staging: rtl8188eu: Replace function name in string with __func__
[linux/fpc-iii.git] / drivers / net / can / m_can / m_can.c
blob2594f7779c6f147d71fdda29f2eab22b0c9e1955
1 /*
2 * CAN bus driver for Bosch M_CAN controller
4 * Copyright (C) 2014 Freescale Semiconductor, Inc.
5 * Dong Aisheng <b29396@freescale.com>
7 * Bosch M_CAN user manual can be obtained from:
8 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
9 * mcan_users_manual_v302.pdf
11 * This file is licensed under the terms of the GNU General Public
12 * License version 2. This program is licensed "as is" without any
13 * warranty of any kind, whether express or implied.
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/iopoll.h>
28 #include <linux/can/dev.h>
30 /* napi related */
31 #define M_CAN_NAPI_WEIGHT 64
33 /* message ram configuration data length */
34 #define MRAM_CFG_LEN 8
36 /* registers definition */
37 enum m_can_reg {
38 M_CAN_CREL = 0x0,
39 M_CAN_ENDN = 0x4,
40 M_CAN_CUST = 0x8,
41 M_CAN_DBTP = 0xc,
42 M_CAN_TEST = 0x10,
43 M_CAN_RWD = 0x14,
44 M_CAN_CCCR = 0x18,
45 M_CAN_NBTP = 0x1c,
46 M_CAN_TSCC = 0x20,
47 M_CAN_TSCV = 0x24,
48 M_CAN_TOCC = 0x28,
49 M_CAN_TOCV = 0x2c,
50 M_CAN_ECR = 0x40,
51 M_CAN_PSR = 0x44,
52 /* TDCR Register only available for version >=3.1.x */
53 M_CAN_TDCR = 0x48,
54 M_CAN_IR = 0x50,
55 M_CAN_IE = 0x54,
56 M_CAN_ILS = 0x58,
57 M_CAN_ILE = 0x5c,
58 M_CAN_GFC = 0x80,
59 M_CAN_SIDFC = 0x84,
60 M_CAN_XIDFC = 0x88,
61 M_CAN_XIDAM = 0x90,
62 M_CAN_HPMS = 0x94,
63 M_CAN_NDAT1 = 0x98,
64 M_CAN_NDAT2 = 0x9c,
65 M_CAN_RXF0C = 0xa0,
66 M_CAN_RXF0S = 0xa4,
67 M_CAN_RXF0A = 0xa8,
68 M_CAN_RXBC = 0xac,
69 M_CAN_RXF1C = 0xb0,
70 M_CAN_RXF1S = 0xb4,
71 M_CAN_RXF1A = 0xb8,
72 M_CAN_RXESC = 0xbc,
73 M_CAN_TXBC = 0xc0,
74 M_CAN_TXFQS = 0xc4,
75 M_CAN_TXESC = 0xc8,
76 M_CAN_TXBRP = 0xcc,
77 M_CAN_TXBAR = 0xd0,
78 M_CAN_TXBCR = 0xd4,
79 M_CAN_TXBTO = 0xd8,
80 M_CAN_TXBCF = 0xdc,
81 M_CAN_TXBTIE = 0xe0,
82 M_CAN_TXBCIE = 0xe4,
83 M_CAN_TXEFC = 0xf0,
84 M_CAN_TXEFS = 0xf4,
85 M_CAN_TXEFA = 0xf8,
88 /* m_can lec values */
89 enum m_can_lec_type {
90 LEC_NO_ERROR = 0,
91 LEC_STUFF_ERROR,
92 LEC_FORM_ERROR,
93 LEC_ACK_ERROR,
94 LEC_BIT1_ERROR,
95 LEC_BIT0_ERROR,
96 LEC_CRC_ERROR,
97 LEC_UNUSED,
100 enum m_can_mram_cfg {
101 MRAM_SIDF = 0,
102 MRAM_XIDF,
103 MRAM_RXF0,
104 MRAM_RXF1,
105 MRAM_RXB,
106 MRAM_TXE,
107 MRAM_TXB,
108 MRAM_CFG_NUM,
111 /* Core Release Register (CREL) */
112 #define CREL_REL_SHIFT 28
113 #define CREL_REL_MASK (0xF << CREL_REL_SHIFT)
114 #define CREL_STEP_SHIFT 24
115 #define CREL_STEP_MASK (0xF << CREL_STEP_SHIFT)
116 #define CREL_SUBSTEP_SHIFT 20
117 #define CREL_SUBSTEP_MASK (0xF << CREL_SUBSTEP_SHIFT)
119 /* Data Bit Timing & Prescaler Register (DBTP) */
120 #define DBTP_TDC BIT(23)
121 #define DBTP_DBRP_SHIFT 16
122 #define DBTP_DBRP_MASK (0x1f << DBTP_DBRP_SHIFT)
123 #define DBTP_DTSEG1_SHIFT 8
124 #define DBTP_DTSEG1_MASK (0x1f << DBTP_DTSEG1_SHIFT)
125 #define DBTP_DTSEG2_SHIFT 4
126 #define DBTP_DTSEG2_MASK (0xf << DBTP_DTSEG2_SHIFT)
127 #define DBTP_DSJW_SHIFT 0
128 #define DBTP_DSJW_MASK (0xf << DBTP_DSJW_SHIFT)
130 /* Transmitter Delay Compensation Register (TDCR) */
131 #define TDCR_TDCO_SHIFT 8
132 #define TDCR_TDCO_MASK (0x7F << TDCR_TDCO_SHIFT)
133 #define TDCR_TDCF_SHIFT 0
134 #define TDCR_TDCF_MASK (0x7F << TDCR_TDCF_SHIFT)
136 /* Test Register (TEST) */
137 #define TEST_LBCK BIT(4)
139 /* CC Control Register(CCCR) */
140 #define CCCR_CMR_MASK 0x3
141 #define CCCR_CMR_SHIFT 10
142 #define CCCR_CMR_CANFD 0x1
143 #define CCCR_CMR_CANFD_BRS 0x2
144 #define CCCR_CMR_CAN 0x3
145 #define CCCR_CME_MASK 0x3
146 #define CCCR_CME_SHIFT 8
147 #define CCCR_CME_CAN 0
148 #define CCCR_CME_CANFD 0x1
149 #define CCCR_CME_CANFD_BRS 0x2
150 #define CCCR_TXP BIT(14)
151 #define CCCR_TEST BIT(7)
152 #define CCCR_MON BIT(5)
153 #define CCCR_CSR BIT(4)
154 #define CCCR_CSA BIT(3)
155 #define CCCR_ASM BIT(2)
156 #define CCCR_CCE BIT(1)
157 #define CCCR_INIT BIT(0)
158 #define CCCR_CANFD 0x10
159 /* for version >=3.1.x */
160 #define CCCR_EFBI BIT(13)
161 #define CCCR_PXHD BIT(12)
162 #define CCCR_BRSE BIT(9)
163 #define CCCR_FDOE BIT(8)
164 /* only for version >=3.2.x */
165 #define CCCR_NISO BIT(15)
167 /* Nominal Bit Timing & Prescaler Register (NBTP) */
168 #define NBTP_NSJW_SHIFT 25
169 #define NBTP_NSJW_MASK (0x7f << NBTP_NSJW_SHIFT)
170 #define NBTP_NBRP_SHIFT 16
171 #define NBTP_NBRP_MASK (0x1ff << NBTP_NBRP_SHIFT)
172 #define NBTP_NTSEG1_SHIFT 8
173 #define NBTP_NTSEG1_MASK (0xff << NBTP_NTSEG1_SHIFT)
174 #define NBTP_NTSEG2_SHIFT 0
175 #define NBTP_NTSEG2_MASK (0x7f << NBTP_NTSEG2_SHIFT)
177 /* Error Counter Register(ECR) */
178 #define ECR_RP BIT(15)
179 #define ECR_REC_SHIFT 8
180 #define ECR_REC_MASK (0x7f << ECR_REC_SHIFT)
181 #define ECR_TEC_SHIFT 0
182 #define ECR_TEC_MASK 0xff
184 /* Protocol Status Register(PSR) */
185 #define PSR_BO BIT(7)
186 #define PSR_EW BIT(6)
187 #define PSR_EP BIT(5)
188 #define PSR_LEC_MASK 0x7
190 /* Interrupt Register(IR) */
191 #define IR_ALL_INT 0xffffffff
193 /* Renamed bits for versions > 3.1.x */
194 #define IR_ARA BIT(29)
195 #define IR_PED BIT(28)
196 #define IR_PEA BIT(27)
198 /* Bits for version 3.0.x */
199 #define IR_STE BIT(31)
200 #define IR_FOE BIT(30)
201 #define IR_ACKE BIT(29)
202 #define IR_BE BIT(28)
203 #define IR_CRCE BIT(27)
204 #define IR_WDI BIT(26)
205 #define IR_BO BIT(25)
206 #define IR_EW BIT(24)
207 #define IR_EP BIT(23)
208 #define IR_ELO BIT(22)
209 #define IR_BEU BIT(21)
210 #define IR_BEC BIT(20)
211 #define IR_DRX BIT(19)
212 #define IR_TOO BIT(18)
213 #define IR_MRAF BIT(17)
214 #define IR_TSW BIT(16)
215 #define IR_TEFL BIT(15)
216 #define IR_TEFF BIT(14)
217 #define IR_TEFW BIT(13)
218 #define IR_TEFN BIT(12)
219 #define IR_TFE BIT(11)
220 #define IR_TCF BIT(10)
221 #define IR_TC BIT(9)
222 #define IR_HPM BIT(8)
223 #define IR_RF1L BIT(7)
224 #define IR_RF1F BIT(6)
225 #define IR_RF1W BIT(5)
226 #define IR_RF1N BIT(4)
227 #define IR_RF0L BIT(3)
228 #define IR_RF0F BIT(2)
229 #define IR_RF0W BIT(1)
230 #define IR_RF0N BIT(0)
231 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
233 /* Interrupts for version 3.0.x */
234 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
235 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
236 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
237 IR_RF1L | IR_RF0L)
238 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X)
239 /* Interrupts for version >= 3.1.x */
240 #define IR_ERR_LEC_31X (IR_PED | IR_PEA)
241 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
242 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
243 IR_RF1L | IR_RF0L)
244 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X)
246 /* Interrupt Line Select (ILS) */
247 #define ILS_ALL_INT0 0x0
248 #define ILS_ALL_INT1 0xFFFFFFFF
250 /* Interrupt Line Enable (ILE) */
251 #define ILE_EINT1 BIT(1)
252 #define ILE_EINT0 BIT(0)
254 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
255 #define RXFC_FWM_SHIFT 24
256 #define RXFC_FWM_MASK (0x7f < RXFC_FWM_SHIFT)
257 #define RXFC_FS_SHIFT 16
258 #define RXFC_FS_MASK (0x7f << RXFC_FS_SHIFT)
260 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
261 #define RXFS_RFL BIT(25)
262 #define RXFS_FF BIT(24)
263 #define RXFS_FPI_SHIFT 16
264 #define RXFS_FPI_MASK 0x3f0000
265 #define RXFS_FGI_SHIFT 8
266 #define RXFS_FGI_MASK 0x3f00
267 #define RXFS_FFL_MASK 0x7f
269 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
270 #define M_CAN_RXESC_8BYTES 0x0
271 #define M_CAN_RXESC_64BYTES 0x777
273 /* Tx Buffer Configuration(TXBC) */
274 #define TXBC_NDTB_SHIFT 16
275 #define TXBC_NDTB_MASK (0x3f << TXBC_NDTB_SHIFT)
276 #define TXBC_TFQS_SHIFT 24
277 #define TXBC_TFQS_MASK (0x3f << TXBC_TFQS_SHIFT)
279 /* Tx FIFO/Queue Status (TXFQS) */
280 #define TXFQS_TFQF BIT(21)
281 #define TXFQS_TFQPI_SHIFT 16
282 #define TXFQS_TFQPI_MASK (0x1f << TXFQS_TFQPI_SHIFT)
283 #define TXFQS_TFGI_SHIFT 8
284 #define TXFQS_TFGI_MASK (0x1f << TXFQS_TFGI_SHIFT)
285 #define TXFQS_TFFL_SHIFT 0
286 #define TXFQS_TFFL_MASK (0x3f << TXFQS_TFFL_SHIFT)
288 /* Tx Buffer Element Size Configuration(TXESC) */
289 #define TXESC_TBDS_8BYTES 0x0
290 #define TXESC_TBDS_64BYTES 0x7
292 /* Tx Event FIFO Configuration (TXEFC) */
293 #define TXEFC_EFS_SHIFT 16
294 #define TXEFC_EFS_MASK (0x3f << TXEFC_EFS_SHIFT)
296 /* Tx Event FIFO Status (TXEFS) */
297 #define TXEFS_TEFL BIT(25)
298 #define TXEFS_EFF BIT(24)
299 #define TXEFS_EFGI_SHIFT 8
300 #define TXEFS_EFGI_MASK (0x1f << TXEFS_EFGI_SHIFT)
301 #define TXEFS_EFFL_SHIFT 0
302 #define TXEFS_EFFL_MASK (0x3f << TXEFS_EFFL_SHIFT)
304 /* Tx Event FIFO Acknowledge (TXEFA) */
305 #define TXEFA_EFAI_SHIFT 0
306 #define TXEFA_EFAI_MASK (0x1f << TXEFA_EFAI_SHIFT)
308 /* Message RAM Configuration (in bytes) */
309 #define SIDF_ELEMENT_SIZE 4
310 #define XIDF_ELEMENT_SIZE 8
311 #define RXF0_ELEMENT_SIZE 72
312 #define RXF1_ELEMENT_SIZE 72
313 #define RXB_ELEMENT_SIZE 72
314 #define TXE_ELEMENT_SIZE 8
315 #define TXB_ELEMENT_SIZE 72
317 /* Message RAM Elements */
318 #define M_CAN_FIFO_ID 0x0
319 #define M_CAN_FIFO_DLC 0x4
320 #define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2))
322 /* Rx Buffer Element */
323 /* R0 */
324 #define RX_BUF_ESI BIT(31)
325 #define RX_BUF_XTD BIT(30)
326 #define RX_BUF_RTR BIT(29)
327 /* R1 */
328 #define RX_BUF_ANMF BIT(31)
329 #define RX_BUF_FDF BIT(21)
330 #define RX_BUF_BRS BIT(20)
332 /* Tx Buffer Element */
333 /* T0 */
334 #define TX_BUF_ESI BIT(31)
335 #define TX_BUF_XTD BIT(30)
336 #define TX_BUF_RTR BIT(29)
337 /* T1 */
338 #define TX_BUF_EFC BIT(23)
339 #define TX_BUF_FDF BIT(21)
340 #define TX_BUF_BRS BIT(20)
341 #define TX_BUF_MM_SHIFT 24
342 #define TX_BUF_MM_MASK (0xff << TX_BUF_MM_SHIFT)
344 /* Tx event FIFO Element */
345 /* E1 */
346 #define TX_EVENT_MM_SHIFT TX_BUF_MM_SHIFT
347 #define TX_EVENT_MM_MASK (0xff << TX_EVENT_MM_SHIFT)
349 /* address offset and element number for each FIFO/Buffer in the Message RAM */
350 struct mram_cfg {
351 u16 off;
352 u8 num;
355 /* m_can private data structure */
356 struct m_can_priv {
357 struct can_priv can; /* must be the first member */
358 struct napi_struct napi;
359 struct net_device *dev;
360 struct device *device;
361 struct clk *hclk;
362 struct clk *cclk;
363 void __iomem *base;
364 u32 irqstatus;
365 int version;
367 /* message ram configuration */
368 void __iomem *mram_base;
369 struct mram_cfg mcfg[MRAM_CFG_NUM];
372 static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
374 return readl(priv->base + reg);
377 static inline void m_can_write(const struct m_can_priv *priv,
378 enum m_can_reg reg, u32 val)
380 writel(val, priv->base + reg);
383 static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
384 u32 fgi, unsigned int offset)
386 return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
387 fgi * RXF0_ELEMENT_SIZE + offset);
390 static inline void m_can_fifo_write(const struct m_can_priv *priv,
391 u32 fpi, unsigned int offset, u32 val)
393 writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
394 fpi * TXB_ELEMENT_SIZE + offset);
397 static inline u32 m_can_txe_fifo_read(const struct m_can_priv *priv,
398 u32 fgi,
399 u32 offset) {
400 return readl(priv->mram_base + priv->mcfg[MRAM_TXE].off +
401 fgi * TXE_ELEMENT_SIZE + offset);
404 static inline bool m_can_tx_fifo_full(const struct m_can_priv *priv)
406 return !!(m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQF);
409 static inline void m_can_config_endisable(const struct m_can_priv *priv,
410 bool enable)
412 u32 cccr = m_can_read(priv, M_CAN_CCCR);
413 u32 timeout = 10;
414 u32 val = 0;
416 if (enable) {
417 /* enable m_can configuration */
418 m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
419 udelay(5);
420 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
421 m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
422 } else {
423 m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
426 /* there's a delay for module initialization */
427 if (enable)
428 val = CCCR_INIT | CCCR_CCE;
430 while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
431 if (timeout == 0) {
432 netdev_warn(priv->dev, "Failed to init module\n");
433 return;
435 timeout--;
436 udelay(1);
440 static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
442 /* Only interrupt line 0 is used in this driver */
443 m_can_write(priv, M_CAN_ILE, ILE_EINT0);
446 static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
448 m_can_write(priv, M_CAN_ILE, 0x0);
451 static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
453 struct net_device_stats *stats = &dev->stats;
454 struct m_can_priv *priv = netdev_priv(dev);
455 struct canfd_frame *cf;
456 struct sk_buff *skb;
457 u32 id, fgi, dlc;
458 int i;
460 /* calculate the fifo get index for where to read data */
461 fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
462 dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
463 if (dlc & RX_BUF_FDF)
464 skb = alloc_canfd_skb(dev, &cf);
465 else
466 skb = alloc_can_skb(dev, (struct can_frame **)&cf);
467 if (!skb) {
468 stats->rx_dropped++;
469 return;
472 if (dlc & RX_BUF_FDF)
473 cf->len = can_dlc2len((dlc >> 16) & 0x0F);
474 else
475 cf->len = get_can_dlc((dlc >> 16) & 0x0F);
477 id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
478 if (id & RX_BUF_XTD)
479 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
480 else
481 cf->can_id = (id >> 18) & CAN_SFF_MASK;
483 if (id & RX_BUF_ESI) {
484 cf->flags |= CANFD_ESI;
485 netdev_dbg(dev, "ESI Error\n");
488 if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
489 cf->can_id |= CAN_RTR_FLAG;
490 } else {
491 if (dlc & RX_BUF_BRS)
492 cf->flags |= CANFD_BRS;
494 for (i = 0; i < cf->len; i += 4)
495 *(u32 *)(cf->data + i) =
496 m_can_fifo_read(priv, fgi,
497 M_CAN_FIFO_DATA(i / 4));
500 /* acknowledge rx fifo 0 */
501 m_can_write(priv, M_CAN_RXF0A, fgi);
503 stats->rx_packets++;
504 stats->rx_bytes += cf->len;
506 netif_receive_skb(skb);
509 static int m_can_do_rx_poll(struct net_device *dev, int quota)
511 struct m_can_priv *priv = netdev_priv(dev);
512 u32 pkts = 0;
513 u32 rxfs;
515 rxfs = m_can_read(priv, M_CAN_RXF0S);
516 if (!(rxfs & RXFS_FFL_MASK)) {
517 netdev_dbg(dev, "no messages in fifo0\n");
518 return 0;
521 while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
522 if (rxfs & RXFS_RFL)
523 netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
525 m_can_read_fifo(dev, rxfs);
527 quota--;
528 pkts++;
529 rxfs = m_can_read(priv, M_CAN_RXF0S);
532 if (pkts)
533 can_led_event(dev, CAN_LED_EVENT_RX);
535 return pkts;
538 static int m_can_handle_lost_msg(struct net_device *dev)
540 struct net_device_stats *stats = &dev->stats;
541 struct sk_buff *skb;
542 struct can_frame *frame;
544 netdev_err(dev, "msg lost in rxf0\n");
546 stats->rx_errors++;
547 stats->rx_over_errors++;
549 skb = alloc_can_err_skb(dev, &frame);
550 if (unlikely(!skb))
551 return 0;
553 frame->can_id |= CAN_ERR_CRTL;
554 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
556 netif_receive_skb(skb);
558 return 1;
561 static int m_can_handle_lec_err(struct net_device *dev,
562 enum m_can_lec_type lec_type)
564 struct m_can_priv *priv = netdev_priv(dev);
565 struct net_device_stats *stats = &dev->stats;
566 struct can_frame *cf;
567 struct sk_buff *skb;
569 priv->can.can_stats.bus_error++;
570 stats->rx_errors++;
572 /* propagate the error condition to the CAN stack */
573 skb = alloc_can_err_skb(dev, &cf);
574 if (unlikely(!skb))
575 return 0;
577 /* check for 'last error code' which tells us the
578 * type of the last error to occur on the CAN bus
580 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
582 switch (lec_type) {
583 case LEC_STUFF_ERROR:
584 netdev_dbg(dev, "stuff error\n");
585 cf->data[2] |= CAN_ERR_PROT_STUFF;
586 break;
587 case LEC_FORM_ERROR:
588 netdev_dbg(dev, "form error\n");
589 cf->data[2] |= CAN_ERR_PROT_FORM;
590 break;
591 case LEC_ACK_ERROR:
592 netdev_dbg(dev, "ack error\n");
593 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
594 break;
595 case LEC_BIT1_ERROR:
596 netdev_dbg(dev, "bit1 error\n");
597 cf->data[2] |= CAN_ERR_PROT_BIT1;
598 break;
599 case LEC_BIT0_ERROR:
600 netdev_dbg(dev, "bit0 error\n");
601 cf->data[2] |= CAN_ERR_PROT_BIT0;
602 break;
603 case LEC_CRC_ERROR:
604 netdev_dbg(dev, "CRC error\n");
605 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
606 break;
607 default:
608 break;
611 stats->rx_packets++;
612 stats->rx_bytes += cf->can_dlc;
613 netif_receive_skb(skb);
615 return 1;
618 static int __m_can_get_berr_counter(const struct net_device *dev,
619 struct can_berr_counter *bec)
621 struct m_can_priv *priv = netdev_priv(dev);
622 unsigned int ecr;
624 ecr = m_can_read(priv, M_CAN_ECR);
625 bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
626 bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
628 return 0;
631 static int m_can_clk_start(struct m_can_priv *priv)
633 int err;
635 err = pm_runtime_get_sync(priv->device);
636 if (err)
637 pm_runtime_put_noidle(priv->device);
639 return err;
642 static void m_can_clk_stop(struct m_can_priv *priv)
644 pm_runtime_put_sync(priv->device);
647 static int m_can_get_berr_counter(const struct net_device *dev,
648 struct can_berr_counter *bec)
650 struct m_can_priv *priv = netdev_priv(dev);
651 int err;
653 err = m_can_clk_start(priv);
654 if (err)
655 return err;
657 __m_can_get_berr_counter(dev, bec);
659 m_can_clk_stop(priv);
661 return 0;
664 static int m_can_handle_state_change(struct net_device *dev,
665 enum can_state new_state)
667 struct m_can_priv *priv = netdev_priv(dev);
668 struct net_device_stats *stats = &dev->stats;
669 struct can_frame *cf;
670 struct sk_buff *skb;
671 struct can_berr_counter bec;
672 unsigned int ecr;
674 switch (new_state) {
675 case CAN_STATE_ERROR_ACTIVE:
676 /* error warning state */
677 priv->can.can_stats.error_warning++;
678 priv->can.state = CAN_STATE_ERROR_WARNING;
679 break;
680 case CAN_STATE_ERROR_PASSIVE:
681 /* error passive state */
682 priv->can.can_stats.error_passive++;
683 priv->can.state = CAN_STATE_ERROR_PASSIVE;
684 break;
685 case CAN_STATE_BUS_OFF:
686 /* bus-off state */
687 priv->can.state = CAN_STATE_BUS_OFF;
688 m_can_disable_all_interrupts(priv);
689 priv->can.can_stats.bus_off++;
690 can_bus_off(dev);
691 break;
692 default:
693 break;
696 /* propagate the error condition to the CAN stack */
697 skb = alloc_can_err_skb(dev, &cf);
698 if (unlikely(!skb))
699 return 0;
701 __m_can_get_berr_counter(dev, &bec);
703 switch (new_state) {
704 case CAN_STATE_ERROR_ACTIVE:
705 /* error warning state */
706 cf->can_id |= CAN_ERR_CRTL;
707 cf->data[1] = (bec.txerr > bec.rxerr) ?
708 CAN_ERR_CRTL_TX_WARNING :
709 CAN_ERR_CRTL_RX_WARNING;
710 cf->data[6] = bec.txerr;
711 cf->data[7] = bec.rxerr;
712 break;
713 case CAN_STATE_ERROR_PASSIVE:
714 /* error passive state */
715 cf->can_id |= CAN_ERR_CRTL;
716 ecr = m_can_read(priv, M_CAN_ECR);
717 if (ecr & ECR_RP)
718 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
719 if (bec.txerr > 127)
720 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
721 cf->data[6] = bec.txerr;
722 cf->data[7] = bec.rxerr;
723 break;
724 case CAN_STATE_BUS_OFF:
725 /* bus-off state */
726 cf->can_id |= CAN_ERR_BUSOFF;
727 break;
728 default:
729 break;
732 stats->rx_packets++;
733 stats->rx_bytes += cf->can_dlc;
734 netif_receive_skb(skb);
736 return 1;
739 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
741 struct m_can_priv *priv = netdev_priv(dev);
742 int work_done = 0;
744 if ((psr & PSR_EW) &&
745 (priv->can.state != CAN_STATE_ERROR_WARNING)) {
746 netdev_dbg(dev, "entered error warning state\n");
747 work_done += m_can_handle_state_change(dev,
748 CAN_STATE_ERROR_WARNING);
751 if ((psr & PSR_EP) &&
752 (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
753 netdev_dbg(dev, "entered error passive state\n");
754 work_done += m_can_handle_state_change(dev,
755 CAN_STATE_ERROR_PASSIVE);
758 if ((psr & PSR_BO) &&
759 (priv->can.state != CAN_STATE_BUS_OFF)) {
760 netdev_dbg(dev, "entered error bus off state\n");
761 work_done += m_can_handle_state_change(dev,
762 CAN_STATE_BUS_OFF);
765 return work_done;
768 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
770 if (irqstatus & IR_WDI)
771 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
772 if (irqstatus & IR_ELO)
773 netdev_err(dev, "Error Logging Overflow\n");
774 if (irqstatus & IR_BEU)
775 netdev_err(dev, "Bit Error Uncorrected\n");
776 if (irqstatus & IR_BEC)
777 netdev_err(dev, "Bit Error Corrected\n");
778 if (irqstatus & IR_TOO)
779 netdev_err(dev, "Timeout reached\n");
780 if (irqstatus & IR_MRAF)
781 netdev_err(dev, "Message RAM access failure occurred\n");
784 static inline bool is_lec_err(u32 psr)
786 psr &= LEC_UNUSED;
788 return psr && (psr != LEC_UNUSED);
791 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
792 u32 psr)
794 struct m_can_priv *priv = netdev_priv(dev);
795 int work_done = 0;
797 if (irqstatus & IR_RF0L)
798 work_done += m_can_handle_lost_msg(dev);
800 /* handle lec errors on the bus */
801 if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
802 is_lec_err(psr))
803 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
805 /* other unproccessed error interrupts */
806 m_can_handle_other_err(dev, irqstatus);
808 return work_done;
811 static int m_can_poll(struct napi_struct *napi, int quota)
813 struct net_device *dev = napi->dev;
814 struct m_can_priv *priv = netdev_priv(dev);
815 int work_done = 0;
816 u32 irqstatus, psr;
818 irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
819 if (!irqstatus)
820 goto end;
822 psr = m_can_read(priv, M_CAN_PSR);
823 if (irqstatus & IR_ERR_STATE)
824 work_done += m_can_handle_state_errors(dev, psr);
826 if (irqstatus & IR_ERR_BUS_30X)
827 work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
829 if (irqstatus & IR_RF0N)
830 work_done += m_can_do_rx_poll(dev, (quota - work_done));
832 if (work_done < quota) {
833 napi_complete_done(napi, work_done);
834 m_can_enable_all_interrupts(priv);
837 end:
838 return work_done;
841 static void m_can_echo_tx_event(struct net_device *dev)
843 u32 txe_count = 0;
844 u32 m_can_txefs;
845 u32 fgi = 0;
846 int i = 0;
847 unsigned int msg_mark;
849 struct m_can_priv *priv = netdev_priv(dev);
850 struct net_device_stats *stats = &dev->stats;
852 /* read tx event fifo status */
853 m_can_txefs = m_can_read(priv, M_CAN_TXEFS);
855 /* Get Tx Event fifo element count */
856 txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
857 >> TXEFS_EFFL_SHIFT;
859 /* Get and process all sent elements */
860 for (i = 0; i < txe_count; i++) {
861 /* retrieve get index */
862 fgi = (m_can_read(priv, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
863 >> TXEFS_EFGI_SHIFT;
865 /* get message marker */
866 msg_mark = (m_can_txe_fifo_read(priv, fgi, 4) &
867 TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
869 /* ack txe element */
870 m_can_write(priv, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
871 (fgi << TXEFA_EFAI_SHIFT)));
873 /* update stats */
874 stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
875 stats->tx_packets++;
879 static irqreturn_t m_can_isr(int irq, void *dev_id)
881 struct net_device *dev = (struct net_device *)dev_id;
882 struct m_can_priv *priv = netdev_priv(dev);
883 struct net_device_stats *stats = &dev->stats;
884 u32 ir;
886 ir = m_can_read(priv, M_CAN_IR);
887 if (!ir)
888 return IRQ_NONE;
890 /* ACK all irqs */
891 if (ir & IR_ALL_INT)
892 m_can_write(priv, M_CAN_IR, ir);
894 /* schedule NAPI in case of
895 * - rx IRQ
896 * - state change IRQ
897 * - bus error IRQ and bus error reporting
899 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
900 priv->irqstatus = ir;
901 m_can_disable_all_interrupts(priv);
902 napi_schedule(&priv->napi);
905 if (priv->version == 30) {
906 if (ir & IR_TC) {
907 /* Transmission Complete Interrupt*/
908 stats->tx_bytes += can_get_echo_skb(dev, 0);
909 stats->tx_packets++;
910 can_led_event(dev, CAN_LED_EVENT_TX);
911 netif_wake_queue(dev);
913 } else {
914 if (ir & IR_TEFN) {
915 /* New TX FIFO Element arrived */
916 m_can_echo_tx_event(dev);
917 can_led_event(dev, CAN_LED_EVENT_TX);
918 if (netif_queue_stopped(dev) &&
919 !m_can_tx_fifo_full(priv))
920 netif_wake_queue(dev);
924 return IRQ_HANDLED;
927 static const struct can_bittiming_const m_can_bittiming_const_30X = {
928 .name = KBUILD_MODNAME,
929 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
930 .tseg1_max = 64,
931 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
932 .tseg2_max = 16,
933 .sjw_max = 16,
934 .brp_min = 1,
935 .brp_max = 1024,
936 .brp_inc = 1,
939 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
940 .name = KBUILD_MODNAME,
941 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
942 .tseg1_max = 16,
943 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
944 .tseg2_max = 8,
945 .sjw_max = 4,
946 .brp_min = 1,
947 .brp_max = 32,
948 .brp_inc = 1,
951 static const struct can_bittiming_const m_can_bittiming_const_31X = {
952 .name = KBUILD_MODNAME,
953 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
954 .tseg1_max = 256,
955 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
956 .tseg2_max = 128,
957 .sjw_max = 128,
958 .brp_min = 1,
959 .brp_max = 512,
960 .brp_inc = 1,
963 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
964 .name = KBUILD_MODNAME,
965 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */
966 .tseg1_max = 32,
967 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
968 .tseg2_max = 16,
969 .sjw_max = 16,
970 .brp_min = 1,
971 .brp_max = 32,
972 .brp_inc = 1,
975 static int m_can_set_bittiming(struct net_device *dev)
977 struct m_can_priv *priv = netdev_priv(dev);
978 const struct can_bittiming *bt = &priv->can.bittiming;
979 const struct can_bittiming *dbt = &priv->can.data_bittiming;
980 u16 brp, sjw, tseg1, tseg2;
981 u32 reg_btp;
983 brp = bt->brp - 1;
984 sjw = bt->sjw - 1;
985 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
986 tseg2 = bt->phase_seg2 - 1;
987 reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
988 (tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
989 m_can_write(priv, M_CAN_NBTP, reg_btp);
991 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
992 reg_btp = 0;
993 brp = dbt->brp - 1;
994 sjw = dbt->sjw - 1;
995 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
996 tseg2 = dbt->phase_seg2 - 1;
998 /* TDC is only needed for bitrates beyond 2.5 MBit/s.
999 * This is mentioned in the "Bit Time Requirements for CAN FD"
1000 * paper presented at the International CAN Conference 2013
1002 if (dbt->bitrate > 2500000) {
1003 u32 tdco, ssp;
1005 /* Use the same value of secondary sampling point
1006 * as the data sampling point
1008 ssp = dbt->sample_point;
1010 /* Equation based on Bosch's M_CAN User Manual's
1011 * Transmitter Delay Compensation Section
1013 tdco = (priv->can.clock.freq / 1000) *
1014 ssp / dbt->bitrate;
1016 /* Max valid TDCO value is 127 */
1017 if (tdco > 127) {
1018 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1019 tdco);
1020 tdco = 127;
1023 reg_btp |= DBTP_TDC;
1024 m_can_write(priv, M_CAN_TDCR,
1025 tdco << TDCR_TDCO_SHIFT);
1028 reg_btp |= (brp << DBTP_DBRP_SHIFT) |
1029 (sjw << DBTP_DSJW_SHIFT) |
1030 (tseg1 << DBTP_DTSEG1_SHIFT) |
1031 (tseg2 << DBTP_DTSEG2_SHIFT);
1033 m_can_write(priv, M_CAN_DBTP, reg_btp);
1036 return 0;
1039 /* Configure M_CAN chip:
1040 * - set rx buffer/fifo element size
1041 * - configure rx fifo
1042 * - accept non-matching frame into fifo 0
1043 * - configure tx buffer
1044 * - >= v3.1.x: TX FIFO is used
1045 * - configure mode
1046 * - setup bittiming
1048 static void m_can_chip_config(struct net_device *dev)
1050 struct m_can_priv *priv = netdev_priv(dev);
1051 u32 cccr, test;
1053 m_can_config_endisable(priv, true);
1055 /* RX Buffer/FIFO Element Size 64 bytes data field */
1056 m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1058 /* Accept Non-matching Frames Into FIFO 0 */
1059 m_can_write(priv, M_CAN_GFC, 0x0);
1061 if (priv->version == 30) {
1062 /* only support one Tx Buffer currently */
1063 m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1064 priv->mcfg[MRAM_TXB].off);
1065 } else {
1066 /* TX FIFO is used for newer IP Core versions */
1067 m_can_write(priv, M_CAN_TXBC,
1068 (priv->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1069 (priv->mcfg[MRAM_TXB].off));
1072 /* support 64 bytes payload */
1073 m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1075 /* TX Event FIFO */
1076 if (priv->version == 30) {
1077 m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1078 priv->mcfg[MRAM_TXE].off);
1079 } else {
1080 /* Full TX Event FIFO is used */
1081 m_can_write(priv, M_CAN_TXEFC,
1082 ((priv->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1083 & TXEFC_EFS_MASK) |
1084 priv->mcfg[MRAM_TXE].off);
1087 /* rx fifo configuration, blocking mode, fifo size 1 */
1088 m_can_write(priv, M_CAN_RXF0C,
1089 (priv->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1090 priv->mcfg[MRAM_RXF0].off);
1092 m_can_write(priv, M_CAN_RXF1C,
1093 (priv->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1094 priv->mcfg[MRAM_RXF1].off);
1096 cccr = m_can_read(priv, M_CAN_CCCR);
1097 test = m_can_read(priv, M_CAN_TEST);
1098 test &= ~TEST_LBCK;
1099 if (priv->version == 30) {
1100 /* Version 3.0.x */
1102 cccr &= ~(CCCR_TEST | CCCR_MON |
1103 (CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1104 (CCCR_CME_MASK << CCCR_CME_SHIFT));
1106 if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1107 cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1109 } else {
1110 /* Version 3.1.x or 3.2.x */
1111 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE);
1113 /* Only 3.2.x has NISO Bit implemented */
1114 if (priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1115 cccr |= CCCR_NISO;
1117 if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1118 cccr |= (CCCR_BRSE | CCCR_FDOE);
1121 /* Loopback Mode */
1122 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1123 cccr |= CCCR_TEST | CCCR_MON;
1124 test |= TEST_LBCK;
1127 /* Enable Monitoring (all versions) */
1128 if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1129 cccr |= CCCR_MON;
1131 /* Write config */
1132 m_can_write(priv, M_CAN_CCCR, cccr);
1133 m_can_write(priv, M_CAN_TEST, test);
1135 /* Enable interrupts */
1136 m_can_write(priv, M_CAN_IR, IR_ALL_INT);
1137 if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1138 if (priv->version == 30)
1139 m_can_write(priv, M_CAN_IE, IR_ALL_INT &
1140 ~(IR_ERR_LEC_30X));
1141 else
1142 m_can_write(priv, M_CAN_IE, IR_ALL_INT &
1143 ~(IR_ERR_LEC_31X));
1144 else
1145 m_can_write(priv, M_CAN_IE, IR_ALL_INT);
1147 /* route all interrupts to INT0 */
1148 m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
1150 /* set bittiming params */
1151 m_can_set_bittiming(dev);
1153 m_can_config_endisable(priv, false);
1156 static void m_can_start(struct net_device *dev)
1158 struct m_can_priv *priv = netdev_priv(dev);
1160 /* basic m_can configuration */
1161 m_can_chip_config(dev);
1163 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1165 m_can_enable_all_interrupts(priv);
1168 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1170 switch (mode) {
1171 case CAN_MODE_START:
1172 m_can_start(dev);
1173 netif_wake_queue(dev);
1174 break;
1175 default:
1176 return -EOPNOTSUPP;
1179 return 0;
1182 /* Checks core release number of M_CAN
1183 * returns 0 if an unsupported device is detected
1184 * else it returns the release and step coded as:
1185 * return value = 10 * <release> + 1 * <step>
1187 static int m_can_check_core_release(void __iomem *m_can_base)
1189 u32 crel_reg;
1190 u8 rel;
1191 u8 step;
1192 int res;
1193 struct m_can_priv temp_priv = {
1194 .base = m_can_base
1197 /* Read Core Release Version and split into version number
1198 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1200 crel_reg = m_can_read(&temp_priv, M_CAN_CREL);
1201 rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1202 step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1204 if (rel == 3) {
1205 /* M_CAN v3.x.y: create return value */
1206 res = 30 + step;
1207 } else {
1208 /* Unsupported M_CAN version */
1209 res = 0;
1212 return res;
1215 /* Selectable Non ISO support only in version 3.2.x
1216 * This function checks if the bit is writable.
1218 static bool m_can_niso_supported(const struct m_can_priv *priv)
1220 u32 cccr_reg, cccr_poll;
1221 int niso_timeout;
1223 m_can_config_endisable(priv, true);
1224 cccr_reg = m_can_read(priv, M_CAN_CCCR);
1225 cccr_reg |= CCCR_NISO;
1226 m_can_write(priv, M_CAN_CCCR, cccr_reg);
1228 niso_timeout = readl_poll_timeout((priv->base + M_CAN_CCCR), cccr_poll,
1229 (cccr_poll == cccr_reg), 0, 10);
1231 /* Clear NISO */
1232 cccr_reg &= ~(CCCR_NISO);
1233 m_can_write(priv, M_CAN_CCCR, cccr_reg);
1235 m_can_config_endisable(priv, false);
1237 /* return false if time out (-ETIMEDOUT), else return true */
1238 return !niso_timeout;
1241 static int m_can_dev_setup(struct platform_device *pdev, struct net_device *dev,
1242 void __iomem *addr)
1244 struct m_can_priv *priv;
1245 int m_can_version;
1247 m_can_version = m_can_check_core_release(addr);
1248 /* return if unsupported version */
1249 if (!m_can_version) {
1250 dev_err(&pdev->dev, "Unsupported version number: %2d",
1251 m_can_version);
1252 return -EINVAL;
1255 priv = netdev_priv(dev);
1256 netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
1258 /* Shared properties of all M_CAN versions */
1259 priv->version = m_can_version;
1260 priv->dev = dev;
1261 priv->base = addr;
1262 priv->can.do_set_mode = m_can_set_mode;
1263 priv->can.do_get_berr_counter = m_can_get_berr_counter;
1265 /* Set M_CAN supported operations */
1266 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1267 CAN_CTRLMODE_LISTENONLY |
1268 CAN_CTRLMODE_BERR_REPORTING |
1269 CAN_CTRLMODE_FD;
1271 /* Set properties depending on M_CAN version */
1272 switch (priv->version) {
1273 case 30:
1274 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1275 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1276 priv->can.bittiming_const = &m_can_bittiming_const_30X;
1277 priv->can.data_bittiming_const =
1278 &m_can_data_bittiming_const_30X;
1279 break;
1280 case 31:
1281 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1282 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1283 priv->can.bittiming_const = &m_can_bittiming_const_31X;
1284 priv->can.data_bittiming_const =
1285 &m_can_data_bittiming_const_31X;
1286 break;
1287 case 32:
1288 priv->can.bittiming_const = &m_can_bittiming_const_31X;
1289 priv->can.data_bittiming_const =
1290 &m_can_data_bittiming_const_31X;
1291 priv->can.ctrlmode_supported |= (m_can_niso_supported(priv)
1292 ? CAN_CTRLMODE_FD_NON_ISO
1293 : 0);
1294 break;
1295 default:
1296 dev_err(&pdev->dev, "Unsupported version number: %2d",
1297 priv->version);
1298 return -EINVAL;
1301 return 0;
1304 static int m_can_open(struct net_device *dev)
1306 struct m_can_priv *priv = netdev_priv(dev);
1307 int err;
1309 err = m_can_clk_start(priv);
1310 if (err)
1311 return err;
1313 /* open the can device */
1314 err = open_candev(dev);
1315 if (err) {
1316 netdev_err(dev, "failed to open can device\n");
1317 goto exit_disable_clks;
1320 /* register interrupt handler */
1321 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1322 dev);
1323 if (err < 0) {
1324 netdev_err(dev, "failed to request interrupt\n");
1325 goto exit_irq_fail;
1328 /* start the m_can controller */
1329 m_can_start(dev);
1331 can_led_event(dev, CAN_LED_EVENT_OPEN);
1332 napi_enable(&priv->napi);
1333 netif_start_queue(dev);
1335 return 0;
1337 exit_irq_fail:
1338 close_candev(dev);
1339 exit_disable_clks:
1340 m_can_clk_stop(priv);
1341 return err;
1344 static void m_can_stop(struct net_device *dev)
1346 struct m_can_priv *priv = netdev_priv(dev);
1348 /* disable all interrupts */
1349 m_can_disable_all_interrupts(priv);
1351 /* set the state as STOPPED */
1352 priv->can.state = CAN_STATE_STOPPED;
1355 static int m_can_close(struct net_device *dev)
1357 struct m_can_priv *priv = netdev_priv(dev);
1359 netif_stop_queue(dev);
1360 napi_disable(&priv->napi);
1361 m_can_stop(dev);
1362 m_can_clk_stop(priv);
1363 free_irq(dev->irq, dev);
1364 close_candev(dev);
1365 can_led_event(dev, CAN_LED_EVENT_STOP);
1367 return 0;
1370 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1372 struct m_can_priv *priv = netdev_priv(dev);
1373 /*get wrap around for loopback skb index */
1374 unsigned int wrap = priv->can.echo_skb_max;
1375 int next_idx;
1377 /* calculate next index */
1378 next_idx = (++putidx >= wrap ? 0 : putidx);
1380 /* check if occupied */
1381 return !!priv->can.echo_skb[next_idx];
1384 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1385 struct net_device *dev)
1387 struct m_can_priv *priv = netdev_priv(dev);
1388 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1389 u32 id, cccr, fdflags;
1390 int i;
1391 int putidx;
1393 if (can_dropped_invalid_skb(dev, skb))
1394 return NETDEV_TX_OK;
1396 /* Generate ID field for TX buffer Element */
1397 /* Common to all supported M_CAN versions */
1398 if (cf->can_id & CAN_EFF_FLAG) {
1399 id = cf->can_id & CAN_EFF_MASK;
1400 id |= TX_BUF_XTD;
1401 } else {
1402 id = ((cf->can_id & CAN_SFF_MASK) << 18);
1405 if (cf->can_id & CAN_RTR_FLAG)
1406 id |= TX_BUF_RTR;
1408 if (priv->version == 30) {
1409 netif_stop_queue(dev);
1411 /* message ram configuration */
1412 m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
1413 m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC,
1414 can_len2dlc(cf->len) << 16);
1416 for (i = 0; i < cf->len; i += 4)
1417 m_can_fifo_write(priv, 0,
1418 M_CAN_FIFO_DATA(i / 4),
1419 *(u32 *)(cf->data + i));
1421 can_put_echo_skb(skb, dev, 0);
1423 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1424 cccr = m_can_read(priv, M_CAN_CCCR);
1425 cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1426 if (can_is_canfd_skb(skb)) {
1427 if (cf->flags & CANFD_BRS)
1428 cccr |= CCCR_CMR_CANFD_BRS <<
1429 CCCR_CMR_SHIFT;
1430 else
1431 cccr |= CCCR_CMR_CANFD <<
1432 CCCR_CMR_SHIFT;
1433 } else {
1434 cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1436 m_can_write(priv, M_CAN_CCCR, cccr);
1438 m_can_write(priv, M_CAN_TXBTIE, 0x1);
1439 m_can_write(priv, M_CAN_TXBAR, 0x1);
1440 /* End of xmit function for version 3.0.x */
1441 } else {
1442 /* Transmit routine for version >= v3.1.x */
1444 /* Check if FIFO full */
1445 if (m_can_tx_fifo_full(priv)) {
1446 /* This shouldn't happen */
1447 netif_stop_queue(dev);
1448 netdev_warn(dev,
1449 "TX queue active although FIFO is full.");
1450 return NETDEV_TX_BUSY;
1453 /* get put index for frame */
1454 putidx = ((m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1455 >> TXFQS_TFQPI_SHIFT);
1456 /* Write ID Field to FIFO Element */
1457 m_can_fifo_write(priv, putidx, M_CAN_FIFO_ID, id);
1459 /* get CAN FD configuration of frame */
1460 fdflags = 0;
1461 if (can_is_canfd_skb(skb)) {
1462 fdflags |= TX_BUF_FDF;
1463 if (cf->flags & CANFD_BRS)
1464 fdflags |= TX_BUF_BRS;
1467 /* Construct DLC Field. Also contains CAN-FD configuration
1468 * use put index of fifo as message marker
1469 * it is used in TX interrupt for
1470 * sending the correct echo frame
1472 m_can_fifo_write(priv, putidx, M_CAN_FIFO_DLC,
1473 ((putidx << TX_BUF_MM_SHIFT) &
1474 TX_BUF_MM_MASK) |
1475 (can_len2dlc(cf->len) << 16) |
1476 fdflags | TX_BUF_EFC);
1478 for (i = 0; i < cf->len; i += 4)
1479 m_can_fifo_write(priv, putidx, M_CAN_FIFO_DATA(i / 4),
1480 *(u32 *)(cf->data + i));
1482 /* Push loopback echo.
1483 * Will be looped back on TX interrupt based on message marker
1485 can_put_echo_skb(skb, dev, putidx);
1487 /* Enable TX FIFO element to start transfer */
1488 m_can_write(priv, M_CAN_TXBAR, (1 << putidx));
1490 /* stop network queue if fifo full */
1491 if (m_can_tx_fifo_full(priv) ||
1492 m_can_next_echo_skb_occupied(dev, putidx))
1493 netif_stop_queue(dev);
1496 return NETDEV_TX_OK;
1499 static const struct net_device_ops m_can_netdev_ops = {
1500 .ndo_open = m_can_open,
1501 .ndo_stop = m_can_close,
1502 .ndo_start_xmit = m_can_start_xmit,
1503 .ndo_change_mtu = can_change_mtu,
1506 static int register_m_can_dev(struct net_device *dev)
1508 dev->flags |= IFF_ECHO; /* we support local echo */
1509 dev->netdev_ops = &m_can_netdev_ops;
1511 return register_candev(dev);
1514 static void m_can_init_ram(struct m_can_priv *priv)
1516 int end, i, start;
1518 /* initialize the entire Message RAM in use to avoid possible
1519 * ECC/parity checksum errors when reading an uninitialized buffer
1521 start = priv->mcfg[MRAM_SIDF].off;
1522 end = priv->mcfg[MRAM_TXB].off +
1523 priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1524 for (i = start; i < end; i += 4)
1525 writel(0x0, priv->mram_base + i);
1528 static void m_can_of_parse_mram(struct m_can_priv *priv,
1529 const u32 *mram_config_vals)
1531 priv->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1532 priv->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1533 priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
1534 priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1535 priv->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1536 priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
1537 priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1538 priv->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1539 (RXFC_FS_MASK >> RXFC_FS_SHIFT);
1540 priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
1541 priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1542 priv->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1543 (RXFC_FS_MASK >> RXFC_FS_SHIFT);
1544 priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
1545 priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1546 priv->mcfg[MRAM_RXB].num = mram_config_vals[5];
1547 priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
1548 priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1549 priv->mcfg[MRAM_TXE].num = mram_config_vals[6];
1550 priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
1551 priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1552 priv->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1553 (TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1555 dev_dbg(priv->device,
1556 "mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1557 priv->mram_base,
1558 priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
1559 priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
1560 priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
1561 priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
1562 priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
1563 priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
1564 priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
1566 m_can_init_ram(priv);
1569 static int m_can_plat_probe(struct platform_device *pdev)
1571 struct net_device *dev;
1572 struct m_can_priv *priv;
1573 struct resource *res;
1574 void __iomem *addr;
1575 void __iomem *mram_addr;
1576 struct clk *hclk, *cclk;
1577 int irq, ret;
1578 struct device_node *np;
1579 u32 mram_config_vals[MRAM_CFG_LEN];
1580 u32 tx_fifo_size;
1582 np = pdev->dev.of_node;
1584 hclk = devm_clk_get(&pdev->dev, "hclk");
1585 cclk = devm_clk_get(&pdev->dev, "cclk");
1587 if (IS_ERR(hclk) || IS_ERR(cclk)) {
1588 dev_err(&pdev->dev, "no clock found\n");
1589 ret = -ENODEV;
1590 goto failed_ret;
1593 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
1594 addr = devm_ioremap_resource(&pdev->dev, res);
1595 irq = platform_get_irq_byname(pdev, "int0");
1597 if (IS_ERR(addr) || irq < 0) {
1598 ret = -EINVAL;
1599 goto failed_ret;
1602 /* message ram could be shared */
1603 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
1604 if (!res) {
1605 ret = -ENODEV;
1606 goto failed_ret;
1609 mram_addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1610 if (!mram_addr) {
1611 ret = -ENOMEM;
1612 goto failed_ret;
1615 /* get message ram configuration */
1616 ret = of_property_read_u32_array(np, "bosch,mram-cfg",
1617 mram_config_vals,
1618 sizeof(mram_config_vals) / 4);
1619 if (ret) {
1620 dev_err(&pdev->dev, "Could not get Message RAM configuration.");
1621 goto failed_ret;
1624 /* Get TX FIFO size
1625 * Defines the total amount of echo buffers for loopback
1627 tx_fifo_size = mram_config_vals[7];
1629 /* allocate the m_can device */
1630 dev = alloc_candev(sizeof(*priv), tx_fifo_size);
1631 if (!dev) {
1632 ret = -ENOMEM;
1633 goto failed_ret;
1636 priv = netdev_priv(dev);
1637 dev->irq = irq;
1638 priv->device = &pdev->dev;
1639 priv->hclk = hclk;
1640 priv->cclk = cclk;
1641 priv->can.clock.freq = clk_get_rate(cclk);
1642 priv->mram_base = mram_addr;
1644 m_can_of_parse_mram(priv, mram_config_vals);
1646 platform_set_drvdata(pdev, dev);
1647 SET_NETDEV_DEV(dev, &pdev->dev);
1649 /* Enable clocks. Necessary to read Core Release in order to determine
1650 * M_CAN version
1652 pm_runtime_enable(&pdev->dev);
1653 ret = m_can_clk_start(priv);
1654 if (ret)
1655 goto pm_runtime_fail;
1657 ret = m_can_dev_setup(pdev, dev, addr);
1658 if (ret)
1659 goto clk_disable;
1661 ret = register_m_can_dev(dev);
1662 if (ret) {
1663 dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
1664 KBUILD_MODNAME, ret);
1665 goto clk_disable;
1668 devm_can_led_init(dev);
1670 of_can_transceiver(dev);
1672 dev_info(&pdev->dev, "%s device registered (irq=%d, version=%d)\n",
1673 KBUILD_MODNAME, dev->irq, priv->version);
1675 /* Probe finished
1676 * Stop clocks. They will be reactivated once the M_CAN device is opened
1678 clk_disable:
1679 m_can_clk_stop(priv);
1680 pm_runtime_fail:
1681 if (ret) {
1682 pm_runtime_disable(&pdev->dev);
1683 free_candev(dev);
1685 failed_ret:
1686 return ret;
1689 /* TODO: runtime PM with power down or sleep mode */
1691 static __maybe_unused int m_can_suspend(struct device *dev)
1693 struct net_device *ndev = dev_get_drvdata(dev);
1694 struct m_can_priv *priv = netdev_priv(ndev);
1696 if (netif_running(ndev)) {
1697 netif_stop_queue(ndev);
1698 netif_device_detach(ndev);
1699 m_can_stop(ndev);
1700 m_can_clk_stop(priv);
1703 priv->can.state = CAN_STATE_SLEEPING;
1705 return 0;
1708 static __maybe_unused int m_can_resume(struct device *dev)
1710 struct net_device *ndev = dev_get_drvdata(dev);
1711 struct m_can_priv *priv = netdev_priv(ndev);
1713 m_can_init_ram(priv);
1715 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1717 if (netif_running(ndev)) {
1718 int ret;
1720 ret = m_can_clk_start(priv);
1721 if (ret)
1722 return ret;
1724 m_can_start(ndev);
1725 netif_device_attach(ndev);
1726 netif_start_queue(ndev);
1729 return 0;
1732 static void unregister_m_can_dev(struct net_device *dev)
1734 unregister_candev(dev);
1737 static int m_can_plat_remove(struct platform_device *pdev)
1739 struct net_device *dev = platform_get_drvdata(pdev);
1741 unregister_m_can_dev(dev);
1743 pm_runtime_disable(&pdev->dev);
1745 platform_set_drvdata(pdev, NULL);
1747 free_candev(dev);
1749 return 0;
1752 static int __maybe_unused m_can_runtime_suspend(struct device *dev)
1754 struct net_device *ndev = dev_get_drvdata(dev);
1755 struct m_can_priv *priv = netdev_priv(ndev);
1757 clk_disable_unprepare(priv->cclk);
1758 clk_disable_unprepare(priv->hclk);
1760 return 0;
1763 static int __maybe_unused m_can_runtime_resume(struct device *dev)
1765 struct net_device *ndev = dev_get_drvdata(dev);
1766 struct m_can_priv *priv = netdev_priv(ndev);
1767 int err;
1769 err = clk_prepare_enable(priv->hclk);
1770 if (err)
1771 return err;
1773 err = clk_prepare_enable(priv->cclk);
1774 if (err)
1775 clk_disable_unprepare(priv->hclk);
1777 return err;
1780 static const struct dev_pm_ops m_can_pmops = {
1781 SET_RUNTIME_PM_OPS(m_can_runtime_suspend,
1782 m_can_runtime_resume, NULL)
1783 SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
1786 static const struct of_device_id m_can_of_table[] = {
1787 { .compatible = "bosch,m_can", .data = NULL },
1788 { /* sentinel */ },
1790 MODULE_DEVICE_TABLE(of, m_can_of_table);
1792 static struct platform_driver m_can_plat_driver = {
1793 .driver = {
1794 .name = KBUILD_MODNAME,
1795 .of_match_table = m_can_of_table,
1796 .pm = &m_can_pmops,
1798 .probe = m_can_plat_probe,
1799 .remove = m_can_plat_remove,
1802 module_platform_driver(m_can_plat_driver);
1804 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1805 MODULE_LICENSE("GPL v2");
1806 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");