staging: rtl8188eu: Replace function name in string with __func__
[linux/fpc-iii.git] / drivers / net / ethernet / freescale / dpaa / dpaa_eth.c
blob7caa8da484217e074a9b7938a220a292b536667a
1 /* Copyright 2008 - 2016 Freescale Semiconductor Inc.
3 * Redistribution and use in source and binary forms, with or without
4 * modification, are permitted provided that the following conditions are met:
5 * * Redistributions of source code must retain the above copyright
6 * notice, this list of conditions and the following disclaimer.
7 * * Redistributions in binary form must reproduce the above copyright
8 * notice, this list of conditions and the following disclaimer in the
9 * documentation and/or other materials provided with the distribution.
10 * * Neither the name of Freescale Semiconductor nor the
11 * names of its contributors may be used to endorse or promote products
12 * derived from this software without specific prior written permission.
14 * ALTERNATIVELY, this software may be distributed under the terms of the
15 * GNU General Public License ("GPL") as published by the Free Software
16 * Foundation, either version 2 of that License or (at your option) any
17 * later version.
19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/of_platform.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/io.h>
39 #include <linux/if_arp.h>
40 #include <linux/if_vlan.h>
41 #include <linux/icmp.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/udp.h>
45 #include <linux/tcp.h>
46 #include <linux/net.h>
47 #include <linux/skbuff.h>
48 #include <linux/etherdevice.h>
49 #include <linux/if_ether.h>
50 #include <linux/highmem.h>
51 #include <linux/percpu.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/sort.h>
54 #include <soc/fsl/bman.h>
55 #include <soc/fsl/qman.h>
57 #include "fman.h"
58 #include "fman_port.h"
59 #include "mac.h"
60 #include "dpaa_eth.h"
62 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
63 * using trace events only need to #include <trace/events/sched.h>
65 #define CREATE_TRACE_POINTS
66 #include "dpaa_eth_trace.h"
68 static int debug = -1;
69 module_param(debug, int, 0444);
70 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
72 static u16 tx_timeout = 1000;
73 module_param(tx_timeout, ushort, 0444);
74 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
76 #define FM_FD_STAT_RX_ERRORS \
77 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \
78 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
79 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \
80 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
81 FM_FD_ERR_PRS_HDR_ERR)
83 #define FM_FD_STAT_TX_ERRORS \
84 (FM_FD_ERR_UNSUPPORTED_FORMAT | \
85 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
87 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
88 NETIF_MSG_LINK | NETIF_MSG_IFUP | \
89 NETIF_MSG_IFDOWN)
91 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
92 /* Ingress congestion threshold on FMan ports
93 * The size in bytes of the ingress tail-drop threshold on FMan ports.
94 * Traffic piling up above this value will be rejected by QMan and discarded
95 * by FMan.
98 /* Size in bytes of the FQ taildrop threshold */
99 #define DPAA_FQ_TD 0x200000
101 #define DPAA_CS_THRESHOLD_1G 0x06000000
102 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
103 * The size in bytes of the egress Congestion State notification threshold on
104 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
105 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
106 * and the larger the frame size, the more acute the problem.
107 * So we have to find a balance between these factors:
108 * - avoiding the device staying congested for a prolonged time (risking
109 * the netdev watchdog to fire - see also the tx_timeout module param);
110 * - affecting performance of protocols such as TCP, which otherwise
111 * behave well under the congestion notification mechanism;
112 * - preventing the Tx cores from tightly-looping (as if the congestion
113 * threshold was too low to be effective);
114 * - running out of memory if the CS threshold is set too high.
117 #define DPAA_CS_THRESHOLD_10G 0x10000000
118 /* The size in bytes of the egress Congestion State notification threshold on
119 * 10G ports, range 0x1000 .. 0x10000000
122 /* Largest value that the FQD's OAL field can hold */
123 #define FSL_QMAN_MAX_OAL 127
125 /* Default alignment for start of data in an Rx FD */
126 #define DPAA_FD_DATA_ALIGNMENT 16
128 /* Values for the L3R field of the FM Parse Results
130 /* L3 Type field: First IP Present IPv4 */
131 #define FM_L3_PARSE_RESULT_IPV4 0x8000
132 /* L3 Type field: First IP Present IPv6 */
133 #define FM_L3_PARSE_RESULT_IPV6 0x4000
134 /* Values for the L4R field of the FM Parse Results */
135 /* L4 Type field: UDP */
136 #define FM_L4_PARSE_RESULT_UDP 0x40
137 /* L4 Type field: TCP */
138 #define FM_L4_PARSE_RESULT_TCP 0x20
140 /* FD status field indicating whether the FM Parser has attempted to validate
141 * the L4 csum of the frame.
142 * Note that having this bit set doesn't necessarily imply that the checksum
143 * is valid. One would have to check the parse results to find that out.
145 #define FM_FD_STAT_L4CV 0x00000004
147 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
148 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
150 #define FSL_DPAA_BPID_INV 0xff
151 #define FSL_DPAA_ETH_MAX_BUF_COUNT 128
152 #define FSL_DPAA_ETH_REFILL_THRESHOLD 80
154 #define DPAA_TX_PRIV_DATA_SIZE 16
155 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
156 #define DPAA_TIME_STAMP_SIZE 8
157 #define DPAA_HASH_RESULTS_SIZE 8
158 #define DPAA_RX_PRIV_DATA_SIZE (u16)(DPAA_TX_PRIV_DATA_SIZE + \
159 dpaa_rx_extra_headroom)
161 #define DPAA_ETH_PCD_RXQ_NUM 128
163 #define DPAA_ENQUEUE_RETRIES 100000
165 enum port_type {RX, TX};
167 struct fm_port_fqs {
168 struct dpaa_fq *tx_defq;
169 struct dpaa_fq *tx_errq;
170 struct dpaa_fq *rx_defq;
171 struct dpaa_fq *rx_errq;
172 struct dpaa_fq *rx_pcdq;
175 /* All the dpa bps in use at any moment */
176 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
178 /* The raw buffer size must be cacheline aligned */
179 #define DPAA_BP_RAW_SIZE 4096
180 /* When using more than one buffer pool, the raw sizes are as follows:
181 * 1 bp: 4KB
182 * 2 bp: 2KB, 4KB
183 * 3 bp: 1KB, 2KB, 4KB
184 * 4 bp: 1KB, 2KB, 4KB, 8KB
186 static inline size_t bpool_buffer_raw_size(u8 index, u8 cnt)
188 size_t res = DPAA_BP_RAW_SIZE / 4;
189 u8 i;
191 for (i = (cnt < 3) ? cnt : 3; i < 3 + index; i++)
192 res *= 2;
193 return res;
196 /* FMan-DMA requires 16-byte alignment for Rx buffers, but SKB_DATA_ALIGN is
197 * even stronger (SMP_CACHE_BYTES-aligned), so we just get away with that,
198 * via SKB_WITH_OVERHEAD(). We can't rely on netdev_alloc_frag() giving us
199 * half-page-aligned buffers, so we reserve some more space for start-of-buffer
200 * alignment.
202 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD((raw_size) - SMP_CACHE_BYTES)
204 static int dpaa_max_frm;
206 static int dpaa_rx_extra_headroom;
208 #define dpaa_get_max_mtu() \
209 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
211 static int dpaa_netdev_init(struct net_device *net_dev,
212 const struct net_device_ops *dpaa_ops,
213 u16 tx_timeout)
215 struct dpaa_priv *priv = netdev_priv(net_dev);
216 struct device *dev = net_dev->dev.parent;
217 struct dpaa_percpu_priv *percpu_priv;
218 const u8 *mac_addr;
219 int i, err;
221 /* Although we access another CPU's private data here
222 * we do it at initialization so it is safe
224 for_each_possible_cpu(i) {
225 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
226 percpu_priv->net_dev = net_dev;
229 net_dev->netdev_ops = dpaa_ops;
230 mac_addr = priv->mac_dev->addr;
232 net_dev->mem_start = priv->mac_dev->res->start;
233 net_dev->mem_end = priv->mac_dev->res->end;
235 net_dev->min_mtu = ETH_MIN_MTU;
236 net_dev->max_mtu = dpaa_get_max_mtu();
238 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
239 NETIF_F_LLTX | NETIF_F_RXHASH);
241 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
242 /* The kernels enables GSO automatically, if we declare NETIF_F_SG.
243 * For conformity, we'll still declare GSO explicitly.
245 net_dev->features |= NETIF_F_GSO;
246 net_dev->features |= NETIF_F_RXCSUM;
248 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
249 /* we do not want shared skbs on TX */
250 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
252 net_dev->features |= net_dev->hw_features;
253 net_dev->vlan_features = net_dev->features;
255 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
256 memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
258 net_dev->ethtool_ops = &dpaa_ethtool_ops;
260 net_dev->needed_headroom = priv->tx_headroom;
261 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
263 /* start without the RUNNING flag, phylib controls it later */
264 netif_carrier_off(net_dev);
266 err = register_netdev(net_dev);
267 if (err < 0) {
268 dev_err(dev, "register_netdev() = %d\n", err);
269 return err;
272 return 0;
275 static int dpaa_stop(struct net_device *net_dev)
277 struct mac_device *mac_dev;
278 struct dpaa_priv *priv;
279 int i, err, error;
281 priv = netdev_priv(net_dev);
282 mac_dev = priv->mac_dev;
284 netif_tx_stop_all_queues(net_dev);
285 /* Allow the Fman (Tx) port to process in-flight frames before we
286 * try switching it off.
288 usleep_range(5000, 10000);
290 err = mac_dev->stop(mac_dev);
291 if (err < 0)
292 netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
293 err);
295 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
296 error = fman_port_disable(mac_dev->port[i]);
297 if (error)
298 err = error;
301 if (net_dev->phydev)
302 phy_disconnect(net_dev->phydev);
303 net_dev->phydev = NULL;
305 return err;
308 static void dpaa_tx_timeout(struct net_device *net_dev)
310 struct dpaa_percpu_priv *percpu_priv;
311 const struct dpaa_priv *priv;
313 priv = netdev_priv(net_dev);
314 percpu_priv = this_cpu_ptr(priv->percpu_priv);
316 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
317 jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
319 percpu_priv->stats.tx_errors++;
322 /* Calculates the statistics for the given device by adding the statistics
323 * collected by each CPU.
325 static void dpaa_get_stats64(struct net_device *net_dev,
326 struct rtnl_link_stats64 *s)
328 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
329 struct dpaa_priv *priv = netdev_priv(net_dev);
330 struct dpaa_percpu_priv *percpu_priv;
331 u64 *netstats = (u64 *)s;
332 u64 *cpustats;
333 int i, j;
335 for_each_possible_cpu(i) {
336 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
338 cpustats = (u64 *)&percpu_priv->stats;
340 /* add stats from all CPUs */
341 for (j = 0; j < numstats; j++)
342 netstats[j] += cpustats[j];
346 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
347 void *type_data)
349 struct dpaa_priv *priv = netdev_priv(net_dev);
350 struct tc_mqprio_qopt *mqprio = type_data;
351 u8 num_tc;
352 int i;
354 if (type != TC_SETUP_QDISC_MQPRIO)
355 return -EOPNOTSUPP;
357 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
358 num_tc = mqprio->num_tc;
360 if (num_tc == priv->num_tc)
361 return 0;
363 if (!num_tc) {
364 netdev_reset_tc(net_dev);
365 goto out;
368 if (num_tc > DPAA_TC_NUM) {
369 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
370 DPAA_TC_NUM);
371 return -EINVAL;
374 netdev_set_num_tc(net_dev, num_tc);
376 for (i = 0; i < num_tc; i++)
377 netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
378 i * DPAA_TC_TXQ_NUM);
380 out:
381 priv->num_tc = num_tc ? : 1;
382 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
383 return 0;
386 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
388 struct dpaa_eth_data *eth_data;
389 struct device *dpaa_dev;
390 struct mac_device *mac_dev;
392 dpaa_dev = &pdev->dev;
393 eth_data = dpaa_dev->platform_data;
394 if (!eth_data) {
395 dev_err(dpaa_dev, "eth_data missing\n");
396 return ERR_PTR(-ENODEV);
398 mac_dev = eth_data->mac_dev;
399 if (!mac_dev) {
400 dev_err(dpaa_dev, "mac_dev missing\n");
401 return ERR_PTR(-EINVAL);
404 return mac_dev;
407 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
409 const struct dpaa_priv *priv;
410 struct mac_device *mac_dev;
411 struct sockaddr old_addr;
412 int err;
414 priv = netdev_priv(net_dev);
416 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN);
418 err = eth_mac_addr(net_dev, addr);
419 if (err < 0) {
420 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
421 return err;
424 mac_dev = priv->mac_dev;
426 err = mac_dev->change_addr(mac_dev->fman_mac,
427 (enet_addr_t *)net_dev->dev_addr);
428 if (err < 0) {
429 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
430 err);
431 /* reverting to previous address */
432 eth_mac_addr(net_dev, &old_addr);
434 return err;
437 return 0;
440 static void dpaa_set_rx_mode(struct net_device *net_dev)
442 const struct dpaa_priv *priv;
443 int err;
445 priv = netdev_priv(net_dev);
447 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
448 priv->mac_dev->promisc = !priv->mac_dev->promisc;
449 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
450 priv->mac_dev->promisc);
451 if (err < 0)
452 netif_err(priv, drv, net_dev,
453 "mac_dev->set_promisc() = %d\n",
454 err);
457 err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
458 if (err < 0)
459 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
460 err);
463 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
465 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
466 return NULL;
468 return dpaa_bp_array[bpid];
471 /* checks if this bpool is already allocated */
472 static bool dpaa_bpid2pool_use(int bpid)
474 if (dpaa_bpid2pool(bpid)) {
475 atomic_inc(&dpaa_bp_array[bpid]->refs);
476 return true;
479 return false;
482 /* called only once per bpid by dpaa_bp_alloc_pool() */
483 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
485 dpaa_bp_array[bpid] = dpaa_bp;
486 atomic_set(&dpaa_bp->refs, 1);
489 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
491 int err;
493 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
494 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
495 __func__);
496 return -EINVAL;
499 /* If the pool is already specified, we only create one per bpid */
500 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
501 dpaa_bpid2pool_use(dpaa_bp->bpid))
502 return 0;
504 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
505 dpaa_bp->pool = bman_new_pool();
506 if (!dpaa_bp->pool) {
507 pr_err("%s: bman_new_pool() failed\n",
508 __func__);
509 return -ENODEV;
512 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
515 if (dpaa_bp->seed_cb) {
516 err = dpaa_bp->seed_cb(dpaa_bp);
517 if (err)
518 goto pool_seed_failed;
521 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
523 return 0;
525 pool_seed_failed:
526 pr_err("%s: pool seeding failed\n", __func__);
527 bman_free_pool(dpaa_bp->pool);
529 return err;
532 /* remove and free all the buffers from the given buffer pool */
533 static void dpaa_bp_drain(struct dpaa_bp *bp)
535 u8 num = 8;
536 int ret;
538 do {
539 struct bm_buffer bmb[8];
540 int i;
542 ret = bman_acquire(bp->pool, bmb, num);
543 if (ret < 0) {
544 if (num == 8) {
545 /* we have less than 8 buffers left;
546 * drain them one by one
548 num = 1;
549 ret = 1;
550 continue;
551 } else {
552 /* Pool is fully drained */
553 break;
557 if (bp->free_buf_cb)
558 for (i = 0; i < num; i++)
559 bp->free_buf_cb(bp, &bmb[i]);
560 } while (ret > 0);
563 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
565 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
567 /* the mapping between bpid and dpaa_bp is done very late in the
568 * allocation procedure; if something failed before the mapping, the bp
569 * was not configured, therefore we don't need the below instructions
571 if (!bp)
572 return;
574 if (!atomic_dec_and_test(&bp->refs))
575 return;
577 if (bp->free_buf_cb)
578 dpaa_bp_drain(bp);
580 dpaa_bp_array[bp->bpid] = NULL;
581 bman_free_pool(bp->pool);
584 static void dpaa_bps_free(struct dpaa_priv *priv)
586 int i;
588 for (i = 0; i < DPAA_BPS_NUM; i++)
589 dpaa_bp_free(priv->dpaa_bps[i]);
592 /* Use multiple WQs for FQ assignment:
593 * - Tx Confirmation queues go to WQ1.
594 * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance
595 * to be scheduled, in case there are many more FQs in WQ6).
596 * - Rx Default goes to WQ6.
597 * - Tx queues go to different WQs depending on their priority. Equal
598 * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
599 * WQ0 (highest priority).
600 * This ensures that Tx-confirmed buffers are timely released. In particular,
601 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
602 * are greatly outnumbered by other FQs in the system, while
603 * dequeue scheduling is round-robin.
605 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
607 switch (fq->fq_type) {
608 case FQ_TYPE_TX_CONFIRM:
609 case FQ_TYPE_TX_CONF_MQ:
610 fq->wq = 1;
611 break;
612 case FQ_TYPE_RX_ERROR:
613 case FQ_TYPE_TX_ERROR:
614 fq->wq = 5;
615 break;
616 case FQ_TYPE_RX_DEFAULT:
617 case FQ_TYPE_RX_PCD:
618 fq->wq = 6;
619 break;
620 case FQ_TYPE_TX:
621 switch (idx / DPAA_TC_TXQ_NUM) {
622 case 0:
623 /* Low priority (best effort) */
624 fq->wq = 6;
625 break;
626 case 1:
627 /* Medium priority */
628 fq->wq = 2;
629 break;
630 case 2:
631 /* High priority */
632 fq->wq = 1;
633 break;
634 case 3:
635 /* Very high priority */
636 fq->wq = 0;
637 break;
638 default:
639 WARN(1, "Too many TX FQs: more than %d!\n",
640 DPAA_ETH_TXQ_NUM);
642 break;
643 default:
644 WARN(1, "Invalid FQ type %d for FQID %d!\n",
645 fq->fq_type, fq->fqid);
649 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
650 u32 start, u32 count,
651 struct list_head *list,
652 enum dpaa_fq_type fq_type)
654 struct dpaa_fq *dpaa_fq;
655 int i;
657 dpaa_fq = devm_kzalloc(dev, sizeof(*dpaa_fq) * count,
658 GFP_KERNEL);
659 if (!dpaa_fq)
660 return NULL;
662 for (i = 0; i < count; i++) {
663 dpaa_fq[i].fq_type = fq_type;
664 dpaa_fq[i].fqid = start ? start + i : 0;
665 list_add_tail(&dpaa_fq[i].list, list);
668 for (i = 0; i < count; i++)
669 dpaa_assign_wq(dpaa_fq + i, i);
671 return dpaa_fq;
674 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
675 struct fm_port_fqs *port_fqs)
677 struct dpaa_fq *dpaa_fq;
678 u32 fq_base, fq_base_aligned, i;
680 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
681 if (!dpaa_fq)
682 goto fq_alloc_failed;
684 port_fqs->rx_errq = &dpaa_fq[0];
686 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
687 if (!dpaa_fq)
688 goto fq_alloc_failed;
690 port_fqs->rx_defq = &dpaa_fq[0];
692 /* the PCD FQIDs range needs to be aligned for correct operation */
693 if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
694 goto fq_alloc_failed;
696 fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
698 for (i = fq_base; i < fq_base_aligned; i++)
699 qman_release_fqid(i);
701 for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
702 i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
703 qman_release_fqid(i);
705 dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
706 list, FQ_TYPE_RX_PCD);
707 if (!dpaa_fq)
708 goto fq_alloc_failed;
710 port_fqs->rx_pcdq = &dpaa_fq[0];
712 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
713 goto fq_alloc_failed;
715 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
716 if (!dpaa_fq)
717 goto fq_alloc_failed;
719 port_fqs->tx_errq = &dpaa_fq[0];
721 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
722 if (!dpaa_fq)
723 goto fq_alloc_failed;
725 port_fqs->tx_defq = &dpaa_fq[0];
727 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
728 goto fq_alloc_failed;
730 return 0;
732 fq_alloc_failed:
733 dev_err(dev, "dpaa_fq_alloc() failed\n");
734 return -ENOMEM;
737 static u32 rx_pool_channel;
738 static DEFINE_SPINLOCK(rx_pool_channel_init);
740 static int dpaa_get_channel(void)
742 spin_lock(&rx_pool_channel_init);
743 if (!rx_pool_channel) {
744 u32 pool;
745 int ret;
747 ret = qman_alloc_pool(&pool);
749 if (!ret)
750 rx_pool_channel = pool;
752 spin_unlock(&rx_pool_channel_init);
753 if (!rx_pool_channel)
754 return -ENOMEM;
755 return rx_pool_channel;
758 static void dpaa_release_channel(void)
760 qman_release_pool(rx_pool_channel);
763 static void dpaa_eth_add_channel(u16 channel)
765 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
766 const cpumask_t *cpus = qman_affine_cpus();
767 struct qman_portal *portal;
768 int cpu;
770 for_each_cpu(cpu, cpus) {
771 portal = qman_get_affine_portal(cpu);
772 qman_p_static_dequeue_add(portal, pool);
776 /* Congestion group state change notification callback.
777 * Stops the device's egress queues while they are congested and
778 * wakes them upon exiting congested state.
779 * Also updates some CGR-related stats.
781 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
782 int congested)
784 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
785 struct dpaa_priv, cgr_data.cgr);
787 if (congested) {
788 priv->cgr_data.congestion_start_jiffies = jiffies;
789 netif_tx_stop_all_queues(priv->net_dev);
790 priv->cgr_data.cgr_congested_count++;
791 } else {
792 priv->cgr_data.congested_jiffies +=
793 (jiffies - priv->cgr_data.congestion_start_jiffies);
794 netif_tx_wake_all_queues(priv->net_dev);
798 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
800 struct qm_mcc_initcgr initcgr;
801 u32 cs_th;
802 int err;
804 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
805 if (err < 0) {
806 if (netif_msg_drv(priv))
807 pr_err("%s: Error %d allocating CGR ID\n",
808 __func__, err);
809 goto out_error;
811 priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
813 /* Enable Congestion State Change Notifications and CS taildrop */
814 memset(&initcgr, 0, sizeof(initcgr));
815 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
816 initcgr.cgr.cscn_en = QM_CGR_EN;
818 /* Set different thresholds based on the MAC speed.
819 * This may turn suboptimal if the MAC is reconfigured at a speed
820 * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
821 * In such cases, we ought to reconfigure the threshold, too.
823 if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
824 cs_th = DPAA_CS_THRESHOLD_10G;
825 else
826 cs_th = DPAA_CS_THRESHOLD_1G;
827 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
829 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
830 initcgr.cgr.cstd_en = QM_CGR_EN;
832 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
833 &initcgr);
834 if (err < 0) {
835 if (netif_msg_drv(priv))
836 pr_err("%s: Error %d creating CGR with ID %d\n",
837 __func__, err, priv->cgr_data.cgr.cgrid);
838 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
839 goto out_error;
841 if (netif_msg_drv(priv))
842 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
843 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
844 priv->cgr_data.cgr.chan);
846 out_error:
847 return err;
850 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
851 struct dpaa_fq *fq,
852 const struct qman_fq *template)
854 fq->fq_base = *template;
855 fq->net_dev = priv->net_dev;
857 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
858 fq->channel = priv->channel;
861 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
862 struct dpaa_fq *fq,
863 struct fman_port *port,
864 const struct qman_fq *template)
866 fq->fq_base = *template;
867 fq->net_dev = priv->net_dev;
869 if (port) {
870 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
871 fq->channel = (u16)fman_port_get_qman_channel_id(port);
872 } else {
873 fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
877 static void dpaa_fq_setup(struct dpaa_priv *priv,
878 const struct dpaa_fq_cbs *fq_cbs,
879 struct fman_port *tx_port)
881 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
882 const cpumask_t *affine_cpus = qman_affine_cpus();
883 u16 channels[NR_CPUS];
884 struct dpaa_fq *fq;
886 for_each_cpu(cpu, affine_cpus)
887 channels[num_portals++] = qman_affine_channel(cpu);
889 if (num_portals == 0)
890 dev_err(priv->net_dev->dev.parent,
891 "No Qman software (affine) channels found");
893 /* Initialize each FQ in the list */
894 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
895 switch (fq->fq_type) {
896 case FQ_TYPE_RX_DEFAULT:
897 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
898 break;
899 case FQ_TYPE_RX_ERROR:
900 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
901 break;
902 case FQ_TYPE_RX_PCD:
903 if (!num_portals)
904 continue;
905 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
906 fq->channel = channels[portal_cnt++ % num_portals];
907 break;
908 case FQ_TYPE_TX:
909 dpaa_setup_egress(priv, fq, tx_port,
910 &fq_cbs->egress_ern);
911 /* If we have more Tx queues than the number of cores,
912 * just ignore the extra ones.
914 if (egress_cnt < DPAA_ETH_TXQ_NUM)
915 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
916 break;
917 case FQ_TYPE_TX_CONF_MQ:
918 priv->conf_fqs[conf_cnt++] = &fq->fq_base;
919 /* fall through */
920 case FQ_TYPE_TX_CONFIRM:
921 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
922 break;
923 case FQ_TYPE_TX_ERROR:
924 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
925 break;
926 default:
927 dev_warn(priv->net_dev->dev.parent,
928 "Unknown FQ type detected!\n");
929 break;
933 /* Make sure all CPUs receive a corresponding Tx queue. */
934 while (egress_cnt < DPAA_ETH_TXQ_NUM) {
935 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
936 if (fq->fq_type != FQ_TYPE_TX)
937 continue;
938 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
939 if (egress_cnt == DPAA_ETH_TXQ_NUM)
940 break;
945 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
946 struct qman_fq *tx_fq)
948 int i;
950 for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
951 if (priv->egress_fqs[i] == tx_fq)
952 return i;
954 return -EINVAL;
957 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
959 const struct dpaa_priv *priv;
960 struct qman_fq *confq = NULL;
961 struct qm_mcc_initfq initfq;
962 struct device *dev;
963 struct qman_fq *fq;
964 int queue_id;
965 int err;
967 priv = netdev_priv(dpaa_fq->net_dev);
968 dev = dpaa_fq->net_dev->dev.parent;
970 if (dpaa_fq->fqid == 0)
971 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
973 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
975 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
976 if (err) {
977 dev_err(dev, "qman_create_fq() failed\n");
978 return err;
980 fq = &dpaa_fq->fq_base;
982 if (dpaa_fq->init) {
983 memset(&initfq, 0, sizeof(initfq));
985 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
986 /* Note: we may get to keep an empty FQ in cache */
987 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
989 /* Try to reduce the number of portal interrupts for
990 * Tx Confirmation FQs.
992 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
993 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
995 /* FQ placement */
996 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
998 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1000 /* Put all egress queues in a congestion group of their own.
1001 * Sensu stricto, the Tx confirmation queues are Rx FQs,
1002 * rather than Tx - but they nonetheless account for the
1003 * memory footprint on behalf of egress traffic. We therefore
1004 * place them in the netdev's CGR, along with the Tx FQs.
1006 if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1007 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1008 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1009 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1010 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1011 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1012 /* Set a fixed overhead accounting, in an attempt to
1013 * reduce the impact of fixed-size skb shells and the
1014 * driver's needed headroom on system memory. This is
1015 * especially the case when the egress traffic is
1016 * composed of small datagrams.
1017 * Unfortunately, QMan's OAL value is capped to an
1018 * insufficient value, but even that is better than
1019 * no overhead accounting at all.
1021 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1022 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1023 qm_fqd_set_oal(&initfq.fqd,
1024 min(sizeof(struct sk_buff) +
1025 priv->tx_headroom,
1026 (size_t)FSL_QMAN_MAX_OAL));
1029 if (td_enable) {
1030 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1031 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1032 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1035 if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1036 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1037 if (queue_id >= 0)
1038 confq = priv->conf_fqs[queue_id];
1039 if (confq) {
1040 initfq.we_mask |=
1041 cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1042 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1043 * A2V=1 (contextA A2 field is valid)
1044 * A0V=1 (contextA A0 field is valid)
1045 * B0V=1 (contextB field is valid)
1046 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1047 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1049 qm_fqd_context_a_set64(&initfq.fqd,
1050 0x1e00000080000000ULL);
1054 /* Put all the ingress queues in our "ingress CGR". */
1055 if (priv->use_ingress_cgr &&
1056 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1057 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1058 dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1059 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1060 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1061 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1062 /* Set a fixed overhead accounting, just like for the
1063 * egress CGR.
1065 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1066 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1067 qm_fqd_set_oal(&initfq.fqd,
1068 min(sizeof(struct sk_buff) +
1069 priv->tx_headroom,
1070 (size_t)FSL_QMAN_MAX_OAL));
1073 /* Initialization common to all ingress queues */
1074 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1075 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1076 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1077 QM_FQCTRL_CTXASTASHING);
1078 initfq.fqd.context_a.stashing.exclusive =
1079 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1080 QM_STASHING_EXCL_ANNOTATION;
1081 qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1082 DIV_ROUND_UP(sizeof(struct qman_fq),
1083 64));
1086 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1087 if (err < 0) {
1088 dev_err(dev, "qman_init_fq(%u) = %d\n",
1089 qman_fq_fqid(fq), err);
1090 qman_destroy_fq(fq);
1091 return err;
1095 dpaa_fq->fqid = qman_fq_fqid(fq);
1097 return 0;
1100 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1102 const struct dpaa_priv *priv;
1103 struct dpaa_fq *dpaa_fq;
1104 int err, error;
1106 err = 0;
1108 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1109 priv = netdev_priv(dpaa_fq->net_dev);
1111 if (dpaa_fq->init) {
1112 err = qman_retire_fq(fq, NULL);
1113 if (err < 0 && netif_msg_drv(priv))
1114 dev_err(dev, "qman_retire_fq(%u) = %d\n",
1115 qman_fq_fqid(fq), err);
1117 error = qman_oos_fq(fq);
1118 if (error < 0 && netif_msg_drv(priv)) {
1119 dev_err(dev, "qman_oos_fq(%u) = %d\n",
1120 qman_fq_fqid(fq), error);
1121 if (err >= 0)
1122 err = error;
1126 qman_destroy_fq(fq);
1127 list_del(&dpaa_fq->list);
1129 return err;
1132 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1134 struct dpaa_fq *dpaa_fq, *tmp;
1135 int err, error;
1137 err = 0;
1138 list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1139 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1140 if (error < 0 && err >= 0)
1141 err = error;
1144 return err;
1147 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1148 struct dpaa_fq *defq,
1149 struct dpaa_buffer_layout *buf_layout)
1151 struct fman_buffer_prefix_content buf_prefix_content;
1152 struct fman_port_params params;
1153 int err;
1155 memset(&params, 0, sizeof(params));
1156 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1158 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1159 buf_prefix_content.pass_prs_result = true;
1160 buf_prefix_content.pass_hash_result = true;
1161 buf_prefix_content.pass_time_stamp = false;
1162 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1164 params.specific_params.non_rx_params.err_fqid = errq->fqid;
1165 params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1167 err = fman_port_config(port, &params);
1168 if (err) {
1169 pr_err("%s: fman_port_config failed\n", __func__);
1170 return err;
1173 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1174 if (err) {
1175 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1176 __func__);
1177 return err;
1180 err = fman_port_init(port);
1181 if (err)
1182 pr_err("%s: fm_port_init failed\n", __func__);
1184 return err;
1187 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp **bps,
1188 size_t count, struct dpaa_fq *errq,
1189 struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1190 struct dpaa_buffer_layout *buf_layout)
1192 struct fman_buffer_prefix_content buf_prefix_content;
1193 struct fman_port_rx_params *rx_p;
1194 struct fman_port_params params;
1195 int i, err;
1197 memset(&params, 0, sizeof(params));
1198 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1200 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1201 buf_prefix_content.pass_prs_result = true;
1202 buf_prefix_content.pass_hash_result = true;
1203 buf_prefix_content.pass_time_stamp = false;
1204 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1206 rx_p = &params.specific_params.rx_params;
1207 rx_p->err_fqid = errq->fqid;
1208 rx_p->dflt_fqid = defq->fqid;
1209 if (pcdq) {
1210 rx_p->pcd_base_fqid = pcdq->fqid;
1211 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1214 count = min(ARRAY_SIZE(rx_p->ext_buf_pools.ext_buf_pool), count);
1215 rx_p->ext_buf_pools.num_of_pools_used = (u8)count;
1216 for (i = 0; i < count; i++) {
1217 rx_p->ext_buf_pools.ext_buf_pool[i].id = bps[i]->bpid;
1218 rx_p->ext_buf_pools.ext_buf_pool[i].size = (u16)bps[i]->size;
1221 err = fman_port_config(port, &params);
1222 if (err) {
1223 pr_err("%s: fman_port_config failed\n", __func__);
1224 return err;
1227 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1228 if (err) {
1229 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1230 __func__);
1231 return err;
1234 err = fman_port_init(port);
1235 if (err)
1236 pr_err("%s: fm_port_init failed\n", __func__);
1238 return err;
1241 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1242 struct dpaa_bp **bps, size_t count,
1243 struct fm_port_fqs *port_fqs,
1244 struct dpaa_buffer_layout *buf_layout,
1245 struct device *dev)
1247 struct fman_port *rxport = mac_dev->port[RX];
1248 struct fman_port *txport = mac_dev->port[TX];
1249 int err;
1251 err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1252 port_fqs->tx_defq, &buf_layout[TX]);
1253 if (err)
1254 return err;
1256 err = dpaa_eth_init_rx_port(rxport, bps, count, port_fqs->rx_errq,
1257 port_fqs->rx_defq, port_fqs->rx_pcdq,
1258 &buf_layout[RX]);
1260 return err;
1263 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1264 struct bm_buffer *bmb, int cnt)
1266 int err;
1268 err = bman_release(dpaa_bp->pool, bmb, cnt);
1269 /* Should never occur, address anyway to avoid leaking the buffers */
1270 if (unlikely(WARN_ON(err)) && dpaa_bp->free_buf_cb)
1271 while (cnt-- > 0)
1272 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1274 return cnt;
1277 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1279 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1280 struct dpaa_bp *dpaa_bp;
1281 int i = 0, j;
1283 memset(bmb, 0, sizeof(bmb));
1285 do {
1286 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1287 if (!dpaa_bp)
1288 return;
1290 j = 0;
1291 do {
1292 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1294 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1296 j++; i++;
1297 } while (j < ARRAY_SIZE(bmb) &&
1298 !qm_sg_entry_is_final(&sgt[i - 1]) &&
1299 sgt[i - 1].bpid == sgt[i].bpid);
1301 dpaa_bman_release(dpaa_bp, bmb, j);
1302 } while (!qm_sg_entry_is_final(&sgt[i - 1]));
1305 static void dpaa_fd_release(const struct net_device *net_dev,
1306 const struct qm_fd *fd)
1308 struct qm_sg_entry *sgt;
1309 struct dpaa_bp *dpaa_bp;
1310 struct bm_buffer bmb;
1311 dma_addr_t addr;
1312 void *vaddr;
1314 bmb.data = 0;
1315 bm_buffer_set64(&bmb, qm_fd_addr(fd));
1317 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1318 if (!dpaa_bp)
1319 return;
1321 if (qm_fd_get_format(fd) == qm_fd_sg) {
1322 vaddr = phys_to_virt(qm_fd_addr(fd));
1323 sgt = vaddr + qm_fd_get_offset(fd);
1325 dma_unmap_single(dpaa_bp->dev, qm_fd_addr(fd), dpaa_bp->size,
1326 DMA_FROM_DEVICE);
1328 dpaa_release_sgt_members(sgt);
1330 addr = dma_map_single(dpaa_bp->dev, vaddr, dpaa_bp->size,
1331 DMA_FROM_DEVICE);
1332 if (dma_mapping_error(dpaa_bp->dev, addr)) {
1333 dev_err(dpaa_bp->dev, "DMA mapping failed");
1334 return;
1336 bm_buffer_set64(&bmb, addr);
1339 dpaa_bman_release(dpaa_bp, &bmb, 1);
1342 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1343 const union qm_mr_entry *msg)
1345 switch (msg->ern.rc & QM_MR_RC_MASK) {
1346 case QM_MR_RC_CGR_TAILDROP:
1347 percpu_priv->ern_cnt.cg_tdrop++;
1348 break;
1349 case QM_MR_RC_WRED:
1350 percpu_priv->ern_cnt.wred++;
1351 break;
1352 case QM_MR_RC_ERROR:
1353 percpu_priv->ern_cnt.err_cond++;
1354 break;
1355 case QM_MR_RC_ORPWINDOW_EARLY:
1356 percpu_priv->ern_cnt.early_window++;
1357 break;
1358 case QM_MR_RC_ORPWINDOW_LATE:
1359 percpu_priv->ern_cnt.late_window++;
1360 break;
1361 case QM_MR_RC_FQ_TAILDROP:
1362 percpu_priv->ern_cnt.fq_tdrop++;
1363 break;
1364 case QM_MR_RC_ORPWINDOW_RETIRED:
1365 percpu_priv->ern_cnt.fq_retired++;
1366 break;
1367 case QM_MR_RC_ORP_ZERO:
1368 percpu_priv->ern_cnt.orp_zero++;
1369 break;
1373 /* Turn on HW checksum computation for this outgoing frame.
1374 * If the current protocol is not something we support in this regard
1375 * (or if the stack has already computed the SW checksum), we do nothing.
1377 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1378 * otherwise.
1380 * Note that this function may modify the fd->cmd field and the skb data buffer
1381 * (the Parse Results area).
1383 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1384 struct sk_buff *skb,
1385 struct qm_fd *fd,
1386 char *parse_results)
1388 struct fman_prs_result *parse_result;
1389 u16 ethertype = ntohs(skb->protocol);
1390 struct ipv6hdr *ipv6h = NULL;
1391 struct iphdr *iph;
1392 int retval = 0;
1393 u8 l4_proto;
1395 if (skb->ip_summed != CHECKSUM_PARTIAL)
1396 return 0;
1398 /* Note: L3 csum seems to be already computed in sw, but we can't choose
1399 * L4 alone from the FM configuration anyway.
1402 /* Fill in some fields of the Parse Results array, so the FMan
1403 * can find them as if they came from the FMan Parser.
1405 parse_result = (struct fman_prs_result *)parse_results;
1407 /* If we're dealing with VLAN, get the real Ethernet type */
1408 if (ethertype == ETH_P_8021Q) {
1409 /* We can't always assume the MAC header is set correctly
1410 * by the stack, so reset to beginning of skb->data
1412 skb_reset_mac_header(skb);
1413 ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1416 /* Fill in the relevant L3 parse result fields
1417 * and read the L4 protocol type
1419 switch (ethertype) {
1420 case ETH_P_IP:
1421 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1422 iph = ip_hdr(skb);
1423 WARN_ON(!iph);
1424 l4_proto = iph->protocol;
1425 break;
1426 case ETH_P_IPV6:
1427 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1428 ipv6h = ipv6_hdr(skb);
1429 WARN_ON(!ipv6h);
1430 l4_proto = ipv6h->nexthdr;
1431 break;
1432 default:
1433 /* We shouldn't even be here */
1434 if (net_ratelimit())
1435 netif_alert(priv, tx_err, priv->net_dev,
1436 "Can't compute HW csum for L3 proto 0x%x\n",
1437 ntohs(skb->protocol));
1438 retval = -EIO;
1439 goto return_error;
1442 /* Fill in the relevant L4 parse result fields */
1443 switch (l4_proto) {
1444 case IPPROTO_UDP:
1445 parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1446 break;
1447 case IPPROTO_TCP:
1448 parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1449 break;
1450 default:
1451 if (net_ratelimit())
1452 netif_alert(priv, tx_err, priv->net_dev,
1453 "Can't compute HW csum for L4 proto 0x%x\n",
1454 l4_proto);
1455 retval = -EIO;
1456 goto return_error;
1459 /* At index 0 is IPOffset_1 as defined in the Parse Results */
1460 parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1461 parse_result->l4_off = (u8)skb_transport_offset(skb);
1463 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1464 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1466 /* On P1023 and similar platforms fd->cmd interpretation could
1467 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1468 * is not set so we do not need to check; in the future, if/when
1469 * using context_a we need to check this bit
1472 return_error:
1473 return retval;
1476 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1478 struct device *dev = dpaa_bp->dev;
1479 struct bm_buffer bmb[8];
1480 dma_addr_t addr;
1481 void *new_buf;
1482 u8 i;
1484 for (i = 0; i < 8; i++) {
1485 new_buf = netdev_alloc_frag(dpaa_bp->raw_size);
1486 if (unlikely(!new_buf)) {
1487 dev_err(dev, "netdev_alloc_frag() failed, size %zu\n",
1488 dpaa_bp->raw_size);
1489 goto release_previous_buffs;
1491 new_buf = PTR_ALIGN(new_buf, SMP_CACHE_BYTES);
1493 addr = dma_map_single(dev, new_buf,
1494 dpaa_bp->size, DMA_FROM_DEVICE);
1495 if (unlikely(dma_mapping_error(dev, addr))) {
1496 dev_err(dpaa_bp->dev, "DMA map failed");
1497 goto release_previous_buffs;
1500 bmb[i].data = 0;
1501 bm_buffer_set64(&bmb[i], addr);
1504 release_bufs:
1505 return dpaa_bman_release(dpaa_bp, bmb, i);
1507 release_previous_buffs:
1508 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1510 bm_buffer_set64(&bmb[i], 0);
1511 /* Avoid releasing a completely null buffer; bman_release() requires
1512 * at least one buffer.
1514 if (likely(i))
1515 goto release_bufs;
1517 return 0;
1520 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1522 int i;
1524 /* Give each CPU an allotment of "config_count" buffers */
1525 for_each_possible_cpu(i) {
1526 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1527 int j;
1529 /* Although we access another CPU's counters here
1530 * we do it at boot time so it is safe
1532 for (j = 0; j < dpaa_bp->config_count; j += 8)
1533 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1535 return 0;
1538 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1539 * REFILL_THRESHOLD.
1541 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1543 int count = *countptr;
1544 int new_bufs;
1546 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1547 do {
1548 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1549 if (unlikely(!new_bufs)) {
1550 /* Avoid looping forever if we've temporarily
1551 * run out of memory. We'll try again at the
1552 * next NAPI cycle.
1554 break;
1556 count += new_bufs;
1557 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1559 *countptr = count;
1560 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1561 return -ENOMEM;
1564 return 0;
1567 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1569 struct dpaa_bp *dpaa_bp;
1570 int *countptr;
1571 int res, i;
1573 for (i = 0; i < DPAA_BPS_NUM; i++) {
1574 dpaa_bp = priv->dpaa_bps[i];
1575 if (!dpaa_bp)
1576 return -EINVAL;
1577 countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1578 res = dpaa_eth_refill_bpool(dpaa_bp, countptr);
1579 if (res)
1580 return res;
1582 return 0;
1585 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1586 * either contiguous frames or scatter/gather ones.
1587 * Skb freeing is not handled here.
1589 * This function may be called on error paths in the Tx function, so guard
1590 * against cases when not all fd relevant fields were filled in.
1592 * Return the skb backpointer, since for S/G frames the buffer containing it
1593 * gets freed here.
1595 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1596 const struct qm_fd *fd)
1598 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1599 struct device *dev = priv->net_dev->dev.parent;
1600 dma_addr_t addr = qm_fd_addr(fd);
1601 const struct qm_sg_entry *sgt;
1602 struct sk_buff **skbh, *skb;
1603 int nr_frags, i;
1605 skbh = (struct sk_buff **)phys_to_virt(addr);
1606 skb = *skbh;
1608 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1609 nr_frags = skb_shinfo(skb)->nr_frags;
1610 dma_unmap_single(dev, addr, qm_fd_get_offset(fd) +
1611 sizeof(struct qm_sg_entry) * (1 + nr_frags),
1612 dma_dir);
1614 /* The sgt buffer has been allocated with netdev_alloc_frag(),
1615 * it's from lowmem.
1617 sgt = phys_to_virt(addr + qm_fd_get_offset(fd));
1619 /* sgt[0] is from lowmem, was dma_map_single()-ed */
1620 dma_unmap_single(dev, qm_sg_addr(&sgt[0]),
1621 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1623 /* remaining pages were mapped with skb_frag_dma_map() */
1624 for (i = 1; i < nr_frags; i++) {
1625 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1627 dma_unmap_page(dev, qm_sg_addr(&sgt[i]),
1628 qm_sg_entry_get_len(&sgt[i]), dma_dir);
1631 /* Free the page frag that we allocated on Tx */
1632 skb_free_frag(phys_to_virt(addr));
1633 } else {
1634 dma_unmap_single(dev, addr,
1635 skb_tail_pointer(skb) - (u8 *)skbh, dma_dir);
1638 return skb;
1641 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1643 /* The parser has run and performed L4 checksum validation.
1644 * We know there were no parser errors (and implicitly no
1645 * L4 csum error), otherwise we wouldn't be here.
1647 if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1648 (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1649 return CHECKSUM_UNNECESSARY;
1651 /* We're here because either the parser didn't run or the L4 checksum
1652 * was not verified. This may include the case of a UDP frame with
1653 * checksum zero or an L4 proto other than TCP/UDP
1655 return CHECKSUM_NONE;
1658 /* Build a linear skb around the received buffer.
1659 * We are guaranteed there is enough room at the end of the data buffer to
1660 * accommodate the shared info area of the skb.
1662 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1663 const struct qm_fd *fd)
1665 ssize_t fd_off = qm_fd_get_offset(fd);
1666 dma_addr_t addr = qm_fd_addr(fd);
1667 struct dpaa_bp *dpaa_bp;
1668 struct sk_buff *skb;
1669 void *vaddr;
1671 vaddr = phys_to_virt(addr);
1672 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1674 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1675 if (!dpaa_bp)
1676 goto free_buffer;
1678 skb = build_skb(vaddr, dpaa_bp->size +
1679 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1680 if (unlikely(!skb)) {
1681 WARN_ONCE(1, "Build skb failure on Rx\n");
1682 goto free_buffer;
1684 WARN_ON(fd_off != priv->rx_headroom);
1685 skb_reserve(skb, fd_off);
1686 skb_put(skb, qm_fd_get_length(fd));
1688 skb->ip_summed = rx_csum_offload(priv, fd);
1690 return skb;
1692 free_buffer:
1693 skb_free_frag(vaddr);
1694 return NULL;
1697 /* Build an skb with the data of the first S/G entry in the linear portion and
1698 * the rest of the frame as skb fragments.
1700 * The page fragment holding the S/G Table is recycled here.
1702 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1703 const struct qm_fd *fd)
1705 ssize_t fd_off = qm_fd_get_offset(fd);
1706 dma_addr_t addr = qm_fd_addr(fd);
1707 const struct qm_sg_entry *sgt;
1708 struct page *page, *head_page;
1709 struct dpaa_bp *dpaa_bp;
1710 void *vaddr, *sg_vaddr;
1711 int frag_off, frag_len;
1712 struct sk_buff *skb;
1713 dma_addr_t sg_addr;
1714 int page_offset;
1715 unsigned int sz;
1716 int *count_ptr;
1717 int i;
1719 vaddr = phys_to_virt(addr);
1720 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1722 /* Iterate through the SGT entries and add data buffers to the skb */
1723 sgt = vaddr + fd_off;
1724 skb = NULL;
1725 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1726 /* Extension bit is not supported */
1727 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1729 sg_addr = qm_sg_addr(&sgt[i]);
1730 sg_vaddr = phys_to_virt(sg_addr);
1731 WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr,
1732 SMP_CACHE_BYTES));
1734 /* We may use multiple Rx pools */
1735 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1736 if (!dpaa_bp)
1737 goto free_buffers;
1739 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1740 dma_unmap_single(dpaa_bp->dev, sg_addr, dpaa_bp->size,
1741 DMA_FROM_DEVICE);
1742 if (!skb) {
1743 sz = dpaa_bp->size +
1744 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1745 skb = build_skb(sg_vaddr, sz);
1746 if (WARN_ON(unlikely(!skb)))
1747 goto free_buffers;
1749 skb->ip_summed = rx_csum_offload(priv, fd);
1751 /* Make sure forwarded skbs will have enough space
1752 * on Tx, if extra headers are added.
1754 WARN_ON(fd_off != priv->rx_headroom);
1755 skb_reserve(skb, fd_off);
1756 skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1757 } else {
1758 /* Not the first S/G entry; all data from buffer will
1759 * be added in an skb fragment; fragment index is offset
1760 * by one since first S/G entry was incorporated in the
1761 * linear part of the skb.
1763 * Caution: 'page' may be a tail page.
1765 page = virt_to_page(sg_vaddr);
1766 head_page = virt_to_head_page(sg_vaddr);
1768 /* Compute offset in (possibly tail) page */
1769 page_offset = ((unsigned long)sg_vaddr &
1770 (PAGE_SIZE - 1)) +
1771 (page_address(page) - page_address(head_page));
1772 /* page_offset only refers to the beginning of sgt[i];
1773 * but the buffer itself may have an internal offset.
1775 frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1776 frag_len = qm_sg_entry_get_len(&sgt[i]);
1777 /* skb_add_rx_frag() does no checking on the page; if
1778 * we pass it a tail page, we'll end up with
1779 * bad page accounting and eventually with segafults.
1781 skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1782 frag_len, dpaa_bp->size);
1784 /* Update the pool count for the current {cpu x bpool} */
1785 (*count_ptr)--;
1787 if (qm_sg_entry_is_final(&sgt[i]))
1788 break;
1790 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1792 /* free the SG table buffer */
1793 skb_free_frag(vaddr);
1795 return skb;
1797 free_buffers:
1798 /* compensate sw bpool counter changes */
1799 for (i--; i >= 0; i--) {
1800 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1801 if (dpaa_bp) {
1802 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1803 (*count_ptr)++;
1806 /* free all the SG entries */
1807 for (i = 0; i < DPAA_SGT_MAX_ENTRIES ; i++) {
1808 sg_addr = qm_sg_addr(&sgt[i]);
1809 sg_vaddr = phys_to_virt(sg_addr);
1810 skb_free_frag(sg_vaddr);
1811 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1812 if (dpaa_bp) {
1813 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1814 (*count_ptr)--;
1817 if (qm_sg_entry_is_final(&sgt[i]))
1818 break;
1820 /* free the SGT fragment */
1821 skb_free_frag(vaddr);
1823 return NULL;
1826 static int skb_to_contig_fd(struct dpaa_priv *priv,
1827 struct sk_buff *skb, struct qm_fd *fd,
1828 int *offset)
1830 struct net_device *net_dev = priv->net_dev;
1831 struct device *dev = net_dev->dev.parent;
1832 enum dma_data_direction dma_dir;
1833 unsigned char *buffer_start;
1834 struct sk_buff **skbh;
1835 dma_addr_t addr;
1836 int err;
1838 /* We are guaranteed to have at least tx_headroom bytes
1839 * available, so just use that for offset.
1841 fd->bpid = FSL_DPAA_BPID_INV;
1842 buffer_start = skb->data - priv->tx_headroom;
1843 dma_dir = DMA_TO_DEVICE;
1845 skbh = (struct sk_buff **)buffer_start;
1846 *skbh = skb;
1848 /* Enable L3/L4 hardware checksum computation.
1850 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1851 * need to write into the skb.
1853 err = dpaa_enable_tx_csum(priv, skb, fd,
1854 ((char *)skbh) + DPAA_TX_PRIV_DATA_SIZE);
1855 if (unlikely(err < 0)) {
1856 if (net_ratelimit())
1857 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1858 err);
1859 return err;
1862 /* Fill in the rest of the FD fields */
1863 qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1864 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1866 /* Map the entire buffer size that may be seen by FMan, but no more */
1867 addr = dma_map_single(dev, skbh,
1868 skb_tail_pointer(skb) - buffer_start, dma_dir);
1869 if (unlikely(dma_mapping_error(dev, addr))) {
1870 if (net_ratelimit())
1871 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1872 return -EINVAL;
1874 qm_fd_addr_set64(fd, addr);
1876 return 0;
1879 static int skb_to_sg_fd(struct dpaa_priv *priv,
1880 struct sk_buff *skb, struct qm_fd *fd)
1882 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1883 const int nr_frags = skb_shinfo(skb)->nr_frags;
1884 struct net_device *net_dev = priv->net_dev;
1885 struct device *dev = net_dev->dev.parent;
1886 struct qm_sg_entry *sgt;
1887 struct sk_buff **skbh;
1888 int i, j, err, sz;
1889 void *buffer_start;
1890 skb_frag_t *frag;
1891 dma_addr_t addr;
1892 size_t frag_len;
1893 void *sgt_buf;
1895 /* get a page frag to store the SGTable */
1896 sz = SKB_DATA_ALIGN(priv->tx_headroom +
1897 sizeof(struct qm_sg_entry) * (1 + nr_frags));
1898 sgt_buf = netdev_alloc_frag(sz);
1899 if (unlikely(!sgt_buf)) {
1900 netdev_err(net_dev, "netdev_alloc_frag() failed for size %d\n",
1901 sz);
1902 return -ENOMEM;
1905 /* Enable L3/L4 hardware checksum computation.
1907 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1908 * need to write into the skb.
1910 err = dpaa_enable_tx_csum(priv, skb, fd,
1911 sgt_buf + DPAA_TX_PRIV_DATA_SIZE);
1912 if (unlikely(err < 0)) {
1913 if (net_ratelimit())
1914 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1915 err);
1916 goto csum_failed;
1919 sgt = (struct qm_sg_entry *)(sgt_buf + priv->tx_headroom);
1920 qm_sg_entry_set_len(&sgt[0], skb_headlen(skb));
1921 sgt[0].bpid = FSL_DPAA_BPID_INV;
1922 sgt[0].offset = 0;
1923 addr = dma_map_single(dev, skb->data,
1924 skb_headlen(skb), dma_dir);
1925 if (unlikely(dma_mapping_error(dev, addr))) {
1926 dev_err(dev, "DMA mapping failed");
1927 err = -EINVAL;
1928 goto sg0_map_failed;
1930 qm_sg_entry_set64(&sgt[0], addr);
1932 /* populate the rest of SGT entries */
1933 frag = &skb_shinfo(skb)->frags[0];
1934 frag_len = frag->size;
1935 for (i = 1; i <= nr_frags; i++, frag++) {
1936 WARN_ON(!skb_frag_page(frag));
1937 addr = skb_frag_dma_map(dev, frag, 0,
1938 frag_len, dma_dir);
1939 if (unlikely(dma_mapping_error(dev, addr))) {
1940 dev_err(dev, "DMA mapping failed");
1941 err = -EINVAL;
1942 goto sg_map_failed;
1945 qm_sg_entry_set_len(&sgt[i], frag_len);
1946 sgt[i].bpid = FSL_DPAA_BPID_INV;
1947 sgt[i].offset = 0;
1949 /* keep the offset in the address */
1950 qm_sg_entry_set64(&sgt[i], addr);
1951 frag_len = frag->size;
1953 qm_sg_entry_set_f(&sgt[i - 1], frag_len);
1955 qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
1957 /* DMA map the SGT page */
1958 buffer_start = (void *)sgt - priv->tx_headroom;
1959 skbh = (struct sk_buff **)buffer_start;
1960 *skbh = skb;
1962 addr = dma_map_single(dev, buffer_start, priv->tx_headroom +
1963 sizeof(struct qm_sg_entry) * (1 + nr_frags),
1964 dma_dir);
1965 if (unlikely(dma_mapping_error(dev, addr))) {
1966 dev_err(dev, "DMA mapping failed");
1967 err = -EINVAL;
1968 goto sgt_map_failed;
1971 fd->bpid = FSL_DPAA_BPID_INV;
1972 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1973 qm_fd_addr_set64(fd, addr);
1975 return 0;
1977 sgt_map_failed:
1978 sg_map_failed:
1979 for (j = 0; j < i; j++)
1980 dma_unmap_page(dev, qm_sg_addr(&sgt[j]),
1981 qm_sg_entry_get_len(&sgt[j]), dma_dir);
1982 sg0_map_failed:
1983 csum_failed:
1984 skb_free_frag(sgt_buf);
1986 return err;
1989 static inline int dpaa_xmit(struct dpaa_priv *priv,
1990 struct rtnl_link_stats64 *percpu_stats,
1991 int queue,
1992 struct qm_fd *fd)
1994 struct qman_fq *egress_fq;
1995 int err, i;
1997 egress_fq = priv->egress_fqs[queue];
1998 if (fd->bpid == FSL_DPAA_BPID_INV)
1999 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2001 /* Trace this Tx fd */
2002 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2004 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2005 err = qman_enqueue(egress_fq, fd);
2006 if (err != -EBUSY)
2007 break;
2010 if (unlikely(err < 0)) {
2011 percpu_stats->tx_errors++;
2012 percpu_stats->tx_fifo_errors++;
2013 return err;
2016 percpu_stats->tx_packets++;
2017 percpu_stats->tx_bytes += qm_fd_get_length(fd);
2019 return 0;
2022 static int dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2024 const int queue_mapping = skb_get_queue_mapping(skb);
2025 bool nonlinear = skb_is_nonlinear(skb);
2026 struct rtnl_link_stats64 *percpu_stats;
2027 struct dpaa_percpu_priv *percpu_priv;
2028 struct dpaa_priv *priv;
2029 struct qm_fd fd;
2030 int offset = 0;
2031 int err = 0;
2033 priv = netdev_priv(net_dev);
2034 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2035 percpu_stats = &percpu_priv->stats;
2037 qm_fd_clear_fd(&fd);
2039 if (!nonlinear) {
2040 /* We're going to store the skb backpointer at the beginning
2041 * of the data buffer, so we need a privately owned skb
2043 * We've made sure skb is not shared in dev->priv_flags,
2044 * we need to verify the skb head is not cloned
2046 if (skb_cow_head(skb, priv->tx_headroom))
2047 goto enomem;
2049 WARN_ON(skb_is_nonlinear(skb));
2052 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2053 * make sure we don't feed FMan with more fragments than it supports.
2055 if (nonlinear &&
2056 likely(skb_shinfo(skb)->nr_frags < DPAA_SGT_MAX_ENTRIES)) {
2057 /* Just create a S/G fd based on the skb */
2058 err = skb_to_sg_fd(priv, skb, &fd);
2059 percpu_priv->tx_frag_skbuffs++;
2060 } else {
2061 /* If the egress skb contains more fragments than we support
2062 * we have no choice but to linearize it ourselves.
2064 if (unlikely(nonlinear) && __skb_linearize(skb))
2065 goto enomem;
2067 /* Finally, create a contig FD from this skb */
2068 err = skb_to_contig_fd(priv, skb, &fd, &offset);
2070 if (unlikely(err < 0))
2071 goto skb_to_fd_failed;
2073 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2074 return NETDEV_TX_OK;
2076 dpaa_cleanup_tx_fd(priv, &fd);
2077 skb_to_fd_failed:
2078 enomem:
2079 percpu_stats->tx_errors++;
2080 dev_kfree_skb(skb);
2081 return NETDEV_TX_OK;
2084 static void dpaa_rx_error(struct net_device *net_dev,
2085 const struct dpaa_priv *priv,
2086 struct dpaa_percpu_priv *percpu_priv,
2087 const struct qm_fd *fd,
2088 u32 fqid)
2090 if (net_ratelimit())
2091 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2092 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2094 percpu_priv->stats.rx_errors++;
2096 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2097 percpu_priv->rx_errors.dme++;
2098 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2099 percpu_priv->rx_errors.fpe++;
2100 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2101 percpu_priv->rx_errors.fse++;
2102 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2103 percpu_priv->rx_errors.phe++;
2105 dpaa_fd_release(net_dev, fd);
2108 static void dpaa_tx_error(struct net_device *net_dev,
2109 const struct dpaa_priv *priv,
2110 struct dpaa_percpu_priv *percpu_priv,
2111 const struct qm_fd *fd,
2112 u32 fqid)
2114 struct sk_buff *skb;
2116 if (net_ratelimit())
2117 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2118 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2120 percpu_priv->stats.tx_errors++;
2122 skb = dpaa_cleanup_tx_fd(priv, fd);
2123 dev_kfree_skb(skb);
2126 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2128 struct dpaa_napi_portal *np =
2129 container_of(napi, struct dpaa_napi_portal, napi);
2131 int cleaned = qman_p_poll_dqrr(np->p, budget);
2133 if (cleaned < budget) {
2134 napi_complete_done(napi, cleaned);
2135 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2137 } else if (np->down) {
2138 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2141 return cleaned;
2144 static void dpaa_tx_conf(struct net_device *net_dev,
2145 const struct dpaa_priv *priv,
2146 struct dpaa_percpu_priv *percpu_priv,
2147 const struct qm_fd *fd,
2148 u32 fqid)
2150 struct sk_buff *skb;
2152 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2153 if (net_ratelimit())
2154 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2155 be32_to_cpu(fd->status) &
2156 FM_FD_STAT_TX_ERRORS);
2158 percpu_priv->stats.tx_errors++;
2161 percpu_priv->tx_confirm++;
2163 skb = dpaa_cleanup_tx_fd(priv, fd);
2165 consume_skb(skb);
2168 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2169 struct qman_portal *portal)
2171 if (unlikely(in_irq() || !in_serving_softirq())) {
2172 /* Disable QMan IRQ and invoke NAPI */
2173 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2175 percpu_priv->np.p = portal;
2176 napi_schedule(&percpu_priv->np.napi);
2177 percpu_priv->in_interrupt++;
2178 return 1;
2180 return 0;
2183 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2184 struct qman_fq *fq,
2185 const struct qm_dqrr_entry *dq)
2187 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2188 struct dpaa_percpu_priv *percpu_priv;
2189 struct net_device *net_dev;
2190 struct dpaa_bp *dpaa_bp;
2191 struct dpaa_priv *priv;
2193 net_dev = dpaa_fq->net_dev;
2194 priv = netdev_priv(net_dev);
2195 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2196 if (!dpaa_bp)
2197 return qman_cb_dqrr_consume;
2199 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2201 if (dpaa_eth_napi_schedule(percpu_priv, portal))
2202 return qman_cb_dqrr_stop;
2204 if (dpaa_eth_refill_bpools(priv))
2205 /* Unable to refill the buffer pool due to insufficient
2206 * system memory. Just release the frame back into the pool,
2207 * otherwise we'll soon end up with an empty buffer pool.
2209 dpaa_fd_release(net_dev, &dq->fd);
2210 else
2211 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2213 return qman_cb_dqrr_consume;
2216 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2217 struct qman_fq *fq,
2218 const struct qm_dqrr_entry *dq)
2220 struct rtnl_link_stats64 *percpu_stats;
2221 struct dpaa_percpu_priv *percpu_priv;
2222 const struct qm_fd *fd = &dq->fd;
2223 dma_addr_t addr = qm_fd_addr(fd);
2224 enum qm_fd_format fd_format;
2225 struct net_device *net_dev;
2226 u32 fd_status, hash_offset;
2227 struct dpaa_bp *dpaa_bp;
2228 struct dpaa_priv *priv;
2229 unsigned int skb_len;
2230 struct sk_buff *skb;
2231 int *count_ptr;
2232 void *vaddr;
2234 fd_status = be32_to_cpu(fd->status);
2235 fd_format = qm_fd_get_format(fd);
2236 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2237 priv = netdev_priv(net_dev);
2238 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2239 if (!dpaa_bp)
2240 return qman_cb_dqrr_consume;
2242 /* Trace the Rx fd */
2243 trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2245 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2246 percpu_stats = &percpu_priv->stats;
2248 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
2249 return qman_cb_dqrr_stop;
2251 /* Make sure we didn't run out of buffers */
2252 if (unlikely(dpaa_eth_refill_bpools(priv))) {
2253 /* Unable to refill the buffer pool due to insufficient
2254 * system memory. Just release the frame back into the pool,
2255 * otherwise we'll soon end up with an empty buffer pool.
2257 dpaa_fd_release(net_dev, &dq->fd);
2258 return qman_cb_dqrr_consume;
2261 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2262 if (net_ratelimit())
2263 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2264 fd_status & FM_FD_STAT_RX_ERRORS);
2266 percpu_stats->rx_errors++;
2267 dpaa_fd_release(net_dev, fd);
2268 return qman_cb_dqrr_consume;
2271 dpaa_bp = dpaa_bpid2pool(fd->bpid);
2272 if (!dpaa_bp)
2273 return qman_cb_dqrr_consume;
2275 dma_unmap_single(dpaa_bp->dev, addr, dpaa_bp->size, DMA_FROM_DEVICE);
2277 /* prefetch the first 64 bytes of the frame or the SGT start */
2278 vaddr = phys_to_virt(addr);
2279 prefetch(vaddr + qm_fd_get_offset(fd));
2281 fd_format = qm_fd_get_format(fd);
2282 /* The only FD types that we may receive are contig and S/G */
2283 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2285 /* Account for either the contig buffer or the SGT buffer (depending on
2286 * which case we were in) having been removed from the pool.
2288 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2289 (*count_ptr)--;
2291 if (likely(fd_format == qm_fd_contig))
2292 skb = contig_fd_to_skb(priv, fd);
2293 else
2294 skb = sg_fd_to_skb(priv, fd);
2295 if (!skb)
2296 return qman_cb_dqrr_consume;
2298 skb->protocol = eth_type_trans(skb, net_dev);
2300 if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2301 !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2302 &hash_offset)) {
2303 enum pkt_hash_types type;
2305 /* if L4 exists, it was used in the hash generation */
2306 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2307 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2308 skb_set_hash(skb, be32_to_cpu(*(u32 *)(vaddr + hash_offset)),
2309 type);
2312 skb_len = skb->len;
2314 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP))
2315 return qman_cb_dqrr_consume;
2317 percpu_stats->rx_packets++;
2318 percpu_stats->rx_bytes += skb_len;
2320 return qman_cb_dqrr_consume;
2323 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2324 struct qman_fq *fq,
2325 const struct qm_dqrr_entry *dq)
2327 struct dpaa_percpu_priv *percpu_priv;
2328 struct net_device *net_dev;
2329 struct dpaa_priv *priv;
2331 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2332 priv = netdev_priv(net_dev);
2334 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2336 if (dpaa_eth_napi_schedule(percpu_priv, portal))
2337 return qman_cb_dqrr_stop;
2339 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2341 return qman_cb_dqrr_consume;
2344 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2345 struct qman_fq *fq,
2346 const struct qm_dqrr_entry *dq)
2348 struct dpaa_percpu_priv *percpu_priv;
2349 struct net_device *net_dev;
2350 struct dpaa_priv *priv;
2352 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2353 priv = netdev_priv(net_dev);
2355 /* Trace the fd */
2356 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2358 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2360 if (dpaa_eth_napi_schedule(percpu_priv, portal))
2361 return qman_cb_dqrr_stop;
2363 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2365 return qman_cb_dqrr_consume;
2368 static void egress_ern(struct qman_portal *portal,
2369 struct qman_fq *fq,
2370 const union qm_mr_entry *msg)
2372 const struct qm_fd *fd = &msg->ern.fd;
2373 struct dpaa_percpu_priv *percpu_priv;
2374 const struct dpaa_priv *priv;
2375 struct net_device *net_dev;
2376 struct sk_buff *skb;
2378 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2379 priv = netdev_priv(net_dev);
2380 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2382 percpu_priv->stats.tx_dropped++;
2383 percpu_priv->stats.tx_fifo_errors++;
2384 count_ern(percpu_priv, msg);
2386 skb = dpaa_cleanup_tx_fd(priv, fd);
2387 dev_kfree_skb_any(skb);
2390 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2391 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2392 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2393 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2394 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2395 .egress_ern = { .cb = { .ern = egress_ern } }
2398 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2400 struct dpaa_percpu_priv *percpu_priv;
2401 int i;
2403 for_each_possible_cpu(i) {
2404 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2406 percpu_priv->np.down = 0;
2407 napi_enable(&percpu_priv->np.napi);
2411 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2413 struct dpaa_percpu_priv *percpu_priv;
2414 int i;
2416 for_each_possible_cpu(i) {
2417 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2419 percpu_priv->np.down = 1;
2420 napi_disable(&percpu_priv->np.napi);
2424 static void dpaa_adjust_link(struct net_device *net_dev)
2426 struct mac_device *mac_dev;
2427 struct dpaa_priv *priv;
2429 priv = netdev_priv(net_dev);
2430 mac_dev = priv->mac_dev;
2431 mac_dev->adjust_link(mac_dev);
2434 static int dpaa_phy_init(struct net_device *net_dev)
2436 struct mac_device *mac_dev;
2437 struct phy_device *phy_dev;
2438 struct dpaa_priv *priv;
2440 priv = netdev_priv(net_dev);
2441 mac_dev = priv->mac_dev;
2443 phy_dev = of_phy_connect(net_dev, mac_dev->phy_node,
2444 &dpaa_adjust_link, 0,
2445 mac_dev->phy_if);
2446 if (!phy_dev) {
2447 netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2448 return -ENODEV;
2451 /* Remove any features not supported by the controller */
2452 phy_dev->supported &= mac_dev->if_support;
2453 phy_dev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2454 phy_dev->advertising = phy_dev->supported;
2456 mac_dev->phy_dev = phy_dev;
2457 net_dev->phydev = phy_dev;
2459 return 0;
2462 static int dpaa_open(struct net_device *net_dev)
2464 struct mac_device *mac_dev;
2465 struct dpaa_priv *priv;
2466 int err, i;
2468 priv = netdev_priv(net_dev);
2469 mac_dev = priv->mac_dev;
2470 dpaa_eth_napi_enable(priv);
2472 err = dpaa_phy_init(net_dev);
2473 if (err)
2474 goto phy_init_failed;
2476 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2477 err = fman_port_enable(mac_dev->port[i]);
2478 if (err)
2479 goto mac_start_failed;
2482 err = priv->mac_dev->start(mac_dev);
2483 if (err < 0) {
2484 netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2485 goto mac_start_failed;
2488 netif_tx_start_all_queues(net_dev);
2490 return 0;
2492 mac_start_failed:
2493 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2494 fman_port_disable(mac_dev->port[i]);
2496 phy_init_failed:
2497 dpaa_eth_napi_disable(priv);
2499 return err;
2502 static int dpaa_eth_stop(struct net_device *net_dev)
2504 struct dpaa_priv *priv;
2505 int err;
2507 err = dpaa_stop(net_dev);
2509 priv = netdev_priv(net_dev);
2510 dpaa_eth_napi_disable(priv);
2512 return err;
2515 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2517 if (!net_dev->phydev)
2518 return -EINVAL;
2519 return phy_mii_ioctl(net_dev->phydev, rq, cmd);
2522 static const struct net_device_ops dpaa_ops = {
2523 .ndo_open = dpaa_open,
2524 .ndo_start_xmit = dpaa_start_xmit,
2525 .ndo_stop = dpaa_eth_stop,
2526 .ndo_tx_timeout = dpaa_tx_timeout,
2527 .ndo_get_stats64 = dpaa_get_stats64,
2528 .ndo_set_mac_address = dpaa_set_mac_address,
2529 .ndo_validate_addr = eth_validate_addr,
2530 .ndo_set_rx_mode = dpaa_set_rx_mode,
2531 .ndo_do_ioctl = dpaa_ioctl,
2532 .ndo_setup_tc = dpaa_setup_tc,
2535 static int dpaa_napi_add(struct net_device *net_dev)
2537 struct dpaa_priv *priv = netdev_priv(net_dev);
2538 struct dpaa_percpu_priv *percpu_priv;
2539 int cpu;
2541 for_each_possible_cpu(cpu) {
2542 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2544 netif_napi_add(net_dev, &percpu_priv->np.napi,
2545 dpaa_eth_poll, NAPI_POLL_WEIGHT);
2548 return 0;
2551 static void dpaa_napi_del(struct net_device *net_dev)
2553 struct dpaa_priv *priv = netdev_priv(net_dev);
2554 struct dpaa_percpu_priv *percpu_priv;
2555 int cpu;
2557 for_each_possible_cpu(cpu) {
2558 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2560 netif_napi_del(&percpu_priv->np.napi);
2564 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
2565 struct bm_buffer *bmb)
2567 dma_addr_t addr = bm_buf_addr(bmb);
2569 dma_unmap_single(bp->dev, addr, bp->size, DMA_FROM_DEVICE);
2571 skb_free_frag(phys_to_virt(addr));
2574 /* Alloc the dpaa_bp struct and configure default values */
2575 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
2577 struct dpaa_bp *dpaa_bp;
2579 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
2580 if (!dpaa_bp)
2581 return ERR_PTR(-ENOMEM);
2583 dpaa_bp->bpid = FSL_DPAA_BPID_INV;
2584 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
2585 if (!dpaa_bp->percpu_count)
2586 return ERR_PTR(-ENOMEM);
2588 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
2590 dpaa_bp->seed_cb = dpaa_bp_seed;
2591 dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
2593 return dpaa_bp;
2596 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
2597 * We won't be sending congestion notifications to FMan; for now, we just use
2598 * this CGR to generate enqueue rejections to FMan in order to drop the frames
2599 * before they reach our ingress queues and eat up memory.
2601 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
2603 struct qm_mcc_initcgr initcgr;
2604 u32 cs_th;
2605 int err;
2607 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
2608 if (err < 0) {
2609 if (netif_msg_drv(priv))
2610 pr_err("Error %d allocating CGR ID\n", err);
2611 goto out_error;
2614 /* Enable CS TD, but disable Congestion State Change Notifications. */
2615 memset(&initcgr, 0, sizeof(initcgr));
2616 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
2617 initcgr.cgr.cscn_en = QM_CGR_EN;
2618 cs_th = DPAA_INGRESS_CS_THRESHOLD;
2619 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
2621 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
2622 initcgr.cgr.cstd_en = QM_CGR_EN;
2624 /* This CGR will be associated with the SWP affined to the current CPU.
2625 * However, we'll place all our ingress FQs in it.
2627 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
2628 &initcgr);
2629 if (err < 0) {
2630 if (netif_msg_drv(priv))
2631 pr_err("Error %d creating ingress CGR with ID %d\n",
2632 err, priv->ingress_cgr.cgrid);
2633 qman_release_cgrid(priv->ingress_cgr.cgrid);
2634 goto out_error;
2636 if (netif_msg_drv(priv))
2637 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
2638 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
2640 priv->use_ingress_cgr = true;
2642 out_error:
2643 return err;
2646 static const struct of_device_id dpaa_match[];
2648 static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl)
2650 u16 headroom;
2652 /* The frame headroom must accommodate:
2653 * - the driver private data area
2654 * - parse results, hash results, timestamp if selected
2655 * If either hash results or time stamp are selected, both will
2656 * be copied to/from the frame headroom, as TS is located between PR and
2657 * HR in the IC and IC copy size has a granularity of 16bytes
2658 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
2660 * Also make sure the headroom is a multiple of data_align bytes
2662 headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE +
2663 DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE);
2665 return DPAA_FD_DATA_ALIGNMENT ? ALIGN(headroom,
2666 DPAA_FD_DATA_ALIGNMENT) :
2667 headroom;
2670 static int dpaa_eth_probe(struct platform_device *pdev)
2672 struct dpaa_bp *dpaa_bps[DPAA_BPS_NUM] = {NULL};
2673 struct net_device *net_dev = NULL;
2674 struct dpaa_fq *dpaa_fq, *tmp;
2675 struct dpaa_priv *priv = NULL;
2676 struct fm_port_fqs port_fqs;
2677 struct mac_device *mac_dev;
2678 int err = 0, i, channel;
2679 struct device *dev;
2681 /* device used for DMA mapping */
2682 dev = pdev->dev.parent;
2683 err = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(40));
2684 if (err) {
2685 dev_err(dev, "dma_coerce_mask_and_coherent() failed\n");
2686 return err;
2689 /* Allocate this early, so we can store relevant information in
2690 * the private area
2692 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
2693 if (!net_dev) {
2694 dev_err(dev, "alloc_etherdev_mq() failed\n");
2695 return -ENOMEM;
2698 /* Do this here, so we can be verbose early */
2699 SET_NETDEV_DEV(net_dev, dev);
2700 dev_set_drvdata(dev, net_dev);
2702 priv = netdev_priv(net_dev);
2703 priv->net_dev = net_dev;
2705 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
2707 mac_dev = dpaa_mac_dev_get(pdev);
2708 if (IS_ERR(mac_dev)) {
2709 dev_err(dev, "dpaa_mac_dev_get() failed\n");
2710 err = PTR_ERR(mac_dev);
2711 goto free_netdev;
2714 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
2715 * we choose conservatively and let the user explicitly set a higher
2716 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
2717 * in the same LAN.
2718 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
2719 * start with the maximum allowed.
2721 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
2723 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
2724 net_dev->mtu);
2726 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
2727 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
2729 /* bp init */
2730 for (i = 0; i < DPAA_BPS_NUM; i++) {
2731 dpaa_bps[i] = dpaa_bp_alloc(dev);
2732 if (IS_ERR(dpaa_bps[i])) {
2733 err = PTR_ERR(dpaa_bps[i]);
2734 goto free_dpaa_bps;
2736 /* the raw size of the buffers used for reception */
2737 dpaa_bps[i]->raw_size = bpool_buffer_raw_size(i, DPAA_BPS_NUM);
2738 /* avoid runtime computations by keeping the usable size here */
2739 dpaa_bps[i]->size = dpaa_bp_size(dpaa_bps[i]->raw_size);
2740 dpaa_bps[i]->dev = dev;
2742 err = dpaa_bp_alloc_pool(dpaa_bps[i]);
2743 if (err < 0)
2744 goto free_dpaa_bps;
2745 priv->dpaa_bps[i] = dpaa_bps[i];
2748 INIT_LIST_HEAD(&priv->dpaa_fq_list);
2750 memset(&port_fqs, 0, sizeof(port_fqs));
2752 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
2753 if (err < 0) {
2754 dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
2755 goto free_dpaa_bps;
2758 priv->mac_dev = mac_dev;
2760 channel = dpaa_get_channel();
2761 if (channel < 0) {
2762 dev_err(dev, "dpaa_get_channel() failed\n");
2763 err = channel;
2764 goto free_dpaa_bps;
2767 priv->channel = (u16)channel;
2769 /* Start a thread that will walk the CPUs with affine portals
2770 * and add this pool channel to each's dequeue mask.
2772 dpaa_eth_add_channel(priv->channel);
2774 dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
2776 /* Create a congestion group for this netdev, with
2777 * dynamically-allocated CGR ID.
2778 * Must be executed after probing the MAC, but before
2779 * assigning the egress FQs to the CGRs.
2781 err = dpaa_eth_cgr_init(priv);
2782 if (err < 0) {
2783 dev_err(dev, "Error initializing CGR\n");
2784 goto free_dpaa_bps;
2787 err = dpaa_ingress_cgr_init(priv);
2788 if (err < 0) {
2789 dev_err(dev, "Error initializing ingress CGR\n");
2790 goto delete_egress_cgr;
2793 /* Add the FQs to the interface, and make them active */
2794 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
2795 err = dpaa_fq_init(dpaa_fq, false);
2796 if (err < 0)
2797 goto free_dpaa_fqs;
2800 priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]);
2801 priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]);
2803 /* All real interfaces need their ports initialized */
2804 err = dpaa_eth_init_ports(mac_dev, dpaa_bps, DPAA_BPS_NUM, &port_fqs,
2805 &priv->buf_layout[0], dev);
2806 if (err)
2807 goto free_dpaa_fqs;
2809 /* Rx traffic distribution based on keygen hashing defaults to on */
2810 priv->keygen_in_use = true;
2812 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
2813 if (!priv->percpu_priv) {
2814 dev_err(dev, "devm_alloc_percpu() failed\n");
2815 err = -ENOMEM;
2816 goto free_dpaa_fqs;
2819 priv->num_tc = 1;
2820 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
2822 /* Initialize NAPI */
2823 err = dpaa_napi_add(net_dev);
2824 if (err < 0)
2825 goto delete_dpaa_napi;
2827 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
2828 if (err < 0)
2829 goto delete_dpaa_napi;
2831 dpaa_eth_sysfs_init(&net_dev->dev);
2833 netif_info(priv, probe, net_dev, "Probed interface %s\n",
2834 net_dev->name);
2836 return 0;
2838 delete_dpaa_napi:
2839 dpaa_napi_del(net_dev);
2840 free_dpaa_fqs:
2841 dpaa_fq_free(dev, &priv->dpaa_fq_list);
2842 qman_delete_cgr_safe(&priv->ingress_cgr);
2843 qman_release_cgrid(priv->ingress_cgr.cgrid);
2844 delete_egress_cgr:
2845 qman_delete_cgr_safe(&priv->cgr_data.cgr);
2846 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2847 free_dpaa_bps:
2848 dpaa_bps_free(priv);
2849 free_netdev:
2850 dev_set_drvdata(dev, NULL);
2851 free_netdev(net_dev);
2853 return err;
2856 static int dpaa_remove(struct platform_device *pdev)
2858 struct net_device *net_dev;
2859 struct dpaa_priv *priv;
2860 struct device *dev;
2861 int err;
2863 dev = &pdev->dev;
2864 net_dev = dev_get_drvdata(dev);
2866 priv = netdev_priv(net_dev);
2868 dpaa_eth_sysfs_remove(dev);
2870 dev_set_drvdata(dev, NULL);
2871 unregister_netdev(net_dev);
2873 err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
2875 qman_delete_cgr_safe(&priv->ingress_cgr);
2876 qman_release_cgrid(priv->ingress_cgr.cgrid);
2877 qman_delete_cgr_safe(&priv->cgr_data.cgr);
2878 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2880 dpaa_napi_del(net_dev);
2882 dpaa_bps_free(priv);
2884 free_netdev(net_dev);
2886 return err;
2889 static const struct platform_device_id dpaa_devtype[] = {
2891 .name = "dpaa-ethernet",
2892 .driver_data = 0,
2893 }, {
2896 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
2898 static struct platform_driver dpaa_driver = {
2899 .driver = {
2900 .name = KBUILD_MODNAME,
2902 .id_table = dpaa_devtype,
2903 .probe = dpaa_eth_probe,
2904 .remove = dpaa_remove
2907 static int __init dpaa_load(void)
2909 int err;
2911 pr_debug("FSL DPAA Ethernet driver\n");
2913 /* initialize dpaa_eth mirror values */
2914 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
2915 dpaa_max_frm = fman_get_max_frm();
2917 err = platform_driver_register(&dpaa_driver);
2918 if (err < 0)
2919 pr_err("Error, platform_driver_register() = %d\n", err);
2921 return err;
2923 module_init(dpaa_load);
2925 static void __exit dpaa_unload(void)
2927 platform_driver_unregister(&dpaa_driver);
2929 /* Only one channel is used and needs to be released after all
2930 * interfaces are removed
2932 dpaa_release_channel();
2934 module_exit(dpaa_unload);
2936 MODULE_LICENSE("Dual BSD/GPL");
2937 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");