hctx->dispatched[queued_to_index(queued)]++;
1258 * Any items that need requeuing? Stuff them into hctx->dispatch,
1259 * that is where we will continue on next queue run.
1261 if (!list_empty(list)) {
1262 bool needs_restart;
1264 spin_lock(&hctx->lock);
1265 list_splice_init(list, &hctx->dispatch);
1266 spin_unlock(&hctx->lock);
1269 * If SCHED_RESTART was set by the caller of this function and
1270 * it is no longer set that means that it was cleared by another
1271 * thread and hence that a queue rerun is needed.
1273 * If 'no_tag' is set, that means that we failed getting
1274 * a driver tag with an I/O scheduler attached. If our dispatch
1275 * waitqueue is no longer active, ensure that we run the queue
1276 * AFTER adding our entries back to the list.
1278 * If no I/O scheduler has been configured it is possible that
1279 * the hardware queue got stopped and restarted before requests
1280 * were pushed back onto the dispatch list. Rerun the queue to
1281 * avoid starvation. Notes:
1282 * - blk_mq_run_hw_queue() checks whether or not a queue has
1283 * been stopped before rerunning a queue.
1284 * - Some but not all block drivers stop a queue before
1285 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1286 * and dm-rq.
1288 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1289 * bit is set, run queue after a delay to avoid IO stalls
1290 * that could otherwise occur if the queue is idle.
1292 needs_restart = blk_mq_sched_needs_restart(hctx);
1293 if (!needs_restart ||
1294 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1295 blk_mq_run_hw_queue(hctx, true);
1296 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1297 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1300 return (queued + errors) != 0;
1303 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1305 int srcu_idx;
1308 * We should be running this queue from one of the CPUs that
1309 * are mapped to it.
1311 * There are at least two related races now between setting
1312 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1313 * __blk_mq_run_hw_queue():
1315 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1316 * but later it becomes online, then this warning is harmless
1317 * at all
1319 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1320 * but later it becomes offline, then the warning can't be
1321 * triggered, and we depend on blk-mq timeout handler to
1322 * handle dispatched requests to this hctx
1324 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1325 cpu_online(hctx->next_cpu)) {
1326 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1327 raw_smp_processor_id(),
1328 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1329 dump_stack();
1333 * We can't run the queue inline with ints disabled. Ensure that
1334 * we catch bad users of this early.
1336 WARN_ON_ONCE(in_interrupt());
1338 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1340 hctx_lock(hctx, &srcu_idx);
1341 blk_mq_sched_dispatch_requests(hctx);
1342 hctx_unlock(hctx, srcu_idx);
1346 * It'd be great if the workqueue API had a way to pass
1347 * in a mask and had some smarts for more clever placement.
1348 * For now we just round-robin here, switching for every
1349 * BLK_MQ_CPU_WORK_BATCH queued items.
1351 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1353 bool tried = false;
1355 if (hctx->queue->nr_hw_queues == 1)
1356 return WORK_CPU_UNBOUND;
1358 if (--hctx->next_cpu_batch <= 0) {
1359 int next_cpu;
1360 select_cpu:
1361 next_cpu = cpumask_next_and(hctx->next_cpu, hctx->cpumask,
1362 cpu_online_mask);
1363 if (next_cpu >= nr_cpu_ids)
1364 next_cpu = cpumask_first_and(hctx->cpumask,cpu_online_mask);
1367 * No online CPU is found, so have to make sure hctx->next_cpu
1368 * is set correctly for not breaking workqueue.
1370 if (next_cpu >= nr_cpu_ids)
1371 hctx->next_cpu = cpumask_first(hctx->cpumask);
1372 else
1373 hctx->next_cpu = next_cpu;
1374 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1378 * Do unbound schedule if we can't find a online CPU for this hctx,
1379 * and it should only happen in the path of handling CPU DEAD.
1381 if (!cpu_online(hctx->next_cpu)) {
1382 if (!tried) {
1383 tried = true;
1384 goto select_cpu;
1388 * Make sure to re-select CPU next time once after CPUs
1389 * in hctx->cpumask become online again.
1391 hctx->next_cpu_batch = 1;
1392 return WORK_CPU_UNBOUND;
1394 return hctx->next_cpu;
1397 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1398 unsigned long msecs)
1400 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1401 return;
1403 if (unlikely(blk_mq_hctx_stopped(hctx)))
1404 return;
1406 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1407 int cpu = get_cpu();
1408 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1409 __blk_mq_run_hw_queue(hctx);
1410 put_cpu();
1411 return;
1414 put_cpu();
1417 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1418 msecs_to_jiffies(msecs));
1421 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1423 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1425 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1427 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1429 int srcu_idx;
1430 bool need_run;
1433 * When queue is quiesced, we may be switching io scheduler, or
1434 * updating nr_hw_queues, or other things, and we can't run queue
1435 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1437 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1438 * quiesced.
1440 hctx_lock(hctx, &srcu_idx);
1441 need_run = !blk_queue_quiesced(hctx->queue) &&
1442 blk_mq_hctx_has_pending(hctx);
1443 hctx_unlock(hctx, srcu_idx);
1445 if (need_run) {
1446 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1447 return true;
1450 return false;
1452 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1454 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1456 struct blk_mq_hw_ctx *hctx;
1457 int i;
1459 queue_for_each_hw_ctx(q, hctx, i) {
1460 if (blk_mq_hctx_stopped(hctx))
1461 continue;
1463 blk_mq_run_hw_queue(hctx, async);
1466 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1469 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1470 * @q: request queue.
1472 * The caller is responsible for serializing this function against
1473 * blk_mq_{start,stop}_hw_queue().
1475 bool blk_mq_queue_stopped(struct request_queue *q)
1477 struct blk_mq_hw_ctx *hctx;
1478 int i;
1480 queue_for_each_hw_ctx(q, hctx, i)
1481 if (blk_mq_hctx_stopped(hctx))
1482 return true;
1484 return false;
1486 EXPORT_SYMBOL(blk_mq_queue_stopped);
1489 * This function is often used for pausing .queue_rq() by driver when
1490 * there isn't enough resource or some conditions aren't satisfied, and
1491 * BLK_STS_RESOURCE is usually returned.
1493 * We do not guarantee that dispatch can be drained or blocked
1494 * after blk_mq_stop_hw_queue() returns. Please use
1495 * blk_mq_quiesce_queue() for that requirement.
1497 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1499 cancel_delayed_work(&hctx->run_work);
1501 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1503 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1506 * This function is often used for pausing .queue_rq() by driver when
1507 * there isn't enough resource or some conditions aren't satisfied, and
1508 * BLK_STS_RESOURCE is usually returned.
1510 * We do not guarantee that dispatch can be drained or blocked
1511 * after blk_mq_stop_hw_queues() returns. Please use
1512 * blk_mq_quiesce_queue() for that requirement.
1514 void blk_mq_stop_hw_queues(struct request_queue *q)
1516 struct blk_mq_hw_ctx *hctx;
1517 int i;
1519 queue_for_each_hw_ctx(q, hctx, i)
1520 blk_mq_stop_hw_queue(hctx);
1522 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1524 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1526 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1528 blk_mq_run_hw_queue(hctx, false);
1530 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1532 void blk_mq_start_hw_queues(struct request_queue *q)
1534 struct blk_mq_hw_ctx *hctx;
1535 int i;
1537 queue_for_each_hw_ctx(q, hctx, i)
1538 blk_mq_start_hw_queue(hctx);
1540 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1542 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1544 if (!blk_mq_hctx_stopped(hctx))
1545 return;
1547 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1548 blk_mq_run_hw_queue(hctx, async);
1550 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1552 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1554 struct blk_mq_hw_ctx *hctx;
1555 int i;
1557 queue_for_each_hw_ctx(q, hctx, i)
1558 blk_mq_start_stopped_hw_queue(hctx, async);
1560 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1562 static void blk_mq_run_work_fn(struct work_struct *work)
1564 struct blk_mq_hw_ctx *hctx;
1566 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1569 * If we are stopped, don't run the queue. The exception is if
1570 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1571 * the STOPPED bit and run it.
1573 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1574 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1575 return;
1577 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1578 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1581 __blk_mq_run_hw_queue(hctx);
1585 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1587 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1588 return;
1591 * Stop the hw queue, then modify currently delayed work.
1592 * This should prevent us from running the queue prematurely.
1593 * Mark the queue as auto-clearing STOPPED when it runs.
1595 blk_mq_stop_hw_queue(hctx);
1596 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1597 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1598 &hctx->run_work,
1599 msecs_to_jiffies(msecs));
1601 EXPORT_SYMBOL(blk_mq_delay_queue);
1603 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1604 struct request *rq,
1605 bool at_head)
1607 struct blk_mq_ctx *ctx = rq->mq_ctx;
1609 lockdep_assert_held(&ctx->lock);
1611 trace_block_rq_insert(hctx->queue, rq);
1613 if (at_head)
1614 list_add(&rq->queuelist, &ctx->rq_list);
1615 else
1616 list_add_tail(&rq->queuelist, &ctx->rq_list);
1619 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1620 bool at_head)
1622 struct blk_mq_ctx *ctx = rq->mq_ctx;
1624 lockdep_assert_held(&ctx->lock);
1626 __blk_mq_insert_req_list(hctx, rq, at_head);
1627 blk_mq_hctx_mark_pending(hctx, ctx);
1631 * Should only be used carefully, when the caller knows we want to
1632 * bypass a potential IO scheduler on the target device.
1634 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1636 struct blk_mq_ctx *ctx = rq->mq_ctx;
1637 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1639 spin_lock(&hctx->lock);
1640 list_add_tail(&rq->queuelist, &hctx->dispatch);
1641 spin_unlock(&hctx->lock);
1643 if (run_queue)
1644 blk_mq_run_hw_queue(hctx, false);
1647 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1648 struct list_head *list)
1652 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1653 * offline now
1655 spin_lock(&ctx->lock);
1656 while (!list_empty(list)) {
1657 struct request *rq;
1659 rq = list_first_entry(list, struct request, queuelist);
1660 BUG_ON(rq->mq_ctx != ctx);
1661 list_del_init(&rq->queuelist);
1662 __blk_mq_insert_req_list(hctx, rq, false);
1664 blk_mq_hctx_mark_pending(hctx, ctx);
1665 spin_unlock(&ctx->lock);
1668 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1670 struct request *rqa = container_of(a, struct request, queuelist);
1671 struct request *rqb = container_of(b, struct request, queuelist);
1673 return !(rqa->mq_ctx < rqb->mq_ctx ||
1674 (rqa->mq_ctx == rqb->mq_ctx &&
1675 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1678 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1680 struct blk_mq_ctx *this_ctx;
1681 struct request_queue *this_q;
1682 struct request *rq;
1683 LIST_HEAD(list);
1684 LIST_HEAD(ctx_list);
1685 unsigned int depth;
1687 list_splice_init(&plug->mq_list, &list);
1689 list_sort(NULL, &list, plug_ctx_cmp);
1691 this_q = NULL;
1692 this_ctx = NULL;
1693 depth = 0;
1695 while (!list_empty(&list)) {
1696 rq = list_entry_rq(list.next);
1697 list_del_init(&rq->queuelist);
1698 BUG_ON(!rq->q);
1699 if (rq->mq_ctx != this_ctx) {
1700 if (this_ctx) {
1701 trace_block_unplug(this_q, depth, from_schedule);
1702 blk_mq_sched_insert_requests(this_q, this_ctx,
1703 &ctx_list,
1704 from_schedule);
1707 this_ctx = rq->mq_ctx;
1708 this_q = rq->q;
1709 depth = 0;
1712 depth++;
1713 list_add_tail(&rq->queuelist, &ctx_list);
1717 * If 'this_ctx' is set, we know we have entries to complete
1718 * on 'ctx_list'. Do those.
1720 if (this_ctx) {
1721 trace_block_unplug(this_q, depth, from_schedule);
1722 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1723 from_schedule);
1727 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1729 blk_init_request_from_bio(rq, bio);
1731 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1733 blk_account_io_start(rq, true);
1736 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1737 struct blk_mq_ctx *ctx,
1738 struct request *rq)
1740 spin_lock(&ctx->lock);
1741 __blk_mq_insert_request(hctx, rq, false);
1742 spin_unlock(&ctx->lock);
1745 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1747 if (rq->tag != -1)
1748 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1750 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1753 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1754 struct request *rq,
1755 blk_qc_t *cookie)
1757 struct request_queue *q = rq->q;
1758 struct blk_mq_queue_data bd = {
1759 .rq = rq,
1760 .last = true,
1762 blk_qc_t new_cookie;
1763 blk_status_t ret;
1765 new_cookie = request_to_qc_t(hctx, rq);
1768 * For OK queue, we are done. For error, caller may kill it.
1769 * Any other error (busy), just add it to our list as we
1770 * previously would have done.
1772 ret = q->mq_ops->queue_rq(hctx, &bd);
1773 switch (ret) {
1774 case BLK_STS_OK:
1775 *cookie = new_cookie;
1776 break;
1777 case BLK_STS_RESOURCE:
1778 case BLK_STS_DEV_RESOURCE:
1779 __blk_mq_requeue_request(rq);
1780 break;
1781 default:
1782 *cookie = BLK_QC_T_NONE;
1783 break;
1786 return ret;
1789 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1790 struct request *rq,
1791 blk_qc_t *cookie,
1792 bool bypass_insert)
1794 struct request_queue *q = rq->q;
1795 bool run_queue = true;
1798 * RCU or SRCU read lock is needed before checking quiesced flag.
1800 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1801 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1802 * and avoid driver to try to dispatch again.
1804 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1805 run_queue = false;
1806 bypass_insert = false;
1807 goto insert;
1810 if (q->elevator && !bypass_insert)
1811 goto insert;
1813 if (!blk_mq_get_driver_tag(rq, NULL, false))
1814 goto insert;
1816 if (!blk_mq_get_dispatch_budget(hctx)) {
1817 blk_mq_put_driver_tag(rq);
1818 goto insert;
1821 return __blk_mq_issue_directly(hctx, rq, cookie);
1822 insert:
1823 if (bypass_insert)
1824 return BLK_STS_RESOURCE;
1826 blk_mq_sched_insert_request(rq, false, run_queue, false);
1827 return BLK_STS_OK;
1830 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1831 struct request *rq, blk_qc_t *cookie)
1833 blk_status_t ret;
1834 int srcu_idx;
1836 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1838 hctx_lock(hctx, &srcu_idx);
1840 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1841 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1842 blk_mq_sched_insert_request(rq, false, true, false);
1843 else if (ret != BLK_STS_OK)
1844 blk_mq_end_request(rq, ret);
1846 hctx_unlock(hctx, srcu_idx);
1849 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1851 blk_status_t ret;
1852 int srcu_idx;
1853 blk_qc_t unused_cookie;
1854 struct blk_mq_ctx *ctx = rq->mq_ctx;
1855 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1857 hctx_lock(hctx, &srcu_idx);
1858 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1859 hctx_unlock(hctx, srcu_idx);
1861 return ret;
1864 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1866 const int is_sync = op_is_sync(bio->bi_opf);
1867 const int is_flush_fua = op_is_flush(bio->bi_opf);
1868 struct blk_mq_alloc_data data = { .flags = 0 };
1869 struct request *rq;
1870 unsigned int request_count = 0;
1871 struct blk_plug *plug;
1872 struct request *same_queue_rq = NULL;
1873 blk_qc_t cookie;
1874 unsigned int wb_acct;
1876 blk_queue_bounce(q, &bio);
1878 blk_queue_split(q, &bio);
1880 if (!bio_integrity_prep(bio))
1881 return BLK_QC_T_NONE;
1883 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1884 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1885 return BLK_QC_T_NONE;
1887 if (blk_mq_sched_bio_merge(q, bio))
1888 return BLK_QC_T_NONE;
1890 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1892 trace_block_getrq(q, bio, bio->bi_opf);
1894 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1895 if (unlikely(!rq)) {
1896 __wbt_done(q->rq_wb, wb_acct);
1897 if (bio->bi_opf & REQ_NOWAIT)
1898 bio_wouldblock_error(bio);
1899 return BLK_QC_T_NONE;
1902 wbt_track(&rq->issue_stat, wb_acct);
1904 cookie = request_to_qc_t(data.hctx, rq);
1906 plug = current->plug;
1907 if (unlikely(is_flush_fua)) {
1908 blk_mq_put_ctx(data.ctx);
1909 blk_mq_bio_to_request(rq, bio);
1911 /* bypass scheduler for flush rq */
1912 blk_insert_flush(rq);
1913 blk_mq_run_hw_queue(data.hctx, true);
1914 } else if (plug && q->nr_hw_queues == 1) {
1915 struct request *last = NULL;
1917 blk_mq_put_ctx(data.ctx);
1918 blk_mq_bio_to_request(rq, bio);
1921 * @request_count may become stale because of schedule
1922 * out, so check the list again.
1924 if (list_empty(&plug->mq_list))
1925 request_count = 0;
1926 else if (blk_queue_nomerges(q))
1927 request_count = blk_plug_queued_count(q);
1929 if (!request_count)
1930 trace_block_plug(q);
1931 else
1932 last = list_entry_rq(plug->mq_list.prev);
1934 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1935 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1936 blk_flush_plug_list(plug, false);
1937 trace_block_plug(q);
1940 list_add_tail(&rq->queuelist, &plug->mq_list);
1941 } else if (plug && !blk_queue_nomerges(q)) {
1942 blk_mq_bio_to_request(rq, bio);
1945 * We do limited plugging. If the bio can be merged, do that.
1946 * Otherwise the existing request in the plug list will be
1947 * issued. So the plug list will have one request at most
1948 * The plug list might get flushed before this. If that happens,
1949 * the plug list is empty, and same_queue_rq is invalid.
1951 if (list_empty(&plug->mq_list))
1952 same_queue_rq = NULL;
1953 if (same_queue_rq)
1954 list_del_init(&same_queue_rq->queuelist);
1955 list_add_tail(&rq->queuelist, &plug->mq_list);
1957 blk_mq_put_ctx(data.ctx);
1959 if (same_queue_rq) {
1960 data.hctx = blk_mq_map_queue(q,
1961 same_queue_rq->mq_ctx->cpu);
1962 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1963 &cookie);
1965 } else if (q->nr_hw_queues > 1 && is_sync) {
1966 blk_mq_put_ctx(data.ctx);
1967 blk_mq_bio_to_request(rq, bio);
1968 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1969 } else if (q->elevator) {
1970 blk_mq_put_ctx(data.ctx);
1971 blk_mq_bio_to_request(rq, bio);
1972 blk_mq_sched_insert_request(rq, false, true, true);
1973 } else {
1974 blk_mq_put_ctx(data.ctx);
1975 blk_mq_bio_to_request(rq, bio);
1976 blk_mq_queue_io(data.hctx, data.ctx, rq);
1977 blk_mq_run_hw_queue(data.hctx, true);
1980 return cookie;
1983 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1984 unsigned int hctx_idx)
1986 struct page *page;
1988 if (tags->rqs && set->ops->exit_request) {
1989 int i;
1991 for (i = 0; i < tags->nr_tags; i++) {
1992 struct request *rq = tags->static_rqs[i];
1994 if (!rq)
1995 continue;
1996 set->ops->exit_request(set, rq, hctx_idx);
1997 tags->static_rqs[i] = NULL;
2001 while (!list_empty(&tags->page_list)) {
2002 page = list_first_entry(&tags->page_list, struct page, lru);
2003 list_del_init(&page->lru);
2005 * Remove kmemleak object previously allocated in
2006 * blk_mq_init_rq_map().
2008 kmemleak_free(page_address(page));
2009 __free_pages(page, page->private);
2013 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2015 kfree(tags->rqs);
2016 tags->rqs = NULL;
2017 kfree(tags->static_rqs);
2018 tags->static_rqs = NULL;
2020 blk_mq_free_tags(tags);
2023 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2024 unsigned int hctx_idx,
2025 unsigned int nr_tags,
2026 unsigned int reserved_tags)
2028 struct blk_mq_tags *tags;
2029 int node;
2031 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2032 if (node == NUMA_NO_NODE)
2033 node = set->numa_node;
2035 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2036 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2037 if (!tags)
2038 return NULL;
2040 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2041 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2042 node);
2043 if (!tags->rqs) {
2044 blk_mq_free_tags(tags);
2045 return NULL;
2048 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2049 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2050 node);
2051 if (!tags->static_rqs) {
2052 kfree(tags->rqs);
2053 blk_mq_free_tags(tags);
2054 return NULL;
2057 return tags;
2060 static size_t order_to_size(unsigned int order)
2062 return (size_t)PAGE_SIZE << order;
2065 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2066 unsigned int hctx_idx, int node)
2068 int ret;
2070 if (set->ops->init_request) {
2071 ret = set->ops->init_request(set, rq, hctx_idx, node);
2072 if (ret)
2073 return ret;
2076 seqcount_init(&rq->gstate_seq);
2077 u64_stats_init(&rq->aborted_gstate_sync);
2078 return 0;
2081 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2082 unsigned int hctx_idx, unsigned int depth)
2084 unsigned int i, j, entries_per_page, max_order = 4;
2085 size_t rq_size, left;
2086 int node;
2088 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2089 if (node == NUMA_NO_NODE)
2090 node = set->numa_node;
2092 INIT_LIST_HEAD(&tags->page_list);
2095 * rq_size is the size of the request plus driver payload, rounded
2096 * to the cacheline size
2098 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2099 cache_line_size());
2100 left = rq_size * depth;
2102 for (i = 0; i < depth; ) {
2103 int this_order = max_order;
2104 struct page *page;
2105 int to_do;
2106 void *p;
2108 while (this_order && left < order_to_size(this_order - 1))
2109 this_order--;
2111 do {
2112 page = alloc_pages_node(node,
2113 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2114 this_order);
2115 if (page)
2116 break;
2117 if (!this_order--)
2118 break;
2119 if (order_to_size(this_order) < rq_size)
2120 break;
2121 } while (1);
2123 if (!page)
2124 goto fail;
2126 page->private = this_order;
2127 list_add_tail(&page->lru, &tags->page_list);
2129 p = page_address(page);
2131 * Allow kmemleak to scan these pages as they contain pointers
2132 * to additional allocations like via ops->init_request().
2134 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2135 entries_per_page = order_to_size(this_order) / rq_size;
2136 to_do = min(entries_per_page, depth - i);
2137 left -= to_do * rq_size;
2138 for (j = 0; j < to_do; j++) {
2139 struct request *rq = p;
2141 tags->static_rqs[i] = rq;
2142 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2143 tags->static_rqs[i] = NULL;
2144 goto fail;
2147 p += rq_size;
2148 i++;
2151 return 0;
2153 fail:
2154 blk_mq_free_rqs(set, tags, hctx_idx);
2155 return -ENOMEM;
2159 * 'cpu' is going away. splice any existing rq_list entries from this
2160 * software queue to the hw queue dispatch list, and ensure that it
2161 * gets run.
2163 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2165 struct blk_mq_hw_ctx *hctx;
2166 struct blk_mq_ctx *ctx;
2167 LIST_HEAD(tmp);
2169 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2170 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2172 spin_lock(&ctx->lock);
2173 if (!list_empty(&ctx->rq_list)) {
2174 list_splice_init(&ctx->rq_list, &tmp);
2175 blk_mq_hctx_clear_pending(hctx, ctx);
2177 spin_unlock(&ctx->lock);
2179 if (list_empty(&tmp))
2180 return 0;
2182 spin_lock(&hctx->lock);
2183 list_splice_tail_init(&tmp, &hctx->dispatch);
2184 spin_unlock(&hctx->lock);
2186 blk_mq_run_hw_queue(hctx, true);
2187 return 0;
2190 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2192 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2193 &hctx->cpuhp_dead);
2196 /* hctx->ctxs will be freed in queue's release handler */
2197 static void blk_mq_exit_hctx(struct request_queue *q,
2198 struct blk_mq_tag_set *set,
2199 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2201 blk_mq_debugfs_unregister_hctx(hctx);
2203 if (blk_mq_hw_queue_mapped(hctx))
2204 blk_mq_tag_idle(hctx);
2206 if (set->ops->exit_request)
2207 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2209 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2211 if (set->ops->exit_hctx)
2212 set->ops->exit_hctx(hctx, hctx_idx);
2214 if (hctx->flags & BLK_MQ_F_BLOCKING)
2215 cleanup_srcu_struct(hctx->srcu);
2217 blk_mq_remove_cpuhp(hctx);
2218 blk_free_flush_queue(hctx->fq);
2219 sbitmap_free(&hctx->ctx_map);
2222 static void blk_mq_exit_hw_queues(struct request_queue *q,
2223 struct blk_mq_tag_set *set, int nr_queue)
2225 struct blk_mq_hw_ctx *hctx;
2226 unsigned int i;
2228 queue_for_each_hw_ctx(q, hctx, i) {
2229 if (i == nr_queue)
2230 break;
2231 blk_mq_exit_hctx(q, set, hctx, i);
2235 static int blk_mq_init_hctx(struct request_queue *q,
2236 struct blk_mq_tag_set *set,
2237 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2239 int node;
2241 node = hctx->numa_node;
2242 if (node == NUMA_NO_NODE)
2243 node = hctx->numa_node = set->numa_node;
2245 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2246 spin_lock_init(&hctx->lock);
2247 INIT_LIST_HEAD(&hctx->dispatch);
2248 hctx->queue = q;
2249 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2251 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2253 hctx->tags = set->tags[hctx_idx];
2256 * Allocate space for all possible cpus to avoid allocation at
2257 * runtime
2259 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2260 GFP_KERNEL, node);
2261 if (!hctx->ctxs)
2262 goto unregister_cpu_notifier;
2264 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2265 node))
2266 goto free_ctxs;
2268 hctx->nr_ctx = 0;
2270 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2271 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2273 if (set->ops->init_hctx &&
2274 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2275 goto free_bitmap;
2277 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2278 goto exit_hctx;
2280 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2281 if (!hctx->fq)
2282 goto sched_exit_hctx;
2284 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2285 goto free_fq;
2287 if (hctx->flags & BLK_MQ_F_BLOCKING)
2288 init_srcu_struct(hctx->srcu);
2290 blk_mq_debugfs_register_hctx(q, hctx);
2292 return 0;
2294 free_fq:
2295 kfree(hctx->fq);
2296 sched_exit_hctx:
2297 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2298 exit_hctx:
2299 if (set->ops->exit_hctx)
2300 set->ops->exit_hctx(hctx, hctx_idx);
2301 free_bitmap:
2302 sbitmap_free(&hctx->ctx_map);
2303 free_ctxs:
2304 kfree(hctx->ctxs);
2305 unregister_cpu_notifier:
2306 blk_mq_remove_cpuhp(hctx);
2307 return -1;
2310 static void blk_mq_init_cpu_queues(struct request_queue *q,
2311 unsigned int nr_hw_queues)
2313 unsigned int i;
2315 for_each_possible_cpu(i) {
2316 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2317 struct blk_mq_hw_ctx *hctx;
2319 __ctx->cpu = i;
2320 spin_lock_init(&__ctx->lock);
2321 INIT_LIST_HEAD(&__ctx->rq_list);
2322 __ctx->queue = q;
2325 * Set local node, IFF we have more than one hw queue. If
2326 * not, we remain on the home node of the device
2328 hctx = blk_mq_map_queue(q, i);
2329 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2330 hctx->numa_node = local_memory_node(cpu_to_node(i));
2334 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2336 int ret = 0;
2338 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2339 set->queue_depth, set->reserved_tags);
2340 if (!set->tags[hctx_idx])
2341 return false;
2343 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2344 set->queue_depth);
2345 if (!ret)
2346 return true;
2348 blk_mq_free_rq_map(set->tags[hctx_idx]);
2349 set->tags[hctx_idx] = NULL;
2350 return false;
2353 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2354 unsigned int hctx_idx)
2356 if (set->tags[hctx_idx]) {
2357 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2358 blk_mq_free_rq_map(set->tags[hctx_idx]);
2359 set->tags[hctx_idx] = NULL;
2363 static void blk_mq_map_swqueue(struct request_queue *q)
2365 unsigned int i, hctx_idx;
2366 struct blk_mq_hw_ctx *hctx;
2367 struct blk_mq_ctx *ctx;
2368 struct blk_mq_tag_set *set = q->tag_set;
2371 * Avoid others reading imcomplete hctx->cpumask through sysfs
2373 mutex_lock(&q->sysfs_lock);
2375 queue_for_each_hw_ctx(q, hctx, i) {
2376 cpumask_clear(hctx->cpumask);
2377 hctx->nr_ctx = 0;
2381 * Map software to hardware queues.
2383 * If the cpu isn't present, the cpu is mapped to first hctx.
2385 for_each_possible_cpu(i) {
2386 hctx_idx = q->mq_map[i];
2387 /* unmapped hw queue can be remapped after CPU topo changed */
2388 if (!set->tags[hctx_idx] &&
2389 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2391 * If tags initialization fail for some hctx,
2392 * that hctx won't be brought online. In this
2393 * case, remap the current ctx to hctx[0] which
2394 * is guaranteed to always have tags allocated
2396 q->mq_map[i] = 0;
2399 ctx = per_cpu_ptr(q->queue_ctx, i);
2400 hctx = blk_mq_map_queue(q, i);
2402 cpumask_set_cpu(i, hctx->cpumask);
2403 ctx->index_hw = hctx->nr_ctx;
2404 hctx->ctxs[hctx->nr_ctx++] = ctx;
2407 mutex_unlock(&q->sysfs_lock);
2409 queue_for_each_hw_ctx(q, hctx, i) {
2411 * If no software queues are mapped to this hardware queue,
2412 * disable it and free the request entries.
2414 if (!hctx->nr_ctx) {
2415 /* Never unmap queue 0. We need it as a
2416 * fallback in case of a new remap fails
2417 * allocation
2419 if (i && set->tags[i])
2420 blk_mq_free_map_and_requests(set, i);
2422 hctx->tags = NULL;
2423 continue;
2426 hctx->tags = set->tags[i];
2427 WARN_ON(!hctx->tags);
2430 * Set the map size to the number of mapped software queues.
2431 * This is more accurate and more efficient than looping
2432 * over all possibly mapped software queues.
2434 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2437 * Initialize batch roundrobin counts
2439 hctx->next_cpu = cpumask_first_and(hctx->cpumask,
2440 cpu_online_mask);
2441 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2446 * Caller needs to ensure that we're either frozen/quiesced, or that
2447 * the queue isn't live yet.
2449 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2451 struct blk_mq_hw_ctx *hctx;
2452 int i;
2454 queue_for_each_hw_ctx(q, hctx, i) {
2455 if (shared) {
2456 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2457 atomic_inc(&q->shared_hctx_restart);
2458 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2459 } else {
2460 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2461 atomic_dec(&q->shared_hctx_restart);
2462 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2467 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2468 bool shared)
2470 struct request_queue *q;
2472 lockdep_assert_held(&set->tag_list_lock);
2474 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2475 blk_mq_freeze_queue(q);
2476 queue_set_hctx_shared(q, shared);
2477 blk_mq_unfreeze_queue(q);
2481 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2483 struct blk_mq_tag_set *set = q->tag_set;
2485 mutex_lock(&set->tag_list_lock);
2486 list_del_rcu(&q->tag_set_list);
2487 INIT_LIST_HEAD(&q->tag_set_list);
2488 if (list_is_singular(&set->tag_list)) {
2489 /* just transitioned to unshared */
2490 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2491 /* update existing queue */
2492 blk_mq_update_tag_set_depth(set, false);
2494 mutex_unlock(&set->tag_list_lock);
2496 synchronize_rcu();
2499 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2500 struct request_queue *q)
2502 q->tag_set = set;
2504 mutex_lock(&set->tag_list_lock);
2507 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2509 if (!list_empty(&set->tag_list) &&
2510 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2511 set->flags |= BLK_MQ_F_TAG_SHARED;
2512 /* update existing queue */
2513 blk_mq_update_tag_set_depth(set, true);
2515 if (set->flags & BLK_MQ_F_TAG_SHARED)
2516 queue_set_hctx_shared(q, true);
2517 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2519 mutex_unlock(&set->tag_list_lock);
2523 * It is the actual release handler for mq, but we do it from
2524 * request queue's release handler for avoiding use-after-free
2525 * and headache because q->mq_kobj shouldn't have been introduced,
2526 * but we can't group ctx/kctx kobj without it.
2528 void blk_mq_release(struct request_queue *q)
2530 struct blk_mq_hw_ctx *hctx;
2531 unsigned int i;
2533 /* hctx kobj stays in hctx */
2534 queue_for_each_hw_ctx(q, hctx, i) {
2535 if (!hctx)
2536 continue;
2537 kobject_put(&hctx->kobj);
2540 q->mq_map = NULL;
2542 kfree(q->queue_hw_ctx);
2545 * release .mq_kobj and sw queue's kobject now because
2546 * both share lifetime with request queue.
2548 blk_mq_sysfs_deinit(q);
2550 free_percpu(q->queue_ctx);
2553 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2555 struct request_queue *uninit_q, *q;
2557 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2558 if (!uninit_q)
2559 return ERR_PTR(-ENOMEM);
2561 q = blk_mq_init_allocated_queue(set, uninit_q);
2562 if (IS_ERR(q))
2563 blk_cleanup_queue(uninit_q);
2565 return q;
2567 EXPORT_SYMBOL(blk_mq_init_queue);
2569 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2571 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2573 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2574 __alignof__(struct blk_mq_hw_ctx)) !=
2575 sizeof(struct blk_mq_hw_ctx));
2577 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2578 hw_ctx_size += sizeof(struct srcu_struct);
2580 return hw_ctx_size;
2583 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2584 struct request_queue *q)
2586 int i, j;
2587 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2589 blk_mq_sysfs_unregister(q);
2591 /* protect against switching io scheduler */
2592 mutex_lock(&q->sysfs_lock);
2593 for (i = 0; i < set->nr_hw_queues; i++) {
2594 int node;
2596 if (hctxs[i])
2597 continue;
2599 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2600 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2601 GFP_KERNEL, node);
2602 if (!hctxs[i])
2603 break;
2605 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2606 node)) {
2607 kfree(hctxs[i]);
2608 hctxs[i] = NULL;
2609 break;
2612 atomic_set(&hctxs[i]->nr_active, 0);
2613 hctxs[i]->numa_node = node;
2614 hctxs[i]->queue_num = i;
2616 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2617 free_cpumask_var(hctxs[i]->cpumask);
2618 kfree(hctxs[i]);
2619 hctxs[i] = NULL;
2620 break;
2622 blk_mq_hctx_kobj_init(hctxs[i]);
2624 for (j = i; j < q->nr_hw_queues; j++) {
2625 struct blk_mq_hw_ctx *hctx = hctxs[j];
2627 if (hctx) {
2628 if (hctx->tags)
2629 blk_mq_free_map_and_requests(set, j);
2630 blk_mq_exit_hctx(q, set, hctx, j);
2631 kobject_put(&hctx->kobj);
2632 hctxs[j] = NULL;
2636 q->nr_hw_queues = i;
2637 mutex_unlock(&q->sysfs_lock);
2638 blk_mq_sysfs_register(q);
2641 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2642 struct request_queue *q)
2644 /* mark the queue as mq asap */
2645 q->mq_ops = set->ops;
2647 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2648 blk_mq_poll_stats_bkt,
2649 BLK_MQ_POLL_STATS_BKTS, q);
2650 if (!q->poll_cb)
2651 goto err_exit;
2653 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2654 if (!q->queue_ctx)
2655 goto err_exit;
2657 /* init q->mq_kobj and sw queues' kobjects */
2658 blk_mq_sysfs_init(q);
2660 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2661 GFP_KERNEL, set->numa_node);
2662 if (!q->queue_hw_ctx)
2663 goto err_percpu;
2665 q->mq_map = set->mq_map;
2667 blk_mq_realloc_hw_ctxs(set, q);
2668 if (!q->nr_hw_queues)
2669 goto err_hctxs;
2671 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2672 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2674 q->nr_queues = nr_cpu_ids;
2676 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2678 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2679 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2681 q->sg_reserved_size = INT_MAX;
2683 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2684 INIT_LIST_HEAD(&q->requeue_list);
2685 spin_lock_init(&q->requeue_lock);
2687 blk_queue_make_request(q, blk_mq_make_request);
2688 if (q->mq_ops->poll)
2689 q->poll_fn = blk_mq_poll;
2692 * Do this after blk_queue_make_request() overrides it...
2694 q->nr_requests = set->queue_depth;
2697 * Default to classic polling
2699 q->poll_nsec = -1;
2701 if (set->ops->complete)
2702 blk_queue_softirq_done(q, set->ops->complete);
2704 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2705 blk_mq_add_queue_tag_set(set, q);
2706 blk_mq_map_swqueue(q);
2708 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2709 int ret;
2711 ret = blk_mq_sched_init(q);
2712 if (ret)
2713 return ERR_PTR(ret);
2716 return q;
2718 err_hctxs:
2719 kfree(q->queue_hw_ctx);
2720 err_percpu:
2721 free_percpu(q->queue_ctx);
2722 err_exit:
2723 q->mq_ops = NULL;
2724 return ERR_PTR(-ENOMEM);
2726 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2728 void blk_mq_free_queue(struct request_queue *q)
2730 struct blk_mq_tag_set *set = q->tag_set;
2732 blk_mq_del_queue_tag_set(q);
2733 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2736 /* Basically redo blk_mq_init_queue with queue frozen */
2737 static void blk_mq_queue_reinit(struct request_queue *q)
2739 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2741 blk_mq_debugfs_unregister_hctxs(q);
2742 blk_mq_sysfs_unregister(q);
2745 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2746 * we should change hctx numa_node according to the new topology (this
2747 * involves freeing and re-allocating memory, worth doing?)
2749 blk_mq_map_swqueue(q);
2751 blk_mq_sysfs_register(q);
2752 blk_mq_debugfs_register_hctxs(q);
2755 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2757 int i;
2759 for (i = 0; i < set->nr_hw_queues; i++)
2760 if (!__blk_mq_alloc_rq_map(set, i))
2761 goto out_unwind;
2763 return 0;
2765 out_unwind:
2766 while (--i >= 0)
2767 blk_mq_free_rq_map(set->tags[i]);
2769 return -ENOMEM;
2773 * Allocate the request maps associated with this tag_set. Note that this
2774 * may reduce the depth asked for, if memory is tight. set->queue_depth
2775 * will be updated to reflect the allocated depth.
2777 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2779 unsigned int depth;
2780 int err;
2782 depth = set->queue_depth;
2783 do {
2784 err = __blk_mq_alloc_rq_maps(set);
2785 if (!err)
2786 break;
2788 set->queue_depth >>= 1;
2789 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2790 err = -ENOMEM;
2791 break;
2793 } while (set->queue_depth);
2795 if (!set->queue_depth || err) {
2796 pr_err("blk-mq: failed to allocate request map\n");
2797 return -ENOMEM;
2800 if (depth != set->queue_depth)
2801 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2802 depth, set->queue_depth);
2804 return 0;
2807 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2809 if (set->ops->map_queues) {
2810 int cpu;
2812 * transport .map_queues is usually done in the following
2813 * way:
2815 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2816 * mask = get_cpu_mask(queue)
2817 * for_each_cpu(cpu, mask)
2818 * set->mq_map[cpu] = queue;
2821 * When we need to remap, the table has to be cleared for
2822 * killing stale mapping since one CPU may not be mapped
2823 * to any hw queue.
2825 for_each_possible_cpu(cpu)
2826 set->mq_map[cpu] = 0;
2828 return set->ops->map_queues(set);
2829 } else
2830 return blk_mq_map_queues(set);
2834 * Alloc a tag set to be associated with one or more request queues.
2835 * May fail with EINVAL for various error conditions. May adjust the
2836 * requested depth down, if if it too large. In that case, the set
2837 * value will be stored in set->queue_depth.
2839 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2841 int ret;
2843 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2845 if (!set->nr_hw_queues)
2846 return -EINVAL;
2847 if (!set->queue_depth)
2848 return -EINVAL;
2849 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2850 return -EINVAL;
2852 if (!set->ops->queue_rq)
2853 return -EINVAL;
2855 if (!set->ops->get_budget ^ !set->ops->put_budget)
2856 return -EINVAL;
2858 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2859 pr_info("blk-mq: reduced tag depth to %u\n",
2860 BLK_MQ_MAX_DEPTH);
2861 set->queue_depth = BLK_MQ_MAX_DEPTH;
2865 * If a crashdump is active, then we are potentially in a very
2866 * memory constrained environment. Limit us to 1 queue and
2867 * 64 tags to prevent using too much memory.
2869 if (is_kdump_kernel()) {
2870 set->nr_hw_queues = 1;
2871 set->queue_depth = min(64U, set->queue_depth);
2874 * There is no use for more h/w queues than cpus.
2876 if (set->nr_hw_queues > nr_cpu_ids)
2877 set->nr_hw_queues = nr_cpu_ids;
2879 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2880 GFP_KERNEL, set->numa_node);
2881 if (!set->tags)
2882 return -ENOMEM;
2884 ret = -ENOMEM;
2885 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2886 GFP_KERNEL, set->numa_node);
2887 if (!set->mq_map)
2888 goto out_free_tags;
2890 ret = blk_mq_update_queue_map(set);
2891 if (ret)
2892 goto out_free_mq_map;
2894 ret = blk_mq_alloc_rq_maps(set);
2895 if (ret)
2896 goto out_free_mq_map;
2898 mutex_init(&set->tag_list_lock);
2899 INIT_LIST_HEAD(&set->tag_list);
2901 return 0;
2903 out_free_mq_map:
2904 kfree(set->mq_map);
2905 set->mq_map = NULL;
2906 out_free_tags:
2907 kfree(set->tags);
2908 set->tags = NULL;
2909 return ret;
2911 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2913 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2915 int i;
2917 for (i = 0; i < nr_cpu_ids; i++)
2918 blk_mq_free_map_and_requests(set, i);
2920 kfree(set->mq_map);
2921 set->mq_map = NULL;
2923 kfree(set->tags);
2924 set->tags = NULL;
2926 EXPORT_SYMBOL(blk_mq_free_tag_set);
2928 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2930 struct blk_mq_tag_set *set = q->tag_set;
2931 struct blk_mq_hw_ctx *hctx;
2932 int i, ret;
2934 if (!set)
2935 return -EINVAL;
2937 blk_mq_freeze_queue(q);
2938 blk_mq_quiesce_queue(q);
2940 ret = 0;
2941 queue_for_each_hw_ctx(q, hctx, i) {
2942 if (!hctx->tags)
2943 continue;
2945 * If we're using an MQ scheduler, just update the scheduler
2946 * queue depth. This is similar to what the old code would do.
2948 if (!hctx->sched_tags) {
2949 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2950 false);
2951 } else {
2952 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2953 nr, true);
2955 if (ret)
2956 break;
2959 if (!ret)
2960 q->nr_requests = nr;
2962 blk_mq_unquiesce_queue(q);
2963 blk_mq_unfreeze_queue(q);
2965 return ret;
2968 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2969 int nr_hw_queues)
2971 struct request_queue *q;
2973 lockdep_assert_held(&set->tag_list_lock);
2975 if (nr_hw_queues > nr_cpu_ids)
2976 nr_hw_queues = nr_cpu_ids;
2977 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2978 return;
2980 list_for_each_entry(q, &set->tag_list, tag_set_list)
2981 blk_mq_freeze_queue(q);
2983 set->nr_hw_queues = nr_hw_queues;
2984 blk_mq_update_queue_map(set);
2985 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2986 blk_mq_realloc_hw_ctxs(set, q);
2987 blk_mq_queue_reinit(q);
2990 list_for_each_entry(q, &set->tag_list, tag_set_list)
2991 blk_mq_unfreeze_queue(q);
2994 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2996 mutex_lock(&set->tag_list_lock);
2997 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2998 mutex_unlock(&set->tag_list_lock);
3000 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3002 /* Enable polling stats and return whether they were already enabled. */
3003 static bool blk_poll_stats_enable(struct request_queue *q)
3005 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3006 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
3007 return true;
3008 blk_stat_add_callback(q, q->poll_cb);
3009 return false;
3012 static void blk_mq_poll_stats_start(struct request_queue *q)
3015 * We don't arm the callback if polling stats are not enabled or the
3016 * callback is already active.
3018 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3019 blk_stat_is_active(q->poll_cb))
3020 return;
3022 blk_stat_activate_msecs(q->poll_cb, 100);
3025 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3027 struct request_queue *q = cb->data;
3028 int bucket;
3030 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3031 if (cb->stat[bucket].nr_samples)
3032 q->poll_stat[bucket] = cb->stat[bucket];
3036 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3037 struct blk_mq_hw_ctx *hctx,
3038 struct request *rq)
3040 unsigned long ret = 0;
3041 int bucket;
3044 * If stats collection isn't on, don't sleep but turn it on for
3045 * future users
3047 if (!blk_poll_stats_enable(q))
3048 return 0;
3051 * As an optimistic guess, use half of the mean service time
3052 * for this type of request. We can (and should) make this smarter.
3053 * For instance, if the completion latencies are tight, we can
3054 * get closer than just half the mean. This is especially
3055 * important on devices where the completion latencies are longer
3056 * than ~10 usec. We do use the stats for the relevant IO size
3057 * if available which does lead to better estimates.
3059 bucket = blk_mq_poll_stats_bkt(rq);
3060 if (bucket < 0)
3061 return ret;
3063 if (q->poll_stat[bucket].nr_samples)
3064 ret = (q->poll_stat[bucket].mean + 1) / 2;
3066 return ret;
3069 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3070 struct blk_mq_hw_ctx *hctx,
3071 struct request *rq)
3073 struct hrtimer_sleeper hs;
3074 enum hrtimer_mode mode;
3075 unsigned int nsecs;
3076 ktime_t kt;
3078 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3079 return false;
3082 * poll_nsec can be:
3084 * -1: don't ever hybrid sleep
3085 * 0: use half of prev avg
3086 * >0: use this specific value
3088 if (q->poll_nsec == -1)
3089 return false;
3090 else if (q->poll_nsec > 0)
3091 nsecs = q->poll_nsec;
3092 else
3093 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3095 if (!nsecs)
3096 return false;
3098 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3101 * This will be replaced with the stats tracking code, using
3102 * 'avg_completion_time / 2' as the pre-sleep target.
3104 kt = nsecs;
3106 mode = HRTIMER_MODE_REL;
3107 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3108 hrtimer_set_expires(&hs.timer, kt);
3110 hrtimer_init_sleeper(&hs, current);
3111 do {
3112 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3113 break;
3114 set_current_state(TASK_UNINTERRUPTIBLE);
3115 hrtimer_start_expires(&hs.timer, mode);
3116 if (hs.task)
3117 io_schedule();
3118 hrtimer_cancel(&hs.timer);
3119 mode = HRTIMER_MODE_ABS;
3120 } while (hs.task && !signal_pending(current));
3122 __set_current_state(TASK_RUNNING);
3123 destroy_hrtimer_on_stack(&hs.timer);
3124 return true;
3127 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3129 struct request_queue *q = hctx->queue;
3130 long state;
3133 * If we sleep, have the caller restart the poll loop to reset
3134 * the state. Like for the other success return cases, the
3135 * caller is responsible for checking if the IO completed. If
3136 * the IO isn't complete, we'll get called again and will go
3137 * straight to the busy poll loop.
3139 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3140 return true;
3142 hctx->poll_considered++;
3144 state = current->state;
3145 while (!need_resched()) {
3146 int ret;
3148 hctx->poll_invoked++;
3150 ret = q->mq_ops->poll(hctx, rq->tag);
3151 if (ret > 0) {
3152 hctx->poll_success++;
3153 set_current_state(TASK_RUNNING);
3154 return true;
3157 if (signal_pending_state(state, current))
3158 set_current_state(TASK_RUNNING);
3160 if (current->state == TASK_RUNNING)
3161 return true;
3162 if (ret < 0)
3163 break;
3164 cpu_relax();
3167 return false;
3170 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3172 struct blk_mq_hw_ctx *hctx;
3173 struct request *rq;
3175 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3176 return false;
3178 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3179 if (!blk_qc_t_is_internal(cookie))
3180 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3181 else {
3182 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3184 * With scheduling, if the request has completed, we'll
3185 * get a NULL return here, as we clear the sched tag when
3186 * that happens. The request still remains valid, like always,
3187 * so we should be safe with just the NULL check.
3189 if (!rq)
3190 return false;
3193 return __blk_mq_poll(hctx, rq);
3196 static int __init blk_mq_init(void)
3198 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3199 blk_mq_hctx_notify_dead);
3200 return 0;
3202 subsys_initcall(blk_mq_init);