2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 #include <soc/imx/cpuidle.h>
65 #include <asm/cacheflush.h>
69 static void set_multicast_list(struct net_device
*ndev
);
70 static void fec_enet_itr_coal_init(struct net_device
*ndev
);
72 #define DRIVER_NAME "fec"
74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
76 /* Pause frame feild and FIFO threshold */
77 #define FEC_ENET_FCE (1 << 5)
78 #define FEC_ENET_RSEM_V 0x84
79 #define FEC_ENET_RSFL_V 16
80 #define FEC_ENET_RAEM_V 0x8
81 #define FEC_ENET_RAFL_V 0x8
82 #define FEC_ENET_OPD_V 0xFFF0
83 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
85 static struct platform_device_id fec_devtype
[] = {
87 /* keep it for coldfire */
92 .driver_data
= FEC_QUIRK_USE_GASKET
| FEC_QUIRK_MIB_CLEAR
,
95 .driver_data
= FEC_QUIRK_MIB_CLEAR
,
98 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_SWAP_FRAME
|
99 FEC_QUIRK_SINGLE_MDIO
| FEC_QUIRK_HAS_RACC
,
102 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_HAS_GBIT
|
103 FEC_QUIRK_HAS_BUFDESC_EX
| FEC_QUIRK_HAS_CSUM
|
104 FEC_QUIRK_HAS_VLAN
| FEC_QUIRK_ERR006358
|
107 .name
= "mvf600-fec",
108 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_HAS_RACC
,
110 .name
= "imx6sx-fec",
111 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_HAS_GBIT
|
112 FEC_QUIRK_HAS_BUFDESC_EX
| FEC_QUIRK_HAS_CSUM
|
113 FEC_QUIRK_HAS_VLAN
| FEC_QUIRK_HAS_AVB
|
114 FEC_QUIRK_ERR007885
| FEC_QUIRK_BUG_CAPTURE
|
115 FEC_QUIRK_HAS_RACC
| FEC_QUIRK_HAS_COALESCE
,
117 .name
= "imx6ul-fec",
118 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_HAS_GBIT
|
119 FEC_QUIRK_HAS_BUFDESC_EX
| FEC_QUIRK_HAS_CSUM
|
120 FEC_QUIRK_HAS_VLAN
| FEC_QUIRK_ERR007885
|
121 FEC_QUIRK_BUG_CAPTURE
| FEC_QUIRK_HAS_RACC
|
122 FEC_QUIRK_HAS_COALESCE
,
127 MODULE_DEVICE_TABLE(platform
, fec_devtype
);
130 IMX25_FEC
= 1, /* runs on i.mx25/50/53 */
131 IMX27_FEC
, /* runs on i.mx27/35/51 */
139 static const struct of_device_id fec_dt_ids
[] = {
140 { .compatible
= "fsl,imx25-fec", .data
= &fec_devtype
[IMX25_FEC
], },
141 { .compatible
= "fsl,imx27-fec", .data
= &fec_devtype
[IMX27_FEC
], },
142 { .compatible
= "fsl,imx28-fec", .data
= &fec_devtype
[IMX28_FEC
], },
143 { .compatible
= "fsl,imx6q-fec", .data
= &fec_devtype
[IMX6Q_FEC
], },
144 { .compatible
= "fsl,mvf600-fec", .data
= &fec_devtype
[MVF600_FEC
], },
145 { .compatible
= "fsl,imx6sx-fec", .data
= &fec_devtype
[IMX6SX_FEC
], },
146 { .compatible
= "fsl,imx6ul-fec", .data
= &fec_devtype
[IMX6UL_FEC
], },
149 MODULE_DEVICE_TABLE(of
, fec_dt_ids
);
151 static unsigned char macaddr
[ETH_ALEN
];
152 module_param_array(macaddr
, byte
, NULL
, 0);
153 MODULE_PARM_DESC(macaddr
, "FEC Ethernet MAC address");
155 #if defined(CONFIG_M5272)
157 * Some hardware gets it MAC address out of local flash memory.
158 * if this is non-zero then assume it is the address to get MAC from.
160 #if defined(CONFIG_NETtel)
161 #define FEC_FLASHMAC 0xf0006006
162 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
163 #define FEC_FLASHMAC 0xf0006000
164 #elif defined(CONFIG_CANCam)
165 #define FEC_FLASHMAC 0xf0020000
166 #elif defined (CONFIG_M5272C3)
167 #define FEC_FLASHMAC (0xffe04000 + 4)
168 #elif defined(CONFIG_MOD5272)
169 #define FEC_FLASHMAC 0xffc0406b
171 #define FEC_FLASHMAC 0
173 #endif /* CONFIG_M5272 */
175 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
177 * 2048 byte skbufs are allocated. However, alignment requirements
178 * varies between FEC variants. Worst case is 64, so round down by 64.
180 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
181 #define PKT_MINBUF_SIZE 64
183 /* FEC receive acceleration */
184 #define FEC_RACC_IPDIS (1 << 1)
185 #define FEC_RACC_PRODIS (1 << 2)
186 #define FEC_RACC_SHIFT16 BIT(7)
187 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
189 /* MIB Control Register */
190 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
193 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
194 * size bits. Other FEC hardware does not, so we need to take that into
195 * account when setting it.
197 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
198 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
199 defined(CONFIG_ARM64)
200 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
202 #define OPT_FRAME_SIZE 0
205 /* FEC MII MMFR bits definition */
206 #define FEC_MMFR_ST (1 << 30)
207 #define FEC_MMFR_OP_READ (2 << 28)
208 #define FEC_MMFR_OP_WRITE (1 << 28)
209 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
210 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
211 #define FEC_MMFR_TA (2 << 16)
212 #define FEC_MMFR_DATA(v) (v & 0xffff)
213 /* FEC ECR bits definition */
214 #define FEC_ECR_MAGICEN (1 << 2)
215 #define FEC_ECR_SLEEP (1 << 3)
217 #define FEC_MII_TIMEOUT 30000 /* us */
219 /* Transmitter timeout */
220 #define TX_TIMEOUT (2 * HZ)
222 #define FEC_PAUSE_FLAG_AUTONEG 0x1
223 #define FEC_PAUSE_FLAG_ENABLE 0x2
224 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
225 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
226 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
228 #define COPYBREAK_DEFAULT 256
230 /* Max number of allowed TCP segments for software TSO */
231 #define FEC_MAX_TSO_SEGS 100
232 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
234 #define IS_TSO_HEADER(txq, addr) \
235 ((addr >= txq->tso_hdrs_dma) && \
236 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
240 static struct bufdesc
*fec_enet_get_nextdesc(struct bufdesc
*bdp
,
241 struct bufdesc_prop
*bd
)
243 return (bdp
>= bd
->last
) ? bd
->base
244 : (struct bufdesc
*)(((void *)bdp
) + bd
->dsize
);
247 static struct bufdesc
*fec_enet_get_prevdesc(struct bufdesc
*bdp
,
248 struct bufdesc_prop
*bd
)
250 return (bdp
<= bd
->base
) ? bd
->last
251 : (struct bufdesc
*)(((void *)bdp
) - bd
->dsize
);
254 static int fec_enet_get_bd_index(struct bufdesc
*bdp
,
255 struct bufdesc_prop
*bd
)
257 return ((const char *)bdp
- (const char *)bd
->base
) >> bd
->dsize_log2
;
260 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q
*txq
)
264 entries
= (((const char *)txq
->dirty_tx
-
265 (const char *)txq
->bd
.cur
) >> txq
->bd
.dsize_log2
) - 1;
267 return entries
>= 0 ? entries
: entries
+ txq
->bd
.ring_size
;
270 static void swap_buffer(void *bufaddr
, int len
)
273 unsigned int *buf
= bufaddr
;
275 for (i
= 0; i
< len
; i
+= 4, buf
++)
279 static void swap_buffer2(void *dst_buf
, void *src_buf
, int len
)
282 unsigned int *src
= src_buf
;
283 unsigned int *dst
= dst_buf
;
285 for (i
= 0; i
< len
; i
+= 4, src
++, dst
++)
289 static void fec_dump(struct net_device
*ndev
)
291 struct fec_enet_private
*fep
= netdev_priv(ndev
);
293 struct fec_enet_priv_tx_q
*txq
;
296 netdev_info(ndev
, "TX ring dump\n");
297 pr_info("Nr SC addr len SKB\n");
299 txq
= fep
->tx_queue
[0];
303 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
305 bdp
== txq
->bd
.cur
? 'S' : ' ',
306 bdp
== txq
->dirty_tx
? 'H' : ' ',
307 fec16_to_cpu(bdp
->cbd_sc
),
308 fec32_to_cpu(bdp
->cbd_bufaddr
),
309 fec16_to_cpu(bdp
->cbd_datlen
),
310 txq
->tx_skbuff
[index
]);
311 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
313 } while (bdp
!= txq
->bd
.base
);
316 static inline bool is_ipv4_pkt(struct sk_buff
*skb
)
318 return skb
->protocol
== htons(ETH_P_IP
) && ip_hdr(skb
)->version
== 4;
322 fec_enet_clear_csum(struct sk_buff
*skb
, struct net_device
*ndev
)
324 /* Only run for packets requiring a checksum. */
325 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
328 if (unlikely(skb_cow_head(skb
, 0)))
331 if (is_ipv4_pkt(skb
))
332 ip_hdr(skb
)->check
= 0;
333 *(__sum16
*)(skb
->head
+ skb
->csum_start
+ skb
->csum_offset
) = 0;
338 static struct bufdesc
*
339 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q
*txq
,
341 struct net_device
*ndev
)
343 struct fec_enet_private
*fep
= netdev_priv(ndev
);
344 struct bufdesc
*bdp
= txq
->bd
.cur
;
345 struct bufdesc_ex
*ebdp
;
346 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
348 unsigned short status
;
349 unsigned int estatus
= 0;
350 skb_frag_t
*this_frag
;
356 for (frag
= 0; frag
< nr_frags
; frag
++) {
357 this_frag
= &skb_shinfo(skb
)->frags
[frag
];
358 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
359 ebdp
= (struct bufdesc_ex
*)bdp
;
361 status
= fec16_to_cpu(bdp
->cbd_sc
);
362 status
&= ~BD_ENET_TX_STATS
;
363 status
|= (BD_ENET_TX_TC
| BD_ENET_TX_READY
);
364 frag_len
= skb_shinfo(skb
)->frags
[frag
].size
;
366 /* Handle the last BD specially */
367 if (frag
== nr_frags
- 1) {
368 status
|= (BD_ENET_TX_INTR
| BD_ENET_TX_LAST
);
369 if (fep
->bufdesc_ex
) {
370 estatus
|= BD_ENET_TX_INT
;
371 if (unlikely(skb_shinfo(skb
)->tx_flags
&
372 SKBTX_HW_TSTAMP
&& fep
->hwts_tx_en
))
373 estatus
|= BD_ENET_TX_TS
;
377 if (fep
->bufdesc_ex
) {
378 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
)
379 estatus
|= FEC_TX_BD_FTYPE(txq
->bd
.qid
);
380 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
381 estatus
|= BD_ENET_TX_PINS
| BD_ENET_TX_IINS
;
383 ebdp
->cbd_esc
= cpu_to_fec32(estatus
);
386 bufaddr
= page_address(this_frag
->page
.p
) + this_frag
->page_offset
;
388 index
= fec_enet_get_bd_index(bdp
, &txq
->bd
);
389 if (((unsigned long) bufaddr
) & fep
->tx_align
||
390 fep
->quirks
& FEC_QUIRK_SWAP_FRAME
) {
391 memcpy(txq
->tx_bounce
[index
], bufaddr
, frag_len
);
392 bufaddr
= txq
->tx_bounce
[index
];
394 if (fep
->quirks
& FEC_QUIRK_SWAP_FRAME
)
395 swap_buffer(bufaddr
, frag_len
);
398 addr
= dma_map_single(&fep
->pdev
->dev
, bufaddr
, frag_len
,
400 if (dma_mapping_error(&fep
->pdev
->dev
, addr
)) {
402 netdev_err(ndev
, "Tx DMA memory map failed\n");
403 goto dma_mapping_error
;
406 bdp
->cbd_bufaddr
= cpu_to_fec32(addr
);
407 bdp
->cbd_datlen
= cpu_to_fec16(frag_len
);
408 /* Make sure the updates to rest of the descriptor are
409 * performed before transferring ownership.
412 bdp
->cbd_sc
= cpu_to_fec16(status
);
418 for (i
= 0; i
< frag
; i
++) {
419 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
420 dma_unmap_single(&fep
->pdev
->dev
, fec32_to_cpu(bdp
->cbd_bufaddr
),
421 fec16_to_cpu(bdp
->cbd_datlen
), DMA_TO_DEVICE
);
423 return ERR_PTR(-ENOMEM
);
426 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q
*txq
,
427 struct sk_buff
*skb
, struct net_device
*ndev
)
429 struct fec_enet_private
*fep
= netdev_priv(ndev
);
430 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
431 struct bufdesc
*bdp
, *last_bdp
;
434 unsigned short status
;
435 unsigned short buflen
;
436 unsigned int estatus
= 0;
440 entries_free
= fec_enet_get_free_txdesc_num(txq
);
441 if (entries_free
< MAX_SKB_FRAGS
+ 1) {
442 dev_kfree_skb_any(skb
);
444 netdev_err(ndev
, "NOT enough BD for SG!\n");
448 /* Protocol checksum off-load for TCP and UDP. */
449 if (fec_enet_clear_csum(skb
, ndev
)) {
450 dev_kfree_skb_any(skb
);
454 /* Fill in a Tx ring entry */
457 status
= fec16_to_cpu(bdp
->cbd_sc
);
458 status
&= ~BD_ENET_TX_STATS
;
460 /* Set buffer length and buffer pointer */
462 buflen
= skb_headlen(skb
);
464 index
= fec_enet_get_bd_index(bdp
, &txq
->bd
);
465 if (((unsigned long) bufaddr
) & fep
->tx_align
||
466 fep
->quirks
& FEC_QUIRK_SWAP_FRAME
) {
467 memcpy(txq
->tx_bounce
[index
], skb
->data
, buflen
);
468 bufaddr
= txq
->tx_bounce
[index
];
470 if (fep
->quirks
& FEC_QUIRK_SWAP_FRAME
)
471 swap_buffer(bufaddr
, buflen
);
474 /* Push the data cache so the CPM does not get stale memory data. */
475 addr
= dma_map_single(&fep
->pdev
->dev
, bufaddr
, buflen
, DMA_TO_DEVICE
);
476 if (dma_mapping_error(&fep
->pdev
->dev
, addr
)) {
477 dev_kfree_skb_any(skb
);
479 netdev_err(ndev
, "Tx DMA memory map failed\n");
484 last_bdp
= fec_enet_txq_submit_frag_skb(txq
, skb
, ndev
);
485 if (IS_ERR(last_bdp
)) {
486 dma_unmap_single(&fep
->pdev
->dev
, addr
,
487 buflen
, DMA_TO_DEVICE
);
488 dev_kfree_skb_any(skb
);
492 status
|= (BD_ENET_TX_INTR
| BD_ENET_TX_LAST
);
493 if (fep
->bufdesc_ex
) {
494 estatus
= BD_ENET_TX_INT
;
495 if (unlikely(skb_shinfo(skb
)->tx_flags
&
496 SKBTX_HW_TSTAMP
&& fep
->hwts_tx_en
))
497 estatus
|= BD_ENET_TX_TS
;
500 bdp
->cbd_bufaddr
= cpu_to_fec32(addr
);
501 bdp
->cbd_datlen
= cpu_to_fec16(buflen
);
503 if (fep
->bufdesc_ex
) {
505 struct bufdesc_ex
*ebdp
= (struct bufdesc_ex
*)bdp
;
507 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
&&
509 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
511 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
)
512 estatus
|= FEC_TX_BD_FTYPE(txq
->bd
.qid
);
514 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
515 estatus
|= BD_ENET_TX_PINS
| BD_ENET_TX_IINS
;
518 ebdp
->cbd_esc
= cpu_to_fec32(estatus
);
521 index
= fec_enet_get_bd_index(last_bdp
, &txq
->bd
);
522 /* Save skb pointer */
523 txq
->tx_skbuff
[index
] = skb
;
525 /* Make sure the updates to rest of the descriptor are performed before
526 * transferring ownership.
530 /* Send it on its way. Tell FEC it's ready, interrupt when done,
531 * it's the last BD of the frame, and to put the CRC on the end.
533 status
|= (BD_ENET_TX_READY
| BD_ENET_TX_TC
);
534 bdp
->cbd_sc
= cpu_to_fec16(status
);
536 /* If this was the last BD in the ring, start at the beginning again. */
537 bdp
= fec_enet_get_nextdesc(last_bdp
, &txq
->bd
);
539 skb_tx_timestamp(skb
);
541 /* Make sure the update to bdp and tx_skbuff are performed before
547 /* Trigger transmission start */
548 writel(0, txq
->bd
.reg_desc_active
);
554 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q
*txq
, struct sk_buff
*skb
,
555 struct net_device
*ndev
,
556 struct bufdesc
*bdp
, int index
, char *data
,
557 int size
, bool last_tcp
, bool is_last
)
559 struct fec_enet_private
*fep
= netdev_priv(ndev
);
560 struct bufdesc_ex
*ebdp
= container_of(bdp
, struct bufdesc_ex
, desc
);
561 unsigned short status
;
562 unsigned int estatus
= 0;
565 status
= fec16_to_cpu(bdp
->cbd_sc
);
566 status
&= ~BD_ENET_TX_STATS
;
568 status
|= (BD_ENET_TX_TC
| BD_ENET_TX_READY
);
570 if (((unsigned long) data
) & fep
->tx_align
||
571 fep
->quirks
& FEC_QUIRK_SWAP_FRAME
) {
572 memcpy(txq
->tx_bounce
[index
], data
, size
);
573 data
= txq
->tx_bounce
[index
];
575 if (fep
->quirks
& FEC_QUIRK_SWAP_FRAME
)
576 swap_buffer(data
, size
);
579 addr
= dma_map_single(&fep
->pdev
->dev
, data
, size
, DMA_TO_DEVICE
);
580 if (dma_mapping_error(&fep
->pdev
->dev
, addr
)) {
581 dev_kfree_skb_any(skb
);
583 netdev_err(ndev
, "Tx DMA memory map failed\n");
584 return NETDEV_TX_BUSY
;
587 bdp
->cbd_datlen
= cpu_to_fec16(size
);
588 bdp
->cbd_bufaddr
= cpu_to_fec32(addr
);
590 if (fep
->bufdesc_ex
) {
591 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
)
592 estatus
|= FEC_TX_BD_FTYPE(txq
->bd
.qid
);
593 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
594 estatus
|= BD_ENET_TX_PINS
| BD_ENET_TX_IINS
;
596 ebdp
->cbd_esc
= cpu_to_fec32(estatus
);
599 /* Handle the last BD specially */
601 status
|= (BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
603 status
|= BD_ENET_TX_INTR
;
605 ebdp
->cbd_esc
|= cpu_to_fec32(BD_ENET_TX_INT
);
608 bdp
->cbd_sc
= cpu_to_fec16(status
);
614 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q
*txq
,
615 struct sk_buff
*skb
, struct net_device
*ndev
,
616 struct bufdesc
*bdp
, int index
)
618 struct fec_enet_private
*fep
= netdev_priv(ndev
);
619 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
620 struct bufdesc_ex
*ebdp
= container_of(bdp
, struct bufdesc_ex
, desc
);
622 unsigned long dmabuf
;
623 unsigned short status
;
624 unsigned int estatus
= 0;
626 status
= fec16_to_cpu(bdp
->cbd_sc
);
627 status
&= ~BD_ENET_TX_STATS
;
628 status
|= (BD_ENET_TX_TC
| BD_ENET_TX_READY
);
630 bufaddr
= txq
->tso_hdrs
+ index
* TSO_HEADER_SIZE
;
631 dmabuf
= txq
->tso_hdrs_dma
+ index
* TSO_HEADER_SIZE
;
632 if (((unsigned long)bufaddr
) & fep
->tx_align
||
633 fep
->quirks
& FEC_QUIRK_SWAP_FRAME
) {
634 memcpy(txq
->tx_bounce
[index
], skb
->data
, hdr_len
);
635 bufaddr
= txq
->tx_bounce
[index
];
637 if (fep
->quirks
& FEC_QUIRK_SWAP_FRAME
)
638 swap_buffer(bufaddr
, hdr_len
);
640 dmabuf
= dma_map_single(&fep
->pdev
->dev
, bufaddr
,
641 hdr_len
, DMA_TO_DEVICE
);
642 if (dma_mapping_error(&fep
->pdev
->dev
, dmabuf
)) {
643 dev_kfree_skb_any(skb
);
645 netdev_err(ndev
, "Tx DMA memory map failed\n");
646 return NETDEV_TX_BUSY
;
650 bdp
->cbd_bufaddr
= cpu_to_fec32(dmabuf
);
651 bdp
->cbd_datlen
= cpu_to_fec16(hdr_len
);
653 if (fep
->bufdesc_ex
) {
654 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
)
655 estatus
|= FEC_TX_BD_FTYPE(txq
->bd
.qid
);
656 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
657 estatus
|= BD_ENET_TX_PINS
| BD_ENET_TX_IINS
;
659 ebdp
->cbd_esc
= cpu_to_fec32(estatus
);
662 bdp
->cbd_sc
= cpu_to_fec16(status
);
667 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q
*txq
,
669 struct net_device
*ndev
)
671 struct fec_enet_private
*fep
= netdev_priv(ndev
);
672 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
673 int total_len
, data_left
;
674 struct bufdesc
*bdp
= txq
->bd
.cur
;
676 unsigned int index
= 0;
679 if (tso_count_descs(skb
) >= fec_enet_get_free_txdesc_num(txq
)) {
680 dev_kfree_skb_any(skb
);
682 netdev_err(ndev
, "NOT enough BD for TSO!\n");
686 /* Protocol checksum off-load for TCP and UDP. */
687 if (fec_enet_clear_csum(skb
, ndev
)) {
688 dev_kfree_skb_any(skb
);
692 /* Initialize the TSO handler, and prepare the first payload */
693 tso_start(skb
, &tso
);
695 total_len
= skb
->len
- hdr_len
;
696 while (total_len
> 0) {
699 index
= fec_enet_get_bd_index(bdp
, &txq
->bd
);
700 data_left
= min_t(int, skb_shinfo(skb
)->gso_size
, total_len
);
701 total_len
-= data_left
;
703 /* prepare packet headers: MAC + IP + TCP */
704 hdr
= txq
->tso_hdrs
+ index
* TSO_HEADER_SIZE
;
705 tso_build_hdr(skb
, hdr
, &tso
, data_left
, total_len
== 0);
706 ret
= fec_enet_txq_put_hdr_tso(txq
, skb
, ndev
, bdp
, index
);
710 while (data_left
> 0) {
713 size
= min_t(int, tso
.size
, data_left
);
714 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
715 index
= fec_enet_get_bd_index(bdp
, &txq
->bd
);
716 ret
= fec_enet_txq_put_data_tso(txq
, skb
, ndev
,
725 tso_build_data(skb
, &tso
, size
);
728 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
731 /* Save skb pointer */
732 txq
->tx_skbuff
[index
] = skb
;
734 skb_tx_timestamp(skb
);
737 /* Trigger transmission start */
738 if (!(fep
->quirks
& FEC_QUIRK_ERR007885
) ||
739 !readl(txq
->bd
.reg_desc_active
) ||
740 !readl(txq
->bd
.reg_desc_active
) ||
741 !readl(txq
->bd
.reg_desc_active
) ||
742 !readl(txq
->bd
.reg_desc_active
))
743 writel(0, txq
->bd
.reg_desc_active
);
748 /* TODO: Release all used data descriptors for TSO */
753 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*ndev
)
755 struct fec_enet_private
*fep
= netdev_priv(ndev
);
757 unsigned short queue
;
758 struct fec_enet_priv_tx_q
*txq
;
759 struct netdev_queue
*nq
;
762 queue
= skb_get_queue_mapping(skb
);
763 txq
= fep
->tx_queue
[queue
];
764 nq
= netdev_get_tx_queue(ndev
, queue
);
767 ret
= fec_enet_txq_submit_tso(txq
, skb
, ndev
);
769 ret
= fec_enet_txq_submit_skb(txq
, skb
, ndev
);
773 entries_free
= fec_enet_get_free_txdesc_num(txq
);
774 if (entries_free
<= txq
->tx_stop_threshold
)
775 netif_tx_stop_queue(nq
);
780 /* Init RX & TX buffer descriptors
782 static void fec_enet_bd_init(struct net_device
*dev
)
784 struct fec_enet_private
*fep
= netdev_priv(dev
);
785 struct fec_enet_priv_tx_q
*txq
;
786 struct fec_enet_priv_rx_q
*rxq
;
791 for (q
= 0; q
< fep
->num_rx_queues
; q
++) {
792 /* Initialize the receive buffer descriptors. */
793 rxq
= fep
->rx_queue
[q
];
796 for (i
= 0; i
< rxq
->bd
.ring_size
; i
++) {
798 /* Initialize the BD for every fragment in the page. */
799 if (bdp
->cbd_bufaddr
)
800 bdp
->cbd_sc
= cpu_to_fec16(BD_ENET_RX_EMPTY
);
802 bdp
->cbd_sc
= cpu_to_fec16(0);
803 bdp
= fec_enet_get_nextdesc(bdp
, &rxq
->bd
);
806 /* Set the last buffer to wrap */
807 bdp
= fec_enet_get_prevdesc(bdp
, &rxq
->bd
);
808 bdp
->cbd_sc
|= cpu_to_fec16(BD_SC_WRAP
);
810 rxq
->bd
.cur
= rxq
->bd
.base
;
813 for (q
= 0; q
< fep
->num_tx_queues
; q
++) {
814 /* ...and the same for transmit */
815 txq
= fep
->tx_queue
[q
];
819 for (i
= 0; i
< txq
->bd
.ring_size
; i
++) {
820 /* Initialize the BD for every fragment in the page. */
821 bdp
->cbd_sc
= cpu_to_fec16(0);
822 if (bdp
->cbd_bufaddr
&&
823 !IS_TSO_HEADER(txq
, fec32_to_cpu(bdp
->cbd_bufaddr
)))
824 dma_unmap_single(&fep
->pdev
->dev
,
825 fec32_to_cpu(bdp
->cbd_bufaddr
),
826 fec16_to_cpu(bdp
->cbd_datlen
),
828 if (txq
->tx_skbuff
[i
]) {
829 dev_kfree_skb_any(txq
->tx_skbuff
[i
]);
830 txq
->tx_skbuff
[i
] = NULL
;
832 bdp
->cbd_bufaddr
= cpu_to_fec32(0);
833 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
836 /* Set the last buffer to wrap */
837 bdp
= fec_enet_get_prevdesc(bdp
, &txq
->bd
);
838 bdp
->cbd_sc
|= cpu_to_fec16(BD_SC_WRAP
);
843 static void fec_enet_active_rxring(struct net_device
*ndev
)
845 struct fec_enet_private
*fep
= netdev_priv(ndev
);
848 for (i
= 0; i
< fep
->num_rx_queues
; i
++)
849 writel(0, fep
->rx_queue
[i
]->bd
.reg_desc_active
);
852 static void fec_enet_enable_ring(struct net_device
*ndev
)
854 struct fec_enet_private
*fep
= netdev_priv(ndev
);
855 struct fec_enet_priv_tx_q
*txq
;
856 struct fec_enet_priv_rx_q
*rxq
;
859 for (i
= 0; i
< fep
->num_rx_queues
; i
++) {
860 rxq
= fep
->rx_queue
[i
];
861 writel(rxq
->bd
.dma
, fep
->hwp
+ FEC_R_DES_START(i
));
862 writel(PKT_MAXBUF_SIZE
, fep
->hwp
+ FEC_R_BUFF_SIZE(i
));
866 writel(RCMR_MATCHEN
| RCMR_CMP(i
),
867 fep
->hwp
+ FEC_RCMR(i
));
870 for (i
= 0; i
< fep
->num_tx_queues
; i
++) {
871 txq
= fep
->tx_queue
[i
];
872 writel(txq
->bd
.dma
, fep
->hwp
+ FEC_X_DES_START(i
));
876 writel(DMA_CLASS_EN
| IDLE_SLOPE(i
),
877 fep
->hwp
+ FEC_DMA_CFG(i
));
881 static void fec_enet_reset_skb(struct net_device
*ndev
)
883 struct fec_enet_private
*fep
= netdev_priv(ndev
);
884 struct fec_enet_priv_tx_q
*txq
;
887 for (i
= 0; i
< fep
->num_tx_queues
; i
++) {
888 txq
= fep
->tx_queue
[i
];
890 for (j
= 0; j
< txq
->bd
.ring_size
; j
++) {
891 if (txq
->tx_skbuff
[j
]) {
892 dev_kfree_skb_any(txq
->tx_skbuff
[j
]);
893 txq
->tx_skbuff
[j
] = NULL
;
900 * This function is called to start or restart the FEC during a link
901 * change, transmit timeout, or to reconfigure the FEC. The network
902 * packet processing for this device must be stopped before this call.
905 fec_restart(struct net_device
*ndev
)
907 struct fec_enet_private
*fep
= netdev_priv(ndev
);
910 u32 rcntl
= OPT_FRAME_SIZE
| 0x04;
911 u32 ecntl
= 0x2; /* ETHEREN */
913 /* Whack a reset. We should wait for this.
914 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
915 * instead of reset MAC itself.
917 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
) {
918 writel(0, fep
->hwp
+ FEC_ECNTRL
);
920 writel(1, fep
->hwp
+ FEC_ECNTRL
);
925 * enet-mac reset will reset mac address registers too,
926 * so need to reconfigure it.
928 memcpy(&temp_mac
, ndev
->dev_addr
, ETH_ALEN
);
929 writel((__force u32
)cpu_to_be32(temp_mac
[0]),
930 fep
->hwp
+ FEC_ADDR_LOW
);
931 writel((__force u32
)cpu_to_be32(temp_mac
[1]),
932 fep
->hwp
+ FEC_ADDR_HIGH
);
934 /* Clear any outstanding interrupt. */
935 writel(0xffffffff, fep
->hwp
+ FEC_IEVENT
);
937 fec_enet_bd_init(ndev
);
939 fec_enet_enable_ring(ndev
);
941 /* Reset tx SKB buffers. */
942 fec_enet_reset_skb(ndev
);
944 /* Enable MII mode */
945 if (fep
->full_duplex
== DUPLEX_FULL
) {
947 writel(0x04, fep
->hwp
+ FEC_X_CNTRL
);
951 writel(0x0, fep
->hwp
+ FEC_X_CNTRL
);
955 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
957 #if !defined(CONFIG_M5272)
958 if (fep
->quirks
& FEC_QUIRK_HAS_RACC
) {
959 val
= readl(fep
->hwp
+ FEC_RACC
);
960 /* align IP header */
961 val
|= FEC_RACC_SHIFT16
;
962 if (fep
->csum_flags
& FLAG_RX_CSUM_ENABLED
)
963 /* set RX checksum */
964 val
|= FEC_RACC_OPTIONS
;
966 val
&= ~FEC_RACC_OPTIONS
;
967 writel(val
, fep
->hwp
+ FEC_RACC
);
968 writel(PKT_MAXBUF_SIZE
, fep
->hwp
+ FEC_FTRL
);
973 * The phy interface and speed need to get configured
974 * differently on enet-mac.
976 if (fep
->quirks
& FEC_QUIRK_ENET_MAC
) {
977 /* Enable flow control and length check */
978 rcntl
|= 0x40000000 | 0x00000020;
980 /* RGMII, RMII or MII */
981 if (fep
->phy_interface
== PHY_INTERFACE_MODE_RGMII
||
982 fep
->phy_interface
== PHY_INTERFACE_MODE_RGMII_ID
||
983 fep
->phy_interface
== PHY_INTERFACE_MODE_RGMII_RXID
||
984 fep
->phy_interface
== PHY_INTERFACE_MODE_RGMII_TXID
)
986 else if (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
)
991 /* 1G, 100M or 10M */
993 if (ndev
->phydev
->speed
== SPEED_1000
)
995 else if (ndev
->phydev
->speed
== SPEED_100
)
1001 #ifdef FEC_MIIGSK_ENR
1002 if (fep
->quirks
& FEC_QUIRK_USE_GASKET
) {
1004 /* disable the gasket and wait */
1005 writel(0, fep
->hwp
+ FEC_MIIGSK_ENR
);
1006 while (readl(fep
->hwp
+ FEC_MIIGSK_ENR
) & 4)
1010 * configure the gasket:
1011 * RMII, 50 MHz, no loopback, no echo
1012 * MII, 25 MHz, no loopback, no echo
1014 cfgr
= (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
)
1015 ? BM_MIIGSK_CFGR_RMII
: BM_MIIGSK_CFGR_MII
;
1016 if (ndev
->phydev
&& ndev
->phydev
->speed
== SPEED_10
)
1017 cfgr
|= BM_MIIGSK_CFGR_FRCONT_10M
;
1018 writel(cfgr
, fep
->hwp
+ FEC_MIIGSK_CFGR
);
1020 /* re-enable the gasket */
1021 writel(2, fep
->hwp
+ FEC_MIIGSK_ENR
);
1026 #if !defined(CONFIG_M5272)
1027 /* enable pause frame*/
1028 if ((fep
->pause_flag
& FEC_PAUSE_FLAG_ENABLE
) ||
1029 ((fep
->pause_flag
& FEC_PAUSE_FLAG_AUTONEG
) &&
1030 ndev
->phydev
&& ndev
->phydev
->pause
)) {
1031 rcntl
|= FEC_ENET_FCE
;
1033 /* set FIFO threshold parameter to reduce overrun */
1034 writel(FEC_ENET_RSEM_V
, fep
->hwp
+ FEC_R_FIFO_RSEM
);
1035 writel(FEC_ENET_RSFL_V
, fep
->hwp
+ FEC_R_FIFO_RSFL
);
1036 writel(FEC_ENET_RAEM_V
, fep
->hwp
+ FEC_R_FIFO_RAEM
);
1037 writel(FEC_ENET_RAFL_V
, fep
->hwp
+ FEC_R_FIFO_RAFL
);
1040 writel(FEC_ENET_OPD_V
, fep
->hwp
+ FEC_OPD
);
1042 rcntl
&= ~FEC_ENET_FCE
;
1044 #endif /* !defined(CONFIG_M5272) */
1046 writel(rcntl
, fep
->hwp
+ FEC_R_CNTRL
);
1048 /* Setup multicast filter. */
1049 set_multicast_list(ndev
);
1050 #ifndef CONFIG_M5272
1051 writel(0, fep
->hwp
+ FEC_HASH_TABLE_HIGH
);
1052 writel(0, fep
->hwp
+ FEC_HASH_TABLE_LOW
);
1055 if (fep
->quirks
& FEC_QUIRK_ENET_MAC
) {
1056 /* enable ENET endian swap */
1058 /* enable ENET store and forward mode */
1059 writel(1 << 8, fep
->hwp
+ FEC_X_WMRK
);
1062 if (fep
->bufdesc_ex
)
1065 #ifndef CONFIG_M5272
1066 /* Enable the MIB statistic event counters */
1067 writel(0 << 31, fep
->hwp
+ FEC_MIB_CTRLSTAT
);
1070 /* And last, enable the transmit and receive processing */
1071 writel(ecntl
, fep
->hwp
+ FEC_ECNTRL
);
1072 fec_enet_active_rxring(ndev
);
1074 if (fep
->bufdesc_ex
)
1075 fec_ptp_start_cyclecounter(ndev
);
1077 /* Enable interrupts we wish to service */
1079 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
1081 writel(FEC_ENET_MII
, fep
->hwp
+ FEC_IMASK
);
1083 /* Init the interrupt coalescing */
1084 fec_enet_itr_coal_init(ndev
);
1089 fec_stop(struct net_device
*ndev
)
1091 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1092 struct fec_platform_data
*pdata
= fep
->pdev
->dev
.platform_data
;
1093 u32 rmii_mode
= readl(fep
->hwp
+ FEC_R_CNTRL
) & (1 << 8);
1096 /* We cannot expect a graceful transmit stop without link !!! */
1098 writel(1, fep
->hwp
+ FEC_X_CNTRL
); /* Graceful transmit stop */
1100 if (!(readl(fep
->hwp
+ FEC_IEVENT
) & FEC_ENET_GRA
))
1101 netdev_err(ndev
, "Graceful transmit stop did not complete!\n");
1104 /* Whack a reset. We should wait for this.
1105 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1106 * instead of reset MAC itself.
1108 if (!(fep
->wol_flag
& FEC_WOL_FLAG_SLEEP_ON
)) {
1109 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
) {
1110 writel(0, fep
->hwp
+ FEC_ECNTRL
);
1112 writel(1, fep
->hwp
+ FEC_ECNTRL
);
1115 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
1117 writel(FEC_DEFAULT_IMASK
| FEC_ENET_WAKEUP
, fep
->hwp
+ FEC_IMASK
);
1118 val
= readl(fep
->hwp
+ FEC_ECNTRL
);
1119 val
|= (FEC_ECR_MAGICEN
| FEC_ECR_SLEEP
);
1120 writel(val
, fep
->hwp
+ FEC_ECNTRL
);
1122 if (pdata
&& pdata
->sleep_mode_enable
)
1123 pdata
->sleep_mode_enable(true);
1125 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
1127 /* We have to keep ENET enabled to have MII interrupt stay working */
1128 if (fep
->quirks
& FEC_QUIRK_ENET_MAC
&&
1129 !(fep
->wol_flag
& FEC_WOL_FLAG_SLEEP_ON
)) {
1130 writel(2, fep
->hwp
+ FEC_ECNTRL
);
1131 writel(rmii_mode
, fep
->hwp
+ FEC_R_CNTRL
);
1137 fec_timeout(struct net_device
*ndev
)
1139 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1143 ndev
->stats
.tx_errors
++;
1145 schedule_work(&fep
->tx_timeout_work
);
1148 static void fec_enet_timeout_work(struct work_struct
*work
)
1150 struct fec_enet_private
*fep
=
1151 container_of(work
, struct fec_enet_private
, tx_timeout_work
);
1152 struct net_device
*ndev
= fep
->netdev
;
1155 if (netif_device_present(ndev
) || netif_running(ndev
)) {
1156 napi_disable(&fep
->napi
);
1157 netif_tx_lock_bh(ndev
);
1159 netif_wake_queue(ndev
);
1160 netif_tx_unlock_bh(ndev
);
1161 napi_enable(&fep
->napi
);
1167 fec_enet_hwtstamp(struct fec_enet_private
*fep
, unsigned ts
,
1168 struct skb_shared_hwtstamps
*hwtstamps
)
1170 unsigned long flags
;
1173 spin_lock_irqsave(&fep
->tmreg_lock
, flags
);
1174 ns
= timecounter_cyc2time(&fep
->tc
, ts
);
1175 spin_unlock_irqrestore(&fep
->tmreg_lock
, flags
);
1177 memset(hwtstamps
, 0, sizeof(*hwtstamps
));
1178 hwtstamps
->hwtstamp
= ns_to_ktime(ns
);
1182 fec_enet_tx_queue(struct net_device
*ndev
, u16 queue_id
)
1184 struct fec_enet_private
*fep
;
1185 struct bufdesc
*bdp
;
1186 unsigned short status
;
1187 struct sk_buff
*skb
;
1188 struct fec_enet_priv_tx_q
*txq
;
1189 struct netdev_queue
*nq
;
1193 fep
= netdev_priv(ndev
);
1195 queue_id
= FEC_ENET_GET_QUQUE(queue_id
);
1197 txq
= fep
->tx_queue
[queue_id
];
1198 /* get next bdp of dirty_tx */
1199 nq
= netdev_get_tx_queue(ndev
, queue_id
);
1200 bdp
= txq
->dirty_tx
;
1202 /* get next bdp of dirty_tx */
1203 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
1205 while (bdp
!= READ_ONCE(txq
->bd
.cur
)) {
1206 /* Order the load of bd.cur and cbd_sc */
1208 status
= fec16_to_cpu(READ_ONCE(bdp
->cbd_sc
));
1209 if (status
& BD_ENET_TX_READY
)
1212 index
= fec_enet_get_bd_index(bdp
, &txq
->bd
);
1214 skb
= txq
->tx_skbuff
[index
];
1215 txq
->tx_skbuff
[index
] = NULL
;
1216 if (!IS_TSO_HEADER(txq
, fec32_to_cpu(bdp
->cbd_bufaddr
)))
1217 dma_unmap_single(&fep
->pdev
->dev
,
1218 fec32_to_cpu(bdp
->cbd_bufaddr
),
1219 fec16_to_cpu(bdp
->cbd_datlen
),
1221 bdp
->cbd_bufaddr
= cpu_to_fec32(0);
1225 /* Check for errors. */
1226 if (status
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
1227 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
1229 ndev
->stats
.tx_errors
++;
1230 if (status
& BD_ENET_TX_HB
) /* No heartbeat */
1231 ndev
->stats
.tx_heartbeat_errors
++;
1232 if (status
& BD_ENET_TX_LC
) /* Late collision */
1233 ndev
->stats
.tx_window_errors
++;
1234 if (status
& BD_ENET_TX_RL
) /* Retrans limit */
1235 ndev
->stats
.tx_aborted_errors
++;
1236 if (status
& BD_ENET_TX_UN
) /* Underrun */
1237 ndev
->stats
.tx_fifo_errors
++;
1238 if (status
& BD_ENET_TX_CSL
) /* Carrier lost */
1239 ndev
->stats
.tx_carrier_errors
++;
1241 ndev
->stats
.tx_packets
++;
1242 ndev
->stats
.tx_bytes
+= skb
->len
;
1245 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
) &&
1247 struct skb_shared_hwtstamps shhwtstamps
;
1248 struct bufdesc_ex
*ebdp
= (struct bufdesc_ex
*)bdp
;
1250 fec_enet_hwtstamp(fep
, fec32_to_cpu(ebdp
->ts
), &shhwtstamps
);
1251 skb_tstamp_tx(skb
, &shhwtstamps
);
1254 /* Deferred means some collisions occurred during transmit,
1255 * but we eventually sent the packet OK.
1257 if (status
& BD_ENET_TX_DEF
)
1258 ndev
->stats
.collisions
++;
1260 /* Free the sk buffer associated with this last transmit */
1261 dev_kfree_skb_any(skb
);
1263 /* Make sure the update to bdp and tx_skbuff are performed
1267 txq
->dirty_tx
= bdp
;
1269 /* Update pointer to next buffer descriptor to be transmitted */
1270 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
1272 /* Since we have freed up a buffer, the ring is no longer full
1274 if (netif_queue_stopped(ndev
)) {
1275 entries_free
= fec_enet_get_free_txdesc_num(txq
);
1276 if (entries_free
>= txq
->tx_wake_threshold
)
1277 netif_tx_wake_queue(nq
);
1281 /* ERR006358: Keep the transmitter going */
1282 if (bdp
!= txq
->bd
.cur
&&
1283 readl(txq
->bd
.reg_desc_active
) == 0)
1284 writel(0, txq
->bd
.reg_desc_active
);
1288 fec_enet_tx(struct net_device
*ndev
)
1290 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1292 /* First process class A queue, then Class B and Best Effort queue */
1293 for_each_set_bit(queue_id
, &fep
->work_tx
, FEC_ENET_MAX_TX_QS
) {
1294 clear_bit(queue_id
, &fep
->work_tx
);
1295 fec_enet_tx_queue(ndev
, queue_id
);
1301 fec_enet_new_rxbdp(struct net_device
*ndev
, struct bufdesc
*bdp
, struct sk_buff
*skb
)
1303 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1306 off
= ((unsigned long)skb
->data
) & fep
->rx_align
;
1308 skb_reserve(skb
, fep
->rx_align
+ 1 - off
);
1310 bdp
->cbd_bufaddr
= cpu_to_fec32(dma_map_single(&fep
->pdev
->dev
, skb
->data
, FEC_ENET_RX_FRSIZE
- fep
->rx_align
, DMA_FROM_DEVICE
));
1311 if (dma_mapping_error(&fep
->pdev
->dev
, fec32_to_cpu(bdp
->cbd_bufaddr
))) {
1312 if (net_ratelimit())
1313 netdev_err(ndev
, "Rx DMA memory map failed\n");
1320 static bool fec_enet_copybreak(struct net_device
*ndev
, struct sk_buff
**skb
,
1321 struct bufdesc
*bdp
, u32 length
, bool swap
)
1323 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1324 struct sk_buff
*new_skb
;
1326 if (length
> fep
->rx_copybreak
)
1329 new_skb
= netdev_alloc_skb(ndev
, length
);
1333 dma_sync_single_for_cpu(&fep
->pdev
->dev
,
1334 fec32_to_cpu(bdp
->cbd_bufaddr
),
1335 FEC_ENET_RX_FRSIZE
- fep
->rx_align
,
1338 memcpy(new_skb
->data
, (*skb
)->data
, length
);
1340 swap_buffer2(new_skb
->data
, (*skb
)->data
, length
);
1346 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1347 * When we update through the ring, if the next incoming buffer has
1348 * not been given to the system, we just set the empty indicator,
1349 * effectively tossing the packet.
1352 fec_enet_rx_queue(struct net_device
*ndev
, int budget
, u16 queue_id
)
1354 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1355 struct fec_enet_priv_rx_q
*rxq
;
1356 struct bufdesc
*bdp
;
1357 unsigned short status
;
1358 struct sk_buff
*skb_new
= NULL
;
1359 struct sk_buff
*skb
;
1362 int pkt_received
= 0;
1363 struct bufdesc_ex
*ebdp
= NULL
;
1364 bool vlan_packet_rcvd
= false;
1368 bool need_swap
= fep
->quirks
& FEC_QUIRK_SWAP_FRAME
;
1373 queue_id
= FEC_ENET_GET_QUQUE(queue_id
);
1374 rxq
= fep
->rx_queue
[queue_id
];
1376 /* First, grab all of the stats for the incoming packet.
1377 * These get messed up if we get called due to a busy condition.
1381 while (!((status
= fec16_to_cpu(bdp
->cbd_sc
)) & BD_ENET_RX_EMPTY
)) {
1383 if (pkt_received
>= budget
)
1387 writel(FEC_ENET_RXF
, fep
->hwp
+ FEC_IEVENT
);
1389 /* Check for errors. */
1390 status
^= BD_ENET_RX_LAST
;
1391 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
1392 BD_ENET_RX_CR
| BD_ENET_RX_OV
| BD_ENET_RX_LAST
|
1394 ndev
->stats
.rx_errors
++;
1395 if (status
& BD_ENET_RX_OV
) {
1397 ndev
->stats
.rx_fifo_errors
++;
1398 goto rx_processing_done
;
1400 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
1401 | BD_ENET_RX_LAST
)) {
1402 /* Frame too long or too short. */
1403 ndev
->stats
.rx_length_errors
++;
1404 if (status
& BD_ENET_RX_LAST
)
1405 netdev_err(ndev
, "rcv is not +last\n");
1407 if (status
& BD_ENET_RX_CR
) /* CRC Error */
1408 ndev
->stats
.rx_crc_errors
++;
1409 /* Report late collisions as a frame error. */
1410 if (status
& (BD_ENET_RX_NO
| BD_ENET_RX_CL
))
1411 ndev
->stats
.rx_frame_errors
++;
1412 goto rx_processing_done
;
1415 /* Process the incoming frame. */
1416 ndev
->stats
.rx_packets
++;
1417 pkt_len
= fec16_to_cpu(bdp
->cbd_datlen
);
1418 ndev
->stats
.rx_bytes
+= pkt_len
;
1420 index
= fec_enet_get_bd_index(bdp
, &rxq
->bd
);
1421 skb
= rxq
->rx_skbuff
[index
];
1423 /* The packet length includes FCS, but we don't want to
1424 * include that when passing upstream as it messes up
1425 * bridging applications.
1427 is_copybreak
= fec_enet_copybreak(ndev
, &skb
, bdp
, pkt_len
- 4,
1429 if (!is_copybreak
) {
1430 skb_new
= netdev_alloc_skb(ndev
, FEC_ENET_RX_FRSIZE
);
1431 if (unlikely(!skb_new
)) {
1432 ndev
->stats
.rx_dropped
++;
1433 goto rx_processing_done
;
1435 dma_unmap_single(&fep
->pdev
->dev
,
1436 fec32_to_cpu(bdp
->cbd_bufaddr
),
1437 FEC_ENET_RX_FRSIZE
- fep
->rx_align
,
1441 prefetch(skb
->data
- NET_IP_ALIGN
);
1442 skb_put(skb
, pkt_len
- 4);
1445 if (!is_copybreak
&& need_swap
)
1446 swap_buffer(data
, pkt_len
);
1448 #if !defined(CONFIG_M5272)
1449 if (fep
->quirks
& FEC_QUIRK_HAS_RACC
)
1450 data
= skb_pull_inline(skb
, 2);
1453 /* Extract the enhanced buffer descriptor */
1455 if (fep
->bufdesc_ex
)
1456 ebdp
= (struct bufdesc_ex
*)bdp
;
1458 /* If this is a VLAN packet remove the VLAN Tag */
1459 vlan_packet_rcvd
= false;
1460 if ((ndev
->features
& NETIF_F_HW_VLAN_CTAG_RX
) &&
1462 (ebdp
->cbd_esc
& cpu_to_fec32(BD_ENET_RX_VLAN
))) {
1463 /* Push and remove the vlan tag */
1464 struct vlan_hdr
*vlan_header
=
1465 (struct vlan_hdr
*) (data
+ ETH_HLEN
);
1466 vlan_tag
= ntohs(vlan_header
->h_vlan_TCI
);
1468 vlan_packet_rcvd
= true;
1470 memmove(skb
->data
+ VLAN_HLEN
, data
, ETH_ALEN
* 2);
1471 skb_pull(skb
, VLAN_HLEN
);
1474 skb
->protocol
= eth_type_trans(skb
, ndev
);
1476 /* Get receive timestamp from the skb */
1477 if (fep
->hwts_rx_en
&& fep
->bufdesc_ex
)
1478 fec_enet_hwtstamp(fep
, fec32_to_cpu(ebdp
->ts
),
1479 skb_hwtstamps(skb
));
1481 if (fep
->bufdesc_ex
&&
1482 (fep
->csum_flags
& FLAG_RX_CSUM_ENABLED
)) {
1483 if (!(ebdp
->cbd_esc
& cpu_to_fec32(FLAG_RX_CSUM_ERROR
))) {
1484 /* don't check it */
1485 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1487 skb_checksum_none_assert(skb
);
1491 /* Handle received VLAN packets */
1492 if (vlan_packet_rcvd
)
1493 __vlan_hwaccel_put_tag(skb
,
1497 napi_gro_receive(&fep
->napi
, skb
);
1500 dma_sync_single_for_device(&fep
->pdev
->dev
,
1501 fec32_to_cpu(bdp
->cbd_bufaddr
),
1502 FEC_ENET_RX_FRSIZE
- fep
->rx_align
,
1505 rxq
->rx_skbuff
[index
] = skb_new
;
1506 fec_enet_new_rxbdp(ndev
, bdp
, skb_new
);
1510 /* Clear the status flags for this buffer */
1511 status
&= ~BD_ENET_RX_STATS
;
1513 /* Mark the buffer empty */
1514 status
|= BD_ENET_RX_EMPTY
;
1516 if (fep
->bufdesc_ex
) {
1517 struct bufdesc_ex
*ebdp
= (struct bufdesc_ex
*)bdp
;
1519 ebdp
->cbd_esc
= cpu_to_fec32(BD_ENET_RX_INT
);
1523 /* Make sure the updates to rest of the descriptor are
1524 * performed before transferring ownership.
1527 bdp
->cbd_sc
= cpu_to_fec16(status
);
1529 /* Update BD pointer to next entry */
1530 bdp
= fec_enet_get_nextdesc(bdp
, &rxq
->bd
);
1532 /* Doing this here will keep the FEC running while we process
1533 * incoming frames. On a heavily loaded network, we should be
1534 * able to keep up at the expense of system resources.
1536 writel(0, rxq
->bd
.reg_desc_active
);
1539 return pkt_received
;
1543 fec_enet_rx(struct net_device
*ndev
, int budget
)
1545 int pkt_received
= 0;
1547 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1549 for_each_set_bit(queue_id
, &fep
->work_rx
, FEC_ENET_MAX_RX_QS
) {
1552 ret
= fec_enet_rx_queue(ndev
,
1553 budget
- pkt_received
, queue_id
);
1555 if (ret
< budget
- pkt_received
)
1556 clear_bit(queue_id
, &fep
->work_rx
);
1558 pkt_received
+= ret
;
1560 return pkt_received
;
1564 fec_enet_collect_events(struct fec_enet_private
*fep
, uint int_events
)
1566 if (int_events
== 0)
1569 if (int_events
& FEC_ENET_RXF_0
)
1570 fep
->work_rx
|= (1 << 2);
1571 if (int_events
& FEC_ENET_RXF_1
)
1572 fep
->work_rx
|= (1 << 0);
1573 if (int_events
& FEC_ENET_RXF_2
)
1574 fep
->work_rx
|= (1 << 1);
1576 if (int_events
& FEC_ENET_TXF_0
)
1577 fep
->work_tx
|= (1 << 2);
1578 if (int_events
& FEC_ENET_TXF_1
)
1579 fep
->work_tx
|= (1 << 0);
1580 if (int_events
& FEC_ENET_TXF_2
)
1581 fep
->work_tx
|= (1 << 1);
1587 fec_enet_interrupt(int irq
, void *dev_id
)
1589 struct net_device
*ndev
= dev_id
;
1590 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1592 irqreturn_t ret
= IRQ_NONE
;
1594 int_events
= readl(fep
->hwp
+ FEC_IEVENT
);
1595 writel(int_events
, fep
->hwp
+ FEC_IEVENT
);
1596 fec_enet_collect_events(fep
, int_events
);
1598 if ((fep
->work_tx
|| fep
->work_rx
) && fep
->link
) {
1601 if (napi_schedule_prep(&fep
->napi
)) {
1602 /* Disable the NAPI interrupts */
1603 writel(FEC_NAPI_IMASK
, fep
->hwp
+ FEC_IMASK
);
1604 __napi_schedule(&fep
->napi
);
1608 if (int_events
& FEC_ENET_MII
) {
1610 complete(&fep
->mdio_done
);
1615 static int fec_enet_rx_napi(struct napi_struct
*napi
, int budget
)
1617 struct net_device
*ndev
= napi
->dev
;
1618 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1621 pkts
= fec_enet_rx(ndev
, budget
);
1625 if (pkts
< budget
) {
1626 napi_complete_done(napi
, pkts
);
1627 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
1632 /* ------------------------------------------------------------------------- */
1633 static void fec_get_mac(struct net_device
*ndev
)
1635 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1636 struct fec_platform_data
*pdata
= dev_get_platdata(&fep
->pdev
->dev
);
1637 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1640 * try to get mac address in following order:
1642 * 1) module parameter via kernel command line in form
1643 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1648 * 2) from device tree data
1650 if (!is_valid_ether_addr(iap
)) {
1651 struct device_node
*np
= fep
->pdev
->dev
.of_node
;
1653 const char *mac
= of_get_mac_address(np
);
1655 iap
= (unsigned char *) mac
;
1660 * 3) from flash or fuse (via platform data)
1662 if (!is_valid_ether_addr(iap
)) {
1665 iap
= (unsigned char *)FEC_FLASHMAC
;
1668 iap
= (unsigned char *)&pdata
->mac
;
1673 * 4) FEC mac registers set by bootloader
1675 if (!is_valid_ether_addr(iap
)) {
1676 *((__be32
*) &tmpaddr
[0]) =
1677 cpu_to_be32(readl(fep
->hwp
+ FEC_ADDR_LOW
));
1678 *((__be16
*) &tmpaddr
[4]) =
1679 cpu_to_be16(readl(fep
->hwp
+ FEC_ADDR_HIGH
) >> 16);
1684 * 5) random mac address
1686 if (!is_valid_ether_addr(iap
)) {
1687 /* Report it and use a random ethernet address instead */
1688 netdev_err(ndev
, "Invalid MAC address: %pM\n", iap
);
1689 eth_hw_addr_random(ndev
);
1690 netdev_info(ndev
, "Using random MAC address: %pM\n",
1695 memcpy(ndev
->dev_addr
, iap
, ETH_ALEN
);
1697 /* Adjust MAC if using macaddr */
1699 ndev
->dev_addr
[ETH_ALEN
-1] = macaddr
[ETH_ALEN
-1] + fep
->dev_id
;
1702 /* ------------------------------------------------------------------------- */
1707 static void fec_enet_adjust_link(struct net_device
*ndev
)
1709 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1710 struct phy_device
*phy_dev
= ndev
->phydev
;
1711 int status_change
= 0;
1713 /* Prevent a state halted on mii error */
1714 if (fep
->mii_timeout
&& phy_dev
->state
== PHY_HALTED
) {
1715 phy_dev
->state
= PHY_RESUMING
;
1720 * If the netdev is down, or is going down, we're not interested
1721 * in link state events, so just mark our idea of the link as down
1722 * and ignore the event.
1724 if (!netif_running(ndev
) || !netif_device_present(ndev
)) {
1726 } else if (phy_dev
->link
) {
1728 fep
->link
= phy_dev
->link
;
1732 if (fep
->full_duplex
!= phy_dev
->duplex
) {
1733 fep
->full_duplex
= phy_dev
->duplex
;
1737 if (phy_dev
->speed
!= fep
->speed
) {
1738 fep
->speed
= phy_dev
->speed
;
1742 /* if any of the above changed restart the FEC */
1743 if (status_change
) {
1744 napi_disable(&fep
->napi
);
1745 netif_tx_lock_bh(ndev
);
1747 netif_wake_queue(ndev
);
1748 netif_tx_unlock_bh(ndev
);
1749 napi_enable(&fep
->napi
);
1753 napi_disable(&fep
->napi
);
1754 netif_tx_lock_bh(ndev
);
1756 netif_tx_unlock_bh(ndev
);
1757 napi_enable(&fep
->napi
);
1758 fep
->link
= phy_dev
->link
;
1764 phy_print_status(phy_dev
);
1767 static int fec_enet_mdio_read(struct mii_bus
*bus
, int mii_id
, int regnum
)
1769 struct fec_enet_private
*fep
= bus
->priv
;
1770 struct device
*dev
= &fep
->pdev
->dev
;
1771 unsigned long time_left
;
1774 ret
= pm_runtime_get_sync(dev
);
1778 fep
->mii_timeout
= 0;
1779 reinit_completion(&fep
->mdio_done
);
1781 /* start a read op */
1782 writel(FEC_MMFR_ST
| FEC_MMFR_OP_READ
|
1783 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
1784 FEC_MMFR_TA
, fep
->hwp
+ FEC_MII_DATA
);
1786 /* wait for end of transfer */
1787 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
1788 usecs_to_jiffies(FEC_MII_TIMEOUT
));
1789 if (time_left
== 0) {
1790 fep
->mii_timeout
= 1;
1791 netdev_err(fep
->netdev
, "MDIO read timeout\n");
1796 ret
= FEC_MMFR_DATA(readl(fep
->hwp
+ FEC_MII_DATA
));
1799 pm_runtime_mark_last_busy(dev
);
1800 pm_runtime_put_autosuspend(dev
);
1805 static int fec_enet_mdio_write(struct mii_bus
*bus
, int mii_id
, int regnum
,
1808 struct fec_enet_private
*fep
= bus
->priv
;
1809 struct device
*dev
= &fep
->pdev
->dev
;
1810 unsigned long time_left
;
1813 ret
= pm_runtime_get_sync(dev
);
1819 fep
->mii_timeout
= 0;
1820 reinit_completion(&fep
->mdio_done
);
1822 /* start a write op */
1823 writel(FEC_MMFR_ST
| FEC_MMFR_OP_WRITE
|
1824 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
1825 FEC_MMFR_TA
| FEC_MMFR_DATA(value
),
1826 fep
->hwp
+ FEC_MII_DATA
);
1828 /* wait for end of transfer */
1829 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
1830 usecs_to_jiffies(FEC_MII_TIMEOUT
));
1831 if (time_left
== 0) {
1832 fep
->mii_timeout
= 1;
1833 netdev_err(fep
->netdev
, "MDIO write timeout\n");
1837 pm_runtime_mark_last_busy(dev
);
1838 pm_runtime_put_autosuspend(dev
);
1843 static int fec_enet_clk_enable(struct net_device
*ndev
, bool enable
)
1845 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1849 ret
= clk_prepare_enable(fep
->clk_ahb
);
1853 ret
= clk_prepare_enable(fep
->clk_enet_out
);
1855 goto failed_clk_enet_out
;
1858 mutex_lock(&fep
->ptp_clk_mutex
);
1859 ret
= clk_prepare_enable(fep
->clk_ptp
);
1861 mutex_unlock(&fep
->ptp_clk_mutex
);
1862 goto failed_clk_ptp
;
1864 fep
->ptp_clk_on
= true;
1866 mutex_unlock(&fep
->ptp_clk_mutex
);
1869 ret
= clk_prepare_enable(fep
->clk_ref
);
1871 goto failed_clk_ref
;
1873 phy_reset_after_clk_enable(ndev
->phydev
);
1875 clk_disable_unprepare(fep
->clk_ahb
);
1876 clk_disable_unprepare(fep
->clk_enet_out
);
1878 mutex_lock(&fep
->ptp_clk_mutex
);
1879 clk_disable_unprepare(fep
->clk_ptp
);
1880 fep
->ptp_clk_on
= false;
1881 mutex_unlock(&fep
->ptp_clk_mutex
);
1883 clk_disable_unprepare(fep
->clk_ref
);
1890 clk_disable_unprepare(fep
->clk_ref
);
1892 if (fep
->clk_enet_out
)
1893 clk_disable_unprepare(fep
->clk_enet_out
);
1894 failed_clk_enet_out
:
1895 clk_disable_unprepare(fep
->clk_ahb
);
1900 static int fec_enet_mii_probe(struct net_device
*ndev
)
1902 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1903 struct phy_device
*phy_dev
= NULL
;
1904 char mdio_bus_id
[MII_BUS_ID_SIZE
];
1905 char phy_name
[MII_BUS_ID_SIZE
+ 3];
1907 int dev_id
= fep
->dev_id
;
1909 if (fep
->phy_node
) {
1910 phy_dev
= of_phy_connect(ndev
, fep
->phy_node
,
1911 &fec_enet_adjust_link
, 0,
1912 fep
->phy_interface
);
1914 netdev_err(ndev
, "Unable to connect to phy\n");
1918 /* check for attached phy */
1919 for (phy_id
= 0; (phy_id
< PHY_MAX_ADDR
); phy_id
++) {
1920 if (!mdiobus_is_registered_device(fep
->mii_bus
, phy_id
))
1924 strlcpy(mdio_bus_id
, fep
->mii_bus
->id
, MII_BUS_ID_SIZE
);
1928 if (phy_id
>= PHY_MAX_ADDR
) {
1929 netdev_info(ndev
, "no PHY, assuming direct connection to switch\n");
1930 strlcpy(mdio_bus_id
, "fixed-0", MII_BUS_ID_SIZE
);
1934 snprintf(phy_name
, sizeof(phy_name
),
1935 PHY_ID_FMT
, mdio_bus_id
, phy_id
);
1936 phy_dev
= phy_connect(ndev
, phy_name
, &fec_enet_adjust_link
,
1937 fep
->phy_interface
);
1940 if (IS_ERR(phy_dev
)) {
1941 netdev_err(ndev
, "could not attach to PHY\n");
1942 return PTR_ERR(phy_dev
);
1945 /* mask with MAC supported features */
1946 if (fep
->quirks
& FEC_QUIRK_HAS_GBIT
) {
1947 phy_dev
->supported
&= PHY_GBIT_FEATURES
;
1948 phy_dev
->supported
&= ~SUPPORTED_1000baseT_Half
;
1949 #if !defined(CONFIG_M5272)
1950 phy_dev
->supported
|= SUPPORTED_Pause
;
1954 phy_dev
->supported
&= PHY_BASIC_FEATURES
;
1956 phy_dev
->advertising
= phy_dev
->supported
;
1959 fep
->full_duplex
= 0;
1961 phy_attached_info(phy_dev
);
1966 static int fec_enet_mii_init(struct platform_device
*pdev
)
1968 static struct mii_bus
*fec0_mii_bus
;
1969 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1970 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1971 struct device_node
*node
;
1973 u32 mii_speed
, holdtime
;
1976 * The i.MX28 dual fec interfaces are not equal.
1977 * Here are the differences:
1979 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1980 * - fec0 acts as the 1588 time master while fec1 is slave
1981 * - external phys can only be configured by fec0
1983 * That is to say fec1 can not work independently. It only works
1984 * when fec0 is working. The reason behind this design is that the
1985 * second interface is added primarily for Switch mode.
1987 * Because of the last point above, both phys are attached on fec0
1988 * mdio interface in board design, and need to be configured by
1991 if ((fep
->quirks
& FEC_QUIRK_SINGLE_MDIO
) && fep
->dev_id
> 0) {
1992 /* fec1 uses fec0 mii_bus */
1993 if (mii_cnt
&& fec0_mii_bus
) {
1994 fep
->mii_bus
= fec0_mii_bus
;
2001 fep
->mii_timeout
= 0;
2004 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2006 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2007 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2008 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2011 mii_speed
= DIV_ROUND_UP(clk_get_rate(fep
->clk_ipg
), 5000000);
2012 if (fep
->quirks
& FEC_QUIRK_ENET_MAC
)
2014 if (mii_speed
> 63) {
2016 "fec clock (%lu) too fast to get right mii speed\n",
2017 clk_get_rate(fep
->clk_ipg
));
2023 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2024 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2025 * versions are RAZ there, so just ignore the difference and write the
2027 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2028 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2030 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2031 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2032 * holdtime cannot result in a value greater than 3.
2034 holdtime
= DIV_ROUND_UP(clk_get_rate(fep
->clk_ipg
), 100000000) - 1;
2036 fep
->phy_speed
= mii_speed
<< 1 | holdtime
<< 8;
2038 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
2040 fep
->mii_bus
= mdiobus_alloc();
2041 if (fep
->mii_bus
== NULL
) {
2046 fep
->mii_bus
->name
= "fec_enet_mii_bus";
2047 fep
->mii_bus
->read
= fec_enet_mdio_read
;
2048 fep
->mii_bus
->write
= fec_enet_mdio_write
;
2049 snprintf(fep
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%s-%x",
2050 pdev
->name
, fep
->dev_id
+ 1);
2051 fep
->mii_bus
->priv
= fep
;
2052 fep
->mii_bus
->parent
= &pdev
->dev
;
2054 node
= of_get_child_by_name(pdev
->dev
.of_node
, "mdio");
2056 err
= of_mdiobus_register(fep
->mii_bus
, node
);
2059 err
= mdiobus_register(fep
->mii_bus
);
2063 goto err_out_free_mdiobus
;
2067 /* save fec0 mii_bus */
2068 if (fep
->quirks
& FEC_QUIRK_SINGLE_MDIO
)
2069 fec0_mii_bus
= fep
->mii_bus
;
2073 err_out_free_mdiobus
:
2074 mdiobus_free(fep
->mii_bus
);
2079 static void fec_enet_mii_remove(struct fec_enet_private
*fep
)
2081 if (--mii_cnt
== 0) {
2082 mdiobus_unregister(fep
->mii_bus
);
2083 mdiobus_free(fep
->mii_bus
);
2087 static void fec_enet_get_drvinfo(struct net_device
*ndev
,
2088 struct ethtool_drvinfo
*info
)
2090 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2092 strlcpy(info
->driver
, fep
->pdev
->dev
.driver
->name
,
2093 sizeof(info
->driver
));
2094 strlcpy(info
->version
, "Revision: 1.0", sizeof(info
->version
));
2095 strlcpy(info
->bus_info
, dev_name(&ndev
->dev
), sizeof(info
->bus_info
));
2098 static int fec_enet_get_regs_len(struct net_device
*ndev
)
2100 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2104 r
= platform_get_resource(fep
->pdev
, IORESOURCE_MEM
, 0);
2106 s
= resource_size(r
);
2111 /* List of registers that can be safety be read to dump them with ethtool */
2112 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2113 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2114 defined(CONFIG_ARM64)
2115 static u32 fec_enet_register_offset
[] = {
2116 FEC_IEVENT
, FEC_IMASK
, FEC_R_DES_ACTIVE_0
, FEC_X_DES_ACTIVE_0
,
2117 FEC_ECNTRL
, FEC_MII_DATA
, FEC_MII_SPEED
, FEC_MIB_CTRLSTAT
, FEC_R_CNTRL
,
2118 FEC_X_CNTRL
, FEC_ADDR_LOW
, FEC_ADDR_HIGH
, FEC_OPD
, FEC_TXIC0
, FEC_TXIC1
,
2119 FEC_TXIC2
, FEC_RXIC0
, FEC_RXIC1
, FEC_RXIC2
, FEC_HASH_TABLE_HIGH
,
2120 FEC_HASH_TABLE_LOW
, FEC_GRP_HASH_TABLE_HIGH
, FEC_GRP_HASH_TABLE_LOW
,
2121 FEC_X_WMRK
, FEC_R_BOUND
, FEC_R_FSTART
, FEC_R_DES_START_1
,
2122 FEC_X_DES_START_1
, FEC_R_BUFF_SIZE_1
, FEC_R_DES_START_2
,
2123 FEC_X_DES_START_2
, FEC_R_BUFF_SIZE_2
, FEC_R_DES_START_0
,
2124 FEC_X_DES_START_0
, FEC_R_BUFF_SIZE_0
, FEC_R_FIFO_RSFL
, FEC_R_FIFO_RSEM
,
2125 FEC_R_FIFO_RAEM
, FEC_R_FIFO_RAFL
, FEC_RACC
, FEC_RCMR_1
, FEC_RCMR_2
,
2126 FEC_DMA_CFG_1
, FEC_DMA_CFG_2
, FEC_R_DES_ACTIVE_1
, FEC_X_DES_ACTIVE_1
,
2127 FEC_R_DES_ACTIVE_2
, FEC_X_DES_ACTIVE_2
, FEC_QOS_SCHEME
,
2128 RMON_T_DROP
, RMON_T_PACKETS
, RMON_T_BC_PKT
, RMON_T_MC_PKT
,
2129 RMON_T_CRC_ALIGN
, RMON_T_UNDERSIZE
, RMON_T_OVERSIZE
, RMON_T_FRAG
,
2130 RMON_T_JAB
, RMON_T_COL
, RMON_T_P64
, RMON_T_P65TO127
, RMON_T_P128TO255
,
2131 RMON_T_P256TO511
, RMON_T_P512TO1023
, RMON_T_P1024TO2047
,
2132 RMON_T_P_GTE2048
, RMON_T_OCTETS
,
2133 IEEE_T_DROP
, IEEE_T_FRAME_OK
, IEEE_T_1COL
, IEEE_T_MCOL
, IEEE_T_DEF
,
2134 IEEE_T_LCOL
, IEEE_T_EXCOL
, IEEE_T_MACERR
, IEEE_T_CSERR
, IEEE_T_SQE
,
2135 IEEE_T_FDXFC
, IEEE_T_OCTETS_OK
,
2136 RMON_R_PACKETS
, RMON_R_BC_PKT
, RMON_R_MC_PKT
, RMON_R_CRC_ALIGN
,
2137 RMON_R_UNDERSIZE
, RMON_R_OVERSIZE
, RMON_R_FRAG
, RMON_R_JAB
,
2138 RMON_R_RESVD_O
, RMON_R_P64
, RMON_R_P65TO127
, RMON_R_P128TO255
,
2139 RMON_R_P256TO511
, RMON_R_P512TO1023
, RMON_R_P1024TO2047
,
2140 RMON_R_P_GTE2048
, RMON_R_OCTETS
,
2141 IEEE_R_DROP
, IEEE_R_FRAME_OK
, IEEE_R_CRC
, IEEE_R_ALIGN
, IEEE_R_MACERR
,
2142 IEEE_R_FDXFC
, IEEE_R_OCTETS_OK
2145 static u32 fec_enet_register_offset
[] = {
2146 FEC_ECNTRL
, FEC_IEVENT
, FEC_IMASK
, FEC_IVEC
, FEC_R_DES_ACTIVE_0
,
2147 FEC_R_DES_ACTIVE_1
, FEC_R_DES_ACTIVE_2
, FEC_X_DES_ACTIVE_0
,
2148 FEC_X_DES_ACTIVE_1
, FEC_X_DES_ACTIVE_2
, FEC_MII_DATA
, FEC_MII_SPEED
,
2149 FEC_R_BOUND
, FEC_R_FSTART
, FEC_X_WMRK
, FEC_X_FSTART
, FEC_R_CNTRL
,
2150 FEC_MAX_FRM_LEN
, FEC_X_CNTRL
, FEC_ADDR_LOW
, FEC_ADDR_HIGH
,
2151 FEC_GRP_HASH_TABLE_HIGH
, FEC_GRP_HASH_TABLE_LOW
, FEC_R_DES_START_0
,
2152 FEC_R_DES_START_1
, FEC_R_DES_START_2
, FEC_X_DES_START_0
,
2153 FEC_X_DES_START_1
, FEC_X_DES_START_2
, FEC_R_BUFF_SIZE_0
,
2154 FEC_R_BUFF_SIZE_1
, FEC_R_BUFF_SIZE_2
2158 static void fec_enet_get_regs(struct net_device
*ndev
,
2159 struct ethtool_regs
*regs
, void *regbuf
)
2161 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2162 u32 __iomem
*theregs
= (u32 __iomem
*)fep
->hwp
;
2163 u32
*buf
= (u32
*)regbuf
;
2166 memset(buf
, 0, regs
->len
);
2168 for (i
= 0; i
< ARRAY_SIZE(fec_enet_register_offset
); i
++) {
2169 off
= fec_enet_register_offset
[i
] / 4;
2170 buf
[off
] = readl(&theregs
[off
]);
2174 static int fec_enet_get_ts_info(struct net_device
*ndev
,
2175 struct ethtool_ts_info
*info
)
2177 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2179 if (fep
->bufdesc_ex
) {
2181 info
->so_timestamping
= SOF_TIMESTAMPING_TX_SOFTWARE
|
2182 SOF_TIMESTAMPING_RX_SOFTWARE
|
2183 SOF_TIMESTAMPING_SOFTWARE
|
2184 SOF_TIMESTAMPING_TX_HARDWARE
|
2185 SOF_TIMESTAMPING_RX_HARDWARE
|
2186 SOF_TIMESTAMPING_RAW_HARDWARE
;
2188 info
->phc_index
= ptp_clock_index(fep
->ptp_clock
);
2190 info
->phc_index
= -1;
2192 info
->tx_types
= (1 << HWTSTAMP_TX_OFF
) |
2193 (1 << HWTSTAMP_TX_ON
);
2195 info
->rx_filters
= (1 << HWTSTAMP_FILTER_NONE
) |
2196 (1 << HWTSTAMP_FILTER_ALL
);
2199 return ethtool_op_get_ts_info(ndev
, info
);
2203 #if !defined(CONFIG_M5272)
2205 static void fec_enet_get_pauseparam(struct net_device
*ndev
,
2206 struct ethtool_pauseparam
*pause
)
2208 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2210 pause
->autoneg
= (fep
->pause_flag
& FEC_PAUSE_FLAG_AUTONEG
) != 0;
2211 pause
->tx_pause
= (fep
->pause_flag
& FEC_PAUSE_FLAG_ENABLE
) != 0;
2212 pause
->rx_pause
= pause
->tx_pause
;
2215 static int fec_enet_set_pauseparam(struct net_device
*ndev
,
2216 struct ethtool_pauseparam
*pause
)
2218 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2223 if (pause
->tx_pause
!= pause
->rx_pause
) {
2225 "hardware only support enable/disable both tx and rx");
2229 fep
->pause_flag
= 0;
2231 /* tx pause must be same as rx pause */
2232 fep
->pause_flag
|= pause
->rx_pause
? FEC_PAUSE_FLAG_ENABLE
: 0;
2233 fep
->pause_flag
|= pause
->autoneg
? FEC_PAUSE_FLAG_AUTONEG
: 0;
2235 if (pause
->rx_pause
|| pause
->autoneg
) {
2236 ndev
->phydev
->supported
|= ADVERTISED_Pause
;
2237 ndev
->phydev
->advertising
|= ADVERTISED_Pause
;
2239 ndev
->phydev
->supported
&= ~ADVERTISED_Pause
;
2240 ndev
->phydev
->advertising
&= ~ADVERTISED_Pause
;
2243 if (pause
->autoneg
) {
2244 if (netif_running(ndev
))
2246 phy_start_aneg(ndev
->phydev
);
2248 if (netif_running(ndev
)) {
2249 napi_disable(&fep
->napi
);
2250 netif_tx_lock_bh(ndev
);
2252 netif_wake_queue(ndev
);
2253 netif_tx_unlock_bh(ndev
);
2254 napi_enable(&fep
->napi
);
2260 static const struct fec_stat
{
2261 char name
[ETH_GSTRING_LEN
];
2265 { "tx_dropped", RMON_T_DROP
},
2266 { "tx_packets", RMON_T_PACKETS
},
2267 { "tx_broadcast", RMON_T_BC_PKT
},
2268 { "tx_multicast", RMON_T_MC_PKT
},
2269 { "tx_crc_errors", RMON_T_CRC_ALIGN
},
2270 { "tx_undersize", RMON_T_UNDERSIZE
},
2271 { "tx_oversize", RMON_T_OVERSIZE
},
2272 { "tx_fragment", RMON_T_FRAG
},
2273 { "tx_jabber", RMON_T_JAB
},
2274 { "tx_collision", RMON_T_COL
},
2275 { "tx_64byte", RMON_T_P64
},
2276 { "tx_65to127byte", RMON_T_P65TO127
},
2277 { "tx_128to255byte", RMON_T_P128TO255
},
2278 { "tx_256to511byte", RMON_T_P256TO511
},
2279 { "tx_512to1023byte", RMON_T_P512TO1023
},
2280 { "tx_1024to2047byte", RMON_T_P1024TO2047
},
2281 { "tx_GTE2048byte", RMON_T_P_GTE2048
},
2282 { "tx_octets", RMON_T_OCTETS
},
2285 { "IEEE_tx_drop", IEEE_T_DROP
},
2286 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK
},
2287 { "IEEE_tx_1col", IEEE_T_1COL
},
2288 { "IEEE_tx_mcol", IEEE_T_MCOL
},
2289 { "IEEE_tx_def", IEEE_T_DEF
},
2290 { "IEEE_tx_lcol", IEEE_T_LCOL
},
2291 { "IEEE_tx_excol", IEEE_T_EXCOL
},
2292 { "IEEE_tx_macerr", IEEE_T_MACERR
},
2293 { "IEEE_tx_cserr", IEEE_T_CSERR
},
2294 { "IEEE_tx_sqe", IEEE_T_SQE
},
2295 { "IEEE_tx_fdxfc", IEEE_T_FDXFC
},
2296 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK
},
2299 { "rx_packets", RMON_R_PACKETS
},
2300 { "rx_broadcast", RMON_R_BC_PKT
},
2301 { "rx_multicast", RMON_R_MC_PKT
},
2302 { "rx_crc_errors", RMON_R_CRC_ALIGN
},
2303 { "rx_undersize", RMON_R_UNDERSIZE
},
2304 { "rx_oversize", RMON_R_OVERSIZE
},
2305 { "rx_fragment", RMON_R_FRAG
},
2306 { "rx_jabber", RMON_R_JAB
},
2307 { "rx_64byte", RMON_R_P64
},
2308 { "rx_65to127byte", RMON_R_P65TO127
},
2309 { "rx_128to255byte", RMON_R_P128TO255
},
2310 { "rx_256to511byte", RMON_R_P256TO511
},
2311 { "rx_512to1023byte", RMON_R_P512TO1023
},
2312 { "rx_1024to2047byte", RMON_R_P1024TO2047
},
2313 { "rx_GTE2048byte", RMON_R_P_GTE2048
},
2314 { "rx_octets", RMON_R_OCTETS
},
2317 { "IEEE_rx_drop", IEEE_R_DROP
},
2318 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK
},
2319 { "IEEE_rx_crc", IEEE_R_CRC
},
2320 { "IEEE_rx_align", IEEE_R_ALIGN
},
2321 { "IEEE_rx_macerr", IEEE_R_MACERR
},
2322 { "IEEE_rx_fdxfc", IEEE_R_FDXFC
},
2323 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK
},
2326 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2328 static void fec_enet_update_ethtool_stats(struct net_device
*dev
)
2330 struct fec_enet_private
*fep
= netdev_priv(dev
);
2333 for (i
= 0; i
< ARRAY_SIZE(fec_stats
); i
++)
2334 fep
->ethtool_stats
[i
] = readl(fep
->hwp
+ fec_stats
[i
].offset
);
2337 static void fec_enet_get_ethtool_stats(struct net_device
*dev
,
2338 struct ethtool_stats
*stats
, u64
*data
)
2340 struct fec_enet_private
*fep
= netdev_priv(dev
);
2342 if (netif_running(dev
))
2343 fec_enet_update_ethtool_stats(dev
);
2345 memcpy(data
, fep
->ethtool_stats
, FEC_STATS_SIZE
);
2348 static void fec_enet_get_strings(struct net_device
*netdev
,
2349 u32 stringset
, u8
*data
)
2352 switch (stringset
) {
2354 for (i
= 0; i
< ARRAY_SIZE(fec_stats
); i
++)
2355 memcpy(data
+ i
* ETH_GSTRING_LEN
,
2356 fec_stats
[i
].name
, ETH_GSTRING_LEN
);
2361 static int fec_enet_get_sset_count(struct net_device
*dev
, int sset
)
2365 return ARRAY_SIZE(fec_stats
);
2371 static void fec_enet_clear_ethtool_stats(struct net_device
*dev
)
2373 struct fec_enet_private
*fep
= netdev_priv(dev
);
2376 /* Disable MIB statistics counters */
2377 writel(FEC_MIB_CTRLSTAT_DISABLE
, fep
->hwp
+ FEC_MIB_CTRLSTAT
);
2379 for (i
= 0; i
< ARRAY_SIZE(fec_stats
); i
++)
2380 writel(0, fep
->hwp
+ fec_stats
[i
].offset
);
2382 /* Don't disable MIB statistics counters */
2383 writel(0, fep
->hwp
+ FEC_MIB_CTRLSTAT
);
2386 #else /* !defined(CONFIG_M5272) */
2387 #define FEC_STATS_SIZE 0
2388 static inline void fec_enet_update_ethtool_stats(struct net_device
*dev
)
2392 static inline void fec_enet_clear_ethtool_stats(struct net_device
*dev
)
2395 #endif /* !defined(CONFIG_M5272) */
2397 /* ITR clock source is enet system clock (clk_ahb).
2398 * TCTT unit is cycle_ns * 64 cycle
2399 * So, the ICTT value = X us / (cycle_ns * 64)
2401 static int fec_enet_us_to_itr_clock(struct net_device
*ndev
, int us
)
2403 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2405 return us
* (fep
->itr_clk_rate
/ 64000) / 1000;
2408 /* Set threshold for interrupt coalescing */
2409 static void fec_enet_itr_coal_set(struct net_device
*ndev
)
2411 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2414 /* Must be greater than zero to avoid unpredictable behavior */
2415 if (!fep
->rx_time_itr
|| !fep
->rx_pkts_itr
||
2416 !fep
->tx_time_itr
|| !fep
->tx_pkts_itr
)
2419 /* Select enet system clock as Interrupt Coalescing
2420 * timer Clock Source
2422 rx_itr
= FEC_ITR_CLK_SEL
;
2423 tx_itr
= FEC_ITR_CLK_SEL
;
2425 /* set ICFT and ICTT */
2426 rx_itr
|= FEC_ITR_ICFT(fep
->rx_pkts_itr
);
2427 rx_itr
|= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev
, fep
->rx_time_itr
));
2428 tx_itr
|= FEC_ITR_ICFT(fep
->tx_pkts_itr
);
2429 tx_itr
|= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev
, fep
->tx_time_itr
));
2431 rx_itr
|= FEC_ITR_EN
;
2432 tx_itr
|= FEC_ITR_EN
;
2434 writel(tx_itr
, fep
->hwp
+ FEC_TXIC0
);
2435 writel(rx_itr
, fep
->hwp
+ FEC_RXIC0
);
2436 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
) {
2437 writel(tx_itr
, fep
->hwp
+ FEC_TXIC1
);
2438 writel(rx_itr
, fep
->hwp
+ FEC_RXIC1
);
2439 writel(tx_itr
, fep
->hwp
+ FEC_TXIC2
);
2440 writel(rx_itr
, fep
->hwp
+ FEC_RXIC2
);
2445 fec_enet_get_coalesce(struct net_device
*ndev
, struct ethtool_coalesce
*ec
)
2447 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2449 if (!(fep
->quirks
& FEC_QUIRK_HAS_COALESCE
))
2452 ec
->rx_coalesce_usecs
= fep
->rx_time_itr
;
2453 ec
->rx_max_coalesced_frames
= fep
->rx_pkts_itr
;
2455 ec
->tx_coalesce_usecs
= fep
->tx_time_itr
;
2456 ec
->tx_max_coalesced_frames
= fep
->tx_pkts_itr
;
2462 fec_enet_set_coalesce(struct net_device
*ndev
, struct ethtool_coalesce
*ec
)
2464 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2467 if (!(fep
->quirks
& FEC_QUIRK_HAS_COALESCE
))
2470 if (ec
->rx_max_coalesced_frames
> 255) {
2471 pr_err("Rx coalesced frames exceed hardware limitation\n");
2475 if (ec
->tx_max_coalesced_frames
> 255) {
2476 pr_err("Tx coalesced frame exceed hardware limitation\n");
2480 cycle
= fec_enet_us_to_itr_clock(ndev
, fep
->rx_time_itr
);
2481 if (cycle
> 0xFFFF) {
2482 pr_err("Rx coalesced usec exceed hardware limitation\n");
2486 cycle
= fec_enet_us_to_itr_clock(ndev
, fep
->tx_time_itr
);
2487 if (cycle
> 0xFFFF) {
2488 pr_err("Rx coalesced usec exceed hardware limitation\n");
2492 fep
->rx_time_itr
= ec
->rx_coalesce_usecs
;
2493 fep
->rx_pkts_itr
= ec
->rx_max_coalesced_frames
;
2495 fep
->tx_time_itr
= ec
->tx_coalesce_usecs
;
2496 fep
->tx_pkts_itr
= ec
->tx_max_coalesced_frames
;
2498 fec_enet_itr_coal_set(ndev
);
2503 static void fec_enet_itr_coal_init(struct net_device
*ndev
)
2505 struct ethtool_coalesce ec
;
2507 ec
.rx_coalesce_usecs
= FEC_ITR_ICTT_DEFAULT
;
2508 ec
.rx_max_coalesced_frames
= FEC_ITR_ICFT_DEFAULT
;
2510 ec
.tx_coalesce_usecs
= FEC_ITR_ICTT_DEFAULT
;
2511 ec
.tx_max_coalesced_frames
= FEC_ITR_ICFT_DEFAULT
;
2513 fec_enet_set_coalesce(ndev
, &ec
);
2516 static int fec_enet_get_tunable(struct net_device
*netdev
,
2517 const struct ethtool_tunable
*tuna
,
2520 struct fec_enet_private
*fep
= netdev_priv(netdev
);
2524 case ETHTOOL_RX_COPYBREAK
:
2525 *(u32
*)data
= fep
->rx_copybreak
;
2535 static int fec_enet_set_tunable(struct net_device
*netdev
,
2536 const struct ethtool_tunable
*tuna
,
2539 struct fec_enet_private
*fep
= netdev_priv(netdev
);
2543 case ETHTOOL_RX_COPYBREAK
:
2544 fep
->rx_copybreak
= *(u32
*)data
;
2555 fec_enet_get_wol(struct net_device
*ndev
, struct ethtool_wolinfo
*wol
)
2557 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2559 if (fep
->wol_flag
& FEC_WOL_HAS_MAGIC_PACKET
) {
2560 wol
->supported
= WAKE_MAGIC
;
2561 wol
->wolopts
= fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
? WAKE_MAGIC
: 0;
2563 wol
->supported
= wol
->wolopts
= 0;
2568 fec_enet_set_wol(struct net_device
*ndev
, struct ethtool_wolinfo
*wol
)
2570 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2572 if (!(fep
->wol_flag
& FEC_WOL_HAS_MAGIC_PACKET
))
2575 if (wol
->wolopts
& ~WAKE_MAGIC
)
2578 device_set_wakeup_enable(&ndev
->dev
, wol
->wolopts
& WAKE_MAGIC
);
2579 if (device_may_wakeup(&ndev
->dev
)) {
2580 fep
->wol_flag
|= FEC_WOL_FLAG_ENABLE
;
2581 if (fep
->irq
[0] > 0)
2582 enable_irq_wake(fep
->irq
[0]);
2584 fep
->wol_flag
&= (~FEC_WOL_FLAG_ENABLE
);
2585 if (fep
->irq
[0] > 0)
2586 disable_irq_wake(fep
->irq
[0]);
2592 static const struct ethtool_ops fec_enet_ethtool_ops
= {
2593 .get_drvinfo
= fec_enet_get_drvinfo
,
2594 .get_regs_len
= fec_enet_get_regs_len
,
2595 .get_regs
= fec_enet_get_regs
,
2596 .nway_reset
= phy_ethtool_nway_reset
,
2597 .get_link
= ethtool_op_get_link
,
2598 .get_coalesce
= fec_enet_get_coalesce
,
2599 .set_coalesce
= fec_enet_set_coalesce
,
2600 #ifndef CONFIG_M5272
2601 .get_pauseparam
= fec_enet_get_pauseparam
,
2602 .set_pauseparam
= fec_enet_set_pauseparam
,
2603 .get_strings
= fec_enet_get_strings
,
2604 .get_ethtool_stats
= fec_enet_get_ethtool_stats
,
2605 .get_sset_count
= fec_enet_get_sset_count
,
2607 .get_ts_info
= fec_enet_get_ts_info
,
2608 .get_tunable
= fec_enet_get_tunable
,
2609 .set_tunable
= fec_enet_set_tunable
,
2610 .get_wol
= fec_enet_get_wol
,
2611 .set_wol
= fec_enet_set_wol
,
2612 .get_link_ksettings
= phy_ethtool_get_link_ksettings
,
2613 .set_link_ksettings
= phy_ethtool_set_link_ksettings
,
2616 static int fec_enet_ioctl(struct net_device
*ndev
, struct ifreq
*rq
, int cmd
)
2618 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2619 struct phy_device
*phydev
= ndev
->phydev
;
2621 if (!netif_running(ndev
))
2627 if (fep
->bufdesc_ex
) {
2628 if (cmd
== SIOCSHWTSTAMP
)
2629 return fec_ptp_set(ndev
, rq
);
2630 if (cmd
== SIOCGHWTSTAMP
)
2631 return fec_ptp_get(ndev
, rq
);
2634 return phy_mii_ioctl(phydev
, rq
, cmd
);
2637 static void fec_enet_free_buffers(struct net_device
*ndev
)
2639 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2641 struct sk_buff
*skb
;
2642 struct bufdesc
*bdp
;
2643 struct fec_enet_priv_tx_q
*txq
;
2644 struct fec_enet_priv_rx_q
*rxq
;
2647 for (q
= 0; q
< fep
->num_rx_queues
; q
++) {
2648 rxq
= fep
->rx_queue
[q
];
2650 for (i
= 0; i
< rxq
->bd
.ring_size
; i
++) {
2651 skb
= rxq
->rx_skbuff
[i
];
2652 rxq
->rx_skbuff
[i
] = NULL
;
2654 dma_unmap_single(&fep
->pdev
->dev
,
2655 fec32_to_cpu(bdp
->cbd_bufaddr
),
2656 FEC_ENET_RX_FRSIZE
- fep
->rx_align
,
2660 bdp
= fec_enet_get_nextdesc(bdp
, &rxq
->bd
);
2664 for (q
= 0; q
< fep
->num_tx_queues
; q
++) {
2665 txq
= fep
->tx_queue
[q
];
2667 for (i
= 0; i
< txq
->bd
.ring_size
; i
++) {
2668 kfree(txq
->tx_bounce
[i
]);
2669 txq
->tx_bounce
[i
] = NULL
;
2670 skb
= txq
->tx_skbuff
[i
];
2671 txq
->tx_skbuff
[i
] = NULL
;
2677 static void fec_enet_free_queue(struct net_device
*ndev
)
2679 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2681 struct fec_enet_priv_tx_q
*txq
;
2683 for (i
= 0; i
< fep
->num_tx_queues
; i
++)
2684 if (fep
->tx_queue
[i
] && fep
->tx_queue
[i
]->tso_hdrs
) {
2685 txq
= fep
->tx_queue
[i
];
2686 dma_free_coherent(&fep
->pdev
->dev
,
2687 txq
->bd
.ring_size
* TSO_HEADER_SIZE
,
2692 for (i
= 0; i
< fep
->num_rx_queues
; i
++)
2693 kfree(fep
->rx_queue
[i
]);
2694 for (i
= 0; i
< fep
->num_tx_queues
; i
++)
2695 kfree(fep
->tx_queue
[i
]);
2698 static int fec_enet_alloc_queue(struct net_device
*ndev
)
2700 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2703 struct fec_enet_priv_tx_q
*txq
;
2705 for (i
= 0; i
< fep
->num_tx_queues
; i
++) {
2706 txq
= kzalloc(sizeof(*txq
), GFP_KERNEL
);
2712 fep
->tx_queue
[i
] = txq
;
2713 txq
->bd
.ring_size
= TX_RING_SIZE
;
2714 fep
->total_tx_ring_size
+= fep
->tx_queue
[i
]->bd
.ring_size
;
2716 txq
->tx_stop_threshold
= FEC_MAX_SKB_DESCS
;
2717 txq
->tx_wake_threshold
=
2718 (txq
->bd
.ring_size
- txq
->tx_stop_threshold
) / 2;
2720 txq
->tso_hdrs
= dma_alloc_coherent(&fep
->pdev
->dev
,
2721 txq
->bd
.ring_size
* TSO_HEADER_SIZE
,
2724 if (!txq
->tso_hdrs
) {
2730 for (i
= 0; i
< fep
->num_rx_queues
; i
++) {
2731 fep
->rx_queue
[i
] = kzalloc(sizeof(*fep
->rx_queue
[i
]),
2733 if (!fep
->rx_queue
[i
]) {
2738 fep
->rx_queue
[i
]->bd
.ring_size
= RX_RING_SIZE
;
2739 fep
->total_rx_ring_size
+= fep
->rx_queue
[i
]->bd
.ring_size
;
2744 fec_enet_free_queue(ndev
);
2749 fec_enet_alloc_rxq_buffers(struct net_device
*ndev
, unsigned int queue
)
2751 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2753 struct sk_buff
*skb
;
2754 struct bufdesc
*bdp
;
2755 struct fec_enet_priv_rx_q
*rxq
;
2757 rxq
= fep
->rx_queue
[queue
];
2759 for (i
= 0; i
< rxq
->bd
.ring_size
; i
++) {
2760 skb
= netdev_alloc_skb(ndev
, FEC_ENET_RX_FRSIZE
);
2764 if (fec_enet_new_rxbdp(ndev
, bdp
, skb
)) {
2769 rxq
->rx_skbuff
[i
] = skb
;
2770 bdp
->cbd_sc
= cpu_to_fec16(BD_ENET_RX_EMPTY
);
2772 if (fep
->bufdesc_ex
) {
2773 struct bufdesc_ex
*ebdp
= (struct bufdesc_ex
*)bdp
;
2774 ebdp
->cbd_esc
= cpu_to_fec32(BD_ENET_RX_INT
);
2777 bdp
= fec_enet_get_nextdesc(bdp
, &rxq
->bd
);
2780 /* Set the last buffer to wrap. */
2781 bdp
= fec_enet_get_prevdesc(bdp
, &rxq
->bd
);
2782 bdp
->cbd_sc
|= cpu_to_fec16(BD_SC_WRAP
);
2786 fec_enet_free_buffers(ndev
);
2791 fec_enet_alloc_txq_buffers(struct net_device
*ndev
, unsigned int queue
)
2793 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2795 struct bufdesc
*bdp
;
2796 struct fec_enet_priv_tx_q
*txq
;
2798 txq
= fep
->tx_queue
[queue
];
2800 for (i
= 0; i
< txq
->bd
.ring_size
; i
++) {
2801 txq
->tx_bounce
[i
] = kmalloc(FEC_ENET_TX_FRSIZE
, GFP_KERNEL
);
2802 if (!txq
->tx_bounce
[i
])
2805 bdp
->cbd_sc
= cpu_to_fec16(0);
2806 bdp
->cbd_bufaddr
= cpu_to_fec32(0);
2808 if (fep
->bufdesc_ex
) {
2809 struct bufdesc_ex
*ebdp
= (struct bufdesc_ex
*)bdp
;
2810 ebdp
->cbd_esc
= cpu_to_fec32(BD_ENET_TX_INT
);
2813 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
2816 /* Set the last buffer to wrap. */
2817 bdp
= fec_enet_get_prevdesc(bdp
, &txq
->bd
);
2818 bdp
->cbd_sc
|= cpu_to_fec16(BD_SC_WRAP
);
2823 fec_enet_free_buffers(ndev
);
2827 static int fec_enet_alloc_buffers(struct net_device
*ndev
)
2829 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2832 for (i
= 0; i
< fep
->num_rx_queues
; i
++)
2833 if (fec_enet_alloc_rxq_buffers(ndev
, i
))
2836 for (i
= 0; i
< fep
->num_tx_queues
; i
++)
2837 if (fec_enet_alloc_txq_buffers(ndev
, i
))
2843 fec_enet_open(struct net_device
*ndev
)
2845 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2849 ret
= pm_runtime_get_sync(&fep
->pdev
->dev
);
2853 pinctrl_pm_select_default_state(&fep
->pdev
->dev
);
2854 ret
= fec_enet_clk_enable(ndev
, true);
2858 /* During the first fec_enet_open call the PHY isn't probed at this
2859 * point. Therefore the phy_reset_after_clk_enable() call within
2860 * fec_enet_clk_enable() fails. As we need this reset in order to be
2861 * sure the PHY is working correctly we check if we need to reset again
2862 * later when the PHY is probed
2864 if (ndev
->phydev
&& ndev
->phydev
->drv
)
2865 reset_again
= false;
2869 /* I should reset the ring buffers here, but I don't yet know
2870 * a simple way to do that.
2873 ret
= fec_enet_alloc_buffers(ndev
);
2875 goto err_enet_alloc
;
2877 /* Init MAC prior to mii bus probe */
2880 /* Probe and connect to PHY when open the interface */
2881 ret
= fec_enet_mii_probe(ndev
);
2883 goto err_enet_mii_probe
;
2885 /* Call phy_reset_after_clk_enable() again if it failed during
2886 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2889 phy_reset_after_clk_enable(ndev
->phydev
);
2891 if (fep
->quirks
& FEC_QUIRK_ERR006687
)
2892 imx6q_cpuidle_fec_irqs_used();
2894 napi_enable(&fep
->napi
);
2895 phy_start(ndev
->phydev
);
2896 netif_tx_start_all_queues(ndev
);
2898 device_set_wakeup_enable(&ndev
->dev
, fep
->wol_flag
&
2899 FEC_WOL_FLAG_ENABLE
);
2904 fec_enet_free_buffers(ndev
);
2906 fec_enet_clk_enable(ndev
, false);
2908 pm_runtime_mark_last_busy(&fep
->pdev
->dev
);
2909 pm_runtime_put_autosuspend(&fep
->pdev
->dev
);
2910 pinctrl_pm_select_sleep_state(&fep
->pdev
->dev
);
2915 fec_enet_close(struct net_device
*ndev
)
2917 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2919 phy_stop(ndev
->phydev
);
2921 if (netif_device_present(ndev
)) {
2922 napi_disable(&fep
->napi
);
2923 netif_tx_disable(ndev
);
2927 phy_disconnect(ndev
->phydev
);
2929 if (fep
->quirks
& FEC_QUIRK_ERR006687
)
2930 imx6q_cpuidle_fec_irqs_unused();
2932 fec_enet_update_ethtool_stats(ndev
);
2934 fec_enet_clk_enable(ndev
, false);
2935 pinctrl_pm_select_sleep_state(&fep
->pdev
->dev
);
2936 pm_runtime_mark_last_busy(&fep
->pdev
->dev
);
2937 pm_runtime_put_autosuspend(&fep
->pdev
->dev
);
2939 fec_enet_free_buffers(ndev
);
2944 /* Set or clear the multicast filter for this adaptor.
2945 * Skeleton taken from sunlance driver.
2946 * The CPM Ethernet implementation allows Multicast as well as individual
2947 * MAC address filtering. Some of the drivers check to make sure it is
2948 * a group multicast address, and discard those that are not. I guess I
2949 * will do the same for now, but just remove the test if you want
2950 * individual filtering as well (do the upper net layers want or support
2951 * this kind of feature?).
2954 #define FEC_HASH_BITS 6 /* #bits in hash */
2955 #define CRC32_POLY 0xEDB88320
2957 static void set_multicast_list(struct net_device
*ndev
)
2959 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2960 struct netdev_hw_addr
*ha
;
2961 unsigned int i
, bit
, data
, crc
, tmp
;
2963 unsigned int hash_high
= 0, hash_low
= 0;
2965 if (ndev
->flags
& IFF_PROMISC
) {
2966 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
2968 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
2972 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
2974 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
2976 if (ndev
->flags
& IFF_ALLMULTI
) {
2977 /* Catch all multicast addresses, so set the
2980 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
2981 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
2986 /* Add the addresses in hash register */
2987 netdev_for_each_mc_addr(ha
, ndev
) {
2988 /* calculate crc32 value of mac address */
2991 for (i
= 0; i
< ndev
->addr_len
; i
++) {
2993 for (bit
= 0; bit
< 8; bit
++, data
>>= 1) {
2995 (((crc
^ data
) & 1) ? CRC32_POLY
: 0);
2999 /* only upper 6 bits (FEC_HASH_BITS) are used
3000 * which point to specific bit in the hash registers
3002 hash
= (crc
>> (32 - FEC_HASH_BITS
)) & 0x3f;
3005 hash_high
|= 1 << (hash
- 32);
3007 hash_low
|= 1 << hash
;
3010 writel(hash_high
, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
3011 writel(hash_low
, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
3014 /* Set a MAC change in hardware. */
3016 fec_set_mac_address(struct net_device
*ndev
, void *p
)
3018 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3019 struct sockaddr
*addr
= p
;
3022 if (!is_valid_ether_addr(addr
->sa_data
))
3023 return -EADDRNOTAVAIL
;
3024 memcpy(ndev
->dev_addr
, addr
->sa_data
, ndev
->addr_len
);
3027 /* Add netif status check here to avoid system hang in below case:
3028 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3029 * After ethx down, fec all clocks are gated off and then register
3030 * access causes system hang.
3032 if (!netif_running(ndev
))
3035 writel(ndev
->dev_addr
[3] | (ndev
->dev_addr
[2] << 8) |
3036 (ndev
->dev_addr
[1] << 16) | (ndev
->dev_addr
[0] << 24),
3037 fep
->hwp
+ FEC_ADDR_LOW
);
3038 writel((ndev
->dev_addr
[5] << 16) | (ndev
->dev_addr
[4] << 24),
3039 fep
->hwp
+ FEC_ADDR_HIGH
);
3043 #ifdef CONFIG_NET_POLL_CONTROLLER
3045 * fec_poll_controller - FEC Poll controller function
3046 * @dev: The FEC network adapter
3048 * Polled functionality used by netconsole and others in non interrupt mode
3051 static void fec_poll_controller(struct net_device
*dev
)
3054 struct fec_enet_private
*fep
= netdev_priv(dev
);
3056 for (i
= 0; i
< FEC_IRQ_NUM
; i
++) {
3057 if (fep
->irq
[i
] > 0) {
3058 disable_irq(fep
->irq
[i
]);
3059 fec_enet_interrupt(fep
->irq
[i
], dev
);
3060 enable_irq(fep
->irq
[i
]);
3066 static inline void fec_enet_set_netdev_features(struct net_device
*netdev
,
3067 netdev_features_t features
)
3069 struct fec_enet_private
*fep
= netdev_priv(netdev
);
3070 netdev_features_t changed
= features
^ netdev
->features
;
3072 netdev
->features
= features
;
3074 /* Receive checksum has been changed */
3075 if (changed
& NETIF_F_RXCSUM
) {
3076 if (features
& NETIF_F_RXCSUM
)
3077 fep
->csum_flags
|= FLAG_RX_CSUM_ENABLED
;
3079 fep
->csum_flags
&= ~FLAG_RX_CSUM_ENABLED
;
3083 static int fec_set_features(struct net_device
*netdev
,
3084 netdev_features_t features
)
3086 struct fec_enet_private
*fep
= netdev_priv(netdev
);
3087 netdev_features_t changed
= features
^ netdev
->features
;
3089 if (netif_running(netdev
) && changed
& NETIF_F_RXCSUM
) {
3090 napi_disable(&fep
->napi
);
3091 netif_tx_lock_bh(netdev
);
3093 fec_enet_set_netdev_features(netdev
, features
);
3094 fec_restart(netdev
);
3095 netif_tx_wake_all_queues(netdev
);
3096 netif_tx_unlock_bh(netdev
);
3097 napi_enable(&fep
->napi
);
3099 fec_enet_set_netdev_features(netdev
, features
);
3105 static const struct net_device_ops fec_netdev_ops
= {
3106 .ndo_open
= fec_enet_open
,
3107 .ndo_stop
= fec_enet_close
,
3108 .ndo_start_xmit
= fec_enet_start_xmit
,
3109 .ndo_set_rx_mode
= set_multicast_list
,
3110 .ndo_validate_addr
= eth_validate_addr
,
3111 .ndo_tx_timeout
= fec_timeout
,
3112 .ndo_set_mac_address
= fec_set_mac_address
,
3113 .ndo_do_ioctl
= fec_enet_ioctl
,
3114 #ifdef CONFIG_NET_POLL_CONTROLLER
3115 .ndo_poll_controller
= fec_poll_controller
,
3117 .ndo_set_features
= fec_set_features
,
3120 static const unsigned short offset_des_active_rxq
[] = {
3121 FEC_R_DES_ACTIVE_0
, FEC_R_DES_ACTIVE_1
, FEC_R_DES_ACTIVE_2
3124 static const unsigned short offset_des_active_txq
[] = {
3125 FEC_X_DES_ACTIVE_0
, FEC_X_DES_ACTIVE_1
, FEC_X_DES_ACTIVE_2
3129 * XXX: We need to clean up on failure exits here.
3132 static int fec_enet_init(struct net_device
*ndev
)
3134 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3135 struct bufdesc
*cbd_base
;
3139 unsigned dsize
= fep
->bufdesc_ex
? sizeof(struct bufdesc_ex
) :
3140 sizeof(struct bufdesc
);
3141 unsigned dsize_log2
= __fls(dsize
);
3143 WARN_ON(dsize
!= (1 << dsize_log2
));
3144 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3145 fep
->rx_align
= 0xf;
3146 fep
->tx_align
= 0xf;
3148 fep
->rx_align
= 0x3;
3149 fep
->tx_align
= 0x3;
3152 fec_enet_alloc_queue(ndev
);
3154 bd_size
= (fep
->total_tx_ring_size
+ fep
->total_rx_ring_size
) * dsize
;
3156 /* Allocate memory for buffer descriptors. */
3157 cbd_base
= dmam_alloc_coherent(&fep
->pdev
->dev
, bd_size
, &bd_dma
,
3163 memset(cbd_base
, 0, bd_size
);
3165 /* Get the Ethernet address */
3167 /* make sure MAC we just acquired is programmed into the hw */
3168 fec_set_mac_address(ndev
, NULL
);
3170 /* Set receive and transmit descriptor base. */
3171 for (i
= 0; i
< fep
->num_rx_queues
; i
++) {
3172 struct fec_enet_priv_rx_q
*rxq
= fep
->rx_queue
[i
];
3173 unsigned size
= dsize
* rxq
->bd
.ring_size
;
3176 rxq
->bd
.base
= cbd_base
;
3177 rxq
->bd
.cur
= cbd_base
;
3178 rxq
->bd
.dma
= bd_dma
;
3179 rxq
->bd
.dsize
= dsize
;
3180 rxq
->bd
.dsize_log2
= dsize_log2
;
3181 rxq
->bd
.reg_desc_active
= fep
->hwp
+ offset_des_active_rxq
[i
];
3183 cbd_base
= (struct bufdesc
*)(((void *)cbd_base
) + size
);
3184 rxq
->bd
.last
= (struct bufdesc
*)(((void *)cbd_base
) - dsize
);
3187 for (i
= 0; i
< fep
->num_tx_queues
; i
++) {
3188 struct fec_enet_priv_tx_q
*txq
= fep
->tx_queue
[i
];
3189 unsigned size
= dsize
* txq
->bd
.ring_size
;
3192 txq
->bd
.base
= cbd_base
;
3193 txq
->bd
.cur
= cbd_base
;
3194 txq
->bd
.dma
= bd_dma
;
3195 txq
->bd
.dsize
= dsize
;
3196 txq
->bd
.dsize_log2
= dsize_log2
;
3197 txq
->bd
.reg_desc_active
= fep
->hwp
+ offset_des_active_txq
[i
];
3199 cbd_base
= (struct bufdesc
*)(((void *)cbd_base
) + size
);
3200 txq
->bd
.last
= (struct bufdesc
*)(((void *)cbd_base
) - dsize
);
3204 /* The FEC Ethernet specific entries in the device structure */
3205 ndev
->watchdog_timeo
= TX_TIMEOUT
;
3206 ndev
->netdev_ops
= &fec_netdev_ops
;
3207 ndev
->ethtool_ops
= &fec_enet_ethtool_ops
;
3209 writel(FEC_RX_DISABLED_IMASK
, fep
->hwp
+ FEC_IMASK
);
3210 netif_napi_add(ndev
, &fep
->napi
, fec_enet_rx_napi
, NAPI_POLL_WEIGHT
);
3212 if (fep
->quirks
& FEC_QUIRK_HAS_VLAN
)
3213 /* enable hw VLAN support */
3214 ndev
->features
|= NETIF_F_HW_VLAN_CTAG_RX
;
3216 if (fep
->quirks
& FEC_QUIRK_HAS_CSUM
) {
3217 ndev
->gso_max_segs
= FEC_MAX_TSO_SEGS
;
3219 /* enable hw accelerator */
3220 ndev
->features
|= (NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
3221 | NETIF_F_RXCSUM
| NETIF_F_SG
| NETIF_F_TSO
);
3222 fep
->csum_flags
|= FLAG_RX_CSUM_ENABLED
;
3225 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
) {
3227 fep
->rx_align
= 0x3f;
3230 ndev
->hw_features
= ndev
->features
;
3234 if (fep
->quirks
& FEC_QUIRK_MIB_CLEAR
)
3235 fec_enet_clear_ethtool_stats(ndev
);
3237 fec_enet_update_ethtool_stats(ndev
);
3243 static int fec_reset_phy(struct platform_device
*pdev
)
3246 bool active_high
= false;
3247 int msec
= 1, phy_post_delay
= 0;
3248 struct device_node
*np
= pdev
->dev
.of_node
;
3253 err
= of_property_read_u32(np
, "phy-reset-duration", &msec
);
3254 /* A sane reset duration should not be longer than 1s */
3255 if (!err
&& msec
> 1000)
3258 phy_reset
= of_get_named_gpio(np
, "phy-reset-gpios", 0);
3259 if (phy_reset
== -EPROBE_DEFER
)
3261 else if (!gpio_is_valid(phy_reset
))
3264 err
= of_property_read_u32(np
, "phy-reset-post-delay", &phy_post_delay
);
3265 /* valid reset duration should be less than 1s */
3266 if (!err
&& phy_post_delay
> 1000)
3269 active_high
= of_property_read_bool(np
, "phy-reset-active-high");
3271 err
= devm_gpio_request_one(&pdev
->dev
, phy_reset
,
3272 active_high
? GPIOF_OUT_INIT_HIGH
: GPIOF_OUT_INIT_LOW
,
3275 dev_err(&pdev
->dev
, "failed to get phy-reset-gpios: %d\n", err
);
3282 usleep_range(msec
* 1000, msec
* 1000 + 1000);
3284 gpio_set_value_cansleep(phy_reset
, !active_high
);
3286 if (!phy_post_delay
)
3289 if (phy_post_delay
> 20)
3290 msleep(phy_post_delay
);
3292 usleep_range(phy_post_delay
* 1000,
3293 phy_post_delay
* 1000 + 1000);
3297 #else /* CONFIG_OF */
3298 static int fec_reset_phy(struct platform_device
*pdev
)
3301 * In case of platform probe, the reset has been done
3306 #endif /* CONFIG_OF */
3309 fec_enet_get_queue_num(struct platform_device
*pdev
, int *num_tx
, int *num_rx
)
3311 struct device_node
*np
= pdev
->dev
.of_node
;
3313 *num_tx
= *num_rx
= 1;
3315 if (!np
|| !of_device_is_available(np
))
3318 /* parse the num of tx and rx queues */
3319 of_property_read_u32(np
, "fsl,num-tx-queues", num_tx
);
3321 of_property_read_u32(np
, "fsl,num-rx-queues", num_rx
);
3323 if (*num_tx
< 1 || *num_tx
> FEC_ENET_MAX_TX_QS
) {
3324 dev_warn(&pdev
->dev
, "Invalid num_tx(=%d), fall back to 1\n",
3330 if (*num_rx
< 1 || *num_rx
> FEC_ENET_MAX_RX_QS
) {
3331 dev_warn(&pdev
->dev
, "Invalid num_rx(=%d), fall back to 1\n",
3339 static int fec_enet_get_irq_cnt(struct platform_device
*pdev
)
3341 int irq_cnt
= platform_irq_count(pdev
);
3343 if (irq_cnt
> FEC_IRQ_NUM
)
3344 irq_cnt
= FEC_IRQ_NUM
; /* last for pps */
3345 else if (irq_cnt
== 2)
3346 irq_cnt
= 1; /* last for pps */
3347 else if (irq_cnt
<= 0)
3348 irq_cnt
= 1; /* At least 1 irq is needed */
3353 fec_probe(struct platform_device
*pdev
)
3355 struct fec_enet_private
*fep
;
3356 struct fec_platform_data
*pdata
;
3357 struct net_device
*ndev
;
3358 int i
, irq
, ret
= 0;
3360 const struct of_device_id
*of_id
;
3362 struct device_node
*np
= pdev
->dev
.of_node
, *phy_node
;
3368 fec_enet_get_queue_num(pdev
, &num_tx_qs
, &num_rx_qs
);
3370 /* Init network device */
3371 ndev
= alloc_etherdev_mqs(sizeof(struct fec_enet_private
) +
3372 FEC_STATS_SIZE
, num_tx_qs
, num_rx_qs
);
3376 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
3378 /* setup board info structure */
3379 fep
= netdev_priv(ndev
);
3381 of_id
= of_match_device(fec_dt_ids
, &pdev
->dev
);
3383 pdev
->id_entry
= of_id
->data
;
3384 fep
->quirks
= pdev
->id_entry
->driver_data
;
3387 fep
->num_rx_queues
= num_rx_qs
;
3388 fep
->num_tx_queues
= num_tx_qs
;
3390 #if !defined(CONFIG_M5272)
3391 /* default enable pause frame auto negotiation */
3392 if (fep
->quirks
& FEC_QUIRK_HAS_GBIT
)
3393 fep
->pause_flag
|= FEC_PAUSE_FLAG_AUTONEG
;
3396 /* Select default pin state */
3397 pinctrl_pm_select_default_state(&pdev
->dev
);
3399 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3400 fep
->hwp
= devm_ioremap_resource(&pdev
->dev
, r
);
3401 if (IS_ERR(fep
->hwp
)) {
3402 ret
= PTR_ERR(fep
->hwp
);
3403 goto failed_ioremap
;
3407 fep
->dev_id
= dev_id
++;
3409 platform_set_drvdata(pdev
, ndev
);
3411 if ((of_machine_is_compatible("fsl,imx6q") ||
3412 of_machine_is_compatible("fsl,imx6dl")) &&
3413 !of_property_read_bool(np
, "fsl,err006687-workaround-present"))
3414 fep
->quirks
|= FEC_QUIRK_ERR006687
;
3416 if (of_get_property(np
, "fsl,magic-packet", NULL
))
3417 fep
->wol_flag
|= FEC_WOL_HAS_MAGIC_PACKET
;
3419 phy_node
= of_parse_phandle(np
, "phy-handle", 0);
3420 if (!phy_node
&& of_phy_is_fixed_link(np
)) {
3421 ret
= of_phy_register_fixed_link(np
);
3424 "broken fixed-link specification\n");
3427 phy_node
= of_node_get(np
);
3429 fep
->phy_node
= phy_node
;
3431 ret
= of_get_phy_mode(pdev
->dev
.of_node
);
3433 pdata
= dev_get_platdata(&pdev
->dev
);
3435 fep
->phy_interface
= pdata
->phy
;
3437 fep
->phy_interface
= PHY_INTERFACE_MODE_MII
;
3439 fep
->phy_interface
= ret
;
3442 fep
->clk_ipg
= devm_clk_get(&pdev
->dev
, "ipg");
3443 if (IS_ERR(fep
->clk_ipg
)) {
3444 ret
= PTR_ERR(fep
->clk_ipg
);
3448 fep
->clk_ahb
= devm_clk_get(&pdev
->dev
, "ahb");
3449 if (IS_ERR(fep
->clk_ahb
)) {
3450 ret
= PTR_ERR(fep
->clk_ahb
);
3454 fep
->itr_clk_rate
= clk_get_rate(fep
->clk_ahb
);
3456 /* enet_out is optional, depends on board */
3457 fep
->clk_enet_out
= devm_clk_get(&pdev
->dev
, "enet_out");
3458 if (IS_ERR(fep
->clk_enet_out
))
3459 fep
->clk_enet_out
= NULL
;
3461 fep
->ptp_clk_on
= false;
3462 mutex_init(&fep
->ptp_clk_mutex
);
3464 /* clk_ref is optional, depends on board */
3465 fep
->clk_ref
= devm_clk_get(&pdev
->dev
, "enet_clk_ref");
3466 if (IS_ERR(fep
->clk_ref
))
3467 fep
->clk_ref
= NULL
;
3469 fep
->bufdesc_ex
= fep
->quirks
& FEC_QUIRK_HAS_BUFDESC_EX
;
3470 fep
->clk_ptp
= devm_clk_get(&pdev
->dev
, "ptp");
3471 if (IS_ERR(fep
->clk_ptp
)) {
3472 fep
->clk_ptp
= NULL
;
3473 fep
->bufdesc_ex
= false;
3476 ret
= fec_enet_clk_enable(ndev
, true);
3480 ret
= clk_prepare_enable(fep
->clk_ipg
);
3482 goto failed_clk_ipg
;
3484 fep
->reg_phy
= devm_regulator_get(&pdev
->dev
, "phy");
3485 if (!IS_ERR(fep
->reg_phy
)) {
3486 ret
= regulator_enable(fep
->reg_phy
);
3489 "Failed to enable phy regulator: %d\n", ret
);
3490 clk_disable_unprepare(fep
->clk_ipg
);
3491 goto failed_regulator
;
3494 if (PTR_ERR(fep
->reg_phy
) == -EPROBE_DEFER
) {
3495 ret
= -EPROBE_DEFER
;
3496 goto failed_regulator
;
3498 fep
->reg_phy
= NULL
;
3501 pm_runtime_set_autosuspend_delay(&pdev
->dev
, FEC_MDIO_PM_TIMEOUT
);
3502 pm_runtime_use_autosuspend(&pdev
->dev
);
3503 pm_runtime_get_noresume(&pdev
->dev
);
3504 pm_runtime_set_active(&pdev
->dev
);
3505 pm_runtime_enable(&pdev
->dev
);
3507 ret
= fec_reset_phy(pdev
);
3511 irq_cnt
= fec_enet_get_irq_cnt(pdev
);
3512 if (fep
->bufdesc_ex
)
3513 fec_ptp_init(pdev
, irq_cnt
);
3515 ret
= fec_enet_init(ndev
);
3519 for (i
= 0; i
< irq_cnt
; i
++) {
3520 sprintf(irq_name
, "int%d", i
);
3521 irq
= platform_get_irq_byname(pdev
, irq_name
);
3523 irq
= platform_get_irq(pdev
, i
);
3528 ret
= devm_request_irq(&pdev
->dev
, irq
, fec_enet_interrupt
,
3529 0, pdev
->name
, ndev
);
3536 init_completion(&fep
->mdio_done
);
3537 ret
= fec_enet_mii_init(pdev
);
3539 goto failed_mii_init
;
3541 /* Carrier starts down, phylib will bring it up */
3542 netif_carrier_off(ndev
);
3543 fec_enet_clk_enable(ndev
, false);
3544 pinctrl_pm_select_sleep_state(&pdev
->dev
);
3546 ret
= register_netdev(ndev
);
3548 goto failed_register
;
3550 device_init_wakeup(&ndev
->dev
, fep
->wol_flag
&
3551 FEC_WOL_HAS_MAGIC_PACKET
);
3553 if (fep
->bufdesc_ex
&& fep
->ptp_clock
)
3554 netdev_info(ndev
, "registered PHC device %d\n", fep
->dev_id
);
3556 fep
->rx_copybreak
= COPYBREAK_DEFAULT
;
3557 INIT_WORK(&fep
->tx_timeout_work
, fec_enet_timeout_work
);
3559 pm_runtime_mark_last_busy(&pdev
->dev
);
3560 pm_runtime_put_autosuspend(&pdev
->dev
);
3565 fec_enet_mii_remove(fep
);
3571 regulator_disable(fep
->reg_phy
);
3573 pm_runtime_put(&pdev
->dev
);
3574 pm_runtime_disable(&pdev
->dev
);
3577 fec_enet_clk_enable(ndev
, false);
3579 if (of_phy_is_fixed_link(np
))
3580 of_phy_deregister_fixed_link(np
);
3581 of_node_put(phy_node
);
3591 fec_drv_remove(struct platform_device
*pdev
)
3593 struct net_device
*ndev
= platform_get_drvdata(pdev
);
3594 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3595 struct device_node
*np
= pdev
->dev
.of_node
;
3597 cancel_work_sync(&fep
->tx_timeout_work
);
3599 unregister_netdev(ndev
);
3600 fec_enet_mii_remove(fep
);
3602 regulator_disable(fep
->reg_phy
);
3603 if (of_phy_is_fixed_link(np
))
3604 of_phy_deregister_fixed_link(np
);
3605 of_node_put(fep
->phy_node
);
3611 static int __maybe_unused
fec_suspend(struct device
*dev
)
3613 struct net_device
*ndev
= dev_get_drvdata(dev
);
3614 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3617 if (netif_running(ndev
)) {
3618 if (fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
)
3619 fep
->wol_flag
|= FEC_WOL_FLAG_SLEEP_ON
;
3620 phy_stop(ndev
->phydev
);
3621 napi_disable(&fep
->napi
);
3622 netif_tx_lock_bh(ndev
);
3623 netif_device_detach(ndev
);
3624 netif_tx_unlock_bh(ndev
);
3626 fec_enet_clk_enable(ndev
, false);
3627 if (!(fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
))
3628 pinctrl_pm_select_sleep_state(&fep
->pdev
->dev
);
3632 if (fep
->reg_phy
&& !(fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
))
3633 regulator_disable(fep
->reg_phy
);
3635 /* SOC supply clock to phy, when clock is disabled, phy link down
3636 * SOC control phy regulator, when regulator is disabled, phy link down
3638 if (fep
->clk_enet_out
|| fep
->reg_phy
)
3644 static int __maybe_unused
fec_resume(struct device
*dev
)
3646 struct net_device
*ndev
= dev_get_drvdata(dev
);
3647 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3648 struct fec_platform_data
*pdata
= fep
->pdev
->dev
.platform_data
;
3652 if (fep
->reg_phy
&& !(fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
)) {
3653 ret
= regulator_enable(fep
->reg_phy
);
3659 if (netif_running(ndev
)) {
3660 ret
= fec_enet_clk_enable(ndev
, true);
3665 if (fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
) {
3666 if (pdata
&& pdata
->sleep_mode_enable
)
3667 pdata
->sleep_mode_enable(false);
3668 val
= readl(fep
->hwp
+ FEC_ECNTRL
);
3669 val
&= ~(FEC_ECR_MAGICEN
| FEC_ECR_SLEEP
);
3670 writel(val
, fep
->hwp
+ FEC_ECNTRL
);
3671 fep
->wol_flag
&= ~FEC_WOL_FLAG_SLEEP_ON
;
3673 pinctrl_pm_select_default_state(&fep
->pdev
->dev
);
3676 netif_tx_lock_bh(ndev
);
3677 netif_device_attach(ndev
);
3678 netif_tx_unlock_bh(ndev
);
3679 napi_enable(&fep
->napi
);
3680 phy_start(ndev
->phydev
);
3688 regulator_disable(fep
->reg_phy
);
3692 static int __maybe_unused
fec_runtime_suspend(struct device
*dev
)
3694 struct net_device
*ndev
= dev_get_drvdata(dev
);
3695 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3697 clk_disable_unprepare(fep
->clk_ipg
);
3702 static int __maybe_unused
fec_runtime_resume(struct device
*dev
)
3704 struct net_device
*ndev
= dev_get_drvdata(dev
);
3705 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3707 return clk_prepare_enable(fep
->clk_ipg
);
3710 static const struct dev_pm_ops fec_pm_ops
= {
3711 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend
, fec_resume
)
3712 SET_RUNTIME_PM_OPS(fec_runtime_suspend
, fec_runtime_resume
, NULL
)
3715 static struct platform_driver fec_driver
= {
3717 .name
= DRIVER_NAME
,
3719 .of_match_table
= fec_dt_ids
,
3721 .id_table
= fec_devtype
,
3723 .remove
= fec_drv_remove
,
3726 module_platform_driver(fec_driver
);
3728 MODULE_ALIAS("platform:"DRIVER_NAME
);
3729 MODULE_LICENSE("GPL");