staging: rtl8188eu: Replace function name in string with __func__
[linux/fpc-iii.git] / drivers / net / ethernet / freescale / fec_main.c
blob7a7f3a42b2aa1ee12e467d9295b8422a835bdd12
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 #include <soc/imx/cpuidle.h>
65 #include <asm/cacheflush.h>
67 #include "fec.h"
69 static void set_multicast_list(struct net_device *ndev);
70 static void fec_enet_itr_coal_init(struct net_device *ndev);
72 #define DRIVER_NAME "fec"
74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
76 /* Pause frame feild and FIFO threshold */
77 #define FEC_ENET_FCE (1 << 5)
78 #define FEC_ENET_RSEM_V 0x84
79 #define FEC_ENET_RSFL_V 16
80 #define FEC_ENET_RAEM_V 0x8
81 #define FEC_ENET_RAFL_V 0x8
82 #define FEC_ENET_OPD_V 0xFFF0
83 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
85 static struct platform_device_id fec_devtype[] = {
87 /* keep it for coldfire */
88 .name = DRIVER_NAME,
89 .driver_data = 0,
90 }, {
91 .name = "imx25-fec",
92 .driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR,
93 }, {
94 .name = "imx27-fec",
95 .driver_data = FEC_QUIRK_MIB_CLEAR,
96 }, {
97 .name = "imx28-fec",
98 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
99 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
100 }, {
101 .name = "imx6q-fec",
102 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
103 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
104 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
105 FEC_QUIRK_HAS_RACC,
106 }, {
107 .name = "mvf600-fec",
108 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
109 }, {
110 .name = "imx6sx-fec",
111 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
114 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
115 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
116 }, {
117 .name = "imx6ul-fec",
118 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
121 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
122 FEC_QUIRK_HAS_COALESCE,
123 }, {
124 /* sentinel */
127 MODULE_DEVICE_TABLE(platform, fec_devtype);
129 enum imx_fec_type {
130 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
131 IMX27_FEC, /* runs on i.mx27/35/51 */
132 IMX28_FEC,
133 IMX6Q_FEC,
134 MVF600_FEC,
135 IMX6SX_FEC,
136 IMX6UL_FEC,
139 static const struct of_device_id fec_dt_ids[] = {
140 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
141 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
142 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
143 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
144 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
145 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
146 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
147 { /* sentinel */ }
149 MODULE_DEVICE_TABLE(of, fec_dt_ids);
151 static unsigned char macaddr[ETH_ALEN];
152 module_param_array(macaddr, byte, NULL, 0);
153 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
155 #if defined(CONFIG_M5272)
157 * Some hardware gets it MAC address out of local flash memory.
158 * if this is non-zero then assume it is the address to get MAC from.
160 #if defined(CONFIG_NETtel)
161 #define FEC_FLASHMAC 0xf0006006
162 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
163 #define FEC_FLASHMAC 0xf0006000
164 #elif defined(CONFIG_CANCam)
165 #define FEC_FLASHMAC 0xf0020000
166 #elif defined (CONFIG_M5272C3)
167 #define FEC_FLASHMAC (0xffe04000 + 4)
168 #elif defined(CONFIG_MOD5272)
169 #define FEC_FLASHMAC 0xffc0406b
170 #else
171 #define FEC_FLASHMAC 0
172 #endif
173 #endif /* CONFIG_M5272 */
175 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
177 * 2048 byte skbufs are allocated. However, alignment requirements
178 * varies between FEC variants. Worst case is 64, so round down by 64.
180 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
181 #define PKT_MINBUF_SIZE 64
183 /* FEC receive acceleration */
184 #define FEC_RACC_IPDIS (1 << 1)
185 #define FEC_RACC_PRODIS (1 << 2)
186 #define FEC_RACC_SHIFT16 BIT(7)
187 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
189 /* MIB Control Register */
190 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
193 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
194 * size bits. Other FEC hardware does not, so we need to take that into
195 * account when setting it.
197 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
198 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
199 defined(CONFIG_ARM64)
200 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
201 #else
202 #define OPT_FRAME_SIZE 0
203 #endif
205 /* FEC MII MMFR bits definition */
206 #define FEC_MMFR_ST (1 << 30)
207 #define FEC_MMFR_OP_READ (2 << 28)
208 #define FEC_MMFR_OP_WRITE (1 << 28)
209 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
210 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
211 #define FEC_MMFR_TA (2 << 16)
212 #define FEC_MMFR_DATA(v) (v & 0xffff)
213 /* FEC ECR bits definition */
214 #define FEC_ECR_MAGICEN (1 << 2)
215 #define FEC_ECR_SLEEP (1 << 3)
217 #define FEC_MII_TIMEOUT 30000 /* us */
219 /* Transmitter timeout */
220 #define TX_TIMEOUT (2 * HZ)
222 #define FEC_PAUSE_FLAG_AUTONEG 0x1
223 #define FEC_PAUSE_FLAG_ENABLE 0x2
224 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
225 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
226 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
228 #define COPYBREAK_DEFAULT 256
230 /* Max number of allowed TCP segments for software TSO */
231 #define FEC_MAX_TSO_SEGS 100
232 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
234 #define IS_TSO_HEADER(txq, addr) \
235 ((addr >= txq->tso_hdrs_dma) && \
236 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
238 static int mii_cnt;
240 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
241 struct bufdesc_prop *bd)
243 return (bdp >= bd->last) ? bd->base
244 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
247 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
248 struct bufdesc_prop *bd)
250 return (bdp <= bd->base) ? bd->last
251 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
254 static int fec_enet_get_bd_index(struct bufdesc *bdp,
255 struct bufdesc_prop *bd)
257 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
260 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
262 int entries;
264 entries = (((const char *)txq->dirty_tx -
265 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
267 return entries >= 0 ? entries : entries + txq->bd.ring_size;
270 static void swap_buffer(void *bufaddr, int len)
272 int i;
273 unsigned int *buf = bufaddr;
275 for (i = 0; i < len; i += 4, buf++)
276 swab32s(buf);
279 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
281 int i;
282 unsigned int *src = src_buf;
283 unsigned int *dst = dst_buf;
285 for (i = 0; i < len; i += 4, src++, dst++)
286 *dst = swab32p(src);
289 static void fec_dump(struct net_device *ndev)
291 struct fec_enet_private *fep = netdev_priv(ndev);
292 struct bufdesc *bdp;
293 struct fec_enet_priv_tx_q *txq;
294 int index = 0;
296 netdev_info(ndev, "TX ring dump\n");
297 pr_info("Nr SC addr len SKB\n");
299 txq = fep->tx_queue[0];
300 bdp = txq->bd.base;
302 do {
303 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
304 index,
305 bdp == txq->bd.cur ? 'S' : ' ',
306 bdp == txq->dirty_tx ? 'H' : ' ',
307 fec16_to_cpu(bdp->cbd_sc),
308 fec32_to_cpu(bdp->cbd_bufaddr),
309 fec16_to_cpu(bdp->cbd_datlen),
310 txq->tx_skbuff[index]);
311 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
312 index++;
313 } while (bdp != txq->bd.base);
316 static inline bool is_ipv4_pkt(struct sk_buff *skb)
318 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
321 static int
322 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
324 /* Only run for packets requiring a checksum. */
325 if (skb->ip_summed != CHECKSUM_PARTIAL)
326 return 0;
328 if (unlikely(skb_cow_head(skb, 0)))
329 return -1;
331 if (is_ipv4_pkt(skb))
332 ip_hdr(skb)->check = 0;
333 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
335 return 0;
338 static struct bufdesc *
339 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
340 struct sk_buff *skb,
341 struct net_device *ndev)
343 struct fec_enet_private *fep = netdev_priv(ndev);
344 struct bufdesc *bdp = txq->bd.cur;
345 struct bufdesc_ex *ebdp;
346 int nr_frags = skb_shinfo(skb)->nr_frags;
347 int frag, frag_len;
348 unsigned short status;
349 unsigned int estatus = 0;
350 skb_frag_t *this_frag;
351 unsigned int index;
352 void *bufaddr;
353 dma_addr_t addr;
354 int i;
356 for (frag = 0; frag < nr_frags; frag++) {
357 this_frag = &skb_shinfo(skb)->frags[frag];
358 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
359 ebdp = (struct bufdesc_ex *)bdp;
361 status = fec16_to_cpu(bdp->cbd_sc);
362 status &= ~BD_ENET_TX_STATS;
363 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
364 frag_len = skb_shinfo(skb)->frags[frag].size;
366 /* Handle the last BD specially */
367 if (frag == nr_frags - 1) {
368 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
369 if (fep->bufdesc_ex) {
370 estatus |= BD_ENET_TX_INT;
371 if (unlikely(skb_shinfo(skb)->tx_flags &
372 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
373 estatus |= BD_ENET_TX_TS;
377 if (fep->bufdesc_ex) {
378 if (fep->quirks & FEC_QUIRK_HAS_AVB)
379 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
380 if (skb->ip_summed == CHECKSUM_PARTIAL)
381 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
382 ebdp->cbd_bdu = 0;
383 ebdp->cbd_esc = cpu_to_fec32(estatus);
386 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
388 index = fec_enet_get_bd_index(bdp, &txq->bd);
389 if (((unsigned long) bufaddr) & fep->tx_align ||
390 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
391 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
392 bufaddr = txq->tx_bounce[index];
394 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
395 swap_buffer(bufaddr, frag_len);
398 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
399 DMA_TO_DEVICE);
400 if (dma_mapping_error(&fep->pdev->dev, addr)) {
401 if (net_ratelimit())
402 netdev_err(ndev, "Tx DMA memory map failed\n");
403 goto dma_mapping_error;
406 bdp->cbd_bufaddr = cpu_to_fec32(addr);
407 bdp->cbd_datlen = cpu_to_fec16(frag_len);
408 /* Make sure the updates to rest of the descriptor are
409 * performed before transferring ownership.
411 wmb();
412 bdp->cbd_sc = cpu_to_fec16(status);
415 return bdp;
416 dma_mapping_error:
417 bdp = txq->bd.cur;
418 for (i = 0; i < frag; i++) {
419 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
420 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
421 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
423 return ERR_PTR(-ENOMEM);
426 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
427 struct sk_buff *skb, struct net_device *ndev)
429 struct fec_enet_private *fep = netdev_priv(ndev);
430 int nr_frags = skb_shinfo(skb)->nr_frags;
431 struct bufdesc *bdp, *last_bdp;
432 void *bufaddr;
433 dma_addr_t addr;
434 unsigned short status;
435 unsigned short buflen;
436 unsigned int estatus = 0;
437 unsigned int index;
438 int entries_free;
440 entries_free = fec_enet_get_free_txdesc_num(txq);
441 if (entries_free < MAX_SKB_FRAGS + 1) {
442 dev_kfree_skb_any(skb);
443 if (net_ratelimit())
444 netdev_err(ndev, "NOT enough BD for SG!\n");
445 return NETDEV_TX_OK;
448 /* Protocol checksum off-load for TCP and UDP. */
449 if (fec_enet_clear_csum(skb, ndev)) {
450 dev_kfree_skb_any(skb);
451 return NETDEV_TX_OK;
454 /* Fill in a Tx ring entry */
455 bdp = txq->bd.cur;
456 last_bdp = bdp;
457 status = fec16_to_cpu(bdp->cbd_sc);
458 status &= ~BD_ENET_TX_STATS;
460 /* Set buffer length and buffer pointer */
461 bufaddr = skb->data;
462 buflen = skb_headlen(skb);
464 index = fec_enet_get_bd_index(bdp, &txq->bd);
465 if (((unsigned long) bufaddr) & fep->tx_align ||
466 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
467 memcpy(txq->tx_bounce[index], skb->data, buflen);
468 bufaddr = txq->tx_bounce[index];
470 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
471 swap_buffer(bufaddr, buflen);
474 /* Push the data cache so the CPM does not get stale memory data. */
475 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
476 if (dma_mapping_error(&fep->pdev->dev, addr)) {
477 dev_kfree_skb_any(skb);
478 if (net_ratelimit())
479 netdev_err(ndev, "Tx DMA memory map failed\n");
480 return NETDEV_TX_OK;
483 if (nr_frags) {
484 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
485 if (IS_ERR(last_bdp)) {
486 dma_unmap_single(&fep->pdev->dev, addr,
487 buflen, DMA_TO_DEVICE);
488 dev_kfree_skb_any(skb);
489 return NETDEV_TX_OK;
491 } else {
492 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
493 if (fep->bufdesc_ex) {
494 estatus = BD_ENET_TX_INT;
495 if (unlikely(skb_shinfo(skb)->tx_flags &
496 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
497 estatus |= BD_ENET_TX_TS;
500 bdp->cbd_bufaddr = cpu_to_fec32(addr);
501 bdp->cbd_datlen = cpu_to_fec16(buflen);
503 if (fep->bufdesc_ex) {
505 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
507 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
508 fep->hwts_tx_en))
509 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
511 if (fep->quirks & FEC_QUIRK_HAS_AVB)
512 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
514 if (skb->ip_summed == CHECKSUM_PARTIAL)
515 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
517 ebdp->cbd_bdu = 0;
518 ebdp->cbd_esc = cpu_to_fec32(estatus);
521 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
522 /* Save skb pointer */
523 txq->tx_skbuff[index] = skb;
525 /* Make sure the updates to rest of the descriptor are performed before
526 * transferring ownership.
528 wmb();
530 /* Send it on its way. Tell FEC it's ready, interrupt when done,
531 * it's the last BD of the frame, and to put the CRC on the end.
533 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
534 bdp->cbd_sc = cpu_to_fec16(status);
536 /* If this was the last BD in the ring, start at the beginning again. */
537 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
539 skb_tx_timestamp(skb);
541 /* Make sure the update to bdp and tx_skbuff are performed before
542 * txq->bd.cur.
544 wmb();
545 txq->bd.cur = bdp;
547 /* Trigger transmission start */
548 writel(0, txq->bd.reg_desc_active);
550 return 0;
553 static int
554 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
555 struct net_device *ndev,
556 struct bufdesc *bdp, int index, char *data,
557 int size, bool last_tcp, bool is_last)
559 struct fec_enet_private *fep = netdev_priv(ndev);
560 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
561 unsigned short status;
562 unsigned int estatus = 0;
563 dma_addr_t addr;
565 status = fec16_to_cpu(bdp->cbd_sc);
566 status &= ~BD_ENET_TX_STATS;
568 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
570 if (((unsigned long) data) & fep->tx_align ||
571 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
572 memcpy(txq->tx_bounce[index], data, size);
573 data = txq->tx_bounce[index];
575 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
576 swap_buffer(data, size);
579 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
580 if (dma_mapping_error(&fep->pdev->dev, addr)) {
581 dev_kfree_skb_any(skb);
582 if (net_ratelimit())
583 netdev_err(ndev, "Tx DMA memory map failed\n");
584 return NETDEV_TX_BUSY;
587 bdp->cbd_datlen = cpu_to_fec16(size);
588 bdp->cbd_bufaddr = cpu_to_fec32(addr);
590 if (fep->bufdesc_ex) {
591 if (fep->quirks & FEC_QUIRK_HAS_AVB)
592 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
593 if (skb->ip_summed == CHECKSUM_PARTIAL)
594 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
595 ebdp->cbd_bdu = 0;
596 ebdp->cbd_esc = cpu_to_fec32(estatus);
599 /* Handle the last BD specially */
600 if (last_tcp)
601 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
602 if (is_last) {
603 status |= BD_ENET_TX_INTR;
604 if (fep->bufdesc_ex)
605 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
608 bdp->cbd_sc = cpu_to_fec16(status);
610 return 0;
613 static int
614 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
615 struct sk_buff *skb, struct net_device *ndev,
616 struct bufdesc *bdp, int index)
618 struct fec_enet_private *fep = netdev_priv(ndev);
619 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
620 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
621 void *bufaddr;
622 unsigned long dmabuf;
623 unsigned short status;
624 unsigned int estatus = 0;
626 status = fec16_to_cpu(bdp->cbd_sc);
627 status &= ~BD_ENET_TX_STATS;
628 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
630 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
631 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
632 if (((unsigned long)bufaddr) & fep->tx_align ||
633 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
634 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
635 bufaddr = txq->tx_bounce[index];
637 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
638 swap_buffer(bufaddr, hdr_len);
640 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
641 hdr_len, DMA_TO_DEVICE);
642 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
643 dev_kfree_skb_any(skb);
644 if (net_ratelimit())
645 netdev_err(ndev, "Tx DMA memory map failed\n");
646 return NETDEV_TX_BUSY;
650 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
651 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
653 if (fep->bufdesc_ex) {
654 if (fep->quirks & FEC_QUIRK_HAS_AVB)
655 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
656 if (skb->ip_summed == CHECKSUM_PARTIAL)
657 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
658 ebdp->cbd_bdu = 0;
659 ebdp->cbd_esc = cpu_to_fec32(estatus);
662 bdp->cbd_sc = cpu_to_fec16(status);
664 return 0;
667 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
668 struct sk_buff *skb,
669 struct net_device *ndev)
671 struct fec_enet_private *fep = netdev_priv(ndev);
672 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
673 int total_len, data_left;
674 struct bufdesc *bdp = txq->bd.cur;
675 struct tso_t tso;
676 unsigned int index = 0;
677 int ret;
679 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
680 dev_kfree_skb_any(skb);
681 if (net_ratelimit())
682 netdev_err(ndev, "NOT enough BD for TSO!\n");
683 return NETDEV_TX_OK;
686 /* Protocol checksum off-load for TCP and UDP. */
687 if (fec_enet_clear_csum(skb, ndev)) {
688 dev_kfree_skb_any(skb);
689 return NETDEV_TX_OK;
692 /* Initialize the TSO handler, and prepare the first payload */
693 tso_start(skb, &tso);
695 total_len = skb->len - hdr_len;
696 while (total_len > 0) {
697 char *hdr;
699 index = fec_enet_get_bd_index(bdp, &txq->bd);
700 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
701 total_len -= data_left;
703 /* prepare packet headers: MAC + IP + TCP */
704 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
705 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
706 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
707 if (ret)
708 goto err_release;
710 while (data_left > 0) {
711 int size;
713 size = min_t(int, tso.size, data_left);
714 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
715 index = fec_enet_get_bd_index(bdp, &txq->bd);
716 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
717 bdp, index,
718 tso.data, size,
719 size == data_left,
720 total_len == 0);
721 if (ret)
722 goto err_release;
724 data_left -= size;
725 tso_build_data(skb, &tso, size);
728 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
731 /* Save skb pointer */
732 txq->tx_skbuff[index] = skb;
734 skb_tx_timestamp(skb);
735 txq->bd.cur = bdp;
737 /* Trigger transmission start */
738 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
739 !readl(txq->bd.reg_desc_active) ||
740 !readl(txq->bd.reg_desc_active) ||
741 !readl(txq->bd.reg_desc_active) ||
742 !readl(txq->bd.reg_desc_active))
743 writel(0, txq->bd.reg_desc_active);
745 return 0;
747 err_release:
748 /* TODO: Release all used data descriptors for TSO */
749 return ret;
752 static netdev_tx_t
753 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
755 struct fec_enet_private *fep = netdev_priv(ndev);
756 int entries_free;
757 unsigned short queue;
758 struct fec_enet_priv_tx_q *txq;
759 struct netdev_queue *nq;
760 int ret;
762 queue = skb_get_queue_mapping(skb);
763 txq = fep->tx_queue[queue];
764 nq = netdev_get_tx_queue(ndev, queue);
766 if (skb_is_gso(skb))
767 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
768 else
769 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
770 if (ret)
771 return ret;
773 entries_free = fec_enet_get_free_txdesc_num(txq);
774 if (entries_free <= txq->tx_stop_threshold)
775 netif_tx_stop_queue(nq);
777 return NETDEV_TX_OK;
780 /* Init RX & TX buffer descriptors
782 static void fec_enet_bd_init(struct net_device *dev)
784 struct fec_enet_private *fep = netdev_priv(dev);
785 struct fec_enet_priv_tx_q *txq;
786 struct fec_enet_priv_rx_q *rxq;
787 struct bufdesc *bdp;
788 unsigned int i;
789 unsigned int q;
791 for (q = 0; q < fep->num_rx_queues; q++) {
792 /* Initialize the receive buffer descriptors. */
793 rxq = fep->rx_queue[q];
794 bdp = rxq->bd.base;
796 for (i = 0; i < rxq->bd.ring_size; i++) {
798 /* Initialize the BD for every fragment in the page. */
799 if (bdp->cbd_bufaddr)
800 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
801 else
802 bdp->cbd_sc = cpu_to_fec16(0);
803 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
806 /* Set the last buffer to wrap */
807 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
808 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
810 rxq->bd.cur = rxq->bd.base;
813 for (q = 0; q < fep->num_tx_queues; q++) {
814 /* ...and the same for transmit */
815 txq = fep->tx_queue[q];
816 bdp = txq->bd.base;
817 txq->bd.cur = bdp;
819 for (i = 0; i < txq->bd.ring_size; i++) {
820 /* Initialize the BD for every fragment in the page. */
821 bdp->cbd_sc = cpu_to_fec16(0);
822 if (bdp->cbd_bufaddr &&
823 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
824 dma_unmap_single(&fep->pdev->dev,
825 fec32_to_cpu(bdp->cbd_bufaddr),
826 fec16_to_cpu(bdp->cbd_datlen),
827 DMA_TO_DEVICE);
828 if (txq->tx_skbuff[i]) {
829 dev_kfree_skb_any(txq->tx_skbuff[i]);
830 txq->tx_skbuff[i] = NULL;
832 bdp->cbd_bufaddr = cpu_to_fec32(0);
833 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
836 /* Set the last buffer to wrap */
837 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
838 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
839 txq->dirty_tx = bdp;
843 static void fec_enet_active_rxring(struct net_device *ndev)
845 struct fec_enet_private *fep = netdev_priv(ndev);
846 int i;
848 for (i = 0; i < fep->num_rx_queues; i++)
849 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
852 static void fec_enet_enable_ring(struct net_device *ndev)
854 struct fec_enet_private *fep = netdev_priv(ndev);
855 struct fec_enet_priv_tx_q *txq;
856 struct fec_enet_priv_rx_q *rxq;
857 int i;
859 for (i = 0; i < fep->num_rx_queues; i++) {
860 rxq = fep->rx_queue[i];
861 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
862 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
864 /* enable DMA1/2 */
865 if (i)
866 writel(RCMR_MATCHEN | RCMR_CMP(i),
867 fep->hwp + FEC_RCMR(i));
870 for (i = 0; i < fep->num_tx_queues; i++) {
871 txq = fep->tx_queue[i];
872 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
874 /* enable DMA1/2 */
875 if (i)
876 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
877 fep->hwp + FEC_DMA_CFG(i));
881 static void fec_enet_reset_skb(struct net_device *ndev)
883 struct fec_enet_private *fep = netdev_priv(ndev);
884 struct fec_enet_priv_tx_q *txq;
885 int i, j;
887 for (i = 0; i < fep->num_tx_queues; i++) {
888 txq = fep->tx_queue[i];
890 for (j = 0; j < txq->bd.ring_size; j++) {
891 if (txq->tx_skbuff[j]) {
892 dev_kfree_skb_any(txq->tx_skbuff[j]);
893 txq->tx_skbuff[j] = NULL;
900 * This function is called to start or restart the FEC during a link
901 * change, transmit timeout, or to reconfigure the FEC. The network
902 * packet processing for this device must be stopped before this call.
904 static void
905 fec_restart(struct net_device *ndev)
907 struct fec_enet_private *fep = netdev_priv(ndev);
908 u32 val;
909 u32 temp_mac[2];
910 u32 rcntl = OPT_FRAME_SIZE | 0x04;
911 u32 ecntl = 0x2; /* ETHEREN */
913 /* Whack a reset. We should wait for this.
914 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
915 * instead of reset MAC itself.
917 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
918 writel(0, fep->hwp + FEC_ECNTRL);
919 } else {
920 writel(1, fep->hwp + FEC_ECNTRL);
921 udelay(10);
925 * enet-mac reset will reset mac address registers too,
926 * so need to reconfigure it.
928 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
929 writel((__force u32)cpu_to_be32(temp_mac[0]),
930 fep->hwp + FEC_ADDR_LOW);
931 writel((__force u32)cpu_to_be32(temp_mac[1]),
932 fep->hwp + FEC_ADDR_HIGH);
934 /* Clear any outstanding interrupt. */
935 writel(0xffffffff, fep->hwp + FEC_IEVENT);
937 fec_enet_bd_init(ndev);
939 fec_enet_enable_ring(ndev);
941 /* Reset tx SKB buffers. */
942 fec_enet_reset_skb(ndev);
944 /* Enable MII mode */
945 if (fep->full_duplex == DUPLEX_FULL) {
946 /* FD enable */
947 writel(0x04, fep->hwp + FEC_X_CNTRL);
948 } else {
949 /* No Rcv on Xmit */
950 rcntl |= 0x02;
951 writel(0x0, fep->hwp + FEC_X_CNTRL);
954 /* Set MII speed */
955 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
957 #if !defined(CONFIG_M5272)
958 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
959 val = readl(fep->hwp + FEC_RACC);
960 /* align IP header */
961 val |= FEC_RACC_SHIFT16;
962 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
963 /* set RX checksum */
964 val |= FEC_RACC_OPTIONS;
965 else
966 val &= ~FEC_RACC_OPTIONS;
967 writel(val, fep->hwp + FEC_RACC);
968 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
970 #endif
973 * The phy interface and speed need to get configured
974 * differently on enet-mac.
976 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
977 /* Enable flow control and length check */
978 rcntl |= 0x40000000 | 0x00000020;
980 /* RGMII, RMII or MII */
981 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
982 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
983 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
984 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
985 rcntl |= (1 << 6);
986 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
987 rcntl |= (1 << 8);
988 else
989 rcntl &= ~(1 << 8);
991 /* 1G, 100M or 10M */
992 if (ndev->phydev) {
993 if (ndev->phydev->speed == SPEED_1000)
994 ecntl |= (1 << 5);
995 else if (ndev->phydev->speed == SPEED_100)
996 rcntl &= ~(1 << 9);
997 else
998 rcntl |= (1 << 9);
1000 } else {
1001 #ifdef FEC_MIIGSK_ENR
1002 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1003 u32 cfgr;
1004 /* disable the gasket and wait */
1005 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1006 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1007 udelay(1);
1010 * configure the gasket:
1011 * RMII, 50 MHz, no loopback, no echo
1012 * MII, 25 MHz, no loopback, no echo
1014 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1015 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1016 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1017 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1018 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1020 /* re-enable the gasket */
1021 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1023 #endif
1026 #if !defined(CONFIG_M5272)
1027 /* enable pause frame*/
1028 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1029 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1030 ndev->phydev && ndev->phydev->pause)) {
1031 rcntl |= FEC_ENET_FCE;
1033 /* set FIFO threshold parameter to reduce overrun */
1034 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1035 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1036 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1037 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1039 /* OPD */
1040 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1041 } else {
1042 rcntl &= ~FEC_ENET_FCE;
1044 #endif /* !defined(CONFIG_M5272) */
1046 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1048 /* Setup multicast filter. */
1049 set_multicast_list(ndev);
1050 #ifndef CONFIG_M5272
1051 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1052 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1053 #endif
1055 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1056 /* enable ENET endian swap */
1057 ecntl |= (1 << 8);
1058 /* enable ENET store and forward mode */
1059 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1062 if (fep->bufdesc_ex)
1063 ecntl |= (1 << 4);
1065 #ifndef CONFIG_M5272
1066 /* Enable the MIB statistic event counters */
1067 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1068 #endif
1070 /* And last, enable the transmit and receive processing */
1071 writel(ecntl, fep->hwp + FEC_ECNTRL);
1072 fec_enet_active_rxring(ndev);
1074 if (fep->bufdesc_ex)
1075 fec_ptp_start_cyclecounter(ndev);
1077 /* Enable interrupts we wish to service */
1078 if (fep->link)
1079 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1080 else
1081 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1083 /* Init the interrupt coalescing */
1084 fec_enet_itr_coal_init(ndev);
1088 static void
1089 fec_stop(struct net_device *ndev)
1091 struct fec_enet_private *fep = netdev_priv(ndev);
1092 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1093 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1094 u32 val;
1096 /* We cannot expect a graceful transmit stop without link !!! */
1097 if (fep->link) {
1098 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1099 udelay(10);
1100 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1101 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1104 /* Whack a reset. We should wait for this.
1105 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1106 * instead of reset MAC itself.
1108 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1109 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1110 writel(0, fep->hwp + FEC_ECNTRL);
1111 } else {
1112 writel(1, fep->hwp + FEC_ECNTRL);
1113 udelay(10);
1115 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1116 } else {
1117 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1118 val = readl(fep->hwp + FEC_ECNTRL);
1119 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1120 writel(val, fep->hwp + FEC_ECNTRL);
1122 if (pdata && pdata->sleep_mode_enable)
1123 pdata->sleep_mode_enable(true);
1125 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1127 /* We have to keep ENET enabled to have MII interrupt stay working */
1128 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1129 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1130 writel(2, fep->hwp + FEC_ECNTRL);
1131 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1136 static void
1137 fec_timeout(struct net_device *ndev)
1139 struct fec_enet_private *fep = netdev_priv(ndev);
1141 fec_dump(ndev);
1143 ndev->stats.tx_errors++;
1145 schedule_work(&fep->tx_timeout_work);
1148 static void fec_enet_timeout_work(struct work_struct *work)
1150 struct fec_enet_private *fep =
1151 container_of(work, struct fec_enet_private, tx_timeout_work);
1152 struct net_device *ndev = fep->netdev;
1154 rtnl_lock();
1155 if (netif_device_present(ndev) || netif_running(ndev)) {
1156 napi_disable(&fep->napi);
1157 netif_tx_lock_bh(ndev);
1158 fec_restart(ndev);
1159 netif_wake_queue(ndev);
1160 netif_tx_unlock_bh(ndev);
1161 napi_enable(&fep->napi);
1163 rtnl_unlock();
1166 static void
1167 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1168 struct skb_shared_hwtstamps *hwtstamps)
1170 unsigned long flags;
1171 u64 ns;
1173 spin_lock_irqsave(&fep->tmreg_lock, flags);
1174 ns = timecounter_cyc2time(&fep->tc, ts);
1175 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1177 memset(hwtstamps, 0, sizeof(*hwtstamps));
1178 hwtstamps->hwtstamp = ns_to_ktime(ns);
1181 static void
1182 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1184 struct fec_enet_private *fep;
1185 struct bufdesc *bdp;
1186 unsigned short status;
1187 struct sk_buff *skb;
1188 struct fec_enet_priv_tx_q *txq;
1189 struct netdev_queue *nq;
1190 int index = 0;
1191 int entries_free;
1193 fep = netdev_priv(ndev);
1195 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1197 txq = fep->tx_queue[queue_id];
1198 /* get next bdp of dirty_tx */
1199 nq = netdev_get_tx_queue(ndev, queue_id);
1200 bdp = txq->dirty_tx;
1202 /* get next bdp of dirty_tx */
1203 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1205 while (bdp != READ_ONCE(txq->bd.cur)) {
1206 /* Order the load of bd.cur and cbd_sc */
1207 rmb();
1208 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1209 if (status & BD_ENET_TX_READY)
1210 break;
1212 index = fec_enet_get_bd_index(bdp, &txq->bd);
1214 skb = txq->tx_skbuff[index];
1215 txq->tx_skbuff[index] = NULL;
1216 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1217 dma_unmap_single(&fep->pdev->dev,
1218 fec32_to_cpu(bdp->cbd_bufaddr),
1219 fec16_to_cpu(bdp->cbd_datlen),
1220 DMA_TO_DEVICE);
1221 bdp->cbd_bufaddr = cpu_to_fec32(0);
1222 if (!skb)
1223 goto skb_done;
1225 /* Check for errors. */
1226 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1227 BD_ENET_TX_RL | BD_ENET_TX_UN |
1228 BD_ENET_TX_CSL)) {
1229 ndev->stats.tx_errors++;
1230 if (status & BD_ENET_TX_HB) /* No heartbeat */
1231 ndev->stats.tx_heartbeat_errors++;
1232 if (status & BD_ENET_TX_LC) /* Late collision */
1233 ndev->stats.tx_window_errors++;
1234 if (status & BD_ENET_TX_RL) /* Retrans limit */
1235 ndev->stats.tx_aborted_errors++;
1236 if (status & BD_ENET_TX_UN) /* Underrun */
1237 ndev->stats.tx_fifo_errors++;
1238 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1239 ndev->stats.tx_carrier_errors++;
1240 } else {
1241 ndev->stats.tx_packets++;
1242 ndev->stats.tx_bytes += skb->len;
1245 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1246 fep->bufdesc_ex) {
1247 struct skb_shared_hwtstamps shhwtstamps;
1248 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1250 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1251 skb_tstamp_tx(skb, &shhwtstamps);
1254 /* Deferred means some collisions occurred during transmit,
1255 * but we eventually sent the packet OK.
1257 if (status & BD_ENET_TX_DEF)
1258 ndev->stats.collisions++;
1260 /* Free the sk buffer associated with this last transmit */
1261 dev_kfree_skb_any(skb);
1262 skb_done:
1263 /* Make sure the update to bdp and tx_skbuff are performed
1264 * before dirty_tx
1266 wmb();
1267 txq->dirty_tx = bdp;
1269 /* Update pointer to next buffer descriptor to be transmitted */
1270 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1272 /* Since we have freed up a buffer, the ring is no longer full
1274 if (netif_queue_stopped(ndev)) {
1275 entries_free = fec_enet_get_free_txdesc_num(txq);
1276 if (entries_free >= txq->tx_wake_threshold)
1277 netif_tx_wake_queue(nq);
1281 /* ERR006358: Keep the transmitter going */
1282 if (bdp != txq->bd.cur &&
1283 readl(txq->bd.reg_desc_active) == 0)
1284 writel(0, txq->bd.reg_desc_active);
1287 static void
1288 fec_enet_tx(struct net_device *ndev)
1290 struct fec_enet_private *fep = netdev_priv(ndev);
1291 u16 queue_id;
1292 /* First process class A queue, then Class B and Best Effort queue */
1293 for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1294 clear_bit(queue_id, &fep->work_tx);
1295 fec_enet_tx_queue(ndev, queue_id);
1297 return;
1300 static int
1301 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1303 struct fec_enet_private *fep = netdev_priv(ndev);
1304 int off;
1306 off = ((unsigned long)skb->data) & fep->rx_align;
1307 if (off)
1308 skb_reserve(skb, fep->rx_align + 1 - off);
1310 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1311 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1312 if (net_ratelimit())
1313 netdev_err(ndev, "Rx DMA memory map failed\n");
1314 return -ENOMEM;
1317 return 0;
1320 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1321 struct bufdesc *bdp, u32 length, bool swap)
1323 struct fec_enet_private *fep = netdev_priv(ndev);
1324 struct sk_buff *new_skb;
1326 if (length > fep->rx_copybreak)
1327 return false;
1329 new_skb = netdev_alloc_skb(ndev, length);
1330 if (!new_skb)
1331 return false;
1333 dma_sync_single_for_cpu(&fep->pdev->dev,
1334 fec32_to_cpu(bdp->cbd_bufaddr),
1335 FEC_ENET_RX_FRSIZE - fep->rx_align,
1336 DMA_FROM_DEVICE);
1337 if (!swap)
1338 memcpy(new_skb->data, (*skb)->data, length);
1339 else
1340 swap_buffer2(new_skb->data, (*skb)->data, length);
1341 *skb = new_skb;
1343 return true;
1346 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1347 * When we update through the ring, if the next incoming buffer has
1348 * not been given to the system, we just set the empty indicator,
1349 * effectively tossing the packet.
1351 static int
1352 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1354 struct fec_enet_private *fep = netdev_priv(ndev);
1355 struct fec_enet_priv_rx_q *rxq;
1356 struct bufdesc *bdp;
1357 unsigned short status;
1358 struct sk_buff *skb_new = NULL;
1359 struct sk_buff *skb;
1360 ushort pkt_len;
1361 __u8 *data;
1362 int pkt_received = 0;
1363 struct bufdesc_ex *ebdp = NULL;
1364 bool vlan_packet_rcvd = false;
1365 u16 vlan_tag;
1366 int index = 0;
1367 bool is_copybreak;
1368 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1370 #ifdef CONFIG_M532x
1371 flush_cache_all();
1372 #endif
1373 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1374 rxq = fep->rx_queue[queue_id];
1376 /* First, grab all of the stats for the incoming packet.
1377 * These get messed up if we get called due to a busy condition.
1379 bdp = rxq->bd.cur;
1381 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1383 if (pkt_received >= budget)
1384 break;
1385 pkt_received++;
1387 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1389 /* Check for errors. */
1390 status ^= BD_ENET_RX_LAST;
1391 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1392 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1393 BD_ENET_RX_CL)) {
1394 ndev->stats.rx_errors++;
1395 if (status & BD_ENET_RX_OV) {
1396 /* FIFO overrun */
1397 ndev->stats.rx_fifo_errors++;
1398 goto rx_processing_done;
1400 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1401 | BD_ENET_RX_LAST)) {
1402 /* Frame too long or too short. */
1403 ndev->stats.rx_length_errors++;
1404 if (status & BD_ENET_RX_LAST)
1405 netdev_err(ndev, "rcv is not +last\n");
1407 if (status & BD_ENET_RX_CR) /* CRC Error */
1408 ndev->stats.rx_crc_errors++;
1409 /* Report late collisions as a frame error. */
1410 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1411 ndev->stats.rx_frame_errors++;
1412 goto rx_processing_done;
1415 /* Process the incoming frame. */
1416 ndev->stats.rx_packets++;
1417 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1418 ndev->stats.rx_bytes += pkt_len;
1420 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1421 skb = rxq->rx_skbuff[index];
1423 /* The packet length includes FCS, but we don't want to
1424 * include that when passing upstream as it messes up
1425 * bridging applications.
1427 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1428 need_swap);
1429 if (!is_copybreak) {
1430 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1431 if (unlikely(!skb_new)) {
1432 ndev->stats.rx_dropped++;
1433 goto rx_processing_done;
1435 dma_unmap_single(&fep->pdev->dev,
1436 fec32_to_cpu(bdp->cbd_bufaddr),
1437 FEC_ENET_RX_FRSIZE - fep->rx_align,
1438 DMA_FROM_DEVICE);
1441 prefetch(skb->data - NET_IP_ALIGN);
1442 skb_put(skb, pkt_len - 4);
1443 data = skb->data;
1445 if (!is_copybreak && need_swap)
1446 swap_buffer(data, pkt_len);
1448 #if !defined(CONFIG_M5272)
1449 if (fep->quirks & FEC_QUIRK_HAS_RACC)
1450 data = skb_pull_inline(skb, 2);
1451 #endif
1453 /* Extract the enhanced buffer descriptor */
1454 ebdp = NULL;
1455 if (fep->bufdesc_ex)
1456 ebdp = (struct bufdesc_ex *)bdp;
1458 /* If this is a VLAN packet remove the VLAN Tag */
1459 vlan_packet_rcvd = false;
1460 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1461 fep->bufdesc_ex &&
1462 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1463 /* Push and remove the vlan tag */
1464 struct vlan_hdr *vlan_header =
1465 (struct vlan_hdr *) (data + ETH_HLEN);
1466 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1468 vlan_packet_rcvd = true;
1470 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1471 skb_pull(skb, VLAN_HLEN);
1474 skb->protocol = eth_type_trans(skb, ndev);
1476 /* Get receive timestamp from the skb */
1477 if (fep->hwts_rx_en && fep->bufdesc_ex)
1478 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1479 skb_hwtstamps(skb));
1481 if (fep->bufdesc_ex &&
1482 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1483 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1484 /* don't check it */
1485 skb->ip_summed = CHECKSUM_UNNECESSARY;
1486 } else {
1487 skb_checksum_none_assert(skb);
1491 /* Handle received VLAN packets */
1492 if (vlan_packet_rcvd)
1493 __vlan_hwaccel_put_tag(skb,
1494 htons(ETH_P_8021Q),
1495 vlan_tag);
1497 napi_gro_receive(&fep->napi, skb);
1499 if (is_copybreak) {
1500 dma_sync_single_for_device(&fep->pdev->dev,
1501 fec32_to_cpu(bdp->cbd_bufaddr),
1502 FEC_ENET_RX_FRSIZE - fep->rx_align,
1503 DMA_FROM_DEVICE);
1504 } else {
1505 rxq->rx_skbuff[index] = skb_new;
1506 fec_enet_new_rxbdp(ndev, bdp, skb_new);
1509 rx_processing_done:
1510 /* Clear the status flags for this buffer */
1511 status &= ~BD_ENET_RX_STATS;
1513 /* Mark the buffer empty */
1514 status |= BD_ENET_RX_EMPTY;
1516 if (fep->bufdesc_ex) {
1517 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1519 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1520 ebdp->cbd_prot = 0;
1521 ebdp->cbd_bdu = 0;
1523 /* Make sure the updates to rest of the descriptor are
1524 * performed before transferring ownership.
1526 wmb();
1527 bdp->cbd_sc = cpu_to_fec16(status);
1529 /* Update BD pointer to next entry */
1530 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1532 /* Doing this here will keep the FEC running while we process
1533 * incoming frames. On a heavily loaded network, we should be
1534 * able to keep up at the expense of system resources.
1536 writel(0, rxq->bd.reg_desc_active);
1538 rxq->bd.cur = bdp;
1539 return pkt_received;
1542 static int
1543 fec_enet_rx(struct net_device *ndev, int budget)
1545 int pkt_received = 0;
1546 u16 queue_id;
1547 struct fec_enet_private *fep = netdev_priv(ndev);
1549 for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1550 int ret;
1552 ret = fec_enet_rx_queue(ndev,
1553 budget - pkt_received, queue_id);
1555 if (ret < budget - pkt_received)
1556 clear_bit(queue_id, &fep->work_rx);
1558 pkt_received += ret;
1560 return pkt_received;
1563 static bool
1564 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1566 if (int_events == 0)
1567 return false;
1569 if (int_events & FEC_ENET_RXF_0)
1570 fep->work_rx |= (1 << 2);
1571 if (int_events & FEC_ENET_RXF_1)
1572 fep->work_rx |= (1 << 0);
1573 if (int_events & FEC_ENET_RXF_2)
1574 fep->work_rx |= (1 << 1);
1576 if (int_events & FEC_ENET_TXF_0)
1577 fep->work_tx |= (1 << 2);
1578 if (int_events & FEC_ENET_TXF_1)
1579 fep->work_tx |= (1 << 0);
1580 if (int_events & FEC_ENET_TXF_2)
1581 fep->work_tx |= (1 << 1);
1583 return true;
1586 static irqreturn_t
1587 fec_enet_interrupt(int irq, void *dev_id)
1589 struct net_device *ndev = dev_id;
1590 struct fec_enet_private *fep = netdev_priv(ndev);
1591 uint int_events;
1592 irqreturn_t ret = IRQ_NONE;
1594 int_events = readl(fep->hwp + FEC_IEVENT);
1595 writel(int_events, fep->hwp + FEC_IEVENT);
1596 fec_enet_collect_events(fep, int_events);
1598 if ((fep->work_tx || fep->work_rx) && fep->link) {
1599 ret = IRQ_HANDLED;
1601 if (napi_schedule_prep(&fep->napi)) {
1602 /* Disable the NAPI interrupts */
1603 writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1604 __napi_schedule(&fep->napi);
1608 if (int_events & FEC_ENET_MII) {
1609 ret = IRQ_HANDLED;
1610 complete(&fep->mdio_done);
1612 return ret;
1615 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1617 struct net_device *ndev = napi->dev;
1618 struct fec_enet_private *fep = netdev_priv(ndev);
1619 int pkts;
1621 pkts = fec_enet_rx(ndev, budget);
1623 fec_enet_tx(ndev);
1625 if (pkts < budget) {
1626 napi_complete_done(napi, pkts);
1627 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1629 return pkts;
1632 /* ------------------------------------------------------------------------- */
1633 static void fec_get_mac(struct net_device *ndev)
1635 struct fec_enet_private *fep = netdev_priv(ndev);
1636 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1637 unsigned char *iap, tmpaddr[ETH_ALEN];
1640 * try to get mac address in following order:
1642 * 1) module parameter via kernel command line in form
1643 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1645 iap = macaddr;
1648 * 2) from device tree data
1650 if (!is_valid_ether_addr(iap)) {
1651 struct device_node *np = fep->pdev->dev.of_node;
1652 if (np) {
1653 const char *mac = of_get_mac_address(np);
1654 if (mac)
1655 iap = (unsigned char *) mac;
1660 * 3) from flash or fuse (via platform data)
1662 if (!is_valid_ether_addr(iap)) {
1663 #ifdef CONFIG_M5272
1664 if (FEC_FLASHMAC)
1665 iap = (unsigned char *)FEC_FLASHMAC;
1666 #else
1667 if (pdata)
1668 iap = (unsigned char *)&pdata->mac;
1669 #endif
1673 * 4) FEC mac registers set by bootloader
1675 if (!is_valid_ether_addr(iap)) {
1676 *((__be32 *) &tmpaddr[0]) =
1677 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1678 *((__be16 *) &tmpaddr[4]) =
1679 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1680 iap = &tmpaddr[0];
1684 * 5) random mac address
1686 if (!is_valid_ether_addr(iap)) {
1687 /* Report it and use a random ethernet address instead */
1688 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1689 eth_hw_addr_random(ndev);
1690 netdev_info(ndev, "Using random MAC address: %pM\n",
1691 ndev->dev_addr);
1692 return;
1695 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1697 /* Adjust MAC if using macaddr */
1698 if (iap == macaddr)
1699 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1702 /* ------------------------------------------------------------------------- */
1705 * Phy section
1707 static void fec_enet_adjust_link(struct net_device *ndev)
1709 struct fec_enet_private *fep = netdev_priv(ndev);
1710 struct phy_device *phy_dev = ndev->phydev;
1711 int status_change = 0;
1713 /* Prevent a state halted on mii error */
1714 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1715 phy_dev->state = PHY_RESUMING;
1716 return;
1720 * If the netdev is down, or is going down, we're not interested
1721 * in link state events, so just mark our idea of the link as down
1722 * and ignore the event.
1724 if (!netif_running(ndev) || !netif_device_present(ndev)) {
1725 fep->link = 0;
1726 } else if (phy_dev->link) {
1727 if (!fep->link) {
1728 fep->link = phy_dev->link;
1729 status_change = 1;
1732 if (fep->full_duplex != phy_dev->duplex) {
1733 fep->full_duplex = phy_dev->duplex;
1734 status_change = 1;
1737 if (phy_dev->speed != fep->speed) {
1738 fep->speed = phy_dev->speed;
1739 status_change = 1;
1742 /* if any of the above changed restart the FEC */
1743 if (status_change) {
1744 napi_disable(&fep->napi);
1745 netif_tx_lock_bh(ndev);
1746 fec_restart(ndev);
1747 netif_wake_queue(ndev);
1748 netif_tx_unlock_bh(ndev);
1749 napi_enable(&fep->napi);
1751 } else {
1752 if (fep->link) {
1753 napi_disable(&fep->napi);
1754 netif_tx_lock_bh(ndev);
1755 fec_stop(ndev);
1756 netif_tx_unlock_bh(ndev);
1757 napi_enable(&fep->napi);
1758 fep->link = phy_dev->link;
1759 status_change = 1;
1763 if (status_change)
1764 phy_print_status(phy_dev);
1767 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1769 struct fec_enet_private *fep = bus->priv;
1770 struct device *dev = &fep->pdev->dev;
1771 unsigned long time_left;
1772 int ret = 0;
1774 ret = pm_runtime_get_sync(dev);
1775 if (ret < 0)
1776 return ret;
1778 fep->mii_timeout = 0;
1779 reinit_completion(&fep->mdio_done);
1781 /* start a read op */
1782 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1783 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1784 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1786 /* wait for end of transfer */
1787 time_left = wait_for_completion_timeout(&fep->mdio_done,
1788 usecs_to_jiffies(FEC_MII_TIMEOUT));
1789 if (time_left == 0) {
1790 fep->mii_timeout = 1;
1791 netdev_err(fep->netdev, "MDIO read timeout\n");
1792 ret = -ETIMEDOUT;
1793 goto out;
1796 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1798 out:
1799 pm_runtime_mark_last_busy(dev);
1800 pm_runtime_put_autosuspend(dev);
1802 return ret;
1805 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1806 u16 value)
1808 struct fec_enet_private *fep = bus->priv;
1809 struct device *dev = &fep->pdev->dev;
1810 unsigned long time_left;
1811 int ret;
1813 ret = pm_runtime_get_sync(dev);
1814 if (ret < 0)
1815 return ret;
1816 else
1817 ret = 0;
1819 fep->mii_timeout = 0;
1820 reinit_completion(&fep->mdio_done);
1822 /* start a write op */
1823 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1824 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1825 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1826 fep->hwp + FEC_MII_DATA);
1828 /* wait for end of transfer */
1829 time_left = wait_for_completion_timeout(&fep->mdio_done,
1830 usecs_to_jiffies(FEC_MII_TIMEOUT));
1831 if (time_left == 0) {
1832 fep->mii_timeout = 1;
1833 netdev_err(fep->netdev, "MDIO write timeout\n");
1834 ret = -ETIMEDOUT;
1837 pm_runtime_mark_last_busy(dev);
1838 pm_runtime_put_autosuspend(dev);
1840 return ret;
1843 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1845 struct fec_enet_private *fep = netdev_priv(ndev);
1846 int ret;
1848 if (enable) {
1849 ret = clk_prepare_enable(fep->clk_ahb);
1850 if (ret)
1851 return ret;
1853 ret = clk_prepare_enable(fep->clk_enet_out);
1854 if (ret)
1855 goto failed_clk_enet_out;
1857 if (fep->clk_ptp) {
1858 mutex_lock(&fep->ptp_clk_mutex);
1859 ret = clk_prepare_enable(fep->clk_ptp);
1860 if (ret) {
1861 mutex_unlock(&fep->ptp_clk_mutex);
1862 goto failed_clk_ptp;
1863 } else {
1864 fep->ptp_clk_on = true;
1866 mutex_unlock(&fep->ptp_clk_mutex);
1869 ret = clk_prepare_enable(fep->clk_ref);
1870 if (ret)
1871 goto failed_clk_ref;
1873 phy_reset_after_clk_enable(ndev->phydev);
1874 } else {
1875 clk_disable_unprepare(fep->clk_ahb);
1876 clk_disable_unprepare(fep->clk_enet_out);
1877 if (fep->clk_ptp) {
1878 mutex_lock(&fep->ptp_clk_mutex);
1879 clk_disable_unprepare(fep->clk_ptp);
1880 fep->ptp_clk_on = false;
1881 mutex_unlock(&fep->ptp_clk_mutex);
1883 clk_disable_unprepare(fep->clk_ref);
1886 return 0;
1888 failed_clk_ref:
1889 if (fep->clk_ref)
1890 clk_disable_unprepare(fep->clk_ref);
1891 failed_clk_ptp:
1892 if (fep->clk_enet_out)
1893 clk_disable_unprepare(fep->clk_enet_out);
1894 failed_clk_enet_out:
1895 clk_disable_unprepare(fep->clk_ahb);
1897 return ret;
1900 static int fec_enet_mii_probe(struct net_device *ndev)
1902 struct fec_enet_private *fep = netdev_priv(ndev);
1903 struct phy_device *phy_dev = NULL;
1904 char mdio_bus_id[MII_BUS_ID_SIZE];
1905 char phy_name[MII_BUS_ID_SIZE + 3];
1906 int phy_id;
1907 int dev_id = fep->dev_id;
1909 if (fep->phy_node) {
1910 phy_dev = of_phy_connect(ndev, fep->phy_node,
1911 &fec_enet_adjust_link, 0,
1912 fep->phy_interface);
1913 if (!phy_dev) {
1914 netdev_err(ndev, "Unable to connect to phy\n");
1915 return -ENODEV;
1917 } else {
1918 /* check for attached phy */
1919 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1920 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1921 continue;
1922 if (dev_id--)
1923 continue;
1924 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1925 break;
1928 if (phy_id >= PHY_MAX_ADDR) {
1929 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1930 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1931 phy_id = 0;
1934 snprintf(phy_name, sizeof(phy_name),
1935 PHY_ID_FMT, mdio_bus_id, phy_id);
1936 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1937 fep->phy_interface);
1940 if (IS_ERR(phy_dev)) {
1941 netdev_err(ndev, "could not attach to PHY\n");
1942 return PTR_ERR(phy_dev);
1945 /* mask with MAC supported features */
1946 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1947 phy_dev->supported &= PHY_GBIT_FEATURES;
1948 phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1949 #if !defined(CONFIG_M5272)
1950 phy_dev->supported |= SUPPORTED_Pause;
1951 #endif
1953 else
1954 phy_dev->supported &= PHY_BASIC_FEATURES;
1956 phy_dev->advertising = phy_dev->supported;
1958 fep->link = 0;
1959 fep->full_duplex = 0;
1961 phy_attached_info(phy_dev);
1963 return 0;
1966 static int fec_enet_mii_init(struct platform_device *pdev)
1968 static struct mii_bus *fec0_mii_bus;
1969 struct net_device *ndev = platform_get_drvdata(pdev);
1970 struct fec_enet_private *fep = netdev_priv(ndev);
1971 struct device_node *node;
1972 int err = -ENXIO;
1973 u32 mii_speed, holdtime;
1976 * The i.MX28 dual fec interfaces are not equal.
1977 * Here are the differences:
1979 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1980 * - fec0 acts as the 1588 time master while fec1 is slave
1981 * - external phys can only be configured by fec0
1983 * That is to say fec1 can not work independently. It only works
1984 * when fec0 is working. The reason behind this design is that the
1985 * second interface is added primarily for Switch mode.
1987 * Because of the last point above, both phys are attached on fec0
1988 * mdio interface in board design, and need to be configured by
1989 * fec0 mii_bus.
1991 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1992 /* fec1 uses fec0 mii_bus */
1993 if (mii_cnt && fec0_mii_bus) {
1994 fep->mii_bus = fec0_mii_bus;
1995 mii_cnt++;
1996 return 0;
1998 return -ENOENT;
2001 fep->mii_timeout = 0;
2004 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2006 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2007 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2008 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2009 * document.
2011 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2012 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2013 mii_speed--;
2014 if (mii_speed > 63) {
2015 dev_err(&pdev->dev,
2016 "fec clock (%lu) too fast to get right mii speed\n",
2017 clk_get_rate(fep->clk_ipg));
2018 err = -EINVAL;
2019 goto err_out;
2023 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2024 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2025 * versions are RAZ there, so just ignore the difference and write the
2026 * register always.
2027 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2028 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2029 * output.
2030 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2031 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2032 * holdtime cannot result in a value greater than 3.
2034 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2036 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2038 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2040 fep->mii_bus = mdiobus_alloc();
2041 if (fep->mii_bus == NULL) {
2042 err = -ENOMEM;
2043 goto err_out;
2046 fep->mii_bus->name = "fec_enet_mii_bus";
2047 fep->mii_bus->read = fec_enet_mdio_read;
2048 fep->mii_bus->write = fec_enet_mdio_write;
2049 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2050 pdev->name, fep->dev_id + 1);
2051 fep->mii_bus->priv = fep;
2052 fep->mii_bus->parent = &pdev->dev;
2054 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2055 if (node) {
2056 err = of_mdiobus_register(fep->mii_bus, node);
2057 of_node_put(node);
2058 } else {
2059 err = mdiobus_register(fep->mii_bus);
2062 if (err)
2063 goto err_out_free_mdiobus;
2065 mii_cnt++;
2067 /* save fec0 mii_bus */
2068 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2069 fec0_mii_bus = fep->mii_bus;
2071 return 0;
2073 err_out_free_mdiobus:
2074 mdiobus_free(fep->mii_bus);
2075 err_out:
2076 return err;
2079 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2081 if (--mii_cnt == 0) {
2082 mdiobus_unregister(fep->mii_bus);
2083 mdiobus_free(fep->mii_bus);
2087 static void fec_enet_get_drvinfo(struct net_device *ndev,
2088 struct ethtool_drvinfo *info)
2090 struct fec_enet_private *fep = netdev_priv(ndev);
2092 strlcpy(info->driver, fep->pdev->dev.driver->name,
2093 sizeof(info->driver));
2094 strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2095 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2098 static int fec_enet_get_regs_len(struct net_device *ndev)
2100 struct fec_enet_private *fep = netdev_priv(ndev);
2101 struct resource *r;
2102 int s = 0;
2104 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2105 if (r)
2106 s = resource_size(r);
2108 return s;
2111 /* List of registers that can be safety be read to dump them with ethtool */
2112 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2113 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2114 defined(CONFIG_ARM64)
2115 static u32 fec_enet_register_offset[] = {
2116 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2117 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2118 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2119 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2120 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2121 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2122 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2123 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2124 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2125 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2126 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2127 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2128 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2129 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2130 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2131 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2132 RMON_T_P_GTE2048, RMON_T_OCTETS,
2133 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2134 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2135 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2136 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2137 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2138 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2139 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2140 RMON_R_P_GTE2048, RMON_R_OCTETS,
2141 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2142 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2144 #else
2145 static u32 fec_enet_register_offset[] = {
2146 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2147 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2148 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2149 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2150 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2151 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2152 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2153 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2154 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2156 #endif
2158 static void fec_enet_get_regs(struct net_device *ndev,
2159 struct ethtool_regs *regs, void *regbuf)
2161 struct fec_enet_private *fep = netdev_priv(ndev);
2162 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2163 u32 *buf = (u32 *)regbuf;
2164 u32 i, off;
2166 memset(buf, 0, regs->len);
2168 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2169 off = fec_enet_register_offset[i] / 4;
2170 buf[off] = readl(&theregs[off]);
2174 static int fec_enet_get_ts_info(struct net_device *ndev,
2175 struct ethtool_ts_info *info)
2177 struct fec_enet_private *fep = netdev_priv(ndev);
2179 if (fep->bufdesc_ex) {
2181 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2182 SOF_TIMESTAMPING_RX_SOFTWARE |
2183 SOF_TIMESTAMPING_SOFTWARE |
2184 SOF_TIMESTAMPING_TX_HARDWARE |
2185 SOF_TIMESTAMPING_RX_HARDWARE |
2186 SOF_TIMESTAMPING_RAW_HARDWARE;
2187 if (fep->ptp_clock)
2188 info->phc_index = ptp_clock_index(fep->ptp_clock);
2189 else
2190 info->phc_index = -1;
2192 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2193 (1 << HWTSTAMP_TX_ON);
2195 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2196 (1 << HWTSTAMP_FILTER_ALL);
2197 return 0;
2198 } else {
2199 return ethtool_op_get_ts_info(ndev, info);
2203 #if !defined(CONFIG_M5272)
2205 static void fec_enet_get_pauseparam(struct net_device *ndev,
2206 struct ethtool_pauseparam *pause)
2208 struct fec_enet_private *fep = netdev_priv(ndev);
2210 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2211 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2212 pause->rx_pause = pause->tx_pause;
2215 static int fec_enet_set_pauseparam(struct net_device *ndev,
2216 struct ethtool_pauseparam *pause)
2218 struct fec_enet_private *fep = netdev_priv(ndev);
2220 if (!ndev->phydev)
2221 return -ENODEV;
2223 if (pause->tx_pause != pause->rx_pause) {
2224 netdev_info(ndev,
2225 "hardware only support enable/disable both tx and rx");
2226 return -EINVAL;
2229 fep->pause_flag = 0;
2231 /* tx pause must be same as rx pause */
2232 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2233 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2235 if (pause->rx_pause || pause->autoneg) {
2236 ndev->phydev->supported |= ADVERTISED_Pause;
2237 ndev->phydev->advertising |= ADVERTISED_Pause;
2238 } else {
2239 ndev->phydev->supported &= ~ADVERTISED_Pause;
2240 ndev->phydev->advertising &= ~ADVERTISED_Pause;
2243 if (pause->autoneg) {
2244 if (netif_running(ndev))
2245 fec_stop(ndev);
2246 phy_start_aneg(ndev->phydev);
2248 if (netif_running(ndev)) {
2249 napi_disable(&fep->napi);
2250 netif_tx_lock_bh(ndev);
2251 fec_restart(ndev);
2252 netif_wake_queue(ndev);
2253 netif_tx_unlock_bh(ndev);
2254 napi_enable(&fep->napi);
2257 return 0;
2260 static const struct fec_stat {
2261 char name[ETH_GSTRING_LEN];
2262 u16 offset;
2263 } fec_stats[] = {
2264 /* RMON TX */
2265 { "tx_dropped", RMON_T_DROP },
2266 { "tx_packets", RMON_T_PACKETS },
2267 { "tx_broadcast", RMON_T_BC_PKT },
2268 { "tx_multicast", RMON_T_MC_PKT },
2269 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2270 { "tx_undersize", RMON_T_UNDERSIZE },
2271 { "tx_oversize", RMON_T_OVERSIZE },
2272 { "tx_fragment", RMON_T_FRAG },
2273 { "tx_jabber", RMON_T_JAB },
2274 { "tx_collision", RMON_T_COL },
2275 { "tx_64byte", RMON_T_P64 },
2276 { "tx_65to127byte", RMON_T_P65TO127 },
2277 { "tx_128to255byte", RMON_T_P128TO255 },
2278 { "tx_256to511byte", RMON_T_P256TO511 },
2279 { "tx_512to1023byte", RMON_T_P512TO1023 },
2280 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2281 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2282 { "tx_octets", RMON_T_OCTETS },
2284 /* IEEE TX */
2285 { "IEEE_tx_drop", IEEE_T_DROP },
2286 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2287 { "IEEE_tx_1col", IEEE_T_1COL },
2288 { "IEEE_tx_mcol", IEEE_T_MCOL },
2289 { "IEEE_tx_def", IEEE_T_DEF },
2290 { "IEEE_tx_lcol", IEEE_T_LCOL },
2291 { "IEEE_tx_excol", IEEE_T_EXCOL },
2292 { "IEEE_tx_macerr", IEEE_T_MACERR },
2293 { "IEEE_tx_cserr", IEEE_T_CSERR },
2294 { "IEEE_tx_sqe", IEEE_T_SQE },
2295 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2296 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2298 /* RMON RX */
2299 { "rx_packets", RMON_R_PACKETS },
2300 { "rx_broadcast", RMON_R_BC_PKT },
2301 { "rx_multicast", RMON_R_MC_PKT },
2302 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2303 { "rx_undersize", RMON_R_UNDERSIZE },
2304 { "rx_oversize", RMON_R_OVERSIZE },
2305 { "rx_fragment", RMON_R_FRAG },
2306 { "rx_jabber", RMON_R_JAB },
2307 { "rx_64byte", RMON_R_P64 },
2308 { "rx_65to127byte", RMON_R_P65TO127 },
2309 { "rx_128to255byte", RMON_R_P128TO255 },
2310 { "rx_256to511byte", RMON_R_P256TO511 },
2311 { "rx_512to1023byte", RMON_R_P512TO1023 },
2312 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2313 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2314 { "rx_octets", RMON_R_OCTETS },
2316 /* IEEE RX */
2317 { "IEEE_rx_drop", IEEE_R_DROP },
2318 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2319 { "IEEE_rx_crc", IEEE_R_CRC },
2320 { "IEEE_rx_align", IEEE_R_ALIGN },
2321 { "IEEE_rx_macerr", IEEE_R_MACERR },
2322 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2323 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2326 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2328 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2330 struct fec_enet_private *fep = netdev_priv(dev);
2331 int i;
2333 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2334 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2337 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2338 struct ethtool_stats *stats, u64 *data)
2340 struct fec_enet_private *fep = netdev_priv(dev);
2342 if (netif_running(dev))
2343 fec_enet_update_ethtool_stats(dev);
2345 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2348 static void fec_enet_get_strings(struct net_device *netdev,
2349 u32 stringset, u8 *data)
2351 int i;
2352 switch (stringset) {
2353 case ETH_SS_STATS:
2354 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2355 memcpy(data + i * ETH_GSTRING_LEN,
2356 fec_stats[i].name, ETH_GSTRING_LEN);
2357 break;
2361 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2363 switch (sset) {
2364 case ETH_SS_STATS:
2365 return ARRAY_SIZE(fec_stats);
2366 default:
2367 return -EOPNOTSUPP;
2371 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2373 struct fec_enet_private *fep = netdev_priv(dev);
2374 int i;
2376 /* Disable MIB statistics counters */
2377 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2379 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2380 writel(0, fep->hwp + fec_stats[i].offset);
2382 /* Don't disable MIB statistics counters */
2383 writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2386 #else /* !defined(CONFIG_M5272) */
2387 #define FEC_STATS_SIZE 0
2388 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2392 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2395 #endif /* !defined(CONFIG_M5272) */
2397 /* ITR clock source is enet system clock (clk_ahb).
2398 * TCTT unit is cycle_ns * 64 cycle
2399 * So, the ICTT value = X us / (cycle_ns * 64)
2401 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2403 struct fec_enet_private *fep = netdev_priv(ndev);
2405 return us * (fep->itr_clk_rate / 64000) / 1000;
2408 /* Set threshold for interrupt coalescing */
2409 static void fec_enet_itr_coal_set(struct net_device *ndev)
2411 struct fec_enet_private *fep = netdev_priv(ndev);
2412 int rx_itr, tx_itr;
2414 /* Must be greater than zero to avoid unpredictable behavior */
2415 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2416 !fep->tx_time_itr || !fep->tx_pkts_itr)
2417 return;
2419 /* Select enet system clock as Interrupt Coalescing
2420 * timer Clock Source
2422 rx_itr = FEC_ITR_CLK_SEL;
2423 tx_itr = FEC_ITR_CLK_SEL;
2425 /* set ICFT and ICTT */
2426 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2427 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2428 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2429 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2431 rx_itr |= FEC_ITR_EN;
2432 tx_itr |= FEC_ITR_EN;
2434 writel(tx_itr, fep->hwp + FEC_TXIC0);
2435 writel(rx_itr, fep->hwp + FEC_RXIC0);
2436 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2437 writel(tx_itr, fep->hwp + FEC_TXIC1);
2438 writel(rx_itr, fep->hwp + FEC_RXIC1);
2439 writel(tx_itr, fep->hwp + FEC_TXIC2);
2440 writel(rx_itr, fep->hwp + FEC_RXIC2);
2444 static int
2445 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2447 struct fec_enet_private *fep = netdev_priv(ndev);
2449 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2450 return -EOPNOTSUPP;
2452 ec->rx_coalesce_usecs = fep->rx_time_itr;
2453 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2455 ec->tx_coalesce_usecs = fep->tx_time_itr;
2456 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2458 return 0;
2461 static int
2462 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2464 struct fec_enet_private *fep = netdev_priv(ndev);
2465 unsigned int cycle;
2467 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2468 return -EOPNOTSUPP;
2470 if (ec->rx_max_coalesced_frames > 255) {
2471 pr_err("Rx coalesced frames exceed hardware limitation\n");
2472 return -EINVAL;
2475 if (ec->tx_max_coalesced_frames > 255) {
2476 pr_err("Tx coalesced frame exceed hardware limitation\n");
2477 return -EINVAL;
2480 cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2481 if (cycle > 0xFFFF) {
2482 pr_err("Rx coalesced usec exceed hardware limitation\n");
2483 return -EINVAL;
2486 cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2487 if (cycle > 0xFFFF) {
2488 pr_err("Rx coalesced usec exceed hardware limitation\n");
2489 return -EINVAL;
2492 fep->rx_time_itr = ec->rx_coalesce_usecs;
2493 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2495 fep->tx_time_itr = ec->tx_coalesce_usecs;
2496 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2498 fec_enet_itr_coal_set(ndev);
2500 return 0;
2503 static void fec_enet_itr_coal_init(struct net_device *ndev)
2505 struct ethtool_coalesce ec;
2507 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2508 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2510 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2511 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2513 fec_enet_set_coalesce(ndev, &ec);
2516 static int fec_enet_get_tunable(struct net_device *netdev,
2517 const struct ethtool_tunable *tuna,
2518 void *data)
2520 struct fec_enet_private *fep = netdev_priv(netdev);
2521 int ret = 0;
2523 switch (tuna->id) {
2524 case ETHTOOL_RX_COPYBREAK:
2525 *(u32 *)data = fep->rx_copybreak;
2526 break;
2527 default:
2528 ret = -EINVAL;
2529 break;
2532 return ret;
2535 static int fec_enet_set_tunable(struct net_device *netdev,
2536 const struct ethtool_tunable *tuna,
2537 const void *data)
2539 struct fec_enet_private *fep = netdev_priv(netdev);
2540 int ret = 0;
2542 switch (tuna->id) {
2543 case ETHTOOL_RX_COPYBREAK:
2544 fep->rx_copybreak = *(u32 *)data;
2545 break;
2546 default:
2547 ret = -EINVAL;
2548 break;
2551 return ret;
2554 static void
2555 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2557 struct fec_enet_private *fep = netdev_priv(ndev);
2559 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2560 wol->supported = WAKE_MAGIC;
2561 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2562 } else {
2563 wol->supported = wol->wolopts = 0;
2567 static int
2568 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2570 struct fec_enet_private *fep = netdev_priv(ndev);
2572 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2573 return -EINVAL;
2575 if (wol->wolopts & ~WAKE_MAGIC)
2576 return -EINVAL;
2578 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2579 if (device_may_wakeup(&ndev->dev)) {
2580 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2581 if (fep->irq[0] > 0)
2582 enable_irq_wake(fep->irq[0]);
2583 } else {
2584 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2585 if (fep->irq[0] > 0)
2586 disable_irq_wake(fep->irq[0]);
2589 return 0;
2592 static const struct ethtool_ops fec_enet_ethtool_ops = {
2593 .get_drvinfo = fec_enet_get_drvinfo,
2594 .get_regs_len = fec_enet_get_regs_len,
2595 .get_regs = fec_enet_get_regs,
2596 .nway_reset = phy_ethtool_nway_reset,
2597 .get_link = ethtool_op_get_link,
2598 .get_coalesce = fec_enet_get_coalesce,
2599 .set_coalesce = fec_enet_set_coalesce,
2600 #ifndef CONFIG_M5272
2601 .get_pauseparam = fec_enet_get_pauseparam,
2602 .set_pauseparam = fec_enet_set_pauseparam,
2603 .get_strings = fec_enet_get_strings,
2604 .get_ethtool_stats = fec_enet_get_ethtool_stats,
2605 .get_sset_count = fec_enet_get_sset_count,
2606 #endif
2607 .get_ts_info = fec_enet_get_ts_info,
2608 .get_tunable = fec_enet_get_tunable,
2609 .set_tunable = fec_enet_set_tunable,
2610 .get_wol = fec_enet_get_wol,
2611 .set_wol = fec_enet_set_wol,
2612 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2613 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2616 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2618 struct fec_enet_private *fep = netdev_priv(ndev);
2619 struct phy_device *phydev = ndev->phydev;
2621 if (!netif_running(ndev))
2622 return -EINVAL;
2624 if (!phydev)
2625 return -ENODEV;
2627 if (fep->bufdesc_ex) {
2628 if (cmd == SIOCSHWTSTAMP)
2629 return fec_ptp_set(ndev, rq);
2630 if (cmd == SIOCGHWTSTAMP)
2631 return fec_ptp_get(ndev, rq);
2634 return phy_mii_ioctl(phydev, rq, cmd);
2637 static void fec_enet_free_buffers(struct net_device *ndev)
2639 struct fec_enet_private *fep = netdev_priv(ndev);
2640 unsigned int i;
2641 struct sk_buff *skb;
2642 struct bufdesc *bdp;
2643 struct fec_enet_priv_tx_q *txq;
2644 struct fec_enet_priv_rx_q *rxq;
2645 unsigned int q;
2647 for (q = 0; q < fep->num_rx_queues; q++) {
2648 rxq = fep->rx_queue[q];
2649 bdp = rxq->bd.base;
2650 for (i = 0; i < rxq->bd.ring_size; i++) {
2651 skb = rxq->rx_skbuff[i];
2652 rxq->rx_skbuff[i] = NULL;
2653 if (skb) {
2654 dma_unmap_single(&fep->pdev->dev,
2655 fec32_to_cpu(bdp->cbd_bufaddr),
2656 FEC_ENET_RX_FRSIZE - fep->rx_align,
2657 DMA_FROM_DEVICE);
2658 dev_kfree_skb(skb);
2660 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2664 for (q = 0; q < fep->num_tx_queues; q++) {
2665 txq = fep->tx_queue[q];
2666 bdp = txq->bd.base;
2667 for (i = 0; i < txq->bd.ring_size; i++) {
2668 kfree(txq->tx_bounce[i]);
2669 txq->tx_bounce[i] = NULL;
2670 skb = txq->tx_skbuff[i];
2671 txq->tx_skbuff[i] = NULL;
2672 dev_kfree_skb(skb);
2677 static void fec_enet_free_queue(struct net_device *ndev)
2679 struct fec_enet_private *fep = netdev_priv(ndev);
2680 int i;
2681 struct fec_enet_priv_tx_q *txq;
2683 for (i = 0; i < fep->num_tx_queues; i++)
2684 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2685 txq = fep->tx_queue[i];
2686 dma_free_coherent(&fep->pdev->dev,
2687 txq->bd.ring_size * TSO_HEADER_SIZE,
2688 txq->tso_hdrs,
2689 txq->tso_hdrs_dma);
2692 for (i = 0; i < fep->num_rx_queues; i++)
2693 kfree(fep->rx_queue[i]);
2694 for (i = 0; i < fep->num_tx_queues; i++)
2695 kfree(fep->tx_queue[i]);
2698 static int fec_enet_alloc_queue(struct net_device *ndev)
2700 struct fec_enet_private *fep = netdev_priv(ndev);
2701 int i;
2702 int ret = 0;
2703 struct fec_enet_priv_tx_q *txq;
2705 for (i = 0; i < fep->num_tx_queues; i++) {
2706 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2707 if (!txq) {
2708 ret = -ENOMEM;
2709 goto alloc_failed;
2712 fep->tx_queue[i] = txq;
2713 txq->bd.ring_size = TX_RING_SIZE;
2714 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2716 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2717 txq->tx_wake_threshold =
2718 (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2720 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2721 txq->bd.ring_size * TSO_HEADER_SIZE,
2722 &txq->tso_hdrs_dma,
2723 GFP_KERNEL);
2724 if (!txq->tso_hdrs) {
2725 ret = -ENOMEM;
2726 goto alloc_failed;
2730 for (i = 0; i < fep->num_rx_queues; i++) {
2731 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2732 GFP_KERNEL);
2733 if (!fep->rx_queue[i]) {
2734 ret = -ENOMEM;
2735 goto alloc_failed;
2738 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2739 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2741 return ret;
2743 alloc_failed:
2744 fec_enet_free_queue(ndev);
2745 return ret;
2748 static int
2749 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2751 struct fec_enet_private *fep = netdev_priv(ndev);
2752 unsigned int i;
2753 struct sk_buff *skb;
2754 struct bufdesc *bdp;
2755 struct fec_enet_priv_rx_q *rxq;
2757 rxq = fep->rx_queue[queue];
2758 bdp = rxq->bd.base;
2759 for (i = 0; i < rxq->bd.ring_size; i++) {
2760 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2761 if (!skb)
2762 goto err_alloc;
2764 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2765 dev_kfree_skb(skb);
2766 goto err_alloc;
2769 rxq->rx_skbuff[i] = skb;
2770 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2772 if (fep->bufdesc_ex) {
2773 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2774 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2777 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2780 /* Set the last buffer to wrap. */
2781 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2782 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2783 return 0;
2785 err_alloc:
2786 fec_enet_free_buffers(ndev);
2787 return -ENOMEM;
2790 static int
2791 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2793 struct fec_enet_private *fep = netdev_priv(ndev);
2794 unsigned int i;
2795 struct bufdesc *bdp;
2796 struct fec_enet_priv_tx_q *txq;
2798 txq = fep->tx_queue[queue];
2799 bdp = txq->bd.base;
2800 for (i = 0; i < txq->bd.ring_size; i++) {
2801 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2802 if (!txq->tx_bounce[i])
2803 goto err_alloc;
2805 bdp->cbd_sc = cpu_to_fec16(0);
2806 bdp->cbd_bufaddr = cpu_to_fec32(0);
2808 if (fep->bufdesc_ex) {
2809 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2810 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2813 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2816 /* Set the last buffer to wrap. */
2817 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2818 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2820 return 0;
2822 err_alloc:
2823 fec_enet_free_buffers(ndev);
2824 return -ENOMEM;
2827 static int fec_enet_alloc_buffers(struct net_device *ndev)
2829 struct fec_enet_private *fep = netdev_priv(ndev);
2830 unsigned int i;
2832 for (i = 0; i < fep->num_rx_queues; i++)
2833 if (fec_enet_alloc_rxq_buffers(ndev, i))
2834 return -ENOMEM;
2836 for (i = 0; i < fep->num_tx_queues; i++)
2837 if (fec_enet_alloc_txq_buffers(ndev, i))
2838 return -ENOMEM;
2839 return 0;
2842 static int
2843 fec_enet_open(struct net_device *ndev)
2845 struct fec_enet_private *fep = netdev_priv(ndev);
2846 int ret;
2847 bool reset_again;
2849 ret = pm_runtime_get_sync(&fep->pdev->dev);
2850 if (ret < 0)
2851 return ret;
2853 pinctrl_pm_select_default_state(&fep->pdev->dev);
2854 ret = fec_enet_clk_enable(ndev, true);
2855 if (ret)
2856 goto clk_enable;
2858 /* During the first fec_enet_open call the PHY isn't probed at this
2859 * point. Therefore the phy_reset_after_clk_enable() call within
2860 * fec_enet_clk_enable() fails. As we need this reset in order to be
2861 * sure the PHY is working correctly we check if we need to reset again
2862 * later when the PHY is probed
2864 if (ndev->phydev && ndev->phydev->drv)
2865 reset_again = false;
2866 else
2867 reset_again = true;
2869 /* I should reset the ring buffers here, but I don't yet know
2870 * a simple way to do that.
2873 ret = fec_enet_alloc_buffers(ndev);
2874 if (ret)
2875 goto err_enet_alloc;
2877 /* Init MAC prior to mii bus probe */
2878 fec_restart(ndev);
2880 /* Probe and connect to PHY when open the interface */
2881 ret = fec_enet_mii_probe(ndev);
2882 if (ret)
2883 goto err_enet_mii_probe;
2885 /* Call phy_reset_after_clk_enable() again if it failed during
2886 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2888 if (reset_again)
2889 phy_reset_after_clk_enable(ndev->phydev);
2891 if (fep->quirks & FEC_QUIRK_ERR006687)
2892 imx6q_cpuidle_fec_irqs_used();
2894 napi_enable(&fep->napi);
2895 phy_start(ndev->phydev);
2896 netif_tx_start_all_queues(ndev);
2898 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2899 FEC_WOL_FLAG_ENABLE);
2901 return 0;
2903 err_enet_mii_probe:
2904 fec_enet_free_buffers(ndev);
2905 err_enet_alloc:
2906 fec_enet_clk_enable(ndev, false);
2907 clk_enable:
2908 pm_runtime_mark_last_busy(&fep->pdev->dev);
2909 pm_runtime_put_autosuspend(&fep->pdev->dev);
2910 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2911 return ret;
2914 static int
2915 fec_enet_close(struct net_device *ndev)
2917 struct fec_enet_private *fep = netdev_priv(ndev);
2919 phy_stop(ndev->phydev);
2921 if (netif_device_present(ndev)) {
2922 napi_disable(&fep->napi);
2923 netif_tx_disable(ndev);
2924 fec_stop(ndev);
2927 phy_disconnect(ndev->phydev);
2929 if (fep->quirks & FEC_QUIRK_ERR006687)
2930 imx6q_cpuidle_fec_irqs_unused();
2932 fec_enet_update_ethtool_stats(ndev);
2934 fec_enet_clk_enable(ndev, false);
2935 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2936 pm_runtime_mark_last_busy(&fep->pdev->dev);
2937 pm_runtime_put_autosuspend(&fep->pdev->dev);
2939 fec_enet_free_buffers(ndev);
2941 return 0;
2944 /* Set or clear the multicast filter for this adaptor.
2945 * Skeleton taken from sunlance driver.
2946 * The CPM Ethernet implementation allows Multicast as well as individual
2947 * MAC address filtering. Some of the drivers check to make sure it is
2948 * a group multicast address, and discard those that are not. I guess I
2949 * will do the same for now, but just remove the test if you want
2950 * individual filtering as well (do the upper net layers want or support
2951 * this kind of feature?).
2954 #define FEC_HASH_BITS 6 /* #bits in hash */
2955 #define CRC32_POLY 0xEDB88320
2957 static void set_multicast_list(struct net_device *ndev)
2959 struct fec_enet_private *fep = netdev_priv(ndev);
2960 struct netdev_hw_addr *ha;
2961 unsigned int i, bit, data, crc, tmp;
2962 unsigned char hash;
2963 unsigned int hash_high = 0, hash_low = 0;
2965 if (ndev->flags & IFF_PROMISC) {
2966 tmp = readl(fep->hwp + FEC_R_CNTRL);
2967 tmp |= 0x8;
2968 writel(tmp, fep->hwp + FEC_R_CNTRL);
2969 return;
2972 tmp = readl(fep->hwp + FEC_R_CNTRL);
2973 tmp &= ~0x8;
2974 writel(tmp, fep->hwp + FEC_R_CNTRL);
2976 if (ndev->flags & IFF_ALLMULTI) {
2977 /* Catch all multicast addresses, so set the
2978 * filter to all 1's
2980 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2981 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2983 return;
2986 /* Add the addresses in hash register */
2987 netdev_for_each_mc_addr(ha, ndev) {
2988 /* calculate crc32 value of mac address */
2989 crc = 0xffffffff;
2991 for (i = 0; i < ndev->addr_len; i++) {
2992 data = ha->addr[i];
2993 for (bit = 0; bit < 8; bit++, data >>= 1) {
2994 crc = (crc >> 1) ^
2995 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2999 /* only upper 6 bits (FEC_HASH_BITS) are used
3000 * which point to specific bit in the hash registers
3002 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3004 if (hash > 31)
3005 hash_high |= 1 << (hash - 32);
3006 else
3007 hash_low |= 1 << hash;
3010 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3011 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3014 /* Set a MAC change in hardware. */
3015 static int
3016 fec_set_mac_address(struct net_device *ndev, void *p)
3018 struct fec_enet_private *fep = netdev_priv(ndev);
3019 struct sockaddr *addr = p;
3021 if (addr) {
3022 if (!is_valid_ether_addr(addr->sa_data))
3023 return -EADDRNOTAVAIL;
3024 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3027 /* Add netif status check here to avoid system hang in below case:
3028 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3029 * After ethx down, fec all clocks are gated off and then register
3030 * access causes system hang.
3032 if (!netif_running(ndev))
3033 return 0;
3035 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3036 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3037 fep->hwp + FEC_ADDR_LOW);
3038 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3039 fep->hwp + FEC_ADDR_HIGH);
3040 return 0;
3043 #ifdef CONFIG_NET_POLL_CONTROLLER
3045 * fec_poll_controller - FEC Poll controller function
3046 * @dev: The FEC network adapter
3048 * Polled functionality used by netconsole and others in non interrupt mode
3051 static void fec_poll_controller(struct net_device *dev)
3053 int i;
3054 struct fec_enet_private *fep = netdev_priv(dev);
3056 for (i = 0; i < FEC_IRQ_NUM; i++) {
3057 if (fep->irq[i] > 0) {
3058 disable_irq(fep->irq[i]);
3059 fec_enet_interrupt(fep->irq[i], dev);
3060 enable_irq(fep->irq[i]);
3064 #endif
3066 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3067 netdev_features_t features)
3069 struct fec_enet_private *fep = netdev_priv(netdev);
3070 netdev_features_t changed = features ^ netdev->features;
3072 netdev->features = features;
3074 /* Receive checksum has been changed */
3075 if (changed & NETIF_F_RXCSUM) {
3076 if (features & NETIF_F_RXCSUM)
3077 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3078 else
3079 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3083 static int fec_set_features(struct net_device *netdev,
3084 netdev_features_t features)
3086 struct fec_enet_private *fep = netdev_priv(netdev);
3087 netdev_features_t changed = features ^ netdev->features;
3089 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3090 napi_disable(&fep->napi);
3091 netif_tx_lock_bh(netdev);
3092 fec_stop(netdev);
3093 fec_enet_set_netdev_features(netdev, features);
3094 fec_restart(netdev);
3095 netif_tx_wake_all_queues(netdev);
3096 netif_tx_unlock_bh(netdev);
3097 napi_enable(&fep->napi);
3098 } else {
3099 fec_enet_set_netdev_features(netdev, features);
3102 return 0;
3105 static const struct net_device_ops fec_netdev_ops = {
3106 .ndo_open = fec_enet_open,
3107 .ndo_stop = fec_enet_close,
3108 .ndo_start_xmit = fec_enet_start_xmit,
3109 .ndo_set_rx_mode = set_multicast_list,
3110 .ndo_validate_addr = eth_validate_addr,
3111 .ndo_tx_timeout = fec_timeout,
3112 .ndo_set_mac_address = fec_set_mac_address,
3113 .ndo_do_ioctl = fec_enet_ioctl,
3114 #ifdef CONFIG_NET_POLL_CONTROLLER
3115 .ndo_poll_controller = fec_poll_controller,
3116 #endif
3117 .ndo_set_features = fec_set_features,
3120 static const unsigned short offset_des_active_rxq[] = {
3121 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3124 static const unsigned short offset_des_active_txq[] = {
3125 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3129 * XXX: We need to clean up on failure exits here.
3132 static int fec_enet_init(struct net_device *ndev)
3134 struct fec_enet_private *fep = netdev_priv(ndev);
3135 struct bufdesc *cbd_base;
3136 dma_addr_t bd_dma;
3137 int bd_size;
3138 unsigned int i;
3139 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3140 sizeof(struct bufdesc);
3141 unsigned dsize_log2 = __fls(dsize);
3143 WARN_ON(dsize != (1 << dsize_log2));
3144 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3145 fep->rx_align = 0xf;
3146 fep->tx_align = 0xf;
3147 #else
3148 fep->rx_align = 0x3;
3149 fep->tx_align = 0x3;
3150 #endif
3152 fec_enet_alloc_queue(ndev);
3154 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3156 /* Allocate memory for buffer descriptors. */
3157 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3158 GFP_KERNEL);
3159 if (!cbd_base) {
3160 return -ENOMEM;
3163 memset(cbd_base, 0, bd_size);
3165 /* Get the Ethernet address */
3166 fec_get_mac(ndev);
3167 /* make sure MAC we just acquired is programmed into the hw */
3168 fec_set_mac_address(ndev, NULL);
3170 /* Set receive and transmit descriptor base. */
3171 for (i = 0; i < fep->num_rx_queues; i++) {
3172 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3173 unsigned size = dsize * rxq->bd.ring_size;
3175 rxq->bd.qid = i;
3176 rxq->bd.base = cbd_base;
3177 rxq->bd.cur = cbd_base;
3178 rxq->bd.dma = bd_dma;
3179 rxq->bd.dsize = dsize;
3180 rxq->bd.dsize_log2 = dsize_log2;
3181 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3182 bd_dma += size;
3183 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3184 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3187 for (i = 0; i < fep->num_tx_queues; i++) {
3188 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3189 unsigned size = dsize * txq->bd.ring_size;
3191 txq->bd.qid = i;
3192 txq->bd.base = cbd_base;
3193 txq->bd.cur = cbd_base;
3194 txq->bd.dma = bd_dma;
3195 txq->bd.dsize = dsize;
3196 txq->bd.dsize_log2 = dsize_log2;
3197 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3198 bd_dma += size;
3199 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3200 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3204 /* The FEC Ethernet specific entries in the device structure */
3205 ndev->watchdog_timeo = TX_TIMEOUT;
3206 ndev->netdev_ops = &fec_netdev_ops;
3207 ndev->ethtool_ops = &fec_enet_ethtool_ops;
3209 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3210 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3212 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3213 /* enable hw VLAN support */
3214 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3216 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3217 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3219 /* enable hw accelerator */
3220 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3221 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3222 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3225 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3226 fep->tx_align = 0;
3227 fep->rx_align = 0x3f;
3230 ndev->hw_features = ndev->features;
3232 fec_restart(ndev);
3234 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3235 fec_enet_clear_ethtool_stats(ndev);
3236 else
3237 fec_enet_update_ethtool_stats(ndev);
3239 return 0;
3242 #ifdef CONFIG_OF
3243 static int fec_reset_phy(struct platform_device *pdev)
3245 int err, phy_reset;
3246 bool active_high = false;
3247 int msec = 1, phy_post_delay = 0;
3248 struct device_node *np = pdev->dev.of_node;
3250 if (!np)
3251 return 0;
3253 err = of_property_read_u32(np, "phy-reset-duration", &msec);
3254 /* A sane reset duration should not be longer than 1s */
3255 if (!err && msec > 1000)
3256 msec = 1;
3258 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3259 if (phy_reset == -EPROBE_DEFER)
3260 return phy_reset;
3261 else if (!gpio_is_valid(phy_reset))
3262 return 0;
3264 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3265 /* valid reset duration should be less than 1s */
3266 if (!err && phy_post_delay > 1000)
3267 return -EINVAL;
3269 active_high = of_property_read_bool(np, "phy-reset-active-high");
3271 err = devm_gpio_request_one(&pdev->dev, phy_reset,
3272 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3273 "phy-reset");
3274 if (err) {
3275 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3276 return err;
3279 if (msec > 20)
3280 msleep(msec);
3281 else
3282 usleep_range(msec * 1000, msec * 1000 + 1000);
3284 gpio_set_value_cansleep(phy_reset, !active_high);
3286 if (!phy_post_delay)
3287 return 0;
3289 if (phy_post_delay > 20)
3290 msleep(phy_post_delay);
3291 else
3292 usleep_range(phy_post_delay * 1000,
3293 phy_post_delay * 1000 + 1000);
3295 return 0;
3297 #else /* CONFIG_OF */
3298 static int fec_reset_phy(struct platform_device *pdev)
3301 * In case of platform probe, the reset has been done
3302 * by machine code.
3304 return 0;
3306 #endif /* CONFIG_OF */
3308 static void
3309 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3311 struct device_node *np = pdev->dev.of_node;
3313 *num_tx = *num_rx = 1;
3315 if (!np || !of_device_is_available(np))
3316 return;
3318 /* parse the num of tx and rx queues */
3319 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3321 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3323 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3324 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3325 *num_tx);
3326 *num_tx = 1;
3327 return;
3330 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3331 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3332 *num_rx);
3333 *num_rx = 1;
3334 return;
3339 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3341 int irq_cnt = platform_irq_count(pdev);
3343 if (irq_cnt > FEC_IRQ_NUM)
3344 irq_cnt = FEC_IRQ_NUM; /* last for pps */
3345 else if (irq_cnt == 2)
3346 irq_cnt = 1; /* last for pps */
3347 else if (irq_cnt <= 0)
3348 irq_cnt = 1; /* At least 1 irq is needed */
3349 return irq_cnt;
3352 static int
3353 fec_probe(struct platform_device *pdev)
3355 struct fec_enet_private *fep;
3356 struct fec_platform_data *pdata;
3357 struct net_device *ndev;
3358 int i, irq, ret = 0;
3359 struct resource *r;
3360 const struct of_device_id *of_id;
3361 static int dev_id;
3362 struct device_node *np = pdev->dev.of_node, *phy_node;
3363 int num_tx_qs;
3364 int num_rx_qs;
3365 char irq_name[8];
3366 int irq_cnt;
3368 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3370 /* Init network device */
3371 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3372 FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3373 if (!ndev)
3374 return -ENOMEM;
3376 SET_NETDEV_DEV(ndev, &pdev->dev);
3378 /* setup board info structure */
3379 fep = netdev_priv(ndev);
3381 of_id = of_match_device(fec_dt_ids, &pdev->dev);
3382 if (of_id)
3383 pdev->id_entry = of_id->data;
3384 fep->quirks = pdev->id_entry->driver_data;
3386 fep->netdev = ndev;
3387 fep->num_rx_queues = num_rx_qs;
3388 fep->num_tx_queues = num_tx_qs;
3390 #if !defined(CONFIG_M5272)
3391 /* default enable pause frame auto negotiation */
3392 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3393 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3394 #endif
3396 /* Select default pin state */
3397 pinctrl_pm_select_default_state(&pdev->dev);
3399 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3400 fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3401 if (IS_ERR(fep->hwp)) {
3402 ret = PTR_ERR(fep->hwp);
3403 goto failed_ioremap;
3406 fep->pdev = pdev;
3407 fep->dev_id = dev_id++;
3409 platform_set_drvdata(pdev, ndev);
3411 if ((of_machine_is_compatible("fsl,imx6q") ||
3412 of_machine_is_compatible("fsl,imx6dl")) &&
3413 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3414 fep->quirks |= FEC_QUIRK_ERR006687;
3416 if (of_get_property(np, "fsl,magic-packet", NULL))
3417 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3419 phy_node = of_parse_phandle(np, "phy-handle", 0);
3420 if (!phy_node && of_phy_is_fixed_link(np)) {
3421 ret = of_phy_register_fixed_link(np);
3422 if (ret < 0) {
3423 dev_err(&pdev->dev,
3424 "broken fixed-link specification\n");
3425 goto failed_phy;
3427 phy_node = of_node_get(np);
3429 fep->phy_node = phy_node;
3431 ret = of_get_phy_mode(pdev->dev.of_node);
3432 if (ret < 0) {
3433 pdata = dev_get_platdata(&pdev->dev);
3434 if (pdata)
3435 fep->phy_interface = pdata->phy;
3436 else
3437 fep->phy_interface = PHY_INTERFACE_MODE_MII;
3438 } else {
3439 fep->phy_interface = ret;
3442 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3443 if (IS_ERR(fep->clk_ipg)) {
3444 ret = PTR_ERR(fep->clk_ipg);
3445 goto failed_clk;
3448 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3449 if (IS_ERR(fep->clk_ahb)) {
3450 ret = PTR_ERR(fep->clk_ahb);
3451 goto failed_clk;
3454 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3456 /* enet_out is optional, depends on board */
3457 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3458 if (IS_ERR(fep->clk_enet_out))
3459 fep->clk_enet_out = NULL;
3461 fep->ptp_clk_on = false;
3462 mutex_init(&fep->ptp_clk_mutex);
3464 /* clk_ref is optional, depends on board */
3465 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3466 if (IS_ERR(fep->clk_ref))
3467 fep->clk_ref = NULL;
3469 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3470 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3471 if (IS_ERR(fep->clk_ptp)) {
3472 fep->clk_ptp = NULL;
3473 fep->bufdesc_ex = false;
3476 ret = fec_enet_clk_enable(ndev, true);
3477 if (ret)
3478 goto failed_clk;
3480 ret = clk_prepare_enable(fep->clk_ipg);
3481 if (ret)
3482 goto failed_clk_ipg;
3484 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3485 if (!IS_ERR(fep->reg_phy)) {
3486 ret = regulator_enable(fep->reg_phy);
3487 if (ret) {
3488 dev_err(&pdev->dev,
3489 "Failed to enable phy regulator: %d\n", ret);
3490 clk_disable_unprepare(fep->clk_ipg);
3491 goto failed_regulator;
3493 } else {
3494 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3495 ret = -EPROBE_DEFER;
3496 goto failed_regulator;
3498 fep->reg_phy = NULL;
3501 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3502 pm_runtime_use_autosuspend(&pdev->dev);
3503 pm_runtime_get_noresume(&pdev->dev);
3504 pm_runtime_set_active(&pdev->dev);
3505 pm_runtime_enable(&pdev->dev);
3507 ret = fec_reset_phy(pdev);
3508 if (ret)
3509 goto failed_reset;
3511 irq_cnt = fec_enet_get_irq_cnt(pdev);
3512 if (fep->bufdesc_ex)
3513 fec_ptp_init(pdev, irq_cnt);
3515 ret = fec_enet_init(ndev);
3516 if (ret)
3517 goto failed_init;
3519 for (i = 0; i < irq_cnt; i++) {
3520 sprintf(irq_name, "int%d", i);
3521 irq = platform_get_irq_byname(pdev, irq_name);
3522 if (irq < 0)
3523 irq = platform_get_irq(pdev, i);
3524 if (irq < 0) {
3525 ret = irq;
3526 goto failed_irq;
3528 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3529 0, pdev->name, ndev);
3530 if (ret)
3531 goto failed_irq;
3533 fep->irq[i] = irq;
3536 init_completion(&fep->mdio_done);
3537 ret = fec_enet_mii_init(pdev);
3538 if (ret)
3539 goto failed_mii_init;
3541 /* Carrier starts down, phylib will bring it up */
3542 netif_carrier_off(ndev);
3543 fec_enet_clk_enable(ndev, false);
3544 pinctrl_pm_select_sleep_state(&pdev->dev);
3546 ret = register_netdev(ndev);
3547 if (ret)
3548 goto failed_register;
3550 device_init_wakeup(&ndev->dev, fep->wol_flag &
3551 FEC_WOL_HAS_MAGIC_PACKET);
3553 if (fep->bufdesc_ex && fep->ptp_clock)
3554 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3556 fep->rx_copybreak = COPYBREAK_DEFAULT;
3557 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3559 pm_runtime_mark_last_busy(&pdev->dev);
3560 pm_runtime_put_autosuspend(&pdev->dev);
3562 return 0;
3564 failed_register:
3565 fec_enet_mii_remove(fep);
3566 failed_mii_init:
3567 failed_irq:
3568 failed_init:
3569 fec_ptp_stop(pdev);
3570 if (fep->reg_phy)
3571 regulator_disable(fep->reg_phy);
3572 failed_reset:
3573 pm_runtime_put(&pdev->dev);
3574 pm_runtime_disable(&pdev->dev);
3575 failed_regulator:
3576 failed_clk_ipg:
3577 fec_enet_clk_enable(ndev, false);
3578 failed_clk:
3579 if (of_phy_is_fixed_link(np))
3580 of_phy_deregister_fixed_link(np);
3581 of_node_put(phy_node);
3582 failed_phy:
3583 dev_id--;
3584 failed_ioremap:
3585 free_netdev(ndev);
3587 return ret;
3590 static int
3591 fec_drv_remove(struct platform_device *pdev)
3593 struct net_device *ndev = platform_get_drvdata(pdev);
3594 struct fec_enet_private *fep = netdev_priv(ndev);
3595 struct device_node *np = pdev->dev.of_node;
3597 cancel_work_sync(&fep->tx_timeout_work);
3598 fec_ptp_stop(pdev);
3599 unregister_netdev(ndev);
3600 fec_enet_mii_remove(fep);
3601 if (fep->reg_phy)
3602 regulator_disable(fep->reg_phy);
3603 if (of_phy_is_fixed_link(np))
3604 of_phy_deregister_fixed_link(np);
3605 of_node_put(fep->phy_node);
3606 free_netdev(ndev);
3608 return 0;
3611 static int __maybe_unused fec_suspend(struct device *dev)
3613 struct net_device *ndev = dev_get_drvdata(dev);
3614 struct fec_enet_private *fep = netdev_priv(ndev);
3616 rtnl_lock();
3617 if (netif_running(ndev)) {
3618 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3619 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3620 phy_stop(ndev->phydev);
3621 napi_disable(&fep->napi);
3622 netif_tx_lock_bh(ndev);
3623 netif_device_detach(ndev);
3624 netif_tx_unlock_bh(ndev);
3625 fec_stop(ndev);
3626 fec_enet_clk_enable(ndev, false);
3627 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3628 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3630 rtnl_unlock();
3632 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3633 regulator_disable(fep->reg_phy);
3635 /* SOC supply clock to phy, when clock is disabled, phy link down
3636 * SOC control phy regulator, when regulator is disabled, phy link down
3638 if (fep->clk_enet_out || fep->reg_phy)
3639 fep->link = 0;
3641 return 0;
3644 static int __maybe_unused fec_resume(struct device *dev)
3646 struct net_device *ndev = dev_get_drvdata(dev);
3647 struct fec_enet_private *fep = netdev_priv(ndev);
3648 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3649 int ret;
3650 int val;
3652 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3653 ret = regulator_enable(fep->reg_phy);
3654 if (ret)
3655 return ret;
3658 rtnl_lock();
3659 if (netif_running(ndev)) {
3660 ret = fec_enet_clk_enable(ndev, true);
3661 if (ret) {
3662 rtnl_unlock();
3663 goto failed_clk;
3665 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3666 if (pdata && pdata->sleep_mode_enable)
3667 pdata->sleep_mode_enable(false);
3668 val = readl(fep->hwp + FEC_ECNTRL);
3669 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3670 writel(val, fep->hwp + FEC_ECNTRL);
3671 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3672 } else {
3673 pinctrl_pm_select_default_state(&fep->pdev->dev);
3675 fec_restart(ndev);
3676 netif_tx_lock_bh(ndev);
3677 netif_device_attach(ndev);
3678 netif_tx_unlock_bh(ndev);
3679 napi_enable(&fep->napi);
3680 phy_start(ndev->phydev);
3682 rtnl_unlock();
3684 return 0;
3686 failed_clk:
3687 if (fep->reg_phy)
3688 regulator_disable(fep->reg_phy);
3689 return ret;
3692 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3694 struct net_device *ndev = dev_get_drvdata(dev);
3695 struct fec_enet_private *fep = netdev_priv(ndev);
3697 clk_disable_unprepare(fep->clk_ipg);
3699 return 0;
3702 static int __maybe_unused fec_runtime_resume(struct device *dev)
3704 struct net_device *ndev = dev_get_drvdata(dev);
3705 struct fec_enet_private *fep = netdev_priv(ndev);
3707 return clk_prepare_enable(fep->clk_ipg);
3710 static const struct dev_pm_ops fec_pm_ops = {
3711 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3712 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3715 static struct platform_driver fec_driver = {
3716 .driver = {
3717 .name = DRIVER_NAME,
3718 .pm = &fec_pm_ops,
3719 .of_match_table = fec_dt_ids,
3721 .id_table = fec_devtype,
3722 .probe = fec_probe,
3723 .remove = fec_drv_remove,
3726 module_platform_driver(fec_driver);
3728 MODULE_ALIAS("platform:"DRIVER_NAME);
3729 MODULE_LICENSE("GPL");