1 /* bnx2.c: QLogic bnx2 network driver.
3 * Copyright (c) 2004-2014 Broadcom Corporation
4 * Copyright (c) 2014-2015 QLogic Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation.
10 * Written by: Michael Chan (mchan@broadcom.com)
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
18 #include <linux/stringify.h>
19 #include <linux/kernel.h>
20 #include <linux/timer.h>
21 #include <linux/errno.h>
22 #include <linux/ioport.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/interrupt.h>
26 #include <linux/pci.h>
27 #include <linux/netdevice.h>
28 #include <linux/etherdevice.h>
29 #include <linux/skbuff.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/bitops.h>
34 #include <linux/delay.h>
35 #include <asm/byteorder.h>
37 #include <linux/time.h>
38 #include <linux/ethtool.h>
39 #include <linux/mii.h>
41 #include <linux/if_vlan.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/firmware.h>
50 #include <linux/log2.h>
51 #include <linux/aer.h>
52 #include <linux/crash_dump.h>
54 #if IS_ENABLED(CONFIG_CNIC)
61 #define DRV_MODULE_NAME "bnx2"
62 #define DRV_MODULE_VERSION "2.2.6"
63 #define DRV_MODULE_RELDATE "January 29, 2014"
64 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.3.fw"
65 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
66 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1b.fw"
67 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
68 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
70 #define RUN_AT(x) (jiffies + (x))
72 /* Time in jiffies before concluding the transmitter is hung. */
73 #define TX_TIMEOUT (5*HZ)
75 static char version
[] =
76 "QLogic " DRV_MODULE_NAME
" Gigabit Ethernet Driver v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
78 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
79 MODULE_DESCRIPTION("QLogic BCM5706/5708/5709/5716 Driver");
80 MODULE_LICENSE("GPL");
81 MODULE_VERSION(DRV_MODULE_VERSION
);
82 MODULE_FIRMWARE(FW_MIPS_FILE_06
);
83 MODULE_FIRMWARE(FW_RV2P_FILE_06
);
84 MODULE_FIRMWARE(FW_MIPS_FILE_09
);
85 MODULE_FIRMWARE(FW_RV2P_FILE_09
);
86 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax
);
88 static int disable_msi
= 0;
90 module_param(disable_msi
, int, S_IRUGO
);
91 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
107 /* indexed by board_t, above */
111 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
112 { "HP NC370T Multifunction Gigabit Server Adapter" },
113 { "HP NC370i Multifunction Gigabit Server Adapter" },
114 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
115 { "HP NC370F Multifunction Gigabit Server Adapter" },
116 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
117 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
118 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
119 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
120 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
121 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
124 static const struct pci_device_id bnx2_pci_tbl
[] = {
125 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
126 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
127 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
128 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
129 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
130 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
131 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
132 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
133 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
134 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
135 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
136 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
137 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
138 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
139 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
140 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
141 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
142 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
143 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
144 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
145 { PCI_VENDOR_ID_BROADCOM
, 0x163c,
146 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716S
},
150 static const struct flash_spec flash_table
[] =
152 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
153 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
155 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
156 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
157 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
159 /* Expansion entry 0001 */
160 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
161 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
162 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
164 /* Saifun SA25F010 (non-buffered flash) */
165 /* strap, cfg1, & write1 need updates */
166 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
167 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
168 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
169 "Non-buffered flash (128kB)"},
170 /* Saifun SA25F020 (non-buffered flash) */
171 /* strap, cfg1, & write1 need updates */
172 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
173 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
174 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
175 "Non-buffered flash (256kB)"},
176 /* Expansion entry 0100 */
177 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
178 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
179 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
181 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
182 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
183 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
184 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
185 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
186 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
187 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
188 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
189 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
190 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
191 /* Saifun SA25F005 (non-buffered flash) */
192 /* strap, cfg1, & write1 need updates */
193 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
194 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
195 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
196 "Non-buffered flash (64kB)"},
198 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
199 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
200 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
202 /* Expansion entry 1001 */
203 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
204 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
205 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
207 /* Expansion entry 1010 */
208 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
209 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
210 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
212 /* ATMEL AT45DB011B (buffered flash) */
213 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
214 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
215 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
216 "Buffered flash (128kB)"},
217 /* Expansion entry 1100 */
218 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
219 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
220 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
222 /* Expansion entry 1101 */
223 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
224 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
225 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
227 /* Ateml Expansion entry 1110 */
228 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
229 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
230 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
231 "Entry 1110 (Atmel)"},
232 /* ATMEL AT45DB021B (buffered flash) */
233 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
234 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
235 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
236 "Buffered flash (256kB)"},
239 static const struct flash_spec flash_5709
= {
240 .flags
= BNX2_NV_BUFFERED
,
241 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
242 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
243 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
244 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
245 .name
= "5709 Buffered flash (256kB)",
248 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
250 static void bnx2_init_napi(struct bnx2
*bp
);
251 static void bnx2_del_napi(struct bnx2
*bp
);
253 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
257 /* The ring uses 256 indices for 255 entries, one of them
258 * needs to be skipped.
260 diff
= READ_ONCE(txr
->tx_prod
) - READ_ONCE(txr
->tx_cons
);
261 if (unlikely(diff
>= BNX2_TX_DESC_CNT
)) {
263 if (diff
== BNX2_TX_DESC_CNT
)
264 diff
= BNX2_MAX_TX_DESC_CNT
;
266 return bp
->tx_ring_size
- diff
;
270 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
275 spin_lock_irqsave(&bp
->indirect_lock
, flags
);
276 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
277 val
= BNX2_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
278 spin_unlock_irqrestore(&bp
->indirect_lock
, flags
);
283 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
287 spin_lock_irqsave(&bp
->indirect_lock
, flags
);
288 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
289 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
290 spin_unlock_irqrestore(&bp
->indirect_lock
, flags
);
294 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
296 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
300 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
302 return bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
);
306 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
311 spin_lock_irqsave(&bp
->indirect_lock
, flags
);
312 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
315 BNX2_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
316 BNX2_WR(bp
, BNX2_CTX_CTX_CTRL
,
317 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
318 for (i
= 0; i
< 5; i
++) {
319 val
= BNX2_RD(bp
, BNX2_CTX_CTX_CTRL
);
320 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
325 BNX2_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
326 BNX2_WR(bp
, BNX2_CTX_DATA
, val
);
328 spin_unlock_irqrestore(&bp
->indirect_lock
, flags
);
333 bnx2_drv_ctl(struct net_device
*dev
, struct drv_ctl_info
*info
)
335 struct bnx2
*bp
= netdev_priv(dev
);
336 struct drv_ctl_io
*io
= &info
->data
.io
;
339 case DRV_CTL_IO_WR_CMD
:
340 bnx2_reg_wr_ind(bp
, io
->offset
, io
->data
);
342 case DRV_CTL_IO_RD_CMD
:
343 io
->data
= bnx2_reg_rd_ind(bp
, io
->offset
);
345 case DRV_CTL_CTX_WR_CMD
:
346 bnx2_ctx_wr(bp
, io
->cid_addr
, io
->offset
, io
->data
);
354 static void bnx2_setup_cnic_irq_info(struct bnx2
*bp
)
356 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
357 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
360 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
361 cp
->drv_state
|= CNIC_DRV_STATE_USING_MSIX
;
362 bnapi
->cnic_present
= 0;
363 sb_id
= bp
->irq_nvecs
;
364 cp
->irq_arr
[0].irq_flags
|= CNIC_IRQ_FL_MSIX
;
366 cp
->drv_state
&= ~CNIC_DRV_STATE_USING_MSIX
;
367 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
368 bnapi
->cnic_present
= 1;
370 cp
->irq_arr
[0].irq_flags
&= ~CNIC_IRQ_FL_MSIX
;
373 cp
->irq_arr
[0].vector
= bp
->irq_tbl
[sb_id
].vector
;
374 cp
->irq_arr
[0].status_blk
= (void *)
375 ((unsigned long) bnapi
->status_blk
.msi
+
376 (BNX2_SBLK_MSIX_ALIGN_SIZE
* sb_id
));
377 cp
->irq_arr
[0].status_blk_num
= sb_id
;
381 static int bnx2_register_cnic(struct net_device
*dev
, struct cnic_ops
*ops
,
384 struct bnx2
*bp
= netdev_priv(dev
);
385 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
390 if (cp
->drv_state
& CNIC_DRV_STATE_REGD
)
393 if (!bnx2_reg_rd_ind(bp
, BNX2_FW_MAX_ISCSI_CONN
))
396 bp
->cnic_data
= data
;
397 rcu_assign_pointer(bp
->cnic_ops
, ops
);
400 cp
->drv_state
= CNIC_DRV_STATE_REGD
;
402 bnx2_setup_cnic_irq_info(bp
);
407 static int bnx2_unregister_cnic(struct net_device
*dev
)
409 struct bnx2
*bp
= netdev_priv(dev
);
410 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
411 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
413 mutex_lock(&bp
->cnic_lock
);
415 bnapi
->cnic_present
= 0;
416 RCU_INIT_POINTER(bp
->cnic_ops
, NULL
);
417 mutex_unlock(&bp
->cnic_lock
);
422 static struct cnic_eth_dev
*bnx2_cnic_probe(struct net_device
*dev
)
424 struct bnx2
*bp
= netdev_priv(dev
);
425 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
427 if (!cp
->max_iscsi_conn
)
430 cp
->drv_owner
= THIS_MODULE
;
431 cp
->chip_id
= bp
->chip_id
;
433 cp
->io_base
= bp
->regview
;
434 cp
->drv_ctl
= bnx2_drv_ctl
;
435 cp
->drv_register_cnic
= bnx2_register_cnic
;
436 cp
->drv_unregister_cnic
= bnx2_unregister_cnic
;
442 bnx2_cnic_stop(struct bnx2
*bp
)
444 struct cnic_ops
*c_ops
;
445 struct cnic_ctl_info info
;
447 mutex_lock(&bp
->cnic_lock
);
448 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
449 lockdep_is_held(&bp
->cnic_lock
));
451 info
.cmd
= CNIC_CTL_STOP_CMD
;
452 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
454 mutex_unlock(&bp
->cnic_lock
);
458 bnx2_cnic_start(struct bnx2
*bp
)
460 struct cnic_ops
*c_ops
;
461 struct cnic_ctl_info info
;
463 mutex_lock(&bp
->cnic_lock
);
464 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
465 lockdep_is_held(&bp
->cnic_lock
));
467 if (!(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
468 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
470 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
472 info
.cmd
= CNIC_CTL_START_CMD
;
473 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
475 mutex_unlock(&bp
->cnic_lock
);
481 bnx2_cnic_stop(struct bnx2
*bp
)
486 bnx2_cnic_start(struct bnx2
*bp
)
493 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
498 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
499 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
500 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
502 BNX2_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
503 BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
508 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
509 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
510 BNX2_EMAC_MDIO_COMM_START_BUSY
;
511 BNX2_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
513 for (i
= 0; i
< 50; i
++) {
516 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_COMM
);
517 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
520 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_COMM
);
521 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
527 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
536 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
537 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
538 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
540 BNX2_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
541 BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
550 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
555 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
556 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
557 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
559 BNX2_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
560 BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
565 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
566 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
567 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
568 BNX2_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
570 for (i
= 0; i
< 50; i
++) {
573 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_COMM
);
574 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
580 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
585 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
586 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
587 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
589 BNX2_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
590 BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
599 bnx2_disable_int(struct bnx2
*bp
)
602 struct bnx2_napi
*bnapi
;
604 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
605 bnapi
= &bp
->bnx2_napi
[i
];
606 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
607 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
609 BNX2_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
613 bnx2_enable_int(struct bnx2
*bp
)
616 struct bnx2_napi
*bnapi
;
618 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
619 bnapi
= &bp
->bnx2_napi
[i
];
621 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
622 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
623 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
624 bnapi
->last_status_idx
);
626 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
627 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
628 bnapi
->last_status_idx
);
630 BNX2_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
634 bnx2_disable_int_sync(struct bnx2
*bp
)
638 atomic_inc(&bp
->intr_sem
);
639 if (!netif_running(bp
->dev
))
642 bnx2_disable_int(bp
);
643 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
644 synchronize_irq(bp
->irq_tbl
[i
].vector
);
648 bnx2_napi_disable(struct bnx2
*bp
)
652 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
653 napi_disable(&bp
->bnx2_napi
[i
].napi
);
657 bnx2_napi_enable(struct bnx2
*bp
)
661 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
662 napi_enable(&bp
->bnx2_napi
[i
].napi
);
666 bnx2_netif_stop(struct bnx2
*bp
, bool stop_cnic
)
670 if (netif_running(bp
->dev
)) {
671 bnx2_napi_disable(bp
);
672 netif_tx_disable(bp
->dev
);
674 bnx2_disable_int_sync(bp
);
675 netif_carrier_off(bp
->dev
); /* prevent tx timeout */
679 bnx2_netif_start(struct bnx2
*bp
, bool start_cnic
)
681 if (atomic_dec_and_test(&bp
->intr_sem
)) {
682 if (netif_running(bp
->dev
)) {
683 netif_tx_wake_all_queues(bp
->dev
);
684 spin_lock_bh(&bp
->phy_lock
);
686 netif_carrier_on(bp
->dev
);
687 spin_unlock_bh(&bp
->phy_lock
);
688 bnx2_napi_enable(bp
);
697 bnx2_free_tx_mem(struct bnx2
*bp
)
701 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
702 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
703 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
705 if (txr
->tx_desc_ring
) {
706 dma_free_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
708 txr
->tx_desc_mapping
);
709 txr
->tx_desc_ring
= NULL
;
711 kfree(txr
->tx_buf_ring
);
712 txr
->tx_buf_ring
= NULL
;
717 bnx2_free_rx_mem(struct bnx2
*bp
)
721 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
722 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
723 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
726 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
727 if (rxr
->rx_desc_ring
[j
])
728 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
729 rxr
->rx_desc_ring
[j
],
730 rxr
->rx_desc_mapping
[j
]);
731 rxr
->rx_desc_ring
[j
] = NULL
;
733 vfree(rxr
->rx_buf_ring
);
734 rxr
->rx_buf_ring
= NULL
;
736 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
737 if (rxr
->rx_pg_desc_ring
[j
])
738 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
739 rxr
->rx_pg_desc_ring
[j
],
740 rxr
->rx_pg_desc_mapping
[j
]);
741 rxr
->rx_pg_desc_ring
[j
] = NULL
;
743 vfree(rxr
->rx_pg_ring
);
744 rxr
->rx_pg_ring
= NULL
;
749 bnx2_alloc_tx_mem(struct bnx2
*bp
)
753 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
754 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
755 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
757 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
758 if (txr
->tx_buf_ring
== NULL
)
762 dma_alloc_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
763 &txr
->tx_desc_mapping
, GFP_KERNEL
);
764 if (txr
->tx_desc_ring
== NULL
)
771 bnx2_alloc_rx_mem(struct bnx2
*bp
)
775 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
776 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
777 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
781 vzalloc(SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
782 if (rxr
->rx_buf_ring
== NULL
)
785 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
786 rxr
->rx_desc_ring
[j
] =
787 dma_alloc_coherent(&bp
->pdev
->dev
,
789 &rxr
->rx_desc_mapping
[j
],
791 if (rxr
->rx_desc_ring
[j
] == NULL
)
796 if (bp
->rx_pg_ring_size
) {
797 rxr
->rx_pg_ring
= vzalloc(SW_RXPG_RING_SIZE
*
799 if (rxr
->rx_pg_ring
== NULL
)
804 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
805 rxr
->rx_pg_desc_ring
[j
] =
806 dma_alloc_coherent(&bp
->pdev
->dev
,
808 &rxr
->rx_pg_desc_mapping
[j
],
810 if (rxr
->rx_pg_desc_ring
[j
] == NULL
)
819 bnx2_free_stats_blk(struct net_device
*dev
)
821 struct bnx2
*bp
= netdev_priv(dev
);
823 if (bp
->status_blk
) {
824 dma_free_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
826 bp
->status_blk_mapping
);
827 bp
->status_blk
= NULL
;
828 bp
->stats_blk
= NULL
;
833 bnx2_alloc_stats_blk(struct net_device
*dev
)
837 struct bnx2
*bp
= netdev_priv(dev
);
839 /* Combine status and statistics blocks into one allocation. */
840 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
841 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
842 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
843 BNX2_SBLK_MSIX_ALIGN_SIZE
);
844 bp
->status_stats_size
= status_blk_size
+
845 sizeof(struct statistics_block
);
846 status_blk
= dma_zalloc_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
847 &bp
->status_blk_mapping
, GFP_KERNEL
);
848 if (status_blk
== NULL
)
851 bp
->status_blk
= status_blk
;
852 bp
->stats_blk
= status_blk
+ status_blk_size
;
853 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
859 bnx2_free_mem(struct bnx2
*bp
)
862 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
864 bnx2_free_tx_mem(bp
);
865 bnx2_free_rx_mem(bp
);
867 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
868 if (bp
->ctx_blk
[i
]) {
869 dma_free_coherent(&bp
->pdev
->dev
, BNX2_PAGE_SIZE
,
871 bp
->ctx_blk_mapping
[i
]);
872 bp
->ctx_blk
[i
] = NULL
;
876 if (bnapi
->status_blk
.msi
)
877 bnapi
->status_blk
.msi
= NULL
;
881 bnx2_alloc_mem(struct bnx2
*bp
)
884 struct bnx2_napi
*bnapi
;
886 bnapi
= &bp
->bnx2_napi
[0];
887 bnapi
->status_blk
.msi
= bp
->status_blk
;
888 bnapi
->hw_tx_cons_ptr
=
889 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
890 bnapi
->hw_rx_cons_ptr
=
891 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
892 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
893 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
894 struct status_block_msix
*sblk
;
896 bnapi
= &bp
->bnx2_napi
[i
];
898 sblk
= (bp
->status_blk
+ BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
899 bnapi
->status_blk
.msix
= sblk
;
900 bnapi
->hw_tx_cons_ptr
=
901 &sblk
->status_tx_quick_consumer_index
;
902 bnapi
->hw_rx_cons_ptr
=
903 &sblk
->status_rx_quick_consumer_index
;
904 bnapi
->int_num
= i
<< 24;
908 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
909 bp
->ctx_pages
= 0x2000 / BNX2_PAGE_SIZE
;
910 if (bp
->ctx_pages
== 0)
912 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
913 bp
->ctx_blk
[i
] = dma_alloc_coherent(&bp
->pdev
->dev
,
915 &bp
->ctx_blk_mapping
[i
],
917 if (bp
->ctx_blk
[i
] == NULL
)
922 err
= bnx2_alloc_rx_mem(bp
);
926 err
= bnx2_alloc_tx_mem(bp
);
938 bnx2_report_fw_link(struct bnx2
*bp
)
940 u32 fw_link_status
= 0;
942 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
948 switch (bp
->line_speed
) {
950 if (bp
->duplex
== DUPLEX_HALF
)
951 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
953 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
956 if (bp
->duplex
== DUPLEX_HALF
)
957 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
959 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
962 if (bp
->duplex
== DUPLEX_HALF
)
963 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
965 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
968 if (bp
->duplex
== DUPLEX_HALF
)
969 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
971 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
975 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
978 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
980 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
981 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
983 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
984 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
985 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
987 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
991 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
993 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
997 bnx2_xceiver_str(struct bnx2
*bp
)
999 return (bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
1000 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
1005 bnx2_report_link(struct bnx2
*bp
)
1008 netif_carrier_on(bp
->dev
);
1009 netdev_info(bp
->dev
, "NIC %s Link is Up, %d Mbps %s duplex",
1010 bnx2_xceiver_str(bp
),
1012 bp
->duplex
== DUPLEX_FULL
? "full" : "half");
1014 if (bp
->flow_ctrl
) {
1015 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
1016 pr_cont(", receive ");
1017 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1018 pr_cont("& transmit ");
1021 pr_cont(", transmit ");
1023 pr_cont("flow control ON");
1027 netif_carrier_off(bp
->dev
);
1028 netdev_err(bp
->dev
, "NIC %s Link is Down\n",
1029 bnx2_xceiver_str(bp
));
1032 bnx2_report_fw_link(bp
);
1036 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
1038 u32 local_adv
, remote_adv
;
1041 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1042 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1044 if (bp
->duplex
== DUPLEX_FULL
) {
1045 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1050 if (bp
->duplex
!= DUPLEX_FULL
) {
1054 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1055 (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)) {
1058 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1059 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
1060 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1061 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
1062 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1066 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1067 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1069 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1070 u32 new_local_adv
= 0;
1071 u32 new_remote_adv
= 0;
1073 if (local_adv
& ADVERTISE_1000XPAUSE
)
1074 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
1075 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
1076 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
1077 if (remote_adv
& ADVERTISE_1000XPAUSE
)
1078 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
1079 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
1080 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
1082 local_adv
= new_local_adv
;
1083 remote_adv
= new_remote_adv
;
1086 /* See Table 28B-3 of 802.3ab-1999 spec. */
1087 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
1088 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
1089 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1090 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1092 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
1093 bp
->flow_ctrl
= FLOW_CTRL_RX
;
1097 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1098 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1102 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
1103 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
1104 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
1106 bp
->flow_ctrl
= FLOW_CTRL_TX
;
1112 bnx2_5709s_linkup(struct bnx2
*bp
)
1118 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
1119 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
1120 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1122 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
1123 bp
->line_speed
= bp
->req_line_speed
;
1124 bp
->duplex
= bp
->req_duplex
;
1127 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
1129 case MII_BNX2_GP_TOP_AN_SPEED_10
:
1130 bp
->line_speed
= SPEED_10
;
1132 case MII_BNX2_GP_TOP_AN_SPEED_100
:
1133 bp
->line_speed
= SPEED_100
;
1135 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
1136 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
1137 bp
->line_speed
= SPEED_1000
;
1139 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
1140 bp
->line_speed
= SPEED_2500
;
1143 if (val
& MII_BNX2_GP_TOP_AN_FD
)
1144 bp
->duplex
= DUPLEX_FULL
;
1146 bp
->duplex
= DUPLEX_HALF
;
1151 bnx2_5708s_linkup(struct bnx2
*bp
)
1156 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1157 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
1158 case BCM5708S_1000X_STAT1_SPEED_10
:
1159 bp
->line_speed
= SPEED_10
;
1161 case BCM5708S_1000X_STAT1_SPEED_100
:
1162 bp
->line_speed
= SPEED_100
;
1164 case BCM5708S_1000X_STAT1_SPEED_1G
:
1165 bp
->line_speed
= SPEED_1000
;
1167 case BCM5708S_1000X_STAT1_SPEED_2G5
:
1168 bp
->line_speed
= SPEED_2500
;
1171 if (val
& BCM5708S_1000X_STAT1_FD
)
1172 bp
->duplex
= DUPLEX_FULL
;
1174 bp
->duplex
= DUPLEX_HALF
;
1180 bnx2_5706s_linkup(struct bnx2
*bp
)
1182 u32 bmcr
, local_adv
, remote_adv
, common
;
1185 bp
->line_speed
= SPEED_1000
;
1187 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1188 if (bmcr
& BMCR_FULLDPLX
) {
1189 bp
->duplex
= DUPLEX_FULL
;
1192 bp
->duplex
= DUPLEX_HALF
;
1195 if (!(bmcr
& BMCR_ANENABLE
)) {
1199 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1200 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1202 common
= local_adv
& remote_adv
;
1203 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1205 if (common
& ADVERTISE_1000XFULL
) {
1206 bp
->duplex
= DUPLEX_FULL
;
1209 bp
->duplex
= DUPLEX_HALF
;
1217 bnx2_copper_linkup(struct bnx2
*bp
)
1221 bp
->phy_flags
&= ~BNX2_PHY_FLAG_MDIX
;
1223 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1224 if (bmcr
& BMCR_ANENABLE
) {
1225 u32 local_adv
, remote_adv
, common
;
1227 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1228 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1230 common
= local_adv
& (remote_adv
>> 2);
1231 if (common
& ADVERTISE_1000FULL
) {
1232 bp
->line_speed
= SPEED_1000
;
1233 bp
->duplex
= DUPLEX_FULL
;
1235 else if (common
& ADVERTISE_1000HALF
) {
1236 bp
->line_speed
= SPEED_1000
;
1237 bp
->duplex
= DUPLEX_HALF
;
1240 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1241 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1243 common
= local_adv
& remote_adv
;
1244 if (common
& ADVERTISE_100FULL
) {
1245 bp
->line_speed
= SPEED_100
;
1246 bp
->duplex
= DUPLEX_FULL
;
1248 else if (common
& ADVERTISE_100HALF
) {
1249 bp
->line_speed
= SPEED_100
;
1250 bp
->duplex
= DUPLEX_HALF
;
1252 else if (common
& ADVERTISE_10FULL
) {
1253 bp
->line_speed
= SPEED_10
;
1254 bp
->duplex
= DUPLEX_FULL
;
1256 else if (common
& ADVERTISE_10HALF
) {
1257 bp
->line_speed
= SPEED_10
;
1258 bp
->duplex
= DUPLEX_HALF
;
1267 if (bmcr
& BMCR_SPEED100
) {
1268 bp
->line_speed
= SPEED_100
;
1271 bp
->line_speed
= SPEED_10
;
1273 if (bmcr
& BMCR_FULLDPLX
) {
1274 bp
->duplex
= DUPLEX_FULL
;
1277 bp
->duplex
= DUPLEX_HALF
;
1284 bnx2_read_phy(bp
, MII_BNX2_EXT_STATUS
, &ext_status
);
1285 if (ext_status
& EXT_STATUS_MDIX
)
1286 bp
->phy_flags
|= BNX2_PHY_FLAG_MDIX
;
1293 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1295 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1297 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1298 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1301 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1302 val
|= BNX2_L2CTX_FLOW_CTRL_ENABLE
;
1304 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1308 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1313 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1316 bnx2_init_rx_context(bp
, cid
);
1321 bnx2_set_mac_link(struct bnx2
*bp
)
1325 BNX2_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1326 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1327 (bp
->duplex
== DUPLEX_HALF
)) {
1328 BNX2_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1331 /* Configure the EMAC mode register. */
1332 val
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
1334 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1335 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1336 BNX2_EMAC_MODE_25G_MODE
);
1339 switch (bp
->line_speed
) {
1341 if (BNX2_CHIP(bp
) != BNX2_CHIP_5706
) {
1342 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1347 val
|= BNX2_EMAC_MODE_PORT_MII
;
1350 val
|= BNX2_EMAC_MODE_25G_MODE
;
1353 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1358 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1361 /* Set the MAC to operate in the appropriate duplex mode. */
1362 if (bp
->duplex
== DUPLEX_HALF
)
1363 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1364 BNX2_WR(bp
, BNX2_EMAC_MODE
, val
);
1366 /* Enable/disable rx PAUSE. */
1367 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1369 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1370 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1371 BNX2_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1373 /* Enable/disable tx PAUSE. */
1374 val
= BNX2_RD(bp
, BNX2_EMAC_TX_MODE
);
1375 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1377 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1378 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1379 BNX2_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1381 /* Acknowledge the interrupt. */
1382 BNX2_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1384 bnx2_init_all_rx_contexts(bp
);
1388 bnx2_enable_bmsr1(struct bnx2
*bp
)
1390 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1391 (BNX2_CHIP(bp
) == BNX2_CHIP_5709
))
1392 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1393 MII_BNX2_BLK_ADDR_GP_STATUS
);
1397 bnx2_disable_bmsr1(struct bnx2
*bp
)
1399 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1400 (BNX2_CHIP(bp
) == BNX2_CHIP_5709
))
1401 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1402 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1406 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1411 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1414 if (bp
->autoneg
& AUTONEG_SPEED
)
1415 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1417 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1418 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1420 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1421 if (!(up1
& BCM5708S_UP1_2G5
)) {
1422 up1
|= BCM5708S_UP1_2G5
;
1423 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1427 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1428 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1429 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1435 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1440 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1443 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1444 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1446 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1447 if (up1
& BCM5708S_UP1_2G5
) {
1448 up1
&= ~BCM5708S_UP1_2G5
;
1449 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1453 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1454 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1455 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1461 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1463 u32
uninitialized_var(bmcr
);
1466 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1469 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
1472 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1473 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1474 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1475 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1476 val
|= MII_BNX2_SD_MISC1_FORCE
|
1477 MII_BNX2_SD_MISC1_FORCE_2_5G
;
1478 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1481 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1482 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1483 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1485 } else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
) {
1486 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1488 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1496 if (bp
->autoneg
& AUTONEG_SPEED
) {
1497 bmcr
&= ~BMCR_ANENABLE
;
1498 if (bp
->req_duplex
== DUPLEX_FULL
)
1499 bmcr
|= BMCR_FULLDPLX
;
1501 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1505 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1507 u32
uninitialized_var(bmcr
);
1510 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1513 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
1516 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1517 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1518 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1519 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1520 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1523 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1524 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1525 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1527 } else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
) {
1528 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1530 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1538 if (bp
->autoneg
& AUTONEG_SPEED
)
1539 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1540 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1544 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1548 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1549 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1551 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1553 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1557 bnx2_set_link(struct bnx2
*bp
)
1562 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1567 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1570 link_up
= bp
->link_up
;
1572 bnx2_enable_bmsr1(bp
);
1573 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1574 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1575 bnx2_disable_bmsr1(bp
);
1577 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1578 (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)) {
1581 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1582 bnx2_5706s_force_link_dn(bp
, 0);
1583 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1585 val
= BNX2_RD(bp
, BNX2_EMAC_STATUS
);
1587 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1588 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1589 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1591 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1592 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1593 bmsr
|= BMSR_LSTATUS
;
1595 bmsr
&= ~BMSR_LSTATUS
;
1598 if (bmsr
& BMSR_LSTATUS
) {
1601 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1602 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)
1603 bnx2_5706s_linkup(bp
);
1604 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)
1605 bnx2_5708s_linkup(bp
);
1606 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1607 bnx2_5709s_linkup(bp
);
1610 bnx2_copper_linkup(bp
);
1612 bnx2_resolve_flow_ctrl(bp
);
1615 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1616 (bp
->autoneg
& AUTONEG_SPEED
))
1617 bnx2_disable_forced_2g5(bp
);
1619 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1622 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1623 bmcr
|= BMCR_ANENABLE
;
1624 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1626 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1631 if (bp
->link_up
!= link_up
) {
1632 bnx2_report_link(bp
);
1635 bnx2_set_mac_link(bp
);
1641 bnx2_reset_phy(struct bnx2
*bp
)
1646 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1648 #define PHY_RESET_MAX_WAIT 100
1649 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1652 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1653 if (!(reg
& BMCR_RESET
)) {
1658 if (i
== PHY_RESET_MAX_WAIT
) {
1665 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1669 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1670 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1672 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1673 adv
= ADVERTISE_1000XPAUSE
;
1676 adv
= ADVERTISE_PAUSE_CAP
;
1679 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1680 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1681 adv
= ADVERTISE_1000XPSE_ASYM
;
1684 adv
= ADVERTISE_PAUSE_ASYM
;
1687 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1688 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1689 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1692 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1698 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1701 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1702 __releases(&bp
->phy_lock
)
1703 __acquires(&bp
->phy_lock
)
1705 u32 speed_arg
= 0, pause_adv
;
1707 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1709 if (bp
->autoneg
& AUTONEG_SPEED
) {
1710 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1711 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1712 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1713 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1714 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1715 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1716 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1717 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1718 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1719 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1720 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1721 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1722 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1724 if (bp
->req_line_speed
== SPEED_2500
)
1725 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1726 else if (bp
->req_line_speed
== SPEED_1000
)
1727 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1728 else if (bp
->req_line_speed
== SPEED_100
) {
1729 if (bp
->req_duplex
== DUPLEX_FULL
)
1730 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1732 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1733 } else if (bp
->req_line_speed
== SPEED_10
) {
1734 if (bp
->req_duplex
== DUPLEX_FULL
)
1735 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1737 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1741 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1742 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1743 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1744 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1746 if (port
== PORT_TP
)
1747 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1748 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1750 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1752 spin_unlock_bh(&bp
->phy_lock
);
1753 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1754 spin_lock_bh(&bp
->phy_lock
);
1760 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1761 __releases(&bp
->phy_lock
)
1762 __acquires(&bp
->phy_lock
)
1767 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1768 return bnx2_setup_remote_phy(bp
, port
);
1770 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1772 int force_link_down
= 0;
1774 if (bp
->req_line_speed
== SPEED_2500
) {
1775 if (!bnx2_test_and_enable_2g5(bp
))
1776 force_link_down
= 1;
1777 } else if (bp
->req_line_speed
== SPEED_1000
) {
1778 if (bnx2_test_and_disable_2g5(bp
))
1779 force_link_down
= 1;
1781 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1782 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1784 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1785 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1786 new_bmcr
|= BMCR_SPEED1000
;
1788 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
1789 if (bp
->req_line_speed
== SPEED_2500
)
1790 bnx2_enable_forced_2g5(bp
);
1791 else if (bp
->req_line_speed
== SPEED_1000
) {
1792 bnx2_disable_forced_2g5(bp
);
1793 new_bmcr
&= ~0x2000;
1796 } else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
) {
1797 if (bp
->req_line_speed
== SPEED_2500
)
1798 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1800 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1803 if (bp
->req_duplex
== DUPLEX_FULL
) {
1804 adv
|= ADVERTISE_1000XFULL
;
1805 new_bmcr
|= BMCR_FULLDPLX
;
1808 adv
|= ADVERTISE_1000XHALF
;
1809 new_bmcr
&= ~BMCR_FULLDPLX
;
1811 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1812 /* Force a link down visible on the other side */
1814 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1815 ~(ADVERTISE_1000XFULL
|
1816 ADVERTISE_1000XHALF
));
1817 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1818 BMCR_ANRESTART
| BMCR_ANENABLE
);
1821 netif_carrier_off(bp
->dev
);
1822 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1823 bnx2_report_link(bp
);
1825 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1826 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1828 bnx2_resolve_flow_ctrl(bp
);
1829 bnx2_set_mac_link(bp
);
1834 bnx2_test_and_enable_2g5(bp
);
1836 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1837 new_adv
|= ADVERTISE_1000XFULL
;
1839 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1841 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1842 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1844 bp
->serdes_an_pending
= 0;
1845 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1846 /* Force a link down visible on the other side */
1848 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1849 spin_unlock_bh(&bp
->phy_lock
);
1851 spin_lock_bh(&bp
->phy_lock
);
1854 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1855 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1857 /* Speed up link-up time when the link partner
1858 * does not autonegotiate which is very common
1859 * in blade servers. Some blade servers use
1860 * IPMI for kerboard input and it's important
1861 * to minimize link disruptions. Autoneg. involves
1862 * exchanging base pages plus 3 next pages and
1863 * normally completes in about 120 msec.
1865 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
1866 bp
->serdes_an_pending
= 1;
1867 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1869 bnx2_resolve_flow_ctrl(bp
);
1870 bnx2_set_mac_link(bp
);
1876 #define ETHTOOL_ALL_FIBRE_SPEED \
1877 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1878 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1879 (ADVERTISED_1000baseT_Full)
1881 #define ETHTOOL_ALL_COPPER_SPEED \
1882 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1883 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1884 ADVERTISED_1000baseT_Full)
1886 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1887 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1889 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1892 bnx2_set_default_remote_link(struct bnx2
*bp
)
1896 if (bp
->phy_port
== PORT_TP
)
1897 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1899 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1901 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1902 bp
->req_line_speed
= 0;
1903 bp
->autoneg
|= AUTONEG_SPEED
;
1904 bp
->advertising
= ADVERTISED_Autoneg
;
1905 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1906 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1907 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1908 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1909 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1910 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1911 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1912 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1913 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1914 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1915 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1916 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1919 bp
->advertising
= 0;
1920 bp
->req_duplex
= DUPLEX_FULL
;
1921 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1922 bp
->req_line_speed
= SPEED_10
;
1923 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1924 bp
->req_duplex
= DUPLEX_HALF
;
1926 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1927 bp
->req_line_speed
= SPEED_100
;
1928 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1929 bp
->req_duplex
= DUPLEX_HALF
;
1931 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1932 bp
->req_line_speed
= SPEED_1000
;
1933 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1934 bp
->req_line_speed
= SPEED_2500
;
1939 bnx2_set_default_link(struct bnx2
*bp
)
1941 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1942 bnx2_set_default_remote_link(bp
);
1946 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1947 bp
->req_line_speed
= 0;
1948 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1951 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1953 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1954 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1955 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1957 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1958 bp
->req_duplex
= DUPLEX_FULL
;
1961 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1965 bnx2_send_heart_beat(struct bnx2
*bp
)
1970 spin_lock(&bp
->indirect_lock
);
1971 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1972 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1973 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1974 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1975 spin_unlock(&bp
->indirect_lock
);
1979 bnx2_remote_phy_event(struct bnx2
*bp
)
1982 u8 link_up
= bp
->link_up
;
1985 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1987 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1988 bnx2_send_heart_beat(bp
);
1990 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1992 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1998 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1999 bp
->duplex
= DUPLEX_FULL
;
2001 case BNX2_LINK_STATUS_10HALF
:
2002 bp
->duplex
= DUPLEX_HALF
;
2004 case BNX2_LINK_STATUS_10FULL
:
2005 bp
->line_speed
= SPEED_10
;
2007 case BNX2_LINK_STATUS_100HALF
:
2008 bp
->duplex
= DUPLEX_HALF
;
2010 case BNX2_LINK_STATUS_100BASE_T4
:
2011 case BNX2_LINK_STATUS_100FULL
:
2012 bp
->line_speed
= SPEED_100
;
2014 case BNX2_LINK_STATUS_1000HALF
:
2015 bp
->duplex
= DUPLEX_HALF
;
2017 case BNX2_LINK_STATUS_1000FULL
:
2018 bp
->line_speed
= SPEED_1000
;
2020 case BNX2_LINK_STATUS_2500HALF
:
2021 bp
->duplex
= DUPLEX_HALF
;
2023 case BNX2_LINK_STATUS_2500FULL
:
2024 bp
->line_speed
= SPEED_2500
;
2032 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
2033 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
2034 if (bp
->duplex
== DUPLEX_FULL
)
2035 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
2037 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
2038 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
2039 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
2040 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
2043 old_port
= bp
->phy_port
;
2044 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
2045 bp
->phy_port
= PORT_FIBRE
;
2047 bp
->phy_port
= PORT_TP
;
2049 if (old_port
!= bp
->phy_port
)
2050 bnx2_set_default_link(bp
);
2053 if (bp
->link_up
!= link_up
)
2054 bnx2_report_link(bp
);
2056 bnx2_set_mac_link(bp
);
2060 bnx2_set_remote_link(struct bnx2
*bp
)
2064 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
2066 case BNX2_FW_EVT_CODE_LINK_EVENT
:
2067 bnx2_remote_phy_event(bp
);
2069 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
2071 bnx2_send_heart_beat(bp
);
2078 bnx2_setup_copper_phy(struct bnx2
*bp
)
2079 __releases(&bp
->phy_lock
)
2080 __acquires(&bp
->phy_lock
)
2082 u32 bmcr
, adv_reg
, new_adv
= 0;
2085 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
2087 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
2088 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
2089 ADVERTISE_PAUSE_ASYM
);
2091 new_adv
= ADVERTISE_CSMA
| ethtool_adv_to_mii_adv_t(bp
->advertising
);
2093 if (bp
->autoneg
& AUTONEG_SPEED
) {
2095 u32 new_adv1000
= 0;
2097 new_adv
|= bnx2_phy_get_pause_adv(bp
);
2099 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
2100 adv1000_reg
&= PHY_ALL_1000_SPEED
;
2102 new_adv1000
|= ethtool_adv_to_mii_ctrl1000_t(bp
->advertising
);
2103 if ((adv1000_reg
!= new_adv1000
) ||
2104 (adv_reg
!= new_adv
) ||
2105 ((bmcr
& BMCR_ANENABLE
) == 0)) {
2107 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
2108 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000
);
2109 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
2112 else if (bp
->link_up
) {
2113 /* Flow ctrl may have changed from auto to forced */
2114 /* or vice-versa. */
2116 bnx2_resolve_flow_ctrl(bp
);
2117 bnx2_set_mac_link(bp
);
2122 /* advertise nothing when forcing speed */
2123 if (adv_reg
!= new_adv
)
2124 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
2127 if (bp
->req_line_speed
== SPEED_100
) {
2128 new_bmcr
|= BMCR_SPEED100
;
2130 if (bp
->req_duplex
== DUPLEX_FULL
) {
2131 new_bmcr
|= BMCR_FULLDPLX
;
2133 if (new_bmcr
!= bmcr
) {
2136 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2137 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2139 if (bmsr
& BMSR_LSTATUS
) {
2140 /* Force link down */
2141 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
2142 spin_unlock_bh(&bp
->phy_lock
);
2144 spin_lock_bh(&bp
->phy_lock
);
2146 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2147 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2150 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
2152 /* Normally, the new speed is setup after the link has
2153 * gone down and up again. In some cases, link will not go
2154 * down so we need to set up the new speed here.
2156 if (bmsr
& BMSR_LSTATUS
) {
2157 bp
->line_speed
= bp
->req_line_speed
;
2158 bp
->duplex
= bp
->req_duplex
;
2159 bnx2_resolve_flow_ctrl(bp
);
2160 bnx2_set_mac_link(bp
);
2163 bnx2_resolve_flow_ctrl(bp
);
2164 bnx2_set_mac_link(bp
);
2170 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
2171 __releases(&bp
->phy_lock
)
2172 __acquires(&bp
->phy_lock
)
2174 if (bp
->loopback
== MAC_LOOPBACK
)
2177 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2178 return bnx2_setup_serdes_phy(bp
, port
);
2181 return bnx2_setup_copper_phy(bp
);
2186 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
2190 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
2191 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
2192 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
2193 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
2194 bp
->mii_lpa
= MII_LPA
+ 0x10;
2195 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
2197 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
2198 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
2200 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2204 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
2206 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
2207 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
2208 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
2209 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2211 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2212 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2213 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2214 val
|= BCM5708S_UP1_2G5
;
2216 val
&= ~BCM5708S_UP1_2G5
;
2217 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2219 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2220 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2221 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2222 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2224 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2226 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2227 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2228 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2230 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2236 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2243 bp
->mii_up1
= BCM5708S_UP1
;
2245 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2246 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2247 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2249 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2250 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2251 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2253 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2254 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2255 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2257 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2258 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2259 val
|= BCM5708S_UP1_2G5
;
2260 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2263 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_A0
) ||
2264 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_B0
) ||
2265 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_B1
)) {
2266 /* increase tx signal amplitude */
2267 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2268 BCM5708S_BLK_ADDR_TX_MISC
);
2269 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2270 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2271 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2272 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2275 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2276 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2281 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2282 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2283 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2284 BCM5708S_BLK_ADDR_TX_MISC
);
2285 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2286 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2287 BCM5708S_BLK_ADDR_DIG
);
2294 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2299 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2301 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)
2302 BNX2_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2304 if (bp
->dev
->mtu
> ETH_DATA_LEN
) {
2307 /* Set extended packet length bit */
2308 bnx2_write_phy(bp
, 0x18, 0x7);
2309 bnx2_read_phy(bp
, 0x18, &val
);
2310 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2312 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2313 bnx2_read_phy(bp
, 0x1c, &val
);
2314 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2319 bnx2_write_phy(bp
, 0x18, 0x7);
2320 bnx2_read_phy(bp
, 0x18, &val
);
2321 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2323 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2324 bnx2_read_phy(bp
, 0x1c, &val
);
2325 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2332 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2339 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2340 bnx2_write_phy(bp
, 0x18, 0x0c00);
2341 bnx2_write_phy(bp
, 0x17, 0x000a);
2342 bnx2_write_phy(bp
, 0x15, 0x310b);
2343 bnx2_write_phy(bp
, 0x17, 0x201f);
2344 bnx2_write_phy(bp
, 0x15, 0x9506);
2345 bnx2_write_phy(bp
, 0x17, 0x401f);
2346 bnx2_write_phy(bp
, 0x15, 0x14e2);
2347 bnx2_write_phy(bp
, 0x18, 0x0400);
2350 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2351 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2352 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2353 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2355 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2358 if (bp
->dev
->mtu
> ETH_DATA_LEN
) {
2359 /* Set extended packet length bit */
2360 bnx2_write_phy(bp
, 0x18, 0x7);
2361 bnx2_read_phy(bp
, 0x18, &val
);
2362 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2364 bnx2_read_phy(bp
, 0x10, &val
);
2365 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2368 bnx2_write_phy(bp
, 0x18, 0x7);
2369 bnx2_read_phy(bp
, 0x18, &val
);
2370 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2372 bnx2_read_phy(bp
, 0x10, &val
);
2373 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2376 /* ethernet@wirespeed */
2377 bnx2_write_phy(bp
, MII_BNX2_AUX_CTL
, AUX_CTL_MISC_CTL
);
2378 bnx2_read_phy(bp
, MII_BNX2_AUX_CTL
, &val
);
2379 val
|= AUX_CTL_MISC_CTL_WR
| AUX_CTL_MISC_CTL_WIRESPEED
;
2382 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
2383 val
|= AUX_CTL_MISC_CTL_AUTOMDIX
;
2385 bnx2_write_phy(bp
, MII_BNX2_AUX_CTL
, val
);
2391 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2392 __releases(&bp
->phy_lock
)
2393 __acquires(&bp
->phy_lock
)
2398 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2399 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2401 bp
->mii_bmcr
= MII_BMCR
;
2402 bp
->mii_bmsr
= MII_BMSR
;
2403 bp
->mii_bmsr1
= MII_BMSR
;
2404 bp
->mii_adv
= MII_ADVERTISE
;
2405 bp
->mii_lpa
= MII_LPA
;
2407 BNX2_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2409 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2412 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2413 bp
->phy_id
= val
<< 16;
2414 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2415 bp
->phy_id
|= val
& 0xffff;
2417 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2418 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)
2419 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2420 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)
2421 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2422 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
2423 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2426 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2431 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2437 bnx2_set_mac_loopback(struct bnx2
*bp
)
2441 mac_mode
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
2442 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2443 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2444 BNX2_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2449 static int bnx2_test_link(struct bnx2
*);
2452 bnx2_set_phy_loopback(struct bnx2
*bp
)
2457 spin_lock_bh(&bp
->phy_lock
);
2458 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2460 spin_unlock_bh(&bp
->phy_lock
);
2464 for (i
= 0; i
< 10; i
++) {
2465 if (bnx2_test_link(bp
) == 0)
2470 mac_mode
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
2471 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2472 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2473 BNX2_EMAC_MODE_25G_MODE
);
2475 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2476 BNX2_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2482 bnx2_dump_mcp_state(struct bnx2
*bp
)
2484 struct net_device
*dev
= bp
->dev
;
2487 netdev_err(dev
, "<--- start MCP states dump --->\n");
2488 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
2489 mcp_p0
= BNX2_MCP_STATE_P0
;
2490 mcp_p1
= BNX2_MCP_STATE_P1
;
2492 mcp_p0
= BNX2_MCP_STATE_P0_5708
;
2493 mcp_p1
= BNX2_MCP_STATE_P1_5708
;
2495 netdev_err(dev
, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
2496 bnx2_reg_rd_ind(bp
, mcp_p0
), bnx2_reg_rd_ind(bp
, mcp_p1
));
2497 netdev_err(dev
, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n",
2498 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_MODE
),
2499 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_STATE
),
2500 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_EVENT_MASK
));
2501 netdev_err(dev
, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n",
2502 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_PROGRAM_COUNTER
),
2503 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_PROGRAM_COUNTER
),
2504 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_INSTRUCTION
));
2505 netdev_err(dev
, "DEBUG: shmem states:\n");
2506 netdev_err(dev
, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]",
2507 bnx2_shmem_rd(bp
, BNX2_DRV_MB
),
2508 bnx2_shmem_rd(bp
, BNX2_FW_MB
),
2509 bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
));
2510 pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp
, BNX2_DRV_PULSE_MB
));
2511 netdev_err(dev
, "DEBUG: dev_info_signature[%08x] reset_type[%08x]",
2512 bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
),
2513 bnx2_shmem_rd(bp
, BNX2_BC_STATE_RESET_TYPE
));
2514 pr_cont(" condition[%08x]\n",
2515 bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
));
2516 DP_SHMEM_LINE(bp
, BNX2_BC_RESET_TYPE
);
2517 DP_SHMEM_LINE(bp
, 0x3cc);
2518 DP_SHMEM_LINE(bp
, 0x3dc);
2519 DP_SHMEM_LINE(bp
, 0x3ec);
2520 netdev_err(dev
, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp
, 0x3fc));
2521 netdev_err(dev
, "<--- end MCP states dump --->\n");
2525 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2531 msg_data
|= bp
->fw_wr_seq
;
2532 bp
->fw_last_msg
= msg_data
;
2534 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2539 /* wait for an acknowledgement. */
2540 for (i
= 0; i
< (BNX2_FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2543 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2545 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2548 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2551 /* If we timed out, inform the firmware that this is the case. */
2552 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2553 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2554 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2556 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2558 pr_err("fw sync timeout, reset code = %x\n", msg_data
);
2559 bnx2_dump_mcp_state(bp
);
2565 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2572 bnx2_init_5709_context(struct bnx2
*bp
)
2577 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2578 val
|= (BNX2_PAGE_BITS
- 8) << 16;
2579 BNX2_WR(bp
, BNX2_CTX_COMMAND
, val
);
2580 for (i
= 0; i
< 10; i
++) {
2581 val
= BNX2_RD(bp
, BNX2_CTX_COMMAND
);
2582 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2586 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2589 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2593 memset(bp
->ctx_blk
[i
], 0, BNX2_PAGE_SIZE
);
2597 BNX2_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2598 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2599 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2600 BNX2_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2601 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2602 BNX2_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2603 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2604 for (j
= 0; j
< 10; j
++) {
2606 val
= BNX2_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2607 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2611 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2620 bnx2_init_context(struct bnx2
*bp
)
2626 u32 vcid_addr
, pcid_addr
, offset
;
2631 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
2634 vcid_addr
= GET_PCID_ADDR(vcid
);
2636 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2641 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2644 vcid_addr
= GET_CID_ADDR(vcid
);
2645 pcid_addr
= vcid_addr
;
2648 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2649 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2650 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2652 BNX2_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2653 BNX2_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2655 /* Zero out the context. */
2656 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2657 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2663 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2669 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2670 if (good_mbuf
== NULL
)
2673 BNX2_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2674 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2678 /* Allocate a bunch of mbufs and save the good ones in an array. */
2679 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2680 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2681 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2682 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2684 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2686 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2688 /* The addresses with Bit 9 set are bad memory blocks. */
2689 if (!(val
& (1 << 9))) {
2690 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2694 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2697 /* Free the good ones back to the mbuf pool thus discarding
2698 * all the bad ones. */
2699 while (good_mbuf_cnt
) {
2702 val
= good_mbuf
[good_mbuf_cnt
];
2703 val
= (val
<< 9) | val
| 1;
2705 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2712 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2716 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2718 BNX2_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2720 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2721 (mac_addr
[4] << 8) | mac_addr
[5];
2723 BNX2_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2727 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2730 struct bnx2_sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2731 struct bnx2_rx_bd
*rxbd
=
2732 &rxr
->rx_pg_desc_ring
[BNX2_RX_RING(index
)][BNX2_RX_IDX(index
)];
2733 struct page
*page
= alloc_page(gfp
);
2737 mapping
= dma_map_page(&bp
->pdev
->dev
, page
, 0, PAGE_SIZE
,
2738 PCI_DMA_FROMDEVICE
);
2739 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2745 dma_unmap_addr_set(rx_pg
, mapping
, mapping
);
2746 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2747 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2752 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2754 struct bnx2_sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2755 struct page
*page
= rx_pg
->page
;
2760 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(rx_pg
, mapping
),
2761 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2768 bnx2_alloc_rx_data(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2771 struct bnx2_sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2773 struct bnx2_rx_bd
*rxbd
=
2774 &rxr
->rx_desc_ring
[BNX2_RX_RING(index
)][BNX2_RX_IDX(index
)];
2776 data
= kmalloc(bp
->rx_buf_size
, gfp
);
2780 mapping
= dma_map_single(&bp
->pdev
->dev
,
2782 bp
->rx_buf_use_size
,
2783 PCI_DMA_FROMDEVICE
);
2784 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2789 rx_buf
->data
= data
;
2790 dma_unmap_addr_set(rx_buf
, mapping
, mapping
);
2792 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2793 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2795 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2801 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2803 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2804 u32 new_link_state
, old_link_state
;
2807 new_link_state
= sblk
->status_attn_bits
& event
;
2808 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2809 if (new_link_state
!= old_link_state
) {
2811 BNX2_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2813 BNX2_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2821 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2823 spin_lock(&bp
->phy_lock
);
2825 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2827 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2828 bnx2_set_remote_link(bp
);
2830 spin_unlock(&bp
->phy_lock
);
2835 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2839 cons
= READ_ONCE(*bnapi
->hw_tx_cons_ptr
);
2841 if (unlikely((cons
& BNX2_MAX_TX_DESC_CNT
) == BNX2_MAX_TX_DESC_CNT
))
2847 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2849 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2850 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2851 int tx_pkt
= 0, index
;
2852 unsigned int tx_bytes
= 0;
2853 struct netdev_queue
*txq
;
2855 index
= (bnapi
- bp
->bnx2_napi
);
2856 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2858 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2859 sw_cons
= txr
->tx_cons
;
2861 while (sw_cons
!= hw_cons
) {
2862 struct bnx2_sw_tx_bd
*tx_buf
;
2863 struct sk_buff
*skb
;
2866 sw_ring_cons
= BNX2_TX_RING_IDX(sw_cons
);
2868 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2871 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2872 prefetch(&skb
->end
);
2874 /* partial BD completions possible with TSO packets */
2875 if (tx_buf
->is_gso
) {
2876 u16 last_idx
, last_ring_idx
;
2878 last_idx
= sw_cons
+ tx_buf
->nr_frags
+ 1;
2879 last_ring_idx
= sw_ring_cons
+ tx_buf
->nr_frags
+ 1;
2880 if (unlikely(last_ring_idx
>= BNX2_MAX_TX_DESC_CNT
)) {
2883 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2888 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
2889 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2892 last
= tx_buf
->nr_frags
;
2894 for (i
= 0; i
< last
; i
++) {
2895 struct bnx2_sw_tx_bd
*tx_buf
;
2897 sw_cons
= BNX2_NEXT_TX_BD(sw_cons
);
2899 tx_buf
= &txr
->tx_buf_ring
[BNX2_TX_RING_IDX(sw_cons
)];
2900 dma_unmap_page(&bp
->pdev
->dev
,
2901 dma_unmap_addr(tx_buf
, mapping
),
2902 skb_frag_size(&skb_shinfo(skb
)->frags
[i
]),
2906 sw_cons
= BNX2_NEXT_TX_BD(sw_cons
);
2908 tx_bytes
+= skb
->len
;
2909 dev_kfree_skb_any(skb
);
2911 if (tx_pkt
== budget
)
2914 if (hw_cons
== sw_cons
)
2915 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2918 netdev_tx_completed_queue(txq
, tx_pkt
, tx_bytes
);
2919 txr
->hw_tx_cons
= hw_cons
;
2920 txr
->tx_cons
= sw_cons
;
2922 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2923 * before checking for netif_tx_queue_stopped(). Without the
2924 * memory barrier, there is a small possibility that bnx2_start_xmit()
2925 * will miss it and cause the queue to be stopped forever.
2929 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2930 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2931 __netif_tx_lock(txq
, smp_processor_id());
2932 if ((netif_tx_queue_stopped(txq
)) &&
2933 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2934 netif_tx_wake_queue(txq
);
2935 __netif_tx_unlock(txq
);
2942 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2943 struct sk_buff
*skb
, int count
)
2945 struct bnx2_sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2946 struct bnx2_rx_bd
*cons_bd
, *prod_bd
;
2949 u16 cons
= rxr
->rx_pg_cons
;
2951 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2953 /* The caller was unable to allocate a new page to replace the
2954 * last one in the frags array, so we need to recycle that page
2955 * and then free the skb.
2959 struct skb_shared_info
*shinfo
;
2961 shinfo
= skb_shinfo(skb
);
2963 page
= skb_frag_page(&shinfo
->frags
[shinfo
->nr_frags
]);
2964 __skb_frag_set_page(&shinfo
->frags
[shinfo
->nr_frags
], NULL
);
2966 cons_rx_pg
->page
= page
;
2970 hw_prod
= rxr
->rx_pg_prod
;
2972 for (i
= 0; i
< count
; i
++) {
2973 prod
= BNX2_RX_PG_RING_IDX(hw_prod
);
2975 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2976 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2977 cons_bd
= &rxr
->rx_pg_desc_ring
[BNX2_RX_RING(cons
)]
2978 [BNX2_RX_IDX(cons
)];
2979 prod_bd
= &rxr
->rx_pg_desc_ring
[BNX2_RX_RING(prod
)]
2980 [BNX2_RX_IDX(prod
)];
2983 prod_rx_pg
->page
= cons_rx_pg
->page
;
2984 cons_rx_pg
->page
= NULL
;
2985 dma_unmap_addr_set(prod_rx_pg
, mapping
,
2986 dma_unmap_addr(cons_rx_pg
, mapping
));
2988 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2989 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2992 cons
= BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(cons
));
2993 hw_prod
= BNX2_NEXT_RX_BD(hw_prod
);
2995 rxr
->rx_pg_prod
= hw_prod
;
2996 rxr
->rx_pg_cons
= cons
;
3000 bnx2_reuse_rx_data(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
3001 u8
*data
, u16 cons
, u16 prod
)
3003 struct bnx2_sw_bd
*cons_rx_buf
, *prod_rx_buf
;
3004 struct bnx2_rx_bd
*cons_bd
, *prod_bd
;
3006 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
3007 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
3009 dma_sync_single_for_device(&bp
->pdev
->dev
,
3010 dma_unmap_addr(cons_rx_buf
, mapping
),
3011 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
3013 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
3015 prod_rx_buf
->data
= data
;
3020 dma_unmap_addr_set(prod_rx_buf
, mapping
,
3021 dma_unmap_addr(cons_rx_buf
, mapping
));
3023 cons_bd
= &rxr
->rx_desc_ring
[BNX2_RX_RING(cons
)][BNX2_RX_IDX(cons
)];
3024 prod_bd
= &rxr
->rx_desc_ring
[BNX2_RX_RING(prod
)][BNX2_RX_IDX(prod
)];
3025 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
3026 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
3029 static struct sk_buff
*
3030 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u8
*data
,
3031 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
3035 u16 prod
= ring_idx
& 0xffff;
3036 struct sk_buff
*skb
;
3038 err
= bnx2_alloc_rx_data(bp
, rxr
, prod
, GFP_ATOMIC
);
3039 if (unlikely(err
)) {
3040 bnx2_reuse_rx_data(bp
, rxr
, data
, (u16
) (ring_idx
>> 16), prod
);
3043 unsigned int raw_len
= len
+ 4;
3044 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
3046 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3051 dma_unmap_single(&bp
->pdev
->dev
, dma_addr
, bp
->rx_buf_use_size
,
3052 PCI_DMA_FROMDEVICE
);
3053 skb
= build_skb(data
, 0);
3058 skb_reserve(skb
, ((u8
*)get_l2_fhdr(data
) - data
) + BNX2_RX_OFFSET
);
3063 unsigned int i
, frag_len
, frag_size
, pages
;
3064 struct bnx2_sw_pg
*rx_pg
;
3065 u16 pg_cons
= rxr
->rx_pg_cons
;
3066 u16 pg_prod
= rxr
->rx_pg_prod
;
3068 frag_size
= len
+ 4 - hdr_len
;
3069 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
3070 skb_put(skb
, hdr_len
);
3072 for (i
= 0; i
< pages
; i
++) {
3073 dma_addr_t mapping_old
;
3075 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
3076 if (unlikely(frag_len
<= 4)) {
3077 unsigned int tail
= 4 - frag_len
;
3079 rxr
->rx_pg_cons
= pg_cons
;
3080 rxr
->rx_pg_prod
= pg_prod
;
3081 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
3088 &skb_shinfo(skb
)->frags
[i
- 1];
3089 skb_frag_size_sub(frag
, tail
);
3090 skb
->data_len
-= tail
;
3094 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
3096 /* Don't unmap yet. If we're unable to allocate a new
3097 * page, we need to recycle the page and the DMA addr.
3099 mapping_old
= dma_unmap_addr(rx_pg
, mapping
);
3103 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
3106 err
= bnx2_alloc_rx_page(bp
, rxr
,
3107 BNX2_RX_PG_RING_IDX(pg_prod
),
3109 if (unlikely(err
)) {
3110 rxr
->rx_pg_cons
= pg_cons
;
3111 rxr
->rx_pg_prod
= pg_prod
;
3112 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
3117 dma_unmap_page(&bp
->pdev
->dev
, mapping_old
,
3118 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3120 frag_size
-= frag_len
;
3121 skb
->data_len
+= frag_len
;
3122 skb
->truesize
+= PAGE_SIZE
;
3123 skb
->len
+= frag_len
;
3125 pg_prod
= BNX2_NEXT_RX_BD(pg_prod
);
3126 pg_cons
= BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(pg_cons
));
3128 rxr
->rx_pg_prod
= pg_prod
;
3129 rxr
->rx_pg_cons
= pg_cons
;
3135 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
3139 cons
= READ_ONCE(*bnapi
->hw_rx_cons_ptr
);
3141 if (unlikely((cons
& BNX2_MAX_RX_DESC_CNT
) == BNX2_MAX_RX_DESC_CNT
))
3147 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
3149 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3150 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
3151 struct l2_fhdr
*rx_hdr
;
3152 int rx_pkt
= 0, pg_ring_used
= 0;
3157 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3158 sw_cons
= rxr
->rx_cons
;
3159 sw_prod
= rxr
->rx_prod
;
3161 /* Memory barrier necessary as speculative reads of the rx
3162 * buffer can be ahead of the index in the status block
3165 while (sw_cons
!= hw_cons
) {
3166 unsigned int len
, hdr_len
;
3168 struct bnx2_sw_bd
*rx_buf
, *next_rx_buf
;
3169 struct sk_buff
*skb
;
3170 dma_addr_t dma_addr
;
3174 sw_ring_cons
= BNX2_RX_RING_IDX(sw_cons
);
3175 sw_ring_prod
= BNX2_RX_RING_IDX(sw_prod
);
3177 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
3178 data
= rx_buf
->data
;
3179 rx_buf
->data
= NULL
;
3181 rx_hdr
= get_l2_fhdr(data
);
3184 dma_addr
= dma_unmap_addr(rx_buf
, mapping
);
3186 dma_sync_single_for_cpu(&bp
->pdev
->dev
, dma_addr
,
3187 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
3188 PCI_DMA_FROMDEVICE
);
3190 next_ring_idx
= BNX2_RX_RING_IDX(BNX2_NEXT_RX_BD(sw_cons
));
3191 next_rx_buf
= &rxr
->rx_buf_ring
[next_ring_idx
];
3192 prefetch(get_l2_fhdr(next_rx_buf
->data
));
3194 len
= rx_hdr
->l2_fhdr_pkt_len
;
3195 status
= rx_hdr
->l2_fhdr_status
;
3198 if (status
& L2_FHDR_STATUS_SPLIT
) {
3199 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
3201 } else if (len
> bp
->rx_jumbo_thresh
) {
3202 hdr_len
= bp
->rx_jumbo_thresh
;
3206 if (unlikely(status
& (L2_FHDR_ERRORS_BAD_CRC
|
3207 L2_FHDR_ERRORS_PHY_DECODE
|
3208 L2_FHDR_ERRORS_ALIGNMENT
|
3209 L2_FHDR_ERRORS_TOO_SHORT
|
3210 L2_FHDR_ERRORS_GIANT_FRAME
))) {
3212 bnx2_reuse_rx_data(bp
, rxr
, data
, sw_ring_cons
,
3217 pages
= PAGE_ALIGN(len
- hdr_len
) >> PAGE_SHIFT
;
3219 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3226 if (len
<= bp
->rx_copy_thresh
) {
3227 skb
= netdev_alloc_skb(bp
->dev
, len
+ 6);
3229 bnx2_reuse_rx_data(bp
, rxr
, data
, sw_ring_cons
,
3236 (u8
*)rx_hdr
+ BNX2_RX_OFFSET
- 6,
3238 skb_reserve(skb
, 6);
3241 bnx2_reuse_rx_data(bp
, rxr
, data
,
3242 sw_ring_cons
, sw_ring_prod
);
3245 skb
= bnx2_rx_skb(bp
, rxr
, data
, len
, hdr_len
, dma_addr
,
3246 (sw_ring_cons
<< 16) | sw_ring_prod
);
3250 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) &&
3251 !(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
))
3252 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), rx_hdr
->l2_fhdr_vlan_tag
);
3254 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
3256 if (len
> (bp
->dev
->mtu
+ ETH_HLEN
) &&
3257 skb
->protocol
!= htons(0x8100) &&
3258 skb
->protocol
!= htons(ETH_P_8021AD
)) {
3265 skb_checksum_none_assert(skb
);
3266 if ((bp
->dev
->features
& NETIF_F_RXCSUM
) &&
3267 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
3268 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
3270 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
3271 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
3272 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3274 if ((bp
->dev
->features
& NETIF_F_RXHASH
) &&
3275 ((status
& L2_FHDR_STATUS_USE_RXHASH
) ==
3276 L2_FHDR_STATUS_USE_RXHASH
))
3277 skb_set_hash(skb
, rx_hdr
->l2_fhdr_hash
,
3280 skb_record_rx_queue(skb
, bnapi
- &bp
->bnx2_napi
[0]);
3281 napi_gro_receive(&bnapi
->napi
, skb
);
3285 sw_cons
= BNX2_NEXT_RX_BD(sw_cons
);
3286 sw_prod
= BNX2_NEXT_RX_BD(sw_prod
);
3288 if ((rx_pkt
== budget
))
3291 /* Refresh hw_cons to see if there is new work */
3292 if (sw_cons
== hw_cons
) {
3293 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3297 rxr
->rx_cons
= sw_cons
;
3298 rxr
->rx_prod
= sw_prod
;
3301 BNX2_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
3303 BNX2_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
3305 BNX2_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3313 /* MSI ISR - The only difference between this and the INTx ISR
3314 * is that the MSI interrupt is always serviced.
3317 bnx2_msi(int irq
, void *dev_instance
)
3319 struct bnx2_napi
*bnapi
= dev_instance
;
3320 struct bnx2
*bp
= bnapi
->bp
;
3322 prefetch(bnapi
->status_blk
.msi
);
3323 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3324 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3325 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3327 /* Return here if interrupt is disabled. */
3328 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3331 napi_schedule(&bnapi
->napi
);
3337 bnx2_msi_1shot(int irq
, void *dev_instance
)
3339 struct bnx2_napi
*bnapi
= dev_instance
;
3340 struct bnx2
*bp
= bnapi
->bp
;
3342 prefetch(bnapi
->status_blk
.msi
);
3344 /* Return here if interrupt is disabled. */
3345 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3348 napi_schedule(&bnapi
->napi
);
3354 bnx2_interrupt(int irq
, void *dev_instance
)
3356 struct bnx2_napi
*bnapi
= dev_instance
;
3357 struct bnx2
*bp
= bnapi
->bp
;
3358 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3360 /* When using INTx, it is possible for the interrupt to arrive
3361 * at the CPU before the status block posted prior to the
3362 * interrupt. Reading a register will flush the status block.
3363 * When using MSI, the MSI message will always complete after
3364 * the status block write.
3366 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3367 (BNX2_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3368 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3371 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3372 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3373 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3375 /* Read back to deassert IRQ immediately to avoid too many
3376 * spurious interrupts.
3378 BNX2_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3380 /* Return here if interrupt is shared and is disabled. */
3381 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3384 if (napi_schedule_prep(&bnapi
->napi
)) {
3385 bnapi
->last_status_idx
= sblk
->status_idx
;
3386 __napi_schedule(&bnapi
->napi
);
3393 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3395 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3396 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3398 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3399 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3404 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3405 STATUS_ATTN_BITS_TIMER_ABORT)
3408 bnx2_has_work(struct bnx2_napi
*bnapi
)
3410 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3412 if (bnx2_has_fast_work(bnapi
))
3416 if (bnapi
->cnic_present
&& (bnapi
->cnic_tag
!= sblk
->status_idx
))
3420 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3421 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3428 bnx2_chk_missed_msi(struct bnx2
*bp
)
3430 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
3433 if (bnx2_has_work(bnapi
)) {
3434 msi_ctrl
= BNX2_RD(bp
, BNX2_PCICFG_MSI_CONTROL
);
3435 if (!(msi_ctrl
& BNX2_PCICFG_MSI_CONTROL_ENABLE
))
3438 if (bnapi
->last_status_idx
== bp
->idle_chk_status_idx
) {
3439 BNX2_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
&
3440 ~BNX2_PCICFG_MSI_CONTROL_ENABLE
);
3441 BNX2_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
);
3442 bnx2_msi(bp
->irq_tbl
[0].vector
, bnapi
);
3446 bp
->idle_chk_status_idx
= bnapi
->last_status_idx
;
3450 static void bnx2_poll_cnic(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3452 struct cnic_ops
*c_ops
;
3454 if (!bnapi
->cnic_present
)
3458 c_ops
= rcu_dereference(bp
->cnic_ops
);
3460 bnapi
->cnic_tag
= c_ops
->cnic_handler(bp
->cnic_data
,
3461 bnapi
->status_blk
.msi
);
3466 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3468 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3469 u32 status_attn_bits
= sblk
->status_attn_bits
;
3470 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3472 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3473 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3475 bnx2_phy_int(bp
, bnapi
);
3477 /* This is needed to take care of transient status
3478 * during link changes.
3480 BNX2_WR(bp
, BNX2_HC_COMMAND
,
3481 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3482 BNX2_RD(bp
, BNX2_HC_COMMAND
);
3486 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3487 int work_done
, int budget
)
3489 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3490 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3492 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3493 bnx2_tx_int(bp
, bnapi
, 0);
3495 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3496 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3501 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3503 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3504 struct bnx2
*bp
= bnapi
->bp
;
3506 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3509 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3510 if (unlikely(work_done
>= budget
))
3513 bnapi
->last_status_idx
= sblk
->status_idx
;
3514 /* status idx must be read before checking for more work. */
3516 if (likely(!bnx2_has_fast_work(bnapi
))) {
3518 napi_complete_done(napi
, work_done
);
3519 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3520 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3521 bnapi
->last_status_idx
);
3528 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3530 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3531 struct bnx2
*bp
= bnapi
->bp
;
3533 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3536 bnx2_poll_link(bp
, bnapi
);
3538 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3541 bnx2_poll_cnic(bp
, bnapi
);
3544 /* bnapi->last_status_idx is used below to tell the hw how
3545 * much work has been processed, so we must read it before
3546 * checking for more work.
3548 bnapi
->last_status_idx
= sblk
->status_idx
;
3550 if (unlikely(work_done
>= budget
))
3554 if (likely(!bnx2_has_work(bnapi
))) {
3555 napi_complete_done(napi
, work_done
);
3556 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3557 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3558 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3559 bnapi
->last_status_idx
);
3562 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3563 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3564 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3565 bnapi
->last_status_idx
);
3567 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3568 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3569 bnapi
->last_status_idx
);
3577 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3578 * from set_multicast.
3581 bnx2_set_rx_mode(struct net_device
*dev
)
3583 struct bnx2
*bp
= netdev_priv(dev
);
3584 u32 rx_mode
, sort_mode
;
3585 struct netdev_hw_addr
*ha
;
3588 if (!netif_running(dev
))
3591 spin_lock_bh(&bp
->phy_lock
);
3593 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3594 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3595 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3596 if (!(dev
->features
& NETIF_F_HW_VLAN_CTAG_RX
) &&
3597 (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
3598 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3599 if (dev
->flags
& IFF_PROMISC
) {
3600 /* Promiscuous mode. */
3601 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3602 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3603 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3605 else if (dev
->flags
& IFF_ALLMULTI
) {
3606 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3607 BNX2_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3610 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3613 /* Accept one or more multicast(s). */
3614 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3619 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3621 netdev_for_each_mc_addr(ha
, dev
) {
3622 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
3624 regidx
= (bit
& 0xe0) >> 5;
3626 mc_filter
[regidx
] |= (1 << bit
);
3629 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3630 BNX2_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3634 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3637 if (netdev_uc_count(dev
) > BNX2_MAX_UNICAST_ADDRESSES
) {
3638 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3639 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3640 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3641 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3642 /* Add all entries into to the match filter list */
3644 netdev_for_each_uc_addr(ha
, dev
) {
3645 bnx2_set_mac_addr(bp
, ha
->addr
,
3646 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3648 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3654 if (rx_mode
!= bp
->rx_mode
) {
3655 bp
->rx_mode
= rx_mode
;
3656 BNX2_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3659 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3660 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3661 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3663 spin_unlock_bh(&bp
->phy_lock
);
3667 check_fw_section(const struct firmware
*fw
,
3668 const struct bnx2_fw_file_section
*section
,
3669 u32 alignment
, bool non_empty
)
3671 u32 offset
= be32_to_cpu(section
->offset
);
3672 u32 len
= be32_to_cpu(section
->len
);
3674 if ((offset
== 0 && len
!= 0) || offset
>= fw
->size
|| offset
& 3)
3676 if ((non_empty
&& len
== 0) || len
> fw
->size
- offset
||
3677 len
& (alignment
- 1))
3683 check_mips_fw_entry(const struct firmware
*fw
,
3684 const struct bnx2_mips_fw_file_entry
*entry
)
3686 if (check_fw_section(fw
, &entry
->text
, 4, true) ||
3687 check_fw_section(fw
, &entry
->data
, 4, false) ||
3688 check_fw_section(fw
, &entry
->rodata
, 4, false))
3693 static void bnx2_release_firmware(struct bnx2
*bp
)
3695 if (bp
->rv2p_firmware
) {
3696 release_firmware(bp
->mips_firmware
);
3697 release_firmware(bp
->rv2p_firmware
);
3698 bp
->rv2p_firmware
= NULL
;
3702 static int bnx2_request_uncached_firmware(struct bnx2
*bp
)
3704 const char *mips_fw_file
, *rv2p_fw_file
;
3705 const struct bnx2_mips_fw_file
*mips_fw
;
3706 const struct bnx2_rv2p_fw_file
*rv2p_fw
;
3709 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
3710 mips_fw_file
= FW_MIPS_FILE_09
;
3711 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5709_A0
) ||
3712 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5709_A1
))
3713 rv2p_fw_file
= FW_RV2P_FILE_09_Ax
;
3715 rv2p_fw_file
= FW_RV2P_FILE_09
;
3717 mips_fw_file
= FW_MIPS_FILE_06
;
3718 rv2p_fw_file
= FW_RV2P_FILE_06
;
3721 rc
= request_firmware(&bp
->mips_firmware
, mips_fw_file
, &bp
->pdev
->dev
);
3723 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file
);
3727 rc
= request_firmware(&bp
->rv2p_firmware
, rv2p_fw_file
, &bp
->pdev
->dev
);
3729 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file
);
3730 goto err_release_mips_firmware
;
3732 mips_fw
= (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3733 rv2p_fw
= (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3734 if (bp
->mips_firmware
->size
< sizeof(*mips_fw
) ||
3735 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->com
) ||
3736 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->cp
) ||
3737 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->rxp
) ||
3738 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->tpat
) ||
3739 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->txp
)) {
3740 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file
);
3742 goto err_release_firmware
;
3744 if (bp
->rv2p_firmware
->size
< sizeof(*rv2p_fw
) ||
3745 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc1
.rv2p
, 8, true) ||
3746 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc2
.rv2p
, 8, true)) {
3747 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file
);
3749 goto err_release_firmware
;
3754 err_release_firmware
:
3755 release_firmware(bp
->rv2p_firmware
);
3756 bp
->rv2p_firmware
= NULL
;
3757 err_release_mips_firmware
:
3758 release_firmware(bp
->mips_firmware
);
3762 static int bnx2_request_firmware(struct bnx2
*bp
)
3764 return bp
->rv2p_firmware
? 0 : bnx2_request_uncached_firmware(bp
);
3768 rv2p_fw_fixup(u32 rv2p_proc
, int idx
, u32 loc
, u32 rv2p_code
)
3771 case RV2P_P1_FIXUP_PAGE_SIZE_IDX
:
3772 rv2p_code
&= ~RV2P_BD_PAGE_SIZE_MSK
;
3773 rv2p_code
|= RV2P_BD_PAGE_SIZE
;
3780 load_rv2p_fw(struct bnx2
*bp
, u32 rv2p_proc
,
3781 const struct bnx2_rv2p_fw_file_entry
*fw_entry
)
3783 u32 rv2p_code_len
, file_offset
;
3788 rv2p_code_len
= be32_to_cpu(fw_entry
->rv2p
.len
);
3789 file_offset
= be32_to_cpu(fw_entry
->rv2p
.offset
);
3791 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3793 if (rv2p_proc
== RV2P_PROC1
) {
3794 cmd
= BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3795 addr
= BNX2_RV2P_PROC1_ADDR_CMD
;
3797 cmd
= BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3798 addr
= BNX2_RV2P_PROC2_ADDR_CMD
;
3801 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3802 BNX2_WR(bp
, BNX2_RV2P_INSTR_HIGH
, be32_to_cpu(*rv2p_code
));
3804 BNX2_WR(bp
, BNX2_RV2P_INSTR_LOW
, be32_to_cpu(*rv2p_code
));
3807 val
= (i
/ 8) | cmd
;
3808 BNX2_WR(bp
, addr
, val
);
3811 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3812 for (i
= 0; i
< 8; i
++) {
3815 loc
= be32_to_cpu(fw_entry
->fixup
[i
]);
3816 if (loc
&& ((loc
* 4) < rv2p_code_len
)) {
3817 code
= be32_to_cpu(*(rv2p_code
+ loc
- 1));
3818 BNX2_WR(bp
, BNX2_RV2P_INSTR_HIGH
, code
);
3819 code
= be32_to_cpu(*(rv2p_code
+ loc
));
3820 code
= rv2p_fw_fixup(rv2p_proc
, i
, loc
, code
);
3821 BNX2_WR(bp
, BNX2_RV2P_INSTR_LOW
, code
);
3823 val
= (loc
/ 2) | cmd
;
3824 BNX2_WR(bp
, addr
, val
);
3828 /* Reset the processor, un-stall is done later. */
3829 if (rv2p_proc
== RV2P_PROC1
) {
3830 BNX2_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3833 BNX2_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3840 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
,
3841 const struct bnx2_mips_fw_file_entry
*fw_entry
)
3843 u32 addr
, len
, file_offset
;
3849 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3850 val
|= cpu_reg
->mode_value_halt
;
3851 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3852 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3854 /* Load the Text area. */
3855 addr
= be32_to_cpu(fw_entry
->text
.addr
);
3856 len
= be32_to_cpu(fw_entry
->text
.len
);
3857 file_offset
= be32_to_cpu(fw_entry
->text
.offset
);
3858 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3860 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3864 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3865 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3868 /* Load the Data area. */
3869 addr
= be32_to_cpu(fw_entry
->data
.addr
);
3870 len
= be32_to_cpu(fw_entry
->data
.len
);
3871 file_offset
= be32_to_cpu(fw_entry
->data
.offset
);
3872 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3874 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3878 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3879 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3882 /* Load the Read-Only area. */
3883 addr
= be32_to_cpu(fw_entry
->rodata
.addr
);
3884 len
= be32_to_cpu(fw_entry
->rodata
.len
);
3885 file_offset
= be32_to_cpu(fw_entry
->rodata
.offset
);
3886 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3888 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3892 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3893 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3896 /* Clear the pre-fetch instruction. */
3897 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3899 val
= be32_to_cpu(fw_entry
->start_addr
);
3900 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, val
);
3902 /* Start the CPU. */
3903 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3904 val
&= ~cpu_reg
->mode_value_halt
;
3905 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3906 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3912 bnx2_init_cpus(struct bnx2
*bp
)
3914 const struct bnx2_mips_fw_file
*mips_fw
=
3915 (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3916 const struct bnx2_rv2p_fw_file
*rv2p_fw
=
3917 (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3920 /* Initialize the RV2P processor. */
3921 load_rv2p_fw(bp
, RV2P_PROC1
, &rv2p_fw
->proc1
);
3922 load_rv2p_fw(bp
, RV2P_PROC2
, &rv2p_fw
->proc2
);
3924 /* Initialize the RX Processor. */
3925 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, &mips_fw
->rxp
);
3929 /* Initialize the TX Processor. */
3930 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, &mips_fw
->txp
);
3934 /* Initialize the TX Patch-up Processor. */
3935 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, &mips_fw
->tpat
);
3939 /* Initialize the Completion Processor. */
3940 rc
= load_cpu_fw(bp
, &cpu_reg_com
, &mips_fw
->com
);
3944 /* Initialize the Command Processor. */
3945 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, &mips_fw
->cp
);
3952 bnx2_setup_wol(struct bnx2
*bp
)
3961 autoneg
= bp
->autoneg
;
3962 advertising
= bp
->advertising
;
3964 if (bp
->phy_port
== PORT_TP
) {
3965 bp
->autoneg
= AUTONEG_SPEED
;
3966 bp
->advertising
= ADVERTISED_10baseT_Half
|
3967 ADVERTISED_10baseT_Full
|
3968 ADVERTISED_100baseT_Half
|
3969 ADVERTISED_100baseT_Full
|
3973 spin_lock_bh(&bp
->phy_lock
);
3974 bnx2_setup_phy(bp
, bp
->phy_port
);
3975 spin_unlock_bh(&bp
->phy_lock
);
3977 bp
->autoneg
= autoneg
;
3978 bp
->advertising
= advertising
;
3980 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3982 val
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
3984 /* Enable port mode. */
3985 val
&= ~BNX2_EMAC_MODE_PORT
;
3986 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3987 BNX2_EMAC_MODE_ACPI_RCVD
|
3988 BNX2_EMAC_MODE_MPKT
;
3989 if (bp
->phy_port
== PORT_TP
) {
3990 val
|= BNX2_EMAC_MODE_PORT_MII
;
3992 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3993 if (bp
->line_speed
== SPEED_2500
)
3994 val
|= BNX2_EMAC_MODE_25G_MODE
;
3997 BNX2_WR(bp
, BNX2_EMAC_MODE
, val
);
3999 /* receive all multicast */
4000 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
4001 BNX2_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
4004 BNX2_WR(bp
, BNX2_EMAC_RX_MODE
, BNX2_EMAC_RX_MODE_SORT_MODE
);
4006 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
| BNX2_RPM_SORT_USER0_MC_EN
;
4007 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
4008 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
4009 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, val
| BNX2_RPM_SORT_USER0_ENA
);
4011 /* Need to enable EMAC and RPM for WOL. */
4012 BNX2_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4013 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
4014 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
4015 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
4017 val
= BNX2_RD(bp
, BNX2_RPM_CONFIG
);
4018 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
4019 BNX2_WR(bp
, BNX2_RPM_CONFIG
, val
);
4021 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
4023 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
4026 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
)) {
4029 wol_msg
|= BNX2_DRV_MSG_DATA_WAIT3
;
4030 if (bp
->fw_last_msg
|| BNX2_CHIP(bp
) != BNX2_CHIP_5709
) {
4031 bnx2_fw_sync(bp
, wol_msg
, 1, 0);
4034 /* Tell firmware not to power down the PHY yet, otherwise
4035 * the chip will take a long time to respond to MMIO reads.
4037 val
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
4038 bnx2_shmem_wr(bp
, BNX2_PORT_FEATURE
,
4039 val
| BNX2_PORT_FEATURE_ASF_ENABLED
);
4040 bnx2_fw_sync(bp
, wol_msg
, 1, 0);
4041 bnx2_shmem_wr(bp
, BNX2_PORT_FEATURE
, val
);
4047 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
4053 pci_enable_wake(bp
->pdev
, PCI_D0
, false);
4054 pci_set_power_state(bp
->pdev
, PCI_D0
);
4056 val
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
4057 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
4058 val
&= ~BNX2_EMAC_MODE_MPKT
;
4059 BNX2_WR(bp
, BNX2_EMAC_MODE
, val
);
4061 val
= BNX2_RD(bp
, BNX2_RPM_CONFIG
);
4062 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
4063 BNX2_WR(bp
, BNX2_RPM_CONFIG
, val
);
4068 pci_wake_from_d3(bp
->pdev
, bp
->wol
);
4069 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) ||
4070 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
)) {
4073 pci_set_power_state(bp
->pdev
, PCI_D3hot
);
4077 if (!bp
->fw_last_msg
&& BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4080 /* Tell firmware not to power down the PHY yet,
4081 * otherwise the other port may not respond to
4084 val
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
4085 val
&= ~BNX2_CONDITION_PM_STATE_MASK
;
4086 val
|= BNX2_CONDITION_PM_STATE_UNPREP
;
4087 bnx2_shmem_wr(bp
, BNX2_BC_STATE_CONDITION
, val
);
4089 pci_set_power_state(bp
->pdev
, PCI_D3hot
);
4091 /* No more memory access after this point until
4092 * device is brought back to D0.
4103 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
4108 /* Request access to the flash interface. */
4109 BNX2_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
4110 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4111 val
= BNX2_RD(bp
, BNX2_NVM_SW_ARB
);
4112 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
4118 if (j
>= NVRAM_TIMEOUT_COUNT
)
4125 bnx2_release_nvram_lock(struct bnx2
*bp
)
4130 /* Relinquish nvram interface. */
4131 BNX2_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
4133 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4134 val
= BNX2_RD(bp
, BNX2_NVM_SW_ARB
);
4135 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
4141 if (j
>= NVRAM_TIMEOUT_COUNT
)
4149 bnx2_enable_nvram_write(struct bnx2
*bp
)
4153 val
= BNX2_RD(bp
, BNX2_MISC_CFG
);
4154 BNX2_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
4156 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
4159 BNX2_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4160 BNX2_WR(bp
, BNX2_NVM_COMMAND
,
4161 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
4163 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4166 val
= BNX2_RD(bp
, BNX2_NVM_COMMAND
);
4167 if (val
& BNX2_NVM_COMMAND_DONE
)
4171 if (j
>= NVRAM_TIMEOUT_COUNT
)
4178 bnx2_disable_nvram_write(struct bnx2
*bp
)
4182 val
= BNX2_RD(bp
, BNX2_MISC_CFG
);
4183 BNX2_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
4188 bnx2_enable_nvram_access(struct bnx2
*bp
)
4192 val
= BNX2_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4193 /* Enable both bits, even on read. */
4194 BNX2_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4195 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
4199 bnx2_disable_nvram_access(struct bnx2
*bp
)
4203 val
= BNX2_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4204 /* Disable both bits, even after read. */
4205 BNX2_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4206 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
4207 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
4211 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
4216 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
4217 /* Buffered flash, no erase needed */
4220 /* Build an erase command */
4221 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
4222 BNX2_NVM_COMMAND_DOIT
;
4224 /* Need to clear DONE bit separately. */
4225 BNX2_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4227 /* Address of the NVRAM to read from. */
4228 BNX2_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4230 /* Issue an erase command. */
4231 BNX2_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4233 /* Wait for completion. */
4234 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4239 val
= BNX2_RD(bp
, BNX2_NVM_COMMAND
);
4240 if (val
& BNX2_NVM_COMMAND_DONE
)
4244 if (j
>= NVRAM_TIMEOUT_COUNT
)
4251 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
4256 /* Build the command word. */
4257 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
4259 /* Calculate an offset of a buffered flash, not needed for 5709. */
4260 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4261 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4262 bp
->flash_info
->page_bits
) +
4263 (offset
% bp
->flash_info
->page_size
);
4266 /* Need to clear DONE bit separately. */
4267 BNX2_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4269 /* Address of the NVRAM to read from. */
4270 BNX2_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4272 /* Issue a read command. */
4273 BNX2_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4275 /* Wait for completion. */
4276 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4281 val
= BNX2_RD(bp
, BNX2_NVM_COMMAND
);
4282 if (val
& BNX2_NVM_COMMAND_DONE
) {
4283 __be32 v
= cpu_to_be32(BNX2_RD(bp
, BNX2_NVM_READ
));
4284 memcpy(ret_val
, &v
, 4);
4288 if (j
>= NVRAM_TIMEOUT_COUNT
)
4296 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
4302 /* Build the command word. */
4303 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
4305 /* Calculate an offset of a buffered flash, not needed for 5709. */
4306 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4307 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4308 bp
->flash_info
->page_bits
) +
4309 (offset
% bp
->flash_info
->page_size
);
4312 /* Need to clear DONE bit separately. */
4313 BNX2_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4315 memcpy(&val32
, val
, 4);
4317 /* Write the data. */
4318 BNX2_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
4320 /* Address of the NVRAM to write to. */
4321 BNX2_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4323 /* Issue the write command. */
4324 BNX2_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4326 /* Wait for completion. */
4327 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4330 if (BNX2_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
4333 if (j
>= NVRAM_TIMEOUT_COUNT
)
4340 bnx2_init_nvram(struct bnx2
*bp
)
4343 int j
, entry_count
, rc
= 0;
4344 const struct flash_spec
*flash
;
4346 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4347 bp
->flash_info
= &flash_5709
;
4348 goto get_flash_size
;
4351 /* Determine the selected interface. */
4352 val
= BNX2_RD(bp
, BNX2_NVM_CFG1
);
4354 entry_count
= ARRAY_SIZE(flash_table
);
4356 if (val
& 0x40000000) {
4358 /* Flash interface has been reconfigured */
4359 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4361 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
4362 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
4363 bp
->flash_info
= flash
;
4370 /* Not yet been reconfigured */
4372 if (val
& (1 << 23))
4373 mask
= FLASH_BACKUP_STRAP_MASK
;
4375 mask
= FLASH_STRAP_MASK
;
4377 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4380 if ((val
& mask
) == (flash
->strapping
& mask
)) {
4381 bp
->flash_info
= flash
;
4383 /* Request access to the flash interface. */
4384 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4387 /* Enable access to flash interface */
4388 bnx2_enable_nvram_access(bp
);
4390 /* Reconfigure the flash interface */
4391 BNX2_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
4392 BNX2_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
4393 BNX2_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
4394 BNX2_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
4396 /* Disable access to flash interface */
4397 bnx2_disable_nvram_access(bp
);
4398 bnx2_release_nvram_lock(bp
);
4403 } /* if (val & 0x40000000) */
4405 if (j
== entry_count
) {
4406 bp
->flash_info
= NULL
;
4407 pr_alert("Unknown flash/EEPROM type\n");
4412 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
4413 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
4415 bp
->flash_size
= val
;
4417 bp
->flash_size
= bp
->flash_info
->total_size
;
4423 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
4427 u32 cmd_flags
, offset32
, len32
, extra
;
4432 /* Request access to the flash interface. */
4433 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4436 /* Enable access to flash interface */
4437 bnx2_enable_nvram_access(bp
);
4450 pre_len
= 4 - (offset
& 3);
4452 if (pre_len
>= len32
) {
4454 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4455 BNX2_NVM_COMMAND_LAST
;
4458 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4461 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4466 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4473 extra
= 4 - (len32
& 3);
4474 len32
= (len32
+ 4) & ~3;
4481 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4483 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4484 BNX2_NVM_COMMAND_LAST
;
4486 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4488 memcpy(ret_buf
, buf
, 4 - extra
);
4490 else if (len32
> 0) {
4493 /* Read the first word. */
4497 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4499 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4501 /* Advance to the next dword. */
4506 while (len32
> 4 && rc
== 0) {
4507 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4509 /* Advance to the next dword. */
4518 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4519 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4521 memcpy(ret_buf
, buf
, 4 - extra
);
4524 /* Disable access to flash interface */
4525 bnx2_disable_nvram_access(bp
);
4527 bnx2_release_nvram_lock(bp
);
4533 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4536 u32 written
, offset32
, len32
;
4537 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4539 int align_start
, align_end
;
4544 align_start
= align_end
= 0;
4546 if ((align_start
= (offset32
& 3))) {
4548 len32
+= align_start
;
4551 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4556 align_end
= 4 - (len32
& 3);
4558 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4562 if (align_start
|| align_end
) {
4563 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4564 if (align_buf
== NULL
)
4567 memcpy(align_buf
, start
, 4);
4570 memcpy(align_buf
+ len32
- 4, end
, 4);
4572 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4576 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4577 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4578 if (flash_buffer
== NULL
) {
4580 goto nvram_write_end
;
4585 while ((written
< len32
) && (rc
== 0)) {
4586 u32 page_start
, page_end
, data_start
, data_end
;
4587 u32 addr
, cmd_flags
;
4590 /* Find the page_start addr */
4591 page_start
= offset32
+ written
;
4592 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4593 /* Find the page_end addr */
4594 page_end
= page_start
+ bp
->flash_info
->page_size
;
4595 /* Find the data_start addr */
4596 data_start
= (written
== 0) ? offset32
: page_start
;
4597 /* Find the data_end addr */
4598 data_end
= (page_end
> offset32
+ len32
) ?
4599 (offset32
+ len32
) : page_end
;
4601 /* Request access to the flash interface. */
4602 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4603 goto nvram_write_end
;
4605 /* Enable access to flash interface */
4606 bnx2_enable_nvram_access(bp
);
4608 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4609 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4612 /* Read the whole page into the buffer
4613 * (non-buffer flash only) */
4614 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4615 if (j
== (bp
->flash_info
->page_size
- 4)) {
4616 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4618 rc
= bnx2_nvram_read_dword(bp
,
4624 goto nvram_write_end
;
4630 /* Enable writes to flash interface (unlock write-protect) */
4631 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4632 goto nvram_write_end
;
4634 /* Loop to write back the buffer data from page_start to
4637 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4638 /* Erase the page */
4639 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4640 goto nvram_write_end
;
4642 /* Re-enable the write again for the actual write */
4643 bnx2_enable_nvram_write(bp
);
4645 for (addr
= page_start
; addr
< data_start
;
4646 addr
+= 4, i
+= 4) {
4648 rc
= bnx2_nvram_write_dword(bp
, addr
,
4649 &flash_buffer
[i
], cmd_flags
);
4652 goto nvram_write_end
;
4658 /* Loop to write the new data from data_start to data_end */
4659 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4660 if ((addr
== page_end
- 4) ||
4661 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4662 (addr
== data_end
- 4))) {
4664 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4666 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4670 goto nvram_write_end
;
4676 /* Loop to write back the buffer data from data_end
4678 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4679 for (addr
= data_end
; addr
< page_end
;
4680 addr
+= 4, i
+= 4) {
4682 if (addr
== page_end
-4) {
4683 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4685 rc
= bnx2_nvram_write_dword(bp
, addr
,
4686 &flash_buffer
[i
], cmd_flags
);
4689 goto nvram_write_end
;
4695 /* Disable writes to flash interface (lock write-protect) */
4696 bnx2_disable_nvram_write(bp
);
4698 /* Disable access to flash interface */
4699 bnx2_disable_nvram_access(bp
);
4700 bnx2_release_nvram_lock(bp
);
4702 /* Increment written */
4703 written
+= data_end
- data_start
;
4707 kfree(flash_buffer
);
4713 bnx2_init_fw_cap(struct bnx2
*bp
)
4717 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4718 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4720 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4721 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4723 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4724 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4727 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4728 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4729 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4732 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4733 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4736 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4738 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4739 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4740 bp
->phy_port
= PORT_FIBRE
;
4742 bp
->phy_port
= PORT_TP
;
4744 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4745 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4748 if (netif_running(bp
->dev
) && sig
)
4749 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4753 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4755 BNX2_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4757 BNX2_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4758 BNX2_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4762 bnx2_wait_dma_complete(struct bnx2
*bp
)
4768 * Wait for the current PCI transaction to complete before
4771 if ((BNX2_CHIP(bp
) == BNX2_CHIP_5706
) ||
4772 (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)) {
4773 BNX2_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4774 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4775 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4776 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4777 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4778 val
= BNX2_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4781 val
= BNX2_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4782 val
&= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4783 BNX2_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4784 val
= BNX2_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4786 for (i
= 0; i
< 100; i
++) {
4788 val
= BNX2_RD(bp
, BNX2_PCICFG_DEVICE_CONTROL
);
4789 if (!(val
& BNX2_PCICFG_DEVICE_STATUS_NO_PEND
))
4799 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4805 /* Wait for the current PCI transaction to complete before
4806 * issuing a reset. */
4807 bnx2_wait_dma_complete(bp
);
4809 /* Wait for the firmware to tell us it is ok to issue a reset. */
4810 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4812 /* Deposit a driver reset signature so the firmware knows that
4813 * this is a soft reset. */
4814 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4815 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4817 /* Do a dummy read to force the chip to complete all current transaction
4818 * before we issue a reset. */
4819 val
= BNX2_RD(bp
, BNX2_MISC_ID
);
4821 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4822 BNX2_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4823 BNX2_RD(bp
, BNX2_MISC_COMMAND
);
4826 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4827 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4829 BNX2_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4832 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4833 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4834 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4837 BNX2_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4839 /* Reading back any register after chip reset will hang the
4840 * bus on 5706 A0 and A1. The msleep below provides plenty
4841 * of margin for write posting.
4843 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) ||
4844 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
))
4847 /* Reset takes approximate 30 usec */
4848 for (i
= 0; i
< 10; i
++) {
4849 val
= BNX2_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4850 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4851 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4856 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4857 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4858 pr_err("Chip reset did not complete\n");
4863 /* Make sure byte swapping is properly configured. */
4864 val
= BNX2_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4865 if (val
!= 0x01020304) {
4866 pr_err("Chip not in correct endian mode\n");
4870 /* Wait for the firmware to finish its initialization. */
4871 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4875 spin_lock_bh(&bp
->phy_lock
);
4876 old_port
= bp
->phy_port
;
4877 bnx2_init_fw_cap(bp
);
4878 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4879 old_port
!= bp
->phy_port
)
4880 bnx2_set_default_remote_link(bp
);
4881 spin_unlock_bh(&bp
->phy_lock
);
4883 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
4884 /* Adjust the voltage regular to two steps lower. The default
4885 * of this register is 0x0000000e. */
4886 BNX2_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4888 /* Remove bad rbuf memory from the free pool. */
4889 rc
= bnx2_alloc_bad_rbuf(bp
);
4892 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4893 bnx2_setup_msix_tbl(bp
);
4894 /* Prevent MSIX table reads and write from timing out */
4895 BNX2_WR(bp
, BNX2_MISC_ECO_HW_CTL
,
4896 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN
);
4903 bnx2_init_chip(struct bnx2
*bp
)
4908 /* Make sure the interrupt is not active. */
4909 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4911 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4912 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4914 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4916 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4917 DMA_READ_CHANS
<< 12 |
4918 DMA_WRITE_CHANS
<< 16;
4920 val
|= (0x2 << 20) | (1 << 11);
4922 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4925 if ((BNX2_CHIP(bp
) == BNX2_CHIP_5706
) &&
4926 (BNX2_CHIP_ID(bp
) != BNX2_CHIP_ID_5706_A0
) &&
4927 !(bp
->flags
& BNX2_FLAG_PCIX
))
4928 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4930 BNX2_WR(bp
, BNX2_DMA_CONFIG
, val
);
4932 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
4933 val
= BNX2_RD(bp
, BNX2_TDMA_CONFIG
);
4934 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4935 BNX2_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4938 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4941 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4943 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4944 val16
& ~PCI_X_CMD_ERO
);
4947 BNX2_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4948 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4949 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4950 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4952 /* Initialize context mapping and zero out the quick contexts. The
4953 * context block must have already been enabled. */
4954 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4955 rc
= bnx2_init_5709_context(bp
);
4959 bnx2_init_context(bp
);
4961 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4964 bnx2_init_nvram(bp
);
4966 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4968 val
= BNX2_RD(bp
, BNX2_MQ_CONFIG
);
4969 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4970 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4971 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4972 val
|= BNX2_MQ_CONFIG_BIN_MQ_MODE
;
4973 if (BNX2_CHIP_REV(bp
) == BNX2_CHIP_REV_Ax
)
4974 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4977 BNX2_WR(bp
, BNX2_MQ_CONFIG
, val
);
4979 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4980 BNX2_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4981 BNX2_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4983 val
= (BNX2_PAGE_BITS
- 8) << 24;
4984 BNX2_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4986 /* Configure page size. */
4987 val
= BNX2_RD(bp
, BNX2_TBDR_CONFIG
);
4988 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4989 val
|= (BNX2_PAGE_BITS
- 8) << 24 | 0x40;
4990 BNX2_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4992 val
= bp
->mac_addr
[0] +
4993 (bp
->mac_addr
[1] << 8) +
4994 (bp
->mac_addr
[2] << 16) +
4996 (bp
->mac_addr
[4] << 8) +
4997 (bp
->mac_addr
[5] << 16);
4998 BNX2_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
5000 /* Program the MTU. Also include 4 bytes for CRC32. */
5002 val
= mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
5003 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ ETH_HLEN
+ 4))
5004 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
5005 BNX2_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
5007 if (mtu
< ETH_DATA_LEN
)
5010 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG
, BNX2_RBUF_CONFIG_VAL(mtu
));
5011 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG2
, BNX2_RBUF_CONFIG2_VAL(mtu
));
5012 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG3
, BNX2_RBUF_CONFIG3_VAL(mtu
));
5014 memset(bp
->bnx2_napi
[0].status_blk
.msi
, 0, bp
->status_stats_size
);
5015 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
5016 bp
->bnx2_napi
[i
].last_status_idx
= 0;
5018 bp
->idle_chk_status_idx
= 0xffff;
5020 /* Set up how to generate a link change interrupt. */
5021 BNX2_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
5023 BNX2_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
5024 (u64
) bp
->status_blk_mapping
& 0xffffffff);
5025 BNX2_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
5027 BNX2_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
5028 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
5029 BNX2_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
5030 (u64
) bp
->stats_blk_mapping
>> 32);
5032 BNX2_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
5033 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
5035 BNX2_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
5036 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
5038 BNX2_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
5039 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
5041 BNX2_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
5043 BNX2_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
5045 BNX2_WR(bp
, BNX2_HC_COM_TICKS
,
5046 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
5048 BNX2_WR(bp
, BNX2_HC_CMD_TICKS
,
5049 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
5051 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
)
5052 BNX2_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
5054 BNX2_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
5055 BNX2_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
5057 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
)
5058 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
5060 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
5061 BNX2_HC_CONFIG_COLLECT_STATS
;
5064 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
5065 BNX2_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
5066 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
5068 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
5071 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
5072 val
|= BNX2_HC_CONFIG_ONE_SHOT
| BNX2_HC_CONFIG_USE_INT_PARAM
;
5074 BNX2_WR(bp
, BNX2_HC_CONFIG
, val
);
5076 if (bp
->rx_ticks
< 25)
5077 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 1);
5079 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 0);
5081 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
5082 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
5083 BNX2_HC_SB_CONFIG_1
;
5086 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
5087 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
5088 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
5090 BNX2_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
5091 (bp
->tx_quick_cons_trip_int
<< 16) |
5092 bp
->tx_quick_cons_trip
);
5094 BNX2_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
5095 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
5097 BNX2_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
5098 (bp
->rx_quick_cons_trip_int
<< 16) |
5099 bp
->rx_quick_cons_trip
);
5101 BNX2_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
5102 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
5105 /* Clear internal stats counters. */
5106 BNX2_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
5108 BNX2_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
5110 /* Initialize the receive filter. */
5111 bnx2_set_rx_mode(bp
->dev
);
5113 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
5114 val
= BNX2_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
5115 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
5116 BNX2_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
5118 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
5121 BNX2_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
5122 BNX2_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
5126 bp
->hc_cmd
= BNX2_RD(bp
, BNX2_HC_COMMAND
);
5132 bnx2_clear_ring_states(struct bnx2
*bp
)
5134 struct bnx2_napi
*bnapi
;
5135 struct bnx2_tx_ring_info
*txr
;
5136 struct bnx2_rx_ring_info
*rxr
;
5139 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
5140 bnapi
= &bp
->bnx2_napi
[i
];
5141 txr
= &bnapi
->tx_ring
;
5142 rxr
= &bnapi
->rx_ring
;
5145 txr
->hw_tx_cons
= 0;
5146 rxr
->rx_prod_bseq
= 0;
5149 rxr
->rx_pg_prod
= 0;
5150 rxr
->rx_pg_cons
= 0;
5155 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
5157 u32 val
, offset0
, offset1
, offset2
, offset3
;
5158 u32 cid_addr
= GET_CID_ADDR(cid
);
5160 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
5161 offset0
= BNX2_L2CTX_TYPE_XI
;
5162 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
5163 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
5164 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
5166 offset0
= BNX2_L2CTX_TYPE
;
5167 offset1
= BNX2_L2CTX_CMD_TYPE
;
5168 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
5169 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
5171 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
5172 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
5174 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
5175 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
5177 val
= (u64
) txr
->tx_desc_mapping
>> 32;
5178 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
5180 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5181 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
5185 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
5187 struct bnx2_tx_bd
*txbd
;
5189 struct bnx2_napi
*bnapi
;
5190 struct bnx2_tx_ring_info
*txr
;
5192 bnapi
= &bp
->bnx2_napi
[ring_num
];
5193 txr
= &bnapi
->tx_ring
;
5198 cid
= TX_TSS_CID
+ ring_num
- 1;
5200 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
5202 txbd
= &txr
->tx_desc_ring
[BNX2_MAX_TX_DESC_CNT
];
5204 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
5205 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5208 txr
->tx_prod_bseq
= 0;
5210 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
5211 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
5213 bnx2_init_tx_context(bp
, cid
, txr
);
5217 bnx2_init_rxbd_rings(struct bnx2_rx_bd
*rx_ring
[], dma_addr_t dma
[],
5218 u32 buf_size
, int num_rings
)
5221 struct bnx2_rx_bd
*rxbd
;
5223 for (i
= 0; i
< num_rings
; i
++) {
5226 rxbd
= &rx_ring
[i
][0];
5227 for (j
= 0; j
< BNX2_MAX_RX_DESC_CNT
; j
++, rxbd
++) {
5228 rxbd
->rx_bd_len
= buf_size
;
5229 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
5231 if (i
== (num_rings
- 1))
5235 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
5236 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
5241 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
5244 u16 prod
, ring_prod
;
5245 u32 cid
, rx_cid_addr
, val
;
5246 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
5247 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5252 cid
= RX_RSS_CID
+ ring_num
- 1;
5254 rx_cid_addr
= GET_CID_ADDR(cid
);
5256 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
5257 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
5259 bnx2_init_rx_context(bp
, cid
);
5261 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
5262 val
= BNX2_RD(bp
, BNX2_MQ_MAP_L2_5
);
5263 BNX2_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
5266 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
5267 if (bp
->rx_pg_ring_size
) {
5268 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
5269 rxr
->rx_pg_desc_mapping
,
5270 PAGE_SIZE
, bp
->rx_max_pg_ring
);
5271 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
5272 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
5273 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
5274 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
5276 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
5277 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
5279 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
5280 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
5282 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
5283 BNX2_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
5286 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
5287 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
5289 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
5290 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
5292 ring_prod
= prod
= rxr
->rx_pg_prod
;
5293 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
5294 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5295 netdev_warn(bp
->dev
, "init'ed rx page ring %d with %d/%d pages only\n",
5296 ring_num
, i
, bp
->rx_pg_ring_size
);
5299 prod
= BNX2_NEXT_RX_BD(prod
);
5300 ring_prod
= BNX2_RX_PG_RING_IDX(prod
);
5302 rxr
->rx_pg_prod
= prod
;
5304 ring_prod
= prod
= rxr
->rx_prod
;
5305 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
5306 if (bnx2_alloc_rx_data(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5307 netdev_warn(bp
->dev
, "init'ed rx ring %d with %d/%d skbs only\n",
5308 ring_num
, i
, bp
->rx_ring_size
);
5311 prod
= BNX2_NEXT_RX_BD(prod
);
5312 ring_prod
= BNX2_RX_RING_IDX(prod
);
5314 rxr
->rx_prod
= prod
;
5316 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
5317 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
5318 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
5320 BNX2_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
5321 BNX2_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
5323 BNX2_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
5327 bnx2_init_all_rings(struct bnx2
*bp
)
5332 bnx2_clear_ring_states(bp
);
5334 BNX2_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
5335 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
5336 bnx2_init_tx_ring(bp
, i
);
5338 if (bp
->num_tx_rings
> 1)
5339 BNX2_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
5342 BNX2_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
5343 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
5345 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
5346 bnx2_init_rx_ring(bp
, i
);
5348 if (bp
->num_rx_rings
> 1) {
5351 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
5352 int shift
= (i
% 8) << 2;
5354 tbl_32
|= (i
% (bp
->num_rx_rings
- 1)) << shift
;
5356 BNX2_WR(bp
, BNX2_RLUP_RSS_DATA
, tbl_32
);
5357 BNX2_WR(bp
, BNX2_RLUP_RSS_COMMAND
, (i
>> 3) |
5358 BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK
|
5359 BNX2_RLUP_RSS_COMMAND_WRITE
|
5360 BNX2_RLUP_RSS_COMMAND_HASH_MASK
);
5365 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
5366 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
5368 BNX2_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
5373 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
5375 u32 max
, num_rings
= 1;
5377 while (ring_size
> BNX2_MAX_RX_DESC_CNT
) {
5378 ring_size
-= BNX2_MAX_RX_DESC_CNT
;
5381 /* round to next power of 2 */
5383 while ((max
& num_rings
) == 0)
5386 if (num_rings
!= max
)
5393 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
5395 u32 rx_size
, rx_space
, jumbo_size
;
5397 /* 8 for CRC and VLAN */
5398 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
5400 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
5401 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
5403 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
5404 bp
->rx_pg_ring_size
= 0;
5405 bp
->rx_max_pg_ring
= 0;
5406 bp
->rx_max_pg_ring_idx
= 0;
5407 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
5408 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
5410 jumbo_size
= size
* pages
;
5411 if (jumbo_size
> BNX2_MAX_TOTAL_RX_PG_DESC_CNT
)
5412 jumbo_size
= BNX2_MAX_TOTAL_RX_PG_DESC_CNT
;
5414 bp
->rx_pg_ring_size
= jumbo_size
;
5415 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
5416 BNX2_MAX_RX_PG_RINGS
);
5417 bp
->rx_max_pg_ring_idx
=
5418 (bp
->rx_max_pg_ring
* BNX2_RX_DESC_CNT
) - 1;
5419 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
5420 bp
->rx_copy_thresh
= 0;
5423 bp
->rx_buf_use_size
= rx_size
;
5424 /* hw alignment + build_skb() overhead*/
5425 bp
->rx_buf_size
= SKB_DATA_ALIGN(bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
) +
5426 NET_SKB_PAD
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
5427 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
5428 bp
->rx_ring_size
= size
;
5429 bp
->rx_max_ring
= bnx2_find_max_ring(size
, BNX2_MAX_RX_RINGS
);
5430 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* BNX2_RX_DESC_CNT
) - 1;
5434 bnx2_free_tx_skbs(struct bnx2
*bp
)
5438 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
5439 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5440 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5443 if (txr
->tx_buf_ring
== NULL
)
5446 for (j
= 0; j
< BNX2_TX_DESC_CNT
; ) {
5447 struct bnx2_sw_tx_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
5448 struct sk_buff
*skb
= tx_buf
->skb
;
5452 j
= BNX2_NEXT_TX_BD(j
);
5456 dma_unmap_single(&bp
->pdev
->dev
,
5457 dma_unmap_addr(tx_buf
, mapping
),
5463 last
= tx_buf
->nr_frags
;
5464 j
= BNX2_NEXT_TX_BD(j
);
5465 for (k
= 0; k
< last
; k
++, j
= BNX2_NEXT_TX_BD(j
)) {
5466 tx_buf
= &txr
->tx_buf_ring
[BNX2_TX_RING_IDX(j
)];
5467 dma_unmap_page(&bp
->pdev
->dev
,
5468 dma_unmap_addr(tx_buf
, mapping
),
5469 skb_frag_size(&skb_shinfo(skb
)->frags
[k
]),
5474 netdev_tx_reset_queue(netdev_get_tx_queue(bp
->dev
, i
));
5479 bnx2_free_rx_skbs(struct bnx2
*bp
)
5483 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
5484 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5485 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5488 if (rxr
->rx_buf_ring
== NULL
)
5491 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
5492 struct bnx2_sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
5493 u8
*data
= rx_buf
->data
;
5498 dma_unmap_single(&bp
->pdev
->dev
,
5499 dma_unmap_addr(rx_buf
, mapping
),
5500 bp
->rx_buf_use_size
,
5501 PCI_DMA_FROMDEVICE
);
5503 rx_buf
->data
= NULL
;
5507 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5508 bnx2_free_rx_page(bp
, rxr
, j
);
5513 bnx2_free_skbs(struct bnx2
*bp
)
5515 bnx2_free_tx_skbs(bp
);
5516 bnx2_free_rx_skbs(bp
);
5520 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5524 rc
= bnx2_reset_chip(bp
, reset_code
);
5529 if ((rc
= bnx2_init_chip(bp
)) != 0)
5532 bnx2_init_all_rings(bp
);
5537 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5541 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5544 spin_lock_bh(&bp
->phy_lock
);
5545 bnx2_init_phy(bp
, reset_phy
);
5547 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5548 bnx2_remote_phy_event(bp
);
5549 spin_unlock_bh(&bp
->phy_lock
);
5554 bnx2_shutdown_chip(struct bnx2
*bp
)
5558 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
5559 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5561 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5563 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5565 return bnx2_reset_chip(bp
, reset_code
);
5569 bnx2_test_registers(struct bnx2
*bp
)
5573 static const struct {
5576 #define BNX2_FL_NOT_5709 1
5580 { 0x006c, 0, 0x00000000, 0x0000003f },
5581 { 0x0090, 0, 0xffffffff, 0x00000000 },
5582 { 0x0094, 0, 0x00000000, 0x00000000 },
5584 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5585 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5586 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5587 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5588 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5589 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5590 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5591 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5592 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5594 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5595 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5596 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5597 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5598 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5599 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5601 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5602 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5603 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5605 { 0x1000, 0, 0x00000000, 0x00000001 },
5606 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5608 { 0x1408, 0, 0x01c00800, 0x00000000 },
5609 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5610 { 0x14a8, 0, 0x00000000, 0x000001ff },
5611 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5612 { 0x14b0, 0, 0x00000002, 0x00000001 },
5613 { 0x14b8, 0, 0x00000000, 0x00000000 },
5614 { 0x14c0, 0, 0x00000000, 0x00000009 },
5615 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5616 { 0x14cc, 0, 0x00000000, 0x00000001 },
5617 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5619 { 0x1800, 0, 0x00000000, 0x00000001 },
5620 { 0x1804, 0, 0x00000000, 0x00000003 },
5622 { 0x2800, 0, 0x00000000, 0x00000001 },
5623 { 0x2804, 0, 0x00000000, 0x00003f01 },
5624 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5625 { 0x2810, 0, 0xffff0000, 0x00000000 },
5626 { 0x2814, 0, 0xffff0000, 0x00000000 },
5627 { 0x2818, 0, 0xffff0000, 0x00000000 },
5628 { 0x281c, 0, 0xffff0000, 0x00000000 },
5629 { 0x2834, 0, 0xffffffff, 0x00000000 },
5630 { 0x2840, 0, 0x00000000, 0xffffffff },
5631 { 0x2844, 0, 0x00000000, 0xffffffff },
5632 { 0x2848, 0, 0xffffffff, 0x00000000 },
5633 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5635 { 0x2c00, 0, 0x00000000, 0x00000011 },
5636 { 0x2c04, 0, 0x00000000, 0x00030007 },
5638 { 0x3c00, 0, 0x00000000, 0x00000001 },
5639 { 0x3c04, 0, 0x00000000, 0x00070000 },
5640 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5641 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5642 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5643 { 0x3c14, 0, 0x00000000, 0xffffffff },
5644 { 0x3c18, 0, 0x00000000, 0xffffffff },
5645 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5646 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5648 { 0x5004, 0, 0x00000000, 0x0000007f },
5649 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5651 { 0x5c00, 0, 0x00000000, 0x00000001 },
5652 { 0x5c04, 0, 0x00000000, 0x0003000f },
5653 { 0x5c08, 0, 0x00000003, 0x00000000 },
5654 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5655 { 0x5c10, 0, 0x00000000, 0xffffffff },
5656 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5657 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5658 { 0x5c88, 0, 0x00000000, 0x00077373 },
5659 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5661 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5662 { 0x680c, 0, 0xffffffff, 0x00000000 },
5663 { 0x6810, 0, 0xffffffff, 0x00000000 },
5664 { 0x6814, 0, 0xffffffff, 0x00000000 },
5665 { 0x6818, 0, 0xffffffff, 0x00000000 },
5666 { 0x681c, 0, 0xffffffff, 0x00000000 },
5667 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5668 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5669 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5670 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5671 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5672 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5673 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5674 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5675 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5676 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5677 { 0x684c, 0, 0xffffffff, 0x00000000 },
5678 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5679 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5680 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5681 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5682 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5683 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5685 { 0xffff, 0, 0x00000000, 0x00000000 },
5690 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
5693 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5694 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5695 u16 flags
= reg_tbl
[i
].flags
;
5697 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5700 offset
= (u32
) reg_tbl
[i
].offset
;
5701 rw_mask
= reg_tbl
[i
].rw_mask
;
5702 ro_mask
= reg_tbl
[i
].ro_mask
;
5704 save_val
= readl(bp
->regview
+ offset
);
5706 writel(0, bp
->regview
+ offset
);
5708 val
= readl(bp
->regview
+ offset
);
5709 if ((val
& rw_mask
) != 0) {
5713 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5717 writel(0xffffffff, bp
->regview
+ offset
);
5719 val
= readl(bp
->regview
+ offset
);
5720 if ((val
& rw_mask
) != rw_mask
) {
5724 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5728 writel(save_val
, bp
->regview
+ offset
);
5732 writel(save_val
, bp
->regview
+ offset
);
5740 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5742 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5743 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5746 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5749 for (offset
= 0; offset
< size
; offset
+= 4) {
5751 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5753 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5763 bnx2_test_memory(struct bnx2
*bp
)
5767 static struct mem_entry
{
5770 } mem_tbl_5706
[] = {
5771 { 0x60000, 0x4000 },
5772 { 0xa0000, 0x3000 },
5773 { 0xe0000, 0x4000 },
5774 { 0x120000, 0x4000 },
5775 { 0x1a0000, 0x4000 },
5776 { 0x160000, 0x4000 },
5780 { 0x60000, 0x4000 },
5781 { 0xa0000, 0x3000 },
5782 { 0xe0000, 0x4000 },
5783 { 0x120000, 0x4000 },
5784 { 0x1a0000, 0x4000 },
5787 struct mem_entry
*mem_tbl
;
5789 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
5790 mem_tbl
= mem_tbl_5709
;
5792 mem_tbl
= mem_tbl_5706
;
5794 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5795 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5796 mem_tbl
[i
].len
)) != 0) {
5804 #define BNX2_MAC_LOOPBACK 0
5805 #define BNX2_PHY_LOOPBACK 1
5808 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5810 unsigned int pkt_size
, num_pkts
, i
;
5811 struct sk_buff
*skb
;
5813 unsigned char *packet
;
5814 u16 rx_start_idx
, rx_idx
;
5816 struct bnx2_tx_bd
*txbd
;
5817 struct bnx2_sw_bd
*rx_buf
;
5818 struct l2_fhdr
*rx_hdr
;
5820 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5821 struct bnx2_tx_ring_info
*txr
;
5822 struct bnx2_rx_ring_info
*rxr
;
5826 txr
= &tx_napi
->tx_ring
;
5827 rxr
= &bnapi
->rx_ring
;
5828 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5829 bp
->loopback
= MAC_LOOPBACK
;
5830 bnx2_set_mac_loopback(bp
);
5832 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5833 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5836 bp
->loopback
= PHY_LOOPBACK
;
5837 bnx2_set_phy_loopback(bp
);
5842 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5843 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5846 packet
= skb_put(skb
, pkt_size
);
5847 memcpy(packet
, bp
->dev
->dev_addr
, ETH_ALEN
);
5848 memset(packet
+ ETH_ALEN
, 0x0, 8);
5849 for (i
= 14; i
< pkt_size
; i
++)
5850 packet
[i
] = (unsigned char) (i
& 0xff);
5852 map
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, pkt_size
,
5854 if (dma_mapping_error(&bp
->pdev
->dev
, map
)) {
5859 BNX2_WR(bp
, BNX2_HC_COMMAND
,
5860 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5862 BNX2_RD(bp
, BNX2_HC_COMMAND
);
5865 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5869 txbd
= &txr
->tx_desc_ring
[BNX2_TX_RING_IDX(txr
->tx_prod
)];
5871 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5872 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5873 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5874 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5877 txr
->tx_prod
= BNX2_NEXT_TX_BD(txr
->tx_prod
);
5878 txr
->tx_prod_bseq
+= pkt_size
;
5880 BNX2_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5881 BNX2_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5885 BNX2_WR(bp
, BNX2_HC_COMMAND
,
5886 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5888 BNX2_RD(bp
, BNX2_HC_COMMAND
);
5892 dma_unmap_single(&bp
->pdev
->dev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
5895 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5896 goto loopback_test_done
;
5898 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5899 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5900 goto loopback_test_done
;
5903 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5904 data
= rx_buf
->data
;
5906 rx_hdr
= get_l2_fhdr(data
);
5907 data
= (u8
*)rx_hdr
+ BNX2_RX_OFFSET
;
5909 dma_sync_single_for_cpu(&bp
->pdev
->dev
,
5910 dma_unmap_addr(rx_buf
, mapping
),
5911 bp
->rx_buf_use_size
, PCI_DMA_FROMDEVICE
);
5913 if (rx_hdr
->l2_fhdr_status
&
5914 (L2_FHDR_ERRORS_BAD_CRC
|
5915 L2_FHDR_ERRORS_PHY_DECODE
|
5916 L2_FHDR_ERRORS_ALIGNMENT
|
5917 L2_FHDR_ERRORS_TOO_SHORT
|
5918 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5920 goto loopback_test_done
;
5923 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5924 goto loopback_test_done
;
5927 for (i
= 14; i
< pkt_size
; i
++) {
5928 if (*(data
+ i
) != (unsigned char) (i
& 0xff)) {
5929 goto loopback_test_done
;
5940 #define BNX2_MAC_LOOPBACK_FAILED 1
5941 #define BNX2_PHY_LOOPBACK_FAILED 2
5942 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5943 BNX2_PHY_LOOPBACK_FAILED)
5946 bnx2_test_loopback(struct bnx2
*bp
)
5950 if (!netif_running(bp
->dev
))
5951 return BNX2_LOOPBACK_FAILED
;
5953 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5954 spin_lock_bh(&bp
->phy_lock
);
5955 bnx2_init_phy(bp
, 1);
5956 spin_unlock_bh(&bp
->phy_lock
);
5957 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5958 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5959 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5960 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5964 #define NVRAM_SIZE 0x200
5965 #define CRC32_RESIDUAL 0xdebb20e3
5968 bnx2_test_nvram(struct bnx2
*bp
)
5970 __be32 buf
[NVRAM_SIZE
/ 4];
5971 u8
*data
= (u8
*) buf
;
5975 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5976 goto test_nvram_done
;
5978 magic
= be32_to_cpu(buf
[0]);
5979 if (magic
!= 0x669955aa) {
5981 goto test_nvram_done
;
5984 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5985 goto test_nvram_done
;
5987 csum
= ether_crc_le(0x100, data
);
5988 if (csum
!= CRC32_RESIDUAL
) {
5990 goto test_nvram_done
;
5993 csum
= ether_crc_le(0x100, data
+ 0x100);
5994 if (csum
!= CRC32_RESIDUAL
) {
6003 bnx2_test_link(struct bnx2
*bp
)
6007 if (!netif_running(bp
->dev
))
6010 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6015 spin_lock_bh(&bp
->phy_lock
);
6016 bnx2_enable_bmsr1(bp
);
6017 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
6018 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
6019 bnx2_disable_bmsr1(bp
);
6020 spin_unlock_bh(&bp
->phy_lock
);
6022 if (bmsr
& BMSR_LSTATUS
) {
6029 bnx2_test_intr(struct bnx2
*bp
)
6034 if (!netif_running(bp
->dev
))
6037 status_idx
= BNX2_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
6039 /* This register is not touched during run-time. */
6040 BNX2_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
6041 BNX2_RD(bp
, BNX2_HC_COMMAND
);
6043 for (i
= 0; i
< 10; i
++) {
6044 if ((BNX2_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
6050 msleep_interruptible(10);
6058 /* Determining link for parallel detection. */
6060 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
6062 u32 mode_ctl
, an_dbg
, exp
;
6064 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
6067 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
6068 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
6070 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
6073 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
6074 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
6075 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
6077 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
6080 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
6081 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
6082 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
6084 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
6091 bnx2_5706_serdes_timer(struct bnx2
*bp
)
6095 spin_lock(&bp
->phy_lock
);
6096 if (bp
->serdes_an_pending
) {
6097 bp
->serdes_an_pending
--;
6099 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6102 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6104 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6106 if (bmcr
& BMCR_ANENABLE
) {
6107 if (bnx2_5706_serdes_has_link(bp
)) {
6108 bmcr
&= ~BMCR_ANENABLE
;
6109 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
6110 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
6111 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
6115 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
6116 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
6119 bnx2_write_phy(bp
, 0x17, 0x0f01);
6120 bnx2_read_phy(bp
, 0x15, &phy2
);
6124 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6125 bmcr
|= BMCR_ANENABLE
;
6126 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
6128 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
6131 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6136 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
6137 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6138 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6140 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
6141 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
6142 bnx2_5706s_force_link_dn(bp
, 1);
6143 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
6146 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
6149 spin_unlock(&bp
->phy_lock
);
6153 bnx2_5708_serdes_timer(struct bnx2
*bp
)
6155 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
6158 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
6159 bp
->serdes_an_pending
= 0;
6163 spin_lock(&bp
->phy_lock
);
6164 if (bp
->serdes_an_pending
)
6165 bp
->serdes_an_pending
--;
6166 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6169 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6170 if (bmcr
& BMCR_ANENABLE
) {
6171 bnx2_enable_forced_2g5(bp
);
6172 bp
->current_interval
= BNX2_SERDES_FORCED_TIMEOUT
;
6174 bnx2_disable_forced_2g5(bp
);
6175 bp
->serdes_an_pending
= 2;
6176 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6180 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6182 spin_unlock(&bp
->phy_lock
);
6186 bnx2_timer(struct timer_list
*t
)
6188 struct bnx2
*bp
= from_timer(bp
, t
, timer
);
6190 if (!netif_running(bp
->dev
))
6193 if (atomic_read(&bp
->intr_sem
) != 0)
6194 goto bnx2_restart_timer
;
6196 if ((bp
->flags
& (BNX2_FLAG_USING_MSI
| BNX2_FLAG_ONE_SHOT_MSI
)) ==
6197 BNX2_FLAG_USING_MSI
)
6198 bnx2_chk_missed_msi(bp
);
6200 bnx2_send_heart_beat(bp
);
6202 bp
->stats_blk
->stat_FwRxDrop
=
6203 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
6205 /* workaround occasional corrupted counters */
6206 if ((bp
->flags
& BNX2_FLAG_BROKEN_STATS
) && bp
->stats_ticks
)
6207 BNX2_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
6208 BNX2_HC_COMMAND_STATS_NOW
);
6210 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6211 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)
6212 bnx2_5706_serdes_timer(bp
);
6214 bnx2_5708_serdes_timer(bp
);
6218 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6222 bnx2_request_irq(struct bnx2
*bp
)
6224 unsigned long flags
;
6225 struct bnx2_irq
*irq
;
6228 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
6231 flags
= IRQF_SHARED
;
6233 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6234 irq
= &bp
->irq_tbl
[i
];
6235 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
6245 __bnx2_free_irq(struct bnx2
*bp
)
6247 struct bnx2_irq
*irq
;
6250 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6251 irq
= &bp
->irq_tbl
[i
];
6253 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
6259 bnx2_free_irq(struct bnx2
*bp
)
6262 __bnx2_free_irq(bp
);
6263 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6264 pci_disable_msi(bp
->pdev
);
6265 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6266 pci_disable_msix(bp
->pdev
);
6268 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
6272 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
6275 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
6276 struct net_device
*dev
= bp
->dev
;
6277 const int len
= sizeof(bp
->irq_tbl
[0].name
);
6279 bnx2_setup_msix_tbl(bp
);
6280 BNX2_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
6281 BNX2_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
6282 BNX2_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
6284 /* Need to flush the previous three writes to ensure MSI-X
6285 * is setup properly */
6286 BNX2_RD(bp
, BNX2_PCI_MSIX_CONTROL
);
6288 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
6289 msix_ent
[i
].entry
= i
;
6290 msix_ent
[i
].vector
= 0;
6293 total_vecs
= msix_vecs
;
6297 total_vecs
= pci_enable_msix_range(bp
->pdev
, msix_ent
,
6298 BNX2_MIN_MSIX_VEC
, total_vecs
);
6302 msix_vecs
= total_vecs
;
6306 bp
->irq_nvecs
= msix_vecs
;
6307 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
6308 for (i
= 0; i
< total_vecs
; i
++) {
6309 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
6310 snprintf(bp
->irq_tbl
[i
].name
, len
, "%s-%d", dev
->name
, i
);
6311 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
6316 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
6318 int cpus
= netif_get_num_default_rss_queues();
6321 if (!bp
->num_req_rx_rings
)
6322 msix_vecs
= max(cpus
+ 1, bp
->num_req_tx_rings
);
6323 else if (!bp
->num_req_tx_rings
)
6324 msix_vecs
= max(cpus
, bp
->num_req_rx_rings
);
6326 msix_vecs
= max(bp
->num_req_rx_rings
, bp
->num_req_tx_rings
);
6328 msix_vecs
= min(msix_vecs
, RX_MAX_RINGS
);
6330 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
6331 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
6333 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6335 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
)
6336 bnx2_enable_msix(bp
, msix_vecs
);
6338 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
6339 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
6340 if (pci_enable_msi(bp
->pdev
) == 0) {
6341 bp
->flags
|= BNX2_FLAG_USING_MSI
;
6342 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
6343 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
6344 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
6346 bp
->irq_tbl
[0].handler
= bnx2_msi
;
6348 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6352 if (!bp
->num_req_tx_rings
)
6353 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
6355 bp
->num_tx_rings
= min(bp
->irq_nvecs
, bp
->num_req_tx_rings
);
6357 if (!bp
->num_req_rx_rings
)
6358 bp
->num_rx_rings
= bp
->irq_nvecs
;
6360 bp
->num_rx_rings
= min(bp
->irq_nvecs
, bp
->num_req_rx_rings
);
6362 netif_set_real_num_tx_queues(bp
->dev
, bp
->num_tx_rings
);
6364 return netif_set_real_num_rx_queues(bp
->dev
, bp
->num_rx_rings
);
6367 /* Called with rtnl_lock */
6369 bnx2_open(struct net_device
*dev
)
6371 struct bnx2
*bp
= netdev_priv(dev
);
6374 rc
= bnx2_request_firmware(bp
);
6378 netif_carrier_off(dev
);
6380 bnx2_disable_int(bp
);
6382 rc
= bnx2_setup_int_mode(bp
, disable_msi
);
6386 bnx2_napi_enable(bp
);
6387 rc
= bnx2_alloc_mem(bp
);
6391 rc
= bnx2_request_irq(bp
);
6395 rc
= bnx2_init_nic(bp
, 1);
6399 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6401 atomic_set(&bp
->intr_sem
, 0);
6403 memset(bp
->temp_stats_blk
, 0, sizeof(struct statistics_block
));
6405 bnx2_enable_int(bp
);
6407 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
6408 /* Test MSI to make sure it is working
6409 * If MSI test fails, go back to INTx mode
6411 if (bnx2_test_intr(bp
) != 0) {
6412 netdev_warn(bp
->dev
, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6414 bnx2_disable_int(bp
);
6417 bnx2_setup_int_mode(bp
, 1);
6419 rc
= bnx2_init_nic(bp
, 0);
6422 rc
= bnx2_request_irq(bp
);
6425 del_timer_sync(&bp
->timer
);
6428 bnx2_enable_int(bp
);
6431 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6432 netdev_info(dev
, "using MSI\n");
6433 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6434 netdev_info(dev
, "using MSIX\n");
6436 netif_tx_start_all_queues(dev
);
6441 bnx2_napi_disable(bp
);
6446 bnx2_release_firmware(bp
);
6451 bnx2_reset_task(struct work_struct
*work
)
6453 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
6458 if (!netif_running(bp
->dev
)) {
6463 bnx2_netif_stop(bp
, true);
6465 pci_read_config_word(bp
->pdev
, PCI_COMMAND
, &pcicmd
);
6466 if (!(pcicmd
& PCI_COMMAND_MEMORY
)) {
6467 /* in case PCI block has reset */
6468 pci_restore_state(bp
->pdev
);
6469 pci_save_state(bp
->pdev
);
6471 rc
= bnx2_init_nic(bp
, 1);
6473 netdev_err(bp
->dev
, "failed to reset NIC, closing\n");
6474 bnx2_napi_enable(bp
);
6480 atomic_set(&bp
->intr_sem
, 1);
6481 bnx2_netif_start(bp
, true);
6485 #define BNX2_FTQ_ENTRY(ftq) { __stringify(ftq##FTQ_CTL), BNX2_##ftq##FTQ_CTL }
6488 bnx2_dump_ftq(struct bnx2
*bp
)
6491 u32 reg
, bdidx
, cid
, valid
;
6492 struct net_device
*dev
= bp
->dev
;
6493 static const struct ftq_reg
{
6497 BNX2_FTQ_ENTRY(RV2P_P
),
6498 BNX2_FTQ_ENTRY(RV2P_T
),
6499 BNX2_FTQ_ENTRY(RV2P_M
),
6500 BNX2_FTQ_ENTRY(TBDR_
),
6501 BNX2_FTQ_ENTRY(TDMA_
),
6502 BNX2_FTQ_ENTRY(TXP_
),
6503 BNX2_FTQ_ENTRY(TXP_
),
6504 BNX2_FTQ_ENTRY(TPAT_
),
6505 BNX2_FTQ_ENTRY(RXP_C
),
6506 BNX2_FTQ_ENTRY(RXP_
),
6507 BNX2_FTQ_ENTRY(COM_COMXQ_
),
6508 BNX2_FTQ_ENTRY(COM_COMTQ_
),
6509 BNX2_FTQ_ENTRY(COM_COMQ_
),
6510 BNX2_FTQ_ENTRY(CP_CPQ_
),
6513 netdev_err(dev
, "<--- start FTQ dump --->\n");
6514 for (i
= 0; i
< ARRAY_SIZE(ftq_arr
); i
++)
6515 netdev_err(dev
, "%s %08x\n", ftq_arr
[i
].name
,
6516 bnx2_reg_rd_ind(bp
, ftq_arr
[i
].off
));
6518 netdev_err(dev
, "CPU states:\n");
6519 for (reg
= BNX2_TXP_CPU_MODE
; reg
<= BNX2_CP_CPU_MODE
; reg
+= 0x40000)
6520 netdev_err(dev
, "%06x mode %x state %x evt_mask %x pc %x pc %x instr %x\n",
6521 reg
, bnx2_reg_rd_ind(bp
, reg
),
6522 bnx2_reg_rd_ind(bp
, reg
+ 4),
6523 bnx2_reg_rd_ind(bp
, reg
+ 8),
6524 bnx2_reg_rd_ind(bp
, reg
+ 0x1c),
6525 bnx2_reg_rd_ind(bp
, reg
+ 0x1c),
6526 bnx2_reg_rd_ind(bp
, reg
+ 0x20));
6528 netdev_err(dev
, "<--- end FTQ dump --->\n");
6529 netdev_err(dev
, "<--- start TBDC dump --->\n");
6530 netdev_err(dev
, "TBDC free cnt: %ld\n",
6531 BNX2_RD(bp
, BNX2_TBDC_STATUS
) & BNX2_TBDC_STATUS_FREE_CNT
);
6532 netdev_err(dev
, "LINE CID BIDX CMD VALIDS\n");
6533 for (i
= 0; i
< 0x20; i
++) {
6536 BNX2_WR(bp
, BNX2_TBDC_BD_ADDR
, i
);
6537 BNX2_WR(bp
, BNX2_TBDC_CAM_OPCODE
,
6538 BNX2_TBDC_CAM_OPCODE_OPCODE_CAM_READ
);
6539 BNX2_WR(bp
, BNX2_TBDC_COMMAND
, BNX2_TBDC_COMMAND_CMD_REG_ARB
);
6540 while ((BNX2_RD(bp
, BNX2_TBDC_COMMAND
) &
6541 BNX2_TBDC_COMMAND_CMD_REG_ARB
) && j
< 100)
6544 cid
= BNX2_RD(bp
, BNX2_TBDC_CID
);
6545 bdidx
= BNX2_RD(bp
, BNX2_TBDC_BIDX
);
6546 valid
= BNX2_RD(bp
, BNX2_TBDC_CAM_OPCODE
);
6547 netdev_err(dev
, "%02x %06x %04lx %02x [%x]\n",
6548 i
, cid
, bdidx
& BNX2_TBDC_BDIDX_BDIDX
,
6549 bdidx
>> 24, (valid
>> 8) & 0x0ff);
6551 netdev_err(dev
, "<--- end TBDC dump --->\n");
6555 bnx2_dump_state(struct bnx2
*bp
)
6557 struct net_device
*dev
= bp
->dev
;
6560 pci_read_config_dword(bp
->pdev
, PCI_COMMAND
, &val1
);
6561 netdev_err(dev
, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
6562 atomic_read(&bp
->intr_sem
), val1
);
6563 pci_read_config_dword(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &val1
);
6564 pci_read_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, &val2
);
6565 netdev_err(dev
, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1
, val2
);
6566 netdev_err(dev
, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6567 BNX2_RD(bp
, BNX2_EMAC_TX_STATUS
),
6568 BNX2_RD(bp
, BNX2_EMAC_RX_STATUS
));
6569 netdev_err(dev
, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6570 BNX2_RD(bp
, BNX2_RPM_MGMT_PKT_CTRL
));
6571 netdev_err(dev
, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6572 BNX2_RD(bp
, BNX2_HC_STATS_INTERRUPT_STATUS
));
6573 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6574 netdev_err(dev
, "DEBUG: PBA[%08x]\n",
6575 BNX2_RD(bp
, BNX2_PCI_GRC_WINDOW3_BASE
));
6579 bnx2_tx_timeout(struct net_device
*dev
)
6581 struct bnx2
*bp
= netdev_priv(dev
);
6584 bnx2_dump_state(bp
);
6585 bnx2_dump_mcp_state(bp
);
6587 /* This allows the netif to be shutdown gracefully before resetting */
6588 schedule_work(&bp
->reset_task
);
6591 /* Called with netif_tx_lock.
6592 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6593 * netif_wake_queue().
6596 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
6598 struct bnx2
*bp
= netdev_priv(dev
);
6600 struct bnx2_tx_bd
*txbd
;
6601 struct bnx2_sw_tx_bd
*tx_buf
;
6602 u32 len
, vlan_tag_flags
, last_frag
, mss
;
6603 u16 prod
, ring_prod
;
6605 struct bnx2_napi
*bnapi
;
6606 struct bnx2_tx_ring_info
*txr
;
6607 struct netdev_queue
*txq
;
6609 /* Determine which tx ring we will be placed on */
6610 i
= skb_get_queue_mapping(skb
);
6611 bnapi
= &bp
->bnx2_napi
[i
];
6612 txr
= &bnapi
->tx_ring
;
6613 txq
= netdev_get_tx_queue(dev
, i
);
6615 if (unlikely(bnx2_tx_avail(bp
, txr
) <
6616 (skb_shinfo(skb
)->nr_frags
+ 1))) {
6617 netif_tx_stop_queue(txq
);
6618 netdev_err(dev
, "BUG! Tx ring full when queue awake!\n");
6620 return NETDEV_TX_BUSY
;
6622 len
= skb_headlen(skb
);
6623 prod
= txr
->tx_prod
;
6624 ring_prod
= BNX2_TX_RING_IDX(prod
);
6627 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6628 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
6631 if (skb_vlan_tag_present(skb
)) {
6633 (TX_BD_FLAGS_VLAN_TAG
| (skb_vlan_tag_get(skb
) << 16));
6636 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
6640 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
6642 tcp_opt_len
= tcp_optlen(skb
);
6644 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
6645 u32 tcp_off
= skb_transport_offset(skb
) -
6646 sizeof(struct ipv6hdr
) - ETH_HLEN
;
6648 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
6649 TX_BD_FLAGS_SW_FLAGS
;
6650 if (likely(tcp_off
== 0))
6651 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
6654 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
6655 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
6656 ((tcp_off
& 0x10) <<
6657 TX_BD_FLAGS_TCP6_OFF4_SHL
);
6658 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
6662 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6663 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6664 (tcp_opt_len
>> 2)) << 8;
6670 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
6671 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
6672 dev_kfree_skb_any(skb
);
6673 return NETDEV_TX_OK
;
6676 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6678 dma_unmap_addr_set(tx_buf
, mapping
, mapping
);
6680 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6682 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6683 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6684 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6685 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6687 last_frag
= skb_shinfo(skb
)->nr_frags
;
6688 tx_buf
->nr_frags
= last_frag
;
6689 tx_buf
->is_gso
= skb_is_gso(skb
);
6691 for (i
= 0; i
< last_frag
; i
++) {
6692 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6694 prod
= BNX2_NEXT_TX_BD(prod
);
6695 ring_prod
= BNX2_TX_RING_IDX(prod
);
6696 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6698 len
= skb_frag_size(frag
);
6699 mapping
= skb_frag_dma_map(&bp
->pdev
->dev
, frag
, 0, len
,
6701 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
))
6703 dma_unmap_addr_set(&txr
->tx_buf_ring
[ring_prod
], mapping
,
6706 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6707 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6708 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6709 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6712 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6714 /* Sync BD data before updating TX mailbox */
6717 netdev_tx_sent_queue(txq
, skb
->len
);
6719 prod
= BNX2_NEXT_TX_BD(prod
);
6720 txr
->tx_prod_bseq
+= skb
->len
;
6722 BNX2_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6723 BNX2_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6727 txr
->tx_prod
= prod
;
6729 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6730 netif_tx_stop_queue(txq
);
6732 /* netif_tx_stop_queue() must be done before checking
6733 * tx index in bnx2_tx_avail() below, because in
6734 * bnx2_tx_int(), we update tx index before checking for
6735 * netif_tx_queue_stopped().
6738 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6739 netif_tx_wake_queue(txq
);
6742 return NETDEV_TX_OK
;
6744 /* save value of frag that failed */
6747 /* start back at beginning and unmap skb */
6748 prod
= txr
->tx_prod
;
6749 ring_prod
= BNX2_TX_RING_IDX(prod
);
6750 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6752 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6753 skb_headlen(skb
), PCI_DMA_TODEVICE
);
6755 /* unmap remaining mapped pages */
6756 for (i
= 0; i
< last_frag
; i
++) {
6757 prod
= BNX2_NEXT_TX_BD(prod
);
6758 ring_prod
= BNX2_TX_RING_IDX(prod
);
6759 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6760 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6761 skb_frag_size(&skb_shinfo(skb
)->frags
[i
]),
6765 dev_kfree_skb_any(skb
);
6766 return NETDEV_TX_OK
;
6769 /* Called with rtnl_lock */
6771 bnx2_close(struct net_device
*dev
)
6773 struct bnx2
*bp
= netdev_priv(dev
);
6775 bnx2_disable_int_sync(bp
);
6776 bnx2_napi_disable(bp
);
6777 netif_tx_disable(dev
);
6778 del_timer_sync(&bp
->timer
);
6779 bnx2_shutdown_chip(bp
);
6785 netif_carrier_off(bp
->dev
);
6790 bnx2_save_stats(struct bnx2
*bp
)
6792 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
6793 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
6796 /* The 1st 10 counters are 64-bit counters */
6797 for (i
= 0; i
< 20; i
+= 2) {
6801 hi
= temp_stats
[i
] + hw_stats
[i
];
6802 lo
= (u64
) temp_stats
[i
+ 1] + (u64
) hw_stats
[i
+ 1];
6803 if (lo
> 0xffffffff)
6806 temp_stats
[i
+ 1] = lo
& 0xffffffff;
6809 for ( ; i
< sizeof(struct statistics_block
) / 4; i
++)
6810 temp_stats
[i
] += hw_stats
[i
];
6813 #define GET_64BIT_NET_STATS64(ctr) \
6814 (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
6816 #define GET_64BIT_NET_STATS(ctr) \
6817 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6818 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6820 #define GET_32BIT_NET_STATS(ctr) \
6821 (unsigned long) (bp->stats_blk->ctr + \
6822 bp->temp_stats_blk->ctr)
6825 bnx2_get_stats64(struct net_device
*dev
, struct rtnl_link_stats64
*net_stats
)
6827 struct bnx2
*bp
= netdev_priv(dev
);
6829 if (bp
->stats_blk
== NULL
)
6832 net_stats
->rx_packets
=
6833 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts
) +
6834 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
) +
6835 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts
);
6837 net_stats
->tx_packets
=
6838 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts
) +
6839 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts
) +
6840 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts
);
6842 net_stats
->rx_bytes
=
6843 GET_64BIT_NET_STATS(stat_IfHCInOctets
);
6845 net_stats
->tx_bytes
=
6846 GET_64BIT_NET_STATS(stat_IfHCOutOctets
);
6848 net_stats
->multicast
=
6849 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
);
6851 net_stats
->collisions
=
6852 GET_32BIT_NET_STATS(stat_EtherStatsCollisions
);
6854 net_stats
->rx_length_errors
=
6855 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts
) +
6856 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts
);
6858 net_stats
->rx_over_errors
=
6859 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6860 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
);
6862 net_stats
->rx_frame_errors
=
6863 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors
);
6865 net_stats
->rx_crc_errors
=
6866 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors
);
6868 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6869 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6870 net_stats
->rx_crc_errors
;
6872 net_stats
->tx_aborted_errors
=
6873 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions
) +
6874 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions
);
6876 if ((BNX2_CHIP(bp
) == BNX2_CHIP_5706
) ||
6877 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_A0
))
6878 net_stats
->tx_carrier_errors
= 0;
6880 net_stats
->tx_carrier_errors
=
6881 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors
);
6884 net_stats
->tx_errors
=
6885 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
) +
6886 net_stats
->tx_aborted_errors
+
6887 net_stats
->tx_carrier_errors
;
6889 net_stats
->rx_missed_errors
=
6890 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6891 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
) +
6892 GET_32BIT_NET_STATS(stat_FwRxDrop
);
6896 /* All ethtool functions called with rtnl_lock */
6899 bnx2_get_link_ksettings(struct net_device
*dev
,
6900 struct ethtool_link_ksettings
*cmd
)
6902 struct bnx2
*bp
= netdev_priv(dev
);
6903 int support_serdes
= 0, support_copper
= 0;
6904 u32 supported
, advertising
;
6906 supported
= SUPPORTED_Autoneg
;
6907 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6910 } else if (bp
->phy_port
== PORT_FIBRE
)
6915 if (support_serdes
) {
6916 supported
|= SUPPORTED_1000baseT_Full
|
6918 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6919 supported
|= SUPPORTED_2500baseX_Full
;
6921 if (support_copper
) {
6922 supported
|= SUPPORTED_10baseT_Half
|
6923 SUPPORTED_10baseT_Full
|
6924 SUPPORTED_100baseT_Half
|
6925 SUPPORTED_100baseT_Full
|
6926 SUPPORTED_1000baseT_Full
|
6930 spin_lock_bh(&bp
->phy_lock
);
6931 cmd
->base
.port
= bp
->phy_port
;
6932 advertising
= bp
->advertising
;
6934 if (bp
->autoneg
& AUTONEG_SPEED
) {
6935 cmd
->base
.autoneg
= AUTONEG_ENABLE
;
6937 cmd
->base
.autoneg
= AUTONEG_DISABLE
;
6940 if (netif_carrier_ok(dev
)) {
6941 cmd
->base
.speed
= bp
->line_speed
;
6942 cmd
->base
.duplex
= bp
->duplex
;
6943 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
)) {
6944 if (bp
->phy_flags
& BNX2_PHY_FLAG_MDIX
)
6945 cmd
->base
.eth_tp_mdix
= ETH_TP_MDI_X
;
6947 cmd
->base
.eth_tp_mdix
= ETH_TP_MDI
;
6951 cmd
->base
.speed
= SPEED_UNKNOWN
;
6952 cmd
->base
.duplex
= DUPLEX_UNKNOWN
;
6954 spin_unlock_bh(&bp
->phy_lock
);
6956 cmd
->base
.phy_address
= bp
->phy_addr
;
6958 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
6960 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.advertising
,
6967 bnx2_set_link_ksettings(struct net_device
*dev
,
6968 const struct ethtool_link_ksettings
*cmd
)
6970 struct bnx2
*bp
= netdev_priv(dev
);
6971 u8 autoneg
= bp
->autoneg
;
6972 u8 req_duplex
= bp
->req_duplex
;
6973 u16 req_line_speed
= bp
->req_line_speed
;
6974 u32 advertising
= bp
->advertising
;
6977 spin_lock_bh(&bp
->phy_lock
);
6979 if (cmd
->base
.port
!= PORT_TP
&& cmd
->base
.port
!= PORT_FIBRE
)
6980 goto err_out_unlock
;
6982 if (cmd
->base
.port
!= bp
->phy_port
&&
6983 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6984 goto err_out_unlock
;
6986 /* If device is down, we can store the settings only if the user
6987 * is setting the currently active port.
6989 if (!netif_running(dev
) && cmd
->base
.port
!= bp
->phy_port
)
6990 goto err_out_unlock
;
6992 if (cmd
->base
.autoneg
== AUTONEG_ENABLE
) {
6993 autoneg
|= AUTONEG_SPEED
;
6995 ethtool_convert_link_mode_to_legacy_u32(
6996 &advertising
, cmd
->link_modes
.advertising
);
6998 if (cmd
->base
.port
== PORT_TP
) {
6999 advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
7001 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
7003 advertising
&= ETHTOOL_ALL_FIBRE_SPEED
;
7005 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
7007 advertising
|= ADVERTISED_Autoneg
;
7010 u32 speed
= cmd
->base
.speed
;
7012 if (cmd
->base
.port
== PORT_FIBRE
) {
7013 if ((speed
!= SPEED_1000
&&
7014 speed
!= SPEED_2500
) ||
7015 (cmd
->base
.duplex
!= DUPLEX_FULL
))
7016 goto err_out_unlock
;
7018 if (speed
== SPEED_2500
&&
7019 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
7020 goto err_out_unlock
;
7021 } else if (speed
== SPEED_1000
|| speed
== SPEED_2500
)
7022 goto err_out_unlock
;
7024 autoneg
&= ~AUTONEG_SPEED
;
7025 req_line_speed
= speed
;
7026 req_duplex
= cmd
->base
.duplex
;
7030 bp
->autoneg
= autoneg
;
7031 bp
->advertising
= advertising
;
7032 bp
->req_line_speed
= req_line_speed
;
7033 bp
->req_duplex
= req_duplex
;
7036 /* If device is down, the new settings will be picked up when it is
7039 if (netif_running(dev
))
7040 err
= bnx2_setup_phy(bp
, cmd
->base
.port
);
7043 spin_unlock_bh(&bp
->phy_lock
);
7049 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
7051 struct bnx2
*bp
= netdev_priv(dev
);
7053 strlcpy(info
->driver
, DRV_MODULE_NAME
, sizeof(info
->driver
));
7054 strlcpy(info
->version
, DRV_MODULE_VERSION
, sizeof(info
->version
));
7055 strlcpy(info
->bus_info
, pci_name(bp
->pdev
), sizeof(info
->bus_info
));
7056 strlcpy(info
->fw_version
, bp
->fw_version
, sizeof(info
->fw_version
));
7059 #define BNX2_REGDUMP_LEN (32 * 1024)
7062 bnx2_get_regs_len(struct net_device
*dev
)
7064 return BNX2_REGDUMP_LEN
;
7068 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
7070 u32
*p
= _p
, i
, offset
;
7072 struct bnx2
*bp
= netdev_priv(dev
);
7073 static const u32 reg_boundaries
[] = {
7074 0x0000, 0x0098, 0x0400, 0x045c,
7075 0x0800, 0x0880, 0x0c00, 0x0c10,
7076 0x0c30, 0x0d08, 0x1000, 0x101c,
7077 0x1040, 0x1048, 0x1080, 0x10a4,
7078 0x1400, 0x1490, 0x1498, 0x14f0,
7079 0x1500, 0x155c, 0x1580, 0x15dc,
7080 0x1600, 0x1658, 0x1680, 0x16d8,
7081 0x1800, 0x1820, 0x1840, 0x1854,
7082 0x1880, 0x1894, 0x1900, 0x1984,
7083 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
7084 0x1c80, 0x1c94, 0x1d00, 0x1d84,
7085 0x2000, 0x2030, 0x23c0, 0x2400,
7086 0x2800, 0x2820, 0x2830, 0x2850,
7087 0x2b40, 0x2c10, 0x2fc0, 0x3058,
7088 0x3c00, 0x3c94, 0x4000, 0x4010,
7089 0x4080, 0x4090, 0x43c0, 0x4458,
7090 0x4c00, 0x4c18, 0x4c40, 0x4c54,
7091 0x4fc0, 0x5010, 0x53c0, 0x5444,
7092 0x5c00, 0x5c18, 0x5c80, 0x5c90,
7093 0x5fc0, 0x6000, 0x6400, 0x6428,
7094 0x6800, 0x6848, 0x684c, 0x6860,
7095 0x6888, 0x6910, 0x8000
7100 memset(p
, 0, BNX2_REGDUMP_LEN
);
7102 if (!netif_running(bp
->dev
))
7106 offset
= reg_boundaries
[0];
7108 while (offset
< BNX2_REGDUMP_LEN
) {
7109 *p
++ = BNX2_RD(bp
, offset
);
7111 if (offset
== reg_boundaries
[i
+ 1]) {
7112 offset
= reg_boundaries
[i
+ 2];
7113 p
= (u32
*) (orig_p
+ offset
);
7120 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
7122 struct bnx2
*bp
= netdev_priv(dev
);
7124 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
7129 wol
->supported
= WAKE_MAGIC
;
7131 wol
->wolopts
= WAKE_MAGIC
;
7135 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
7139 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
7141 struct bnx2
*bp
= netdev_priv(dev
);
7143 if (wol
->wolopts
& ~WAKE_MAGIC
)
7146 if (wol
->wolopts
& WAKE_MAGIC
) {
7147 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
7156 device_set_wakeup_enable(&bp
->pdev
->dev
, bp
->wol
);
7162 bnx2_nway_reset(struct net_device
*dev
)
7164 struct bnx2
*bp
= netdev_priv(dev
);
7167 if (!netif_running(dev
))
7170 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
7174 spin_lock_bh(&bp
->phy_lock
);
7176 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
7179 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
7180 spin_unlock_bh(&bp
->phy_lock
);
7184 /* Force a link down visible on the other side */
7185 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
7186 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
7187 spin_unlock_bh(&bp
->phy_lock
);
7191 spin_lock_bh(&bp
->phy_lock
);
7193 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
7194 bp
->serdes_an_pending
= 1;
7195 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
7198 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
7199 bmcr
&= ~BMCR_LOOPBACK
;
7200 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
7202 spin_unlock_bh(&bp
->phy_lock
);
7208 bnx2_get_link(struct net_device
*dev
)
7210 struct bnx2
*bp
= netdev_priv(dev
);
7216 bnx2_get_eeprom_len(struct net_device
*dev
)
7218 struct bnx2
*bp
= netdev_priv(dev
);
7220 if (bp
->flash_info
== NULL
)
7223 return (int) bp
->flash_size
;
7227 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
7230 struct bnx2
*bp
= netdev_priv(dev
);
7233 /* parameters already validated in ethtool_get_eeprom */
7235 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7241 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
7244 struct bnx2
*bp
= netdev_priv(dev
);
7247 /* parameters already validated in ethtool_set_eeprom */
7249 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7255 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7257 struct bnx2
*bp
= netdev_priv(dev
);
7259 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
7261 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
7262 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
7263 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
7264 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
7266 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
7267 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
7268 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
7269 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
7271 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
7277 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7279 struct bnx2
*bp
= netdev_priv(dev
);
7281 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
7282 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
7284 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
7285 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
7287 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
7288 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
7290 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
7291 if (bp
->rx_quick_cons_trip_int
> 0xff)
7292 bp
->rx_quick_cons_trip_int
= 0xff;
7294 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
7295 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
7297 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
7298 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
7300 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
7301 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
7303 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
7304 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
7307 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
7308 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
) {
7309 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
7310 bp
->stats_ticks
= USEC_PER_SEC
;
7312 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
7313 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7314 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7316 if (netif_running(bp
->dev
)) {
7317 bnx2_netif_stop(bp
, true);
7318 bnx2_init_nic(bp
, 0);
7319 bnx2_netif_start(bp
, true);
7326 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7328 struct bnx2
*bp
= netdev_priv(dev
);
7330 ering
->rx_max_pending
= BNX2_MAX_TOTAL_RX_DESC_CNT
;
7331 ering
->rx_jumbo_max_pending
= BNX2_MAX_TOTAL_RX_PG_DESC_CNT
;
7333 ering
->rx_pending
= bp
->rx_ring_size
;
7334 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
7336 ering
->tx_max_pending
= BNX2_MAX_TX_DESC_CNT
;
7337 ering
->tx_pending
= bp
->tx_ring_size
;
7341 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
, bool reset_irq
)
7343 if (netif_running(bp
->dev
)) {
7344 /* Reset will erase chipset stats; save them */
7345 bnx2_save_stats(bp
);
7347 bnx2_netif_stop(bp
, true);
7348 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
7353 __bnx2_free_irq(bp
);
7359 bnx2_set_rx_ring_size(bp
, rx
);
7360 bp
->tx_ring_size
= tx
;
7362 if (netif_running(bp
->dev
)) {
7366 rc
= bnx2_setup_int_mode(bp
, disable_msi
);
7371 rc
= bnx2_alloc_mem(bp
);
7374 rc
= bnx2_request_irq(bp
);
7377 rc
= bnx2_init_nic(bp
, 0);
7380 bnx2_napi_enable(bp
);
7385 mutex_lock(&bp
->cnic_lock
);
7386 /* Let cnic know about the new status block. */
7387 if (bp
->cnic_eth_dev
.drv_state
& CNIC_DRV_STATE_REGD
)
7388 bnx2_setup_cnic_irq_info(bp
);
7389 mutex_unlock(&bp
->cnic_lock
);
7391 bnx2_netif_start(bp
, true);
7397 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7399 struct bnx2
*bp
= netdev_priv(dev
);
7402 if ((ering
->rx_pending
> BNX2_MAX_TOTAL_RX_DESC_CNT
) ||
7403 (ering
->tx_pending
> BNX2_MAX_TX_DESC_CNT
) ||
7404 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
7408 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
,
7414 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7416 struct bnx2
*bp
= netdev_priv(dev
);
7418 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
7419 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
7420 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
7424 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7426 struct bnx2
*bp
= netdev_priv(dev
);
7428 bp
->req_flow_ctrl
= 0;
7429 if (epause
->rx_pause
)
7430 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
7431 if (epause
->tx_pause
)
7432 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
7434 if (epause
->autoneg
) {
7435 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
7438 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
7441 if (netif_running(dev
)) {
7442 spin_lock_bh(&bp
->phy_lock
);
7443 bnx2_setup_phy(bp
, bp
->phy_port
);
7444 spin_unlock_bh(&bp
->phy_lock
);
7451 char string
[ETH_GSTRING_LEN
];
7452 } bnx2_stats_str_arr
[] = {
7454 { "rx_error_bytes" },
7456 { "tx_error_bytes" },
7457 { "rx_ucast_packets" },
7458 { "rx_mcast_packets" },
7459 { "rx_bcast_packets" },
7460 { "tx_ucast_packets" },
7461 { "tx_mcast_packets" },
7462 { "tx_bcast_packets" },
7463 { "tx_mac_errors" },
7464 { "tx_carrier_errors" },
7465 { "rx_crc_errors" },
7466 { "rx_align_errors" },
7467 { "tx_single_collisions" },
7468 { "tx_multi_collisions" },
7470 { "tx_excess_collisions" },
7471 { "tx_late_collisions" },
7472 { "tx_total_collisions" },
7475 { "rx_undersize_packets" },
7476 { "rx_oversize_packets" },
7477 { "rx_64_byte_packets" },
7478 { "rx_65_to_127_byte_packets" },
7479 { "rx_128_to_255_byte_packets" },
7480 { "rx_256_to_511_byte_packets" },
7481 { "rx_512_to_1023_byte_packets" },
7482 { "rx_1024_to_1522_byte_packets" },
7483 { "rx_1523_to_9022_byte_packets" },
7484 { "tx_64_byte_packets" },
7485 { "tx_65_to_127_byte_packets" },
7486 { "tx_128_to_255_byte_packets" },
7487 { "tx_256_to_511_byte_packets" },
7488 { "tx_512_to_1023_byte_packets" },
7489 { "tx_1024_to_1522_byte_packets" },
7490 { "tx_1523_to_9022_byte_packets" },
7491 { "rx_xon_frames" },
7492 { "rx_xoff_frames" },
7493 { "tx_xon_frames" },
7494 { "tx_xoff_frames" },
7495 { "rx_mac_ctrl_frames" },
7496 { "rx_filtered_packets" },
7497 { "rx_ftq_discards" },
7499 { "rx_fw_discards" },
7502 #define BNX2_NUM_STATS ARRAY_SIZE(bnx2_stats_str_arr)
7504 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7506 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
7507 STATS_OFFSET32(stat_IfHCInOctets_hi
),
7508 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
7509 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
7510 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
7511 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
7512 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
7513 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
7514 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
7515 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
7516 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
7517 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
7518 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
7519 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
7520 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
7521 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
7522 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
7523 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
7524 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
7525 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
7526 STATS_OFFSET32(stat_EtherStatsCollisions
),
7527 STATS_OFFSET32(stat_EtherStatsFragments
),
7528 STATS_OFFSET32(stat_EtherStatsJabbers
),
7529 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
7530 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
7531 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
7532 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
7533 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
7534 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
7535 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
7536 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
7537 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
7538 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
7539 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
7540 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
7541 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
7542 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
7543 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
7544 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
7545 STATS_OFFSET32(stat_XonPauseFramesReceived
),
7546 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
7547 STATS_OFFSET32(stat_OutXonSent
),
7548 STATS_OFFSET32(stat_OutXoffSent
),
7549 STATS_OFFSET32(stat_MacControlFramesReceived
),
7550 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
7551 STATS_OFFSET32(stat_IfInFTQDiscards
),
7552 STATS_OFFSET32(stat_IfInMBUFDiscards
),
7553 STATS_OFFSET32(stat_FwRxDrop
),
7556 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7557 * skipped because of errata.
7559 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
7560 8,0,8,8,8,8,8,8,8,8,
7561 4,0,4,4,4,4,4,4,4,4,
7562 4,4,4,4,4,4,4,4,4,4,
7563 4,4,4,4,4,4,4,4,4,4,
7567 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
7568 8,0,8,8,8,8,8,8,8,8,
7569 4,4,4,4,4,4,4,4,4,4,
7570 4,4,4,4,4,4,4,4,4,4,
7571 4,4,4,4,4,4,4,4,4,4,
7575 #define BNX2_NUM_TESTS 6
7578 char string
[ETH_GSTRING_LEN
];
7579 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
7580 { "register_test (offline)" },
7581 { "memory_test (offline)" },
7582 { "loopback_test (offline)" },
7583 { "nvram_test (online)" },
7584 { "interrupt_test (online)" },
7585 { "link_test (online)" },
7589 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
7593 return BNX2_NUM_TESTS
;
7595 return BNX2_NUM_STATS
;
7602 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
7604 struct bnx2
*bp
= netdev_priv(dev
);
7606 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
7607 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
7610 bnx2_netif_stop(bp
, true);
7611 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
7614 if (bnx2_test_registers(bp
) != 0) {
7616 etest
->flags
|= ETH_TEST_FL_FAILED
;
7618 if (bnx2_test_memory(bp
) != 0) {
7620 etest
->flags
|= ETH_TEST_FL_FAILED
;
7622 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
7623 etest
->flags
|= ETH_TEST_FL_FAILED
;
7625 if (!netif_running(bp
->dev
))
7626 bnx2_shutdown_chip(bp
);
7628 bnx2_init_nic(bp
, 1);
7629 bnx2_netif_start(bp
, true);
7632 /* wait for link up */
7633 for (i
= 0; i
< 7; i
++) {
7636 msleep_interruptible(1000);
7640 if (bnx2_test_nvram(bp
) != 0) {
7642 etest
->flags
|= ETH_TEST_FL_FAILED
;
7644 if (bnx2_test_intr(bp
) != 0) {
7646 etest
->flags
|= ETH_TEST_FL_FAILED
;
7649 if (bnx2_test_link(bp
) != 0) {
7651 etest
->flags
|= ETH_TEST_FL_FAILED
;
7657 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
7659 switch (stringset
) {
7661 memcpy(buf
, bnx2_stats_str_arr
,
7662 sizeof(bnx2_stats_str_arr
));
7665 memcpy(buf
, bnx2_tests_str_arr
,
7666 sizeof(bnx2_tests_str_arr
));
7672 bnx2_get_ethtool_stats(struct net_device
*dev
,
7673 struct ethtool_stats
*stats
, u64
*buf
)
7675 struct bnx2
*bp
= netdev_priv(dev
);
7677 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
7678 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
7679 u8
*stats_len_arr
= NULL
;
7681 if (hw_stats
== NULL
) {
7682 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
7686 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) ||
7687 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
) ||
7688 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A2
) ||
7689 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_A0
))
7690 stats_len_arr
= bnx2_5706_stats_len_arr
;
7692 stats_len_arr
= bnx2_5708_stats_len_arr
;
7694 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
7695 unsigned long offset
;
7697 if (stats_len_arr
[i
] == 0) {
7698 /* skip this counter */
7703 offset
= bnx2_stats_offset_arr
[i
];
7704 if (stats_len_arr
[i
] == 4) {
7705 /* 4-byte counter */
7706 buf
[i
] = (u64
) *(hw_stats
+ offset
) +
7707 *(temp_stats
+ offset
);
7710 /* 8-byte counter */
7711 buf
[i
] = (((u64
) *(hw_stats
+ offset
)) << 32) +
7712 *(hw_stats
+ offset
+ 1) +
7713 (((u64
) *(temp_stats
+ offset
)) << 32) +
7714 *(temp_stats
+ offset
+ 1);
7719 bnx2_set_phys_id(struct net_device
*dev
, enum ethtool_phys_id_state state
)
7721 struct bnx2
*bp
= netdev_priv(dev
);
7724 case ETHTOOL_ID_ACTIVE
:
7725 bp
->leds_save
= BNX2_RD(bp
, BNX2_MISC_CFG
);
7726 BNX2_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7727 return 1; /* cycle on/off once per second */
7730 BNX2_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7731 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7732 BNX2_EMAC_LED_100MB_OVERRIDE
|
7733 BNX2_EMAC_LED_10MB_OVERRIDE
|
7734 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7735 BNX2_EMAC_LED_TRAFFIC
);
7738 case ETHTOOL_ID_OFF
:
7739 BNX2_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7742 case ETHTOOL_ID_INACTIVE
:
7743 BNX2_WR(bp
, BNX2_EMAC_LED
, 0);
7744 BNX2_WR(bp
, BNX2_MISC_CFG
, bp
->leds_save
);
7752 bnx2_set_features(struct net_device
*dev
, netdev_features_t features
)
7754 struct bnx2
*bp
= netdev_priv(dev
);
7756 /* TSO with VLAN tag won't work with current firmware */
7757 if (features
& NETIF_F_HW_VLAN_CTAG_TX
)
7758 dev
->vlan_features
|= (dev
->hw_features
& NETIF_F_ALL_TSO
);
7760 dev
->vlan_features
&= ~NETIF_F_ALL_TSO
;
7762 if ((!!(features
& NETIF_F_HW_VLAN_CTAG_RX
) !=
7763 !!(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
)) &&
7764 netif_running(dev
)) {
7765 bnx2_netif_stop(bp
, false);
7766 dev
->features
= features
;
7767 bnx2_set_rx_mode(dev
);
7768 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
7769 bnx2_netif_start(bp
, false);
7776 static void bnx2_get_channels(struct net_device
*dev
,
7777 struct ethtool_channels
*channels
)
7779 struct bnx2
*bp
= netdev_priv(dev
);
7780 u32 max_rx_rings
= 1;
7781 u32 max_tx_rings
= 1;
7783 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !disable_msi
) {
7784 max_rx_rings
= RX_MAX_RINGS
;
7785 max_tx_rings
= TX_MAX_RINGS
;
7788 channels
->max_rx
= max_rx_rings
;
7789 channels
->max_tx
= max_tx_rings
;
7790 channels
->max_other
= 0;
7791 channels
->max_combined
= 0;
7792 channels
->rx_count
= bp
->num_rx_rings
;
7793 channels
->tx_count
= bp
->num_tx_rings
;
7794 channels
->other_count
= 0;
7795 channels
->combined_count
= 0;
7798 static int bnx2_set_channels(struct net_device
*dev
,
7799 struct ethtool_channels
*channels
)
7801 struct bnx2
*bp
= netdev_priv(dev
);
7802 u32 max_rx_rings
= 1;
7803 u32 max_tx_rings
= 1;
7806 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !disable_msi
) {
7807 max_rx_rings
= RX_MAX_RINGS
;
7808 max_tx_rings
= TX_MAX_RINGS
;
7810 if (channels
->rx_count
> max_rx_rings
||
7811 channels
->tx_count
> max_tx_rings
)
7814 bp
->num_req_rx_rings
= channels
->rx_count
;
7815 bp
->num_req_tx_rings
= channels
->tx_count
;
7817 if (netif_running(dev
))
7818 rc
= bnx2_change_ring_size(bp
, bp
->rx_ring_size
,
7819 bp
->tx_ring_size
, true);
7824 static const struct ethtool_ops bnx2_ethtool_ops
= {
7825 .get_drvinfo
= bnx2_get_drvinfo
,
7826 .get_regs_len
= bnx2_get_regs_len
,
7827 .get_regs
= bnx2_get_regs
,
7828 .get_wol
= bnx2_get_wol
,
7829 .set_wol
= bnx2_set_wol
,
7830 .nway_reset
= bnx2_nway_reset
,
7831 .get_link
= bnx2_get_link
,
7832 .get_eeprom_len
= bnx2_get_eeprom_len
,
7833 .get_eeprom
= bnx2_get_eeprom
,
7834 .set_eeprom
= bnx2_set_eeprom
,
7835 .get_coalesce
= bnx2_get_coalesce
,
7836 .set_coalesce
= bnx2_set_coalesce
,
7837 .get_ringparam
= bnx2_get_ringparam
,
7838 .set_ringparam
= bnx2_set_ringparam
,
7839 .get_pauseparam
= bnx2_get_pauseparam
,
7840 .set_pauseparam
= bnx2_set_pauseparam
,
7841 .self_test
= bnx2_self_test
,
7842 .get_strings
= bnx2_get_strings
,
7843 .set_phys_id
= bnx2_set_phys_id
,
7844 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7845 .get_sset_count
= bnx2_get_sset_count
,
7846 .get_channels
= bnx2_get_channels
,
7847 .set_channels
= bnx2_set_channels
,
7848 .get_link_ksettings
= bnx2_get_link_ksettings
,
7849 .set_link_ksettings
= bnx2_set_link_ksettings
,
7852 /* Called with rtnl_lock */
7854 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7856 struct mii_ioctl_data
*data
= if_mii(ifr
);
7857 struct bnx2
*bp
= netdev_priv(dev
);
7862 data
->phy_id
= bp
->phy_addr
;
7868 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7871 if (!netif_running(dev
))
7874 spin_lock_bh(&bp
->phy_lock
);
7875 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7876 spin_unlock_bh(&bp
->phy_lock
);
7878 data
->val_out
= mii_regval
;
7884 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7887 if (!netif_running(dev
))
7890 spin_lock_bh(&bp
->phy_lock
);
7891 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7892 spin_unlock_bh(&bp
->phy_lock
);
7903 /* Called with rtnl_lock */
7905 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7907 struct sockaddr
*addr
= p
;
7908 struct bnx2
*bp
= netdev_priv(dev
);
7910 if (!is_valid_ether_addr(addr
->sa_data
))
7911 return -EADDRNOTAVAIL
;
7913 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7914 if (netif_running(dev
))
7915 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7920 /* Called with rtnl_lock */
7922 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7924 struct bnx2
*bp
= netdev_priv(dev
);
7927 return bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
,
7931 #ifdef CONFIG_NET_POLL_CONTROLLER
7933 poll_bnx2(struct net_device
*dev
)
7935 struct bnx2
*bp
= netdev_priv(dev
);
7938 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
7939 struct bnx2_irq
*irq
= &bp
->irq_tbl
[i
];
7941 disable_irq(irq
->vector
);
7942 irq
->handler(irq
->vector
, &bp
->bnx2_napi
[i
]);
7943 enable_irq(irq
->vector
);
7949 bnx2_get_5709_media(struct bnx2
*bp
)
7951 u32 val
= BNX2_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7952 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7955 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7957 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7958 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7962 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7963 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7965 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7967 if (bp
->func
== 0) {
7972 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7980 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7987 bnx2_get_pci_speed(struct bnx2
*bp
)
7991 reg
= BNX2_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7992 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7995 bp
->flags
|= BNX2_FLAG_PCIX
;
7997 clkreg
= BNX2_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
7999 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
8001 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
8002 bp
->bus_speed_mhz
= 133;
8005 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
8006 bp
->bus_speed_mhz
= 100;
8009 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
8010 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
8011 bp
->bus_speed_mhz
= 66;
8014 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
8015 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
8016 bp
->bus_speed_mhz
= 50;
8019 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
8020 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
8021 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
8022 bp
->bus_speed_mhz
= 33;
8027 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
8028 bp
->bus_speed_mhz
= 66;
8030 bp
->bus_speed_mhz
= 33;
8033 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
8034 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
8039 bnx2_read_vpd_fw_ver(struct bnx2
*bp
)
8043 unsigned int block_end
, rosize
, len
;
8045 #define BNX2_VPD_NVRAM_OFFSET 0x300
8046 #define BNX2_VPD_LEN 128
8047 #define BNX2_MAX_VER_SLEN 30
8049 data
= kmalloc(256, GFP_KERNEL
);
8053 rc
= bnx2_nvram_read(bp
, BNX2_VPD_NVRAM_OFFSET
, data
+ BNX2_VPD_LEN
,
8058 for (i
= 0; i
< BNX2_VPD_LEN
; i
+= 4) {
8059 data
[i
] = data
[i
+ BNX2_VPD_LEN
+ 3];
8060 data
[i
+ 1] = data
[i
+ BNX2_VPD_LEN
+ 2];
8061 data
[i
+ 2] = data
[i
+ BNX2_VPD_LEN
+ 1];
8062 data
[i
+ 3] = data
[i
+ BNX2_VPD_LEN
];
8065 i
= pci_vpd_find_tag(data
, 0, BNX2_VPD_LEN
, PCI_VPD_LRDT_RO_DATA
);
8069 rosize
= pci_vpd_lrdt_size(&data
[i
]);
8070 i
+= PCI_VPD_LRDT_TAG_SIZE
;
8071 block_end
= i
+ rosize
;
8073 if (block_end
> BNX2_VPD_LEN
)
8076 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
8077 PCI_VPD_RO_KEYWORD_MFR_ID
);
8081 len
= pci_vpd_info_field_size(&data
[j
]);
8083 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
8084 if (j
+ len
> block_end
|| len
!= 4 ||
8085 memcmp(&data
[j
], "1028", 4))
8088 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
8089 PCI_VPD_RO_KEYWORD_VENDOR0
);
8093 len
= pci_vpd_info_field_size(&data
[j
]);
8095 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
8096 if (j
+ len
> block_end
|| len
> BNX2_MAX_VER_SLEN
)
8099 memcpy(bp
->fw_version
, &data
[j
], len
);
8100 bp
->fw_version
[len
] = ' ';
8107 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
8112 u64 dma_mask
, persist_dma_mask
;
8115 SET_NETDEV_DEV(dev
, &pdev
->dev
);
8116 bp
= netdev_priv(dev
);
8121 bp
->temp_stats_blk
=
8122 kzalloc(sizeof(struct statistics_block
), GFP_KERNEL
);
8124 if (bp
->temp_stats_blk
== NULL
) {
8129 /* enable device (incl. PCI PM wakeup), and bus-mastering */
8130 rc
= pci_enable_device(pdev
);
8132 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
8136 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
8138 "Cannot find PCI device base address, aborting\n");
8140 goto err_out_disable
;
8143 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
8145 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
8146 goto err_out_disable
;
8149 pci_set_master(pdev
);
8151 bp
->pm_cap
= pdev
->pm_cap
;
8152 if (bp
->pm_cap
== 0) {
8154 "Cannot find power management capability, aborting\n");
8156 goto err_out_release
;
8162 spin_lock_init(&bp
->phy_lock
);
8163 spin_lock_init(&bp
->indirect_lock
);
8165 mutex_init(&bp
->cnic_lock
);
8167 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
8169 bp
->regview
= pci_iomap(pdev
, 0, MB_GET_CID_ADDR(TX_TSS_CID
+
8170 TX_MAX_TSS_RINGS
+ 1));
8172 dev_err(&pdev
->dev
, "Cannot map register space, aborting\n");
8174 goto err_out_release
;
8177 /* Configure byte swap and enable write to the reg_window registers.
8178 * Rely on CPU to do target byte swapping on big endian systems
8179 * The chip's target access swapping will not swap all accesses
8181 BNX2_WR(bp
, BNX2_PCICFG_MISC_CONFIG
,
8182 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
8183 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
8185 bp
->chip_id
= BNX2_RD(bp
, BNX2_MISC_ID
);
8187 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
8188 if (!pci_is_pcie(pdev
)) {
8189 dev_err(&pdev
->dev
, "Not PCIE, aborting\n");
8193 bp
->flags
|= BNX2_FLAG_PCIE
;
8194 if (BNX2_CHIP_REV(bp
) == BNX2_CHIP_REV_Ax
)
8195 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
8197 /* AER (Advanced Error Reporting) hooks */
8198 err
= pci_enable_pcie_error_reporting(pdev
);
8200 bp
->flags
|= BNX2_FLAG_AER_ENABLED
;
8203 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
8204 if (bp
->pcix_cap
== 0) {
8206 "Cannot find PCIX capability, aborting\n");
8210 bp
->flags
|= BNX2_FLAG_BROKEN_STATS
;
8213 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
&&
8214 BNX2_CHIP_REV(bp
) != BNX2_CHIP_REV_Ax
) {
8216 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
8219 if (BNX2_CHIP_ID(bp
) != BNX2_CHIP_ID_5706_A0
&&
8220 BNX2_CHIP_ID(bp
) != BNX2_CHIP_ID_5706_A1
) {
8222 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
8225 /* 5708 cannot support DMA addresses > 40-bit. */
8226 if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)
8227 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(40);
8229 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(64);
8231 /* Configure DMA attributes. */
8232 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
8233 dev
->features
|= NETIF_F_HIGHDMA
;
8234 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
8237 "pci_set_consistent_dma_mask failed, aborting\n");
8240 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) != 0) {
8241 dev_err(&pdev
->dev
, "System does not support DMA, aborting\n");
8245 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
8246 bnx2_get_pci_speed(bp
);
8248 /* 5706A0 may falsely detect SERR and PERR. */
8249 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
8250 reg
= BNX2_RD(bp
, PCI_COMMAND
);
8251 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
8252 BNX2_WR(bp
, PCI_COMMAND
, reg
);
8253 } else if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
) &&
8254 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
8257 "5706 A1 can only be used in a PCIX bus, aborting\n");
8261 bnx2_init_nvram(bp
);
8263 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
8265 if (bnx2_reg_rd_ind(bp
, BNX2_MCP_TOE_ID
) & BNX2_MCP_TOE_ID_FUNCTION_ID
)
8268 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
8269 BNX2_SHM_HDR_SIGNATURE_SIG
) {
8270 u32 off
= bp
->func
<< 2;
8272 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
8274 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
8276 /* Get the permanent MAC address. First we need to make sure the
8277 * firmware is actually running.
8279 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
8281 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
8282 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
8283 dev_err(&pdev
->dev
, "Firmware not running, aborting\n");
8288 bnx2_read_vpd_fw_ver(bp
);
8290 j
= strlen(bp
->fw_version
);
8291 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
8292 for (i
= 0; i
< 3 && j
< 24; i
++) {
8296 bp
->fw_version
[j
++] = 'b';
8297 bp
->fw_version
[j
++] = 'c';
8298 bp
->fw_version
[j
++] = ' ';
8300 num
= (u8
) (reg
>> (24 - (i
* 8)));
8301 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
8302 if (num
>= k
|| !skip0
|| k
== 1) {
8303 bp
->fw_version
[j
++] = (num
/ k
) + '0';
8308 bp
->fw_version
[j
++] = '.';
8310 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
8311 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
8314 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
8315 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
8317 for (i
= 0; i
< 30; i
++) {
8318 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8319 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
8324 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8325 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
8326 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
8327 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
8328 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
8331 bp
->fw_version
[j
++] = ' ';
8332 for (i
= 0; i
< 3 && j
< 28; i
++) {
8333 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
8334 reg
= be32_to_cpu(reg
);
8335 memcpy(&bp
->fw_version
[j
], ®
, 4);
8340 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
8341 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
8342 bp
->mac_addr
[1] = (u8
) reg
;
8344 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
8345 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
8346 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
8347 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
8348 bp
->mac_addr
[5] = (u8
) reg
;
8350 bp
->tx_ring_size
= BNX2_MAX_TX_DESC_CNT
;
8351 bnx2_set_rx_ring_size(bp
, 255);
8353 bp
->tx_quick_cons_trip_int
= 2;
8354 bp
->tx_quick_cons_trip
= 20;
8355 bp
->tx_ticks_int
= 18;
8358 bp
->rx_quick_cons_trip_int
= 2;
8359 bp
->rx_quick_cons_trip
= 12;
8360 bp
->rx_ticks_int
= 18;
8363 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
8365 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
8369 /* allocate stats_blk */
8370 rc
= bnx2_alloc_stats_blk(dev
);
8374 /* Disable WOL support if we are running on a SERDES chip. */
8375 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
8376 bnx2_get_5709_media(bp
);
8377 else if (BNX2_CHIP_BOND(bp
) & BNX2_CHIP_BOND_SERDES_BIT
)
8378 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
8380 bp
->phy_port
= PORT_TP
;
8381 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
8382 bp
->phy_port
= PORT_FIBRE
;
8383 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
8384 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
8385 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8388 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
) {
8389 /* Don't do parallel detect on this board because of
8390 * some board problems. The link will not go down
8391 * if we do parallel detect.
8393 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
8394 pdev
->subsystem_device
== 0x310c)
8395 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
8398 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
8399 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
8401 } else if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
||
8402 BNX2_CHIP(bp
) == BNX2_CHIP_5708
)
8403 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
8404 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
&&
8405 (BNX2_CHIP_REV(bp
) == BNX2_CHIP_REV_Ax
||
8406 BNX2_CHIP_REV(bp
) == BNX2_CHIP_REV_Bx
))
8407 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
8409 bnx2_init_fw_cap(bp
);
8411 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_A0
) ||
8412 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_B0
) ||
8413 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_B1
) ||
8414 !(BNX2_RD(bp
, BNX2_PCI_CONFIG_3
) & BNX2_PCI_CONFIG_3_VAUX_PRESET
)) {
8415 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8419 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
8420 device_set_wakeup_capable(&bp
->pdev
->dev
, false);
8422 device_set_wakeup_enable(&bp
->pdev
->dev
, bp
->wol
);
8424 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
8425 bp
->tx_quick_cons_trip_int
=
8426 bp
->tx_quick_cons_trip
;
8427 bp
->tx_ticks_int
= bp
->tx_ticks
;
8428 bp
->rx_quick_cons_trip_int
=
8429 bp
->rx_quick_cons_trip
;
8430 bp
->rx_ticks_int
= bp
->rx_ticks
;
8431 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
8432 bp
->com_ticks_int
= bp
->com_ticks
;
8433 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
8436 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8438 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8439 * with byte enables disabled on the unused 32-bit word. This is legal
8440 * but causes problems on the AMD 8132 which will eventually stop
8441 * responding after a while.
8443 * AMD believes this incompatibility is unique to the 5706, and
8444 * prefers to locally disable MSI rather than globally disabling it.
8446 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
&& disable_msi
== 0) {
8447 struct pci_dev
*amd_8132
= NULL
;
8449 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
8450 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
8453 if (amd_8132
->revision
>= 0x10 &&
8454 amd_8132
->revision
<= 0x13) {
8456 pci_dev_put(amd_8132
);
8462 bnx2_set_default_link(bp
);
8463 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
8465 timer_setup(&bp
->timer
, bnx2_timer
, 0);
8466 bp
->timer
.expires
= RUN_AT(BNX2_TIMER_INTERVAL
);
8469 if (bnx2_shmem_rd(bp
, BNX2_ISCSI_INITIATOR
) & BNX2_ISCSI_INITIATOR_EN
)
8470 bp
->cnic_eth_dev
.max_iscsi_conn
=
8471 (bnx2_shmem_rd(bp
, BNX2_ISCSI_MAX_CONN
) &
8472 BNX2_ISCSI_MAX_CONN_MASK
) >> BNX2_ISCSI_MAX_CONN_SHIFT
;
8473 bp
->cnic_probe
= bnx2_cnic_probe
;
8475 pci_save_state(pdev
);
8480 if (bp
->flags
& BNX2_FLAG_AER_ENABLED
) {
8481 pci_disable_pcie_error_reporting(pdev
);
8482 bp
->flags
&= ~BNX2_FLAG_AER_ENABLED
;
8485 pci_iounmap(pdev
, bp
->regview
);
8489 pci_release_regions(pdev
);
8492 pci_disable_device(pdev
);
8495 kfree(bp
->temp_stats_blk
);
8501 bnx2_bus_string(struct bnx2
*bp
, char *str
)
8505 if (bp
->flags
& BNX2_FLAG_PCIE
) {
8506 s
+= sprintf(s
, "PCI Express");
8508 s
+= sprintf(s
, "PCI");
8509 if (bp
->flags
& BNX2_FLAG_PCIX
)
8510 s
+= sprintf(s
, "-X");
8511 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
8512 s
+= sprintf(s
, " 32-bit");
8514 s
+= sprintf(s
, " 64-bit");
8515 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
8521 bnx2_del_napi(struct bnx2
*bp
)
8525 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
8526 netif_napi_del(&bp
->bnx2_napi
[i
].napi
);
8530 bnx2_init_napi(struct bnx2
*bp
)
8534 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
8535 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
8536 int (*poll
)(struct napi_struct
*, int);
8541 poll
= bnx2_poll_msix
;
8543 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
8548 static const struct net_device_ops bnx2_netdev_ops
= {
8549 .ndo_open
= bnx2_open
,
8550 .ndo_start_xmit
= bnx2_start_xmit
,
8551 .ndo_stop
= bnx2_close
,
8552 .ndo_get_stats64
= bnx2_get_stats64
,
8553 .ndo_set_rx_mode
= bnx2_set_rx_mode
,
8554 .ndo_do_ioctl
= bnx2_ioctl
,
8555 .ndo_validate_addr
= eth_validate_addr
,
8556 .ndo_set_mac_address
= bnx2_change_mac_addr
,
8557 .ndo_change_mtu
= bnx2_change_mtu
,
8558 .ndo_set_features
= bnx2_set_features
,
8559 .ndo_tx_timeout
= bnx2_tx_timeout
,
8560 #ifdef CONFIG_NET_POLL_CONTROLLER
8561 .ndo_poll_controller
= poll_bnx2
,
8566 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8568 static int version_printed
= 0;
8569 struct net_device
*dev
;
8574 if (version_printed
++ == 0)
8575 pr_info("%s", version
);
8577 /* dev zeroed in init_etherdev */
8578 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
8582 rc
= bnx2_init_board(pdev
, dev
);
8586 dev
->netdev_ops
= &bnx2_netdev_ops
;
8587 dev
->watchdog_timeo
= TX_TIMEOUT
;
8588 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
8590 bp
= netdev_priv(dev
);
8592 pci_set_drvdata(pdev
, dev
);
8595 * In-flight DMA from 1st kernel could continue going in kdump kernel.
8596 * New io-page table has been created before bnx2 does reset at open stage.
8597 * We have to wait for the in-flight DMA to complete to avoid it look up
8598 * into the newly created io-page table.
8600 if (is_kdump_kernel())
8601 bnx2_wait_dma_complete(bp
);
8603 memcpy(dev
->dev_addr
, bp
->mac_addr
, ETH_ALEN
);
8605 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
8606 NETIF_F_TSO
| NETIF_F_TSO_ECN
|
8607 NETIF_F_RXHASH
| NETIF_F_RXCSUM
;
8609 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
8610 dev
->hw_features
|= NETIF_F_IPV6_CSUM
| NETIF_F_TSO6
;
8612 dev
->vlan_features
= dev
->hw_features
;
8613 dev
->hw_features
|= NETIF_F_HW_VLAN_CTAG_TX
| NETIF_F_HW_VLAN_CTAG_RX
;
8614 dev
->features
|= dev
->hw_features
;
8615 dev
->priv_flags
|= IFF_UNICAST_FLT
;
8616 dev
->min_mtu
= MIN_ETHERNET_PACKET_SIZE
;
8617 dev
->max_mtu
= MAX_ETHERNET_JUMBO_PACKET_SIZE
;
8619 if (!(bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
8620 dev
->hw_features
&= ~NETIF_F_HW_VLAN_CTAG_RX
;
8622 if ((rc
= register_netdev(dev
))) {
8623 dev_err(&pdev
->dev
, "Cannot register net device\n");
8627 netdev_info(dev
, "%s (%c%d) %s found at mem %lx, IRQ %d, "
8628 "node addr %pM\n", board_info
[ent
->driver_data
].name
,
8629 ((BNX2_CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
8630 ((BNX2_CHIP_ID(bp
) & 0x0ff0) >> 4),
8631 bnx2_bus_string(bp
, str
), (long)pci_resource_start(pdev
, 0),
8632 pdev
->irq
, dev
->dev_addr
);
8637 pci_iounmap(pdev
, bp
->regview
);
8638 pci_release_regions(pdev
);
8639 pci_disable_device(pdev
);
8641 bnx2_free_stats_blk(dev
);
8647 bnx2_remove_one(struct pci_dev
*pdev
)
8649 struct net_device
*dev
= pci_get_drvdata(pdev
);
8650 struct bnx2
*bp
= netdev_priv(dev
);
8652 unregister_netdev(dev
);
8654 del_timer_sync(&bp
->timer
);
8655 cancel_work_sync(&bp
->reset_task
);
8657 pci_iounmap(bp
->pdev
, bp
->regview
);
8659 bnx2_free_stats_blk(dev
);
8660 kfree(bp
->temp_stats_blk
);
8662 if (bp
->flags
& BNX2_FLAG_AER_ENABLED
) {
8663 pci_disable_pcie_error_reporting(pdev
);
8664 bp
->flags
&= ~BNX2_FLAG_AER_ENABLED
;
8667 bnx2_release_firmware(bp
);
8671 pci_release_regions(pdev
);
8672 pci_disable_device(pdev
);
8675 #ifdef CONFIG_PM_SLEEP
8677 bnx2_suspend(struct device
*device
)
8679 struct pci_dev
*pdev
= to_pci_dev(device
);
8680 struct net_device
*dev
= pci_get_drvdata(pdev
);
8681 struct bnx2
*bp
= netdev_priv(dev
);
8683 if (netif_running(dev
)) {
8684 cancel_work_sync(&bp
->reset_task
);
8685 bnx2_netif_stop(bp
, true);
8686 netif_device_detach(dev
);
8687 del_timer_sync(&bp
->timer
);
8688 bnx2_shutdown_chip(bp
);
8689 __bnx2_free_irq(bp
);
8697 bnx2_resume(struct device
*device
)
8699 struct pci_dev
*pdev
= to_pci_dev(device
);
8700 struct net_device
*dev
= pci_get_drvdata(pdev
);
8701 struct bnx2
*bp
= netdev_priv(dev
);
8703 if (!netif_running(dev
))
8706 bnx2_set_power_state(bp
, PCI_D0
);
8707 netif_device_attach(dev
);
8708 bnx2_request_irq(bp
);
8709 bnx2_init_nic(bp
, 1);
8710 bnx2_netif_start(bp
, true);
8714 static SIMPLE_DEV_PM_OPS(bnx2_pm_ops
, bnx2_suspend
, bnx2_resume
);
8715 #define BNX2_PM_OPS (&bnx2_pm_ops)
8719 #define BNX2_PM_OPS NULL
8721 #endif /* CONFIG_PM_SLEEP */
8723 * bnx2_io_error_detected - called when PCI error is detected
8724 * @pdev: Pointer to PCI device
8725 * @state: The current pci connection state
8727 * This function is called after a PCI bus error affecting
8728 * this device has been detected.
8730 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
8731 pci_channel_state_t state
)
8733 struct net_device
*dev
= pci_get_drvdata(pdev
);
8734 struct bnx2
*bp
= netdev_priv(dev
);
8737 netif_device_detach(dev
);
8739 if (state
== pci_channel_io_perm_failure
) {
8741 return PCI_ERS_RESULT_DISCONNECT
;
8744 if (netif_running(dev
)) {
8745 bnx2_netif_stop(bp
, true);
8746 del_timer_sync(&bp
->timer
);
8747 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
8750 pci_disable_device(pdev
);
8753 /* Request a slot slot reset. */
8754 return PCI_ERS_RESULT_NEED_RESET
;
8758 * bnx2_io_slot_reset - called after the pci bus has been reset.
8759 * @pdev: Pointer to PCI device
8761 * Restart the card from scratch, as if from a cold-boot.
8763 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
8765 struct net_device
*dev
= pci_get_drvdata(pdev
);
8766 struct bnx2
*bp
= netdev_priv(dev
);
8767 pci_ers_result_t result
= PCI_ERS_RESULT_DISCONNECT
;
8771 if (pci_enable_device(pdev
)) {
8773 "Cannot re-enable PCI device after reset\n");
8775 pci_set_master(pdev
);
8776 pci_restore_state(pdev
);
8777 pci_save_state(pdev
);
8779 if (netif_running(dev
))
8780 err
= bnx2_init_nic(bp
, 1);
8783 result
= PCI_ERS_RESULT_RECOVERED
;
8786 if (result
!= PCI_ERS_RESULT_RECOVERED
&& netif_running(dev
)) {
8787 bnx2_napi_enable(bp
);
8792 if (!(bp
->flags
& BNX2_FLAG_AER_ENABLED
))
8795 err
= pci_cleanup_aer_uncorrect_error_status(pdev
);
8798 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8799 err
); /* non-fatal, continue */
8806 * bnx2_io_resume - called when traffic can start flowing again.
8807 * @pdev: Pointer to PCI device
8809 * This callback is called when the error recovery driver tells us that
8810 * its OK to resume normal operation.
8812 static void bnx2_io_resume(struct pci_dev
*pdev
)
8814 struct net_device
*dev
= pci_get_drvdata(pdev
);
8815 struct bnx2
*bp
= netdev_priv(dev
);
8818 if (netif_running(dev
))
8819 bnx2_netif_start(bp
, true);
8821 netif_device_attach(dev
);
8825 static void bnx2_shutdown(struct pci_dev
*pdev
)
8827 struct net_device
*dev
= pci_get_drvdata(pdev
);
8833 bp
= netdev_priv(dev
);
8838 if (netif_running(dev
))
8841 if (system_state
== SYSTEM_POWER_OFF
)
8842 bnx2_set_power_state(bp
, PCI_D3hot
);
8847 static const struct pci_error_handlers bnx2_err_handler
= {
8848 .error_detected
= bnx2_io_error_detected
,
8849 .slot_reset
= bnx2_io_slot_reset
,
8850 .resume
= bnx2_io_resume
,
8853 static struct pci_driver bnx2_pci_driver
= {
8854 .name
= DRV_MODULE_NAME
,
8855 .id_table
= bnx2_pci_tbl
,
8856 .probe
= bnx2_init_one
,
8857 .remove
= bnx2_remove_one
,
8858 .driver
.pm
= BNX2_PM_OPS
,
8859 .err_handler
= &bnx2_err_handler
,
8860 .shutdown
= bnx2_shutdown
,
8863 module_pci_driver(bnx2_pci_driver
);