1 /*******************************************************************************
2 * Intel PRO/1000 Linux driver
3 * Copyright(c) 1999 - 2006 Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * The full GNU General Public License is included in this distribution in
15 * the file called "COPYING".
17 * Contact Information:
18 * Linux NICS <linux.nics@intel.com>
19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 ******************************************************************************/
24 /* ethtool support for e1000 */
27 #include <linux/jiffies.h>
28 #include <linux/uaccess.h>
30 enum {NETDEV_STATS
, E1000_STATS
};
33 char stat_string
[ETH_GSTRING_LEN
];
39 #define E1000_STAT(m) E1000_STATS, \
40 sizeof(((struct e1000_adapter *)0)->m), \
41 offsetof(struct e1000_adapter, m)
42 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
43 sizeof(((struct net_device *)0)->m), \
44 offsetof(struct net_device, m)
46 static const struct e1000_stats e1000_gstrings_stats
[] = {
47 { "rx_packets", E1000_STAT(stats
.gprc
) },
48 { "tx_packets", E1000_STAT(stats
.gptc
) },
49 { "rx_bytes", E1000_STAT(stats
.gorcl
) },
50 { "tx_bytes", E1000_STAT(stats
.gotcl
) },
51 { "rx_broadcast", E1000_STAT(stats
.bprc
) },
52 { "tx_broadcast", E1000_STAT(stats
.bptc
) },
53 { "rx_multicast", E1000_STAT(stats
.mprc
) },
54 { "tx_multicast", E1000_STAT(stats
.mptc
) },
55 { "rx_errors", E1000_STAT(stats
.rxerrc
) },
56 { "tx_errors", E1000_STAT(stats
.txerrc
) },
57 { "tx_dropped", E1000_NETDEV_STAT(stats
.tx_dropped
) },
58 { "multicast", E1000_STAT(stats
.mprc
) },
59 { "collisions", E1000_STAT(stats
.colc
) },
60 { "rx_length_errors", E1000_STAT(stats
.rlerrc
) },
61 { "rx_over_errors", E1000_NETDEV_STAT(stats
.rx_over_errors
) },
62 { "rx_crc_errors", E1000_STAT(stats
.crcerrs
) },
63 { "rx_frame_errors", E1000_NETDEV_STAT(stats
.rx_frame_errors
) },
64 { "rx_no_buffer_count", E1000_STAT(stats
.rnbc
) },
65 { "rx_missed_errors", E1000_STAT(stats
.mpc
) },
66 { "tx_aborted_errors", E1000_STAT(stats
.ecol
) },
67 { "tx_carrier_errors", E1000_STAT(stats
.tncrs
) },
68 { "tx_fifo_errors", E1000_NETDEV_STAT(stats
.tx_fifo_errors
) },
69 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats
.tx_heartbeat_errors
) },
70 { "tx_window_errors", E1000_STAT(stats
.latecol
) },
71 { "tx_abort_late_coll", E1000_STAT(stats
.latecol
) },
72 { "tx_deferred_ok", E1000_STAT(stats
.dc
) },
73 { "tx_single_coll_ok", E1000_STAT(stats
.scc
) },
74 { "tx_multi_coll_ok", E1000_STAT(stats
.mcc
) },
75 { "tx_timeout_count", E1000_STAT(tx_timeout_count
) },
76 { "tx_restart_queue", E1000_STAT(restart_queue
) },
77 { "rx_long_length_errors", E1000_STAT(stats
.roc
) },
78 { "rx_short_length_errors", E1000_STAT(stats
.ruc
) },
79 { "rx_align_errors", E1000_STAT(stats
.algnerrc
) },
80 { "tx_tcp_seg_good", E1000_STAT(stats
.tsctc
) },
81 { "tx_tcp_seg_failed", E1000_STAT(stats
.tsctfc
) },
82 { "rx_flow_control_xon", E1000_STAT(stats
.xonrxc
) },
83 { "rx_flow_control_xoff", E1000_STAT(stats
.xoffrxc
) },
84 { "tx_flow_control_xon", E1000_STAT(stats
.xontxc
) },
85 { "tx_flow_control_xoff", E1000_STAT(stats
.xofftxc
) },
86 { "rx_long_byte_count", E1000_STAT(stats
.gorcl
) },
87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good
) },
88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err
) },
89 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed
) },
90 { "tx_smbus", E1000_STAT(stats
.mgptc
) },
91 { "rx_smbus", E1000_STAT(stats
.mgprc
) },
92 { "dropped_smbus", E1000_STAT(stats
.mgpdc
) },
95 #define E1000_QUEUE_STATS_LEN 0
96 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
97 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
98 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
99 "Register test (offline)", "Eeprom test (offline)",
100 "Interrupt test (offline)", "Loopback test (offline)",
101 "Link test (on/offline)"
104 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
106 static int e1000_get_link_ksettings(struct net_device
*netdev
,
107 struct ethtool_link_ksettings
*cmd
)
109 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
110 struct e1000_hw
*hw
= &adapter
->hw
;
111 u32 supported
, advertising
;
113 if (hw
->media_type
== e1000_media_type_copper
) {
114 supported
= (SUPPORTED_10baseT_Half
|
115 SUPPORTED_10baseT_Full
|
116 SUPPORTED_100baseT_Half
|
117 SUPPORTED_100baseT_Full
|
118 SUPPORTED_1000baseT_Full
|
121 advertising
= ADVERTISED_TP
;
123 if (hw
->autoneg
== 1) {
124 advertising
|= ADVERTISED_Autoneg
;
125 /* the e1000 autoneg seems to match ethtool nicely */
126 advertising
|= hw
->autoneg_advertised
;
129 cmd
->base
.port
= PORT_TP
;
130 cmd
->base
.phy_address
= hw
->phy_addr
;
132 supported
= (SUPPORTED_1000baseT_Full
|
136 advertising
= (ADVERTISED_1000baseT_Full
|
140 cmd
->base
.port
= PORT_FIBRE
;
143 if (er32(STATUS
) & E1000_STATUS_LU
) {
144 e1000_get_speed_and_duplex(hw
, &adapter
->link_speed
,
145 &adapter
->link_duplex
);
146 cmd
->base
.speed
= adapter
->link_speed
;
148 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
149 * and HALF_DUPLEX != DUPLEX_HALF
151 if (adapter
->link_duplex
== FULL_DUPLEX
)
152 cmd
->base
.duplex
= DUPLEX_FULL
;
154 cmd
->base
.duplex
= DUPLEX_HALF
;
156 cmd
->base
.speed
= SPEED_UNKNOWN
;
157 cmd
->base
.duplex
= DUPLEX_UNKNOWN
;
160 cmd
->base
.autoneg
= ((hw
->media_type
== e1000_media_type_fiber
) ||
161 hw
->autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
163 /* MDI-X => 1; MDI => 0 */
164 if ((hw
->media_type
== e1000_media_type_copper
) &&
165 netif_carrier_ok(netdev
))
166 cmd
->base
.eth_tp_mdix
= (!!adapter
->phy_info
.mdix_mode
?
167 ETH_TP_MDI_X
: ETH_TP_MDI
);
169 cmd
->base
.eth_tp_mdix
= ETH_TP_MDI_INVALID
;
171 if (hw
->mdix
== AUTO_ALL_MODES
)
172 cmd
->base
.eth_tp_mdix_ctrl
= ETH_TP_MDI_AUTO
;
174 cmd
->base
.eth_tp_mdix_ctrl
= hw
->mdix
;
176 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
178 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.advertising
,
184 static int e1000_set_link_ksettings(struct net_device
*netdev
,
185 const struct ethtool_link_ksettings
*cmd
)
187 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
188 struct e1000_hw
*hw
= &adapter
->hw
;
191 ethtool_convert_link_mode_to_legacy_u32(&advertising
,
192 cmd
->link_modes
.advertising
);
194 /* MDI setting is only allowed when autoneg enabled because
195 * some hardware doesn't allow MDI setting when speed or
198 if (cmd
->base
.eth_tp_mdix_ctrl
) {
199 if (hw
->media_type
!= e1000_media_type_copper
)
202 if ((cmd
->base
.eth_tp_mdix_ctrl
!= ETH_TP_MDI_AUTO
) &&
203 (cmd
->base
.autoneg
!= AUTONEG_ENABLE
)) {
204 e_err(drv
, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
209 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
212 if (cmd
->base
.autoneg
== AUTONEG_ENABLE
) {
214 if (hw
->media_type
== e1000_media_type_fiber
)
215 hw
->autoneg_advertised
= ADVERTISED_1000baseT_Full
|
219 hw
->autoneg_advertised
= advertising
|
223 u32 speed
= cmd
->base
.speed
;
224 /* calling this overrides forced MDI setting */
225 if (e1000_set_spd_dplx(adapter
, speed
, cmd
->base
.duplex
)) {
226 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
231 /* MDI-X => 2; MDI => 1; Auto => 3 */
232 if (cmd
->base
.eth_tp_mdix_ctrl
) {
233 if (cmd
->base
.eth_tp_mdix_ctrl
== ETH_TP_MDI_AUTO
)
234 hw
->mdix
= AUTO_ALL_MODES
;
236 hw
->mdix
= cmd
->base
.eth_tp_mdix_ctrl
;
241 if (netif_running(adapter
->netdev
)) {
245 e1000_reset(adapter
);
247 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
251 static u32
e1000_get_link(struct net_device
*netdev
)
253 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
255 /* If the link is not reported up to netdev, interrupts are disabled,
256 * and so the physical link state may have changed since we last
257 * looked. Set get_link_status to make sure that the true link
258 * state is interrogated, rather than pulling a cached and possibly
259 * stale link state from the driver.
261 if (!netif_carrier_ok(netdev
))
262 adapter
->hw
.get_link_status
= 1;
264 return e1000_has_link(adapter
);
267 static void e1000_get_pauseparam(struct net_device
*netdev
,
268 struct ethtool_pauseparam
*pause
)
270 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
271 struct e1000_hw
*hw
= &adapter
->hw
;
274 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
276 if (hw
->fc
== E1000_FC_RX_PAUSE
) {
278 } else if (hw
->fc
== E1000_FC_TX_PAUSE
) {
280 } else if (hw
->fc
== E1000_FC_FULL
) {
286 static int e1000_set_pauseparam(struct net_device
*netdev
,
287 struct ethtool_pauseparam
*pause
)
289 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
290 struct e1000_hw
*hw
= &adapter
->hw
;
293 adapter
->fc_autoneg
= pause
->autoneg
;
295 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
298 if (pause
->rx_pause
&& pause
->tx_pause
)
299 hw
->fc
= E1000_FC_FULL
;
300 else if (pause
->rx_pause
&& !pause
->tx_pause
)
301 hw
->fc
= E1000_FC_RX_PAUSE
;
302 else if (!pause
->rx_pause
&& pause
->tx_pause
)
303 hw
->fc
= E1000_FC_TX_PAUSE
;
304 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
305 hw
->fc
= E1000_FC_NONE
;
307 hw
->original_fc
= hw
->fc
;
309 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
310 if (netif_running(adapter
->netdev
)) {
314 e1000_reset(adapter
);
317 retval
= ((hw
->media_type
== e1000_media_type_fiber
) ?
318 e1000_setup_link(hw
) : e1000_force_mac_fc(hw
));
320 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
324 static u32
e1000_get_msglevel(struct net_device
*netdev
)
326 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
328 return adapter
->msg_enable
;
331 static void e1000_set_msglevel(struct net_device
*netdev
, u32 data
)
333 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
335 adapter
->msg_enable
= data
;
338 static int e1000_get_regs_len(struct net_device
*netdev
)
340 #define E1000_REGS_LEN 32
341 return E1000_REGS_LEN
* sizeof(u32
);
344 static void e1000_get_regs(struct net_device
*netdev
, struct ethtool_regs
*regs
,
347 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
348 struct e1000_hw
*hw
= &adapter
->hw
;
352 memset(p
, 0, E1000_REGS_LEN
* sizeof(u32
));
354 regs
->version
= (1 << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
356 regs_buff
[0] = er32(CTRL
);
357 regs_buff
[1] = er32(STATUS
);
359 regs_buff
[2] = er32(RCTL
);
360 regs_buff
[3] = er32(RDLEN
);
361 regs_buff
[4] = er32(RDH
);
362 regs_buff
[5] = er32(RDT
);
363 regs_buff
[6] = er32(RDTR
);
365 regs_buff
[7] = er32(TCTL
);
366 regs_buff
[8] = er32(TDLEN
);
367 regs_buff
[9] = er32(TDH
);
368 regs_buff
[10] = er32(TDT
);
369 regs_buff
[11] = er32(TIDV
);
371 regs_buff
[12] = hw
->phy_type
; /* PHY type (IGP=1, M88=0) */
372 if (hw
->phy_type
== e1000_phy_igp
) {
373 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
374 IGP01E1000_PHY_AGC_A
);
375 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_A
&
376 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
377 regs_buff
[13] = (u32
)phy_data
; /* cable length */
378 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
379 IGP01E1000_PHY_AGC_B
);
380 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_B
&
381 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
382 regs_buff
[14] = (u32
)phy_data
; /* cable length */
383 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
384 IGP01E1000_PHY_AGC_C
);
385 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_C
&
386 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
387 regs_buff
[15] = (u32
)phy_data
; /* cable length */
388 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
389 IGP01E1000_PHY_AGC_D
);
390 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_D
&
391 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
392 regs_buff
[16] = (u32
)phy_data
; /* cable length */
393 regs_buff
[17] = 0; /* extended 10bt distance (not needed) */
394 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
395 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_STATUS
&
396 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
397 regs_buff
[18] = (u32
)phy_data
; /* cable polarity */
398 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
399 IGP01E1000_PHY_PCS_INIT_REG
);
400 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PCS_INIT_REG
&
401 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
402 regs_buff
[19] = (u32
)phy_data
; /* cable polarity */
403 regs_buff
[20] = 0; /* polarity correction enabled (always) */
404 regs_buff
[22] = 0; /* phy receive errors (unavailable) */
405 regs_buff
[23] = regs_buff
[18]; /* mdix mode */
406 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
408 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
409 regs_buff
[13] = (u32
)phy_data
; /* cable length */
410 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
411 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
412 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
413 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
414 regs_buff
[17] = (u32
)phy_data
; /* extended 10bt distance */
415 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
416 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
417 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
418 /* phy receive errors */
419 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
420 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
422 regs_buff
[21] = adapter
->phy_stats
.idle_errors
; /* phy idle errors */
423 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
424 regs_buff
[24] = (u32
)phy_data
; /* phy local receiver status */
425 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
426 if (hw
->mac_type
>= e1000_82540
&&
427 hw
->media_type
== e1000_media_type_copper
) {
428 regs_buff
[26] = er32(MANC
);
432 static int e1000_get_eeprom_len(struct net_device
*netdev
)
434 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
435 struct e1000_hw
*hw
= &adapter
->hw
;
437 return hw
->eeprom
.word_size
* 2;
440 static int e1000_get_eeprom(struct net_device
*netdev
,
441 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
443 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
444 struct e1000_hw
*hw
= &adapter
->hw
;
446 int first_word
, last_word
;
450 if (eeprom
->len
== 0)
453 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
455 first_word
= eeprom
->offset
>> 1;
456 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
458 eeprom_buff
= kmalloc(sizeof(u16
) *
459 (last_word
- first_word
+ 1), GFP_KERNEL
);
463 if (hw
->eeprom
.type
== e1000_eeprom_spi
)
464 ret_val
= e1000_read_eeprom(hw
, first_word
,
465 last_word
- first_word
+ 1,
468 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
469 ret_val
= e1000_read_eeprom(hw
, first_word
+ i
, 1,
476 /* Device's eeprom is always little-endian, word addressable */
477 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
478 le16_to_cpus(&eeprom_buff
[i
]);
480 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1),
487 static int e1000_set_eeprom(struct net_device
*netdev
,
488 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
490 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
491 struct e1000_hw
*hw
= &adapter
->hw
;
494 int max_len
, first_word
, last_word
, ret_val
= 0;
497 if (eeprom
->len
== 0)
500 if (eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
503 max_len
= hw
->eeprom
.word_size
* 2;
505 first_word
= eeprom
->offset
>> 1;
506 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
507 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
511 ptr
= (void *)eeprom_buff
;
513 if (eeprom
->offset
& 1) {
514 /* need read/modify/write of first changed EEPROM word
515 * only the second byte of the word is being modified
517 ret_val
= e1000_read_eeprom(hw
, first_word
, 1,
521 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
522 /* need read/modify/write of last changed EEPROM word
523 * only the first byte of the word is being modified
525 ret_val
= e1000_read_eeprom(hw
, last_word
, 1,
526 &eeprom_buff
[last_word
- first_word
]);
529 /* Device's eeprom is always little-endian, word addressable */
530 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
531 le16_to_cpus(&eeprom_buff
[i
]);
533 memcpy(ptr
, bytes
, eeprom
->len
);
535 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
536 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
538 ret_val
= e1000_write_eeprom(hw
, first_word
,
539 last_word
- first_word
+ 1, eeprom_buff
);
541 /* Update the checksum over the first part of the EEPROM if needed */
542 if ((ret_val
== 0) && (first_word
<= EEPROM_CHECKSUM_REG
))
543 e1000_update_eeprom_checksum(hw
);
549 static void e1000_get_drvinfo(struct net_device
*netdev
,
550 struct ethtool_drvinfo
*drvinfo
)
552 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
554 strlcpy(drvinfo
->driver
, e1000_driver_name
,
555 sizeof(drvinfo
->driver
));
556 strlcpy(drvinfo
->version
, e1000_driver_version
,
557 sizeof(drvinfo
->version
));
559 strlcpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
),
560 sizeof(drvinfo
->bus_info
));
563 static void e1000_get_ringparam(struct net_device
*netdev
,
564 struct ethtool_ringparam
*ring
)
566 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
567 struct e1000_hw
*hw
= &adapter
->hw
;
568 e1000_mac_type mac_type
= hw
->mac_type
;
569 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
570 struct e1000_rx_ring
*rxdr
= adapter
->rx_ring
;
572 ring
->rx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_RXD
:
574 ring
->tx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_TXD
:
576 ring
->rx_pending
= rxdr
->count
;
577 ring
->tx_pending
= txdr
->count
;
580 static int e1000_set_ringparam(struct net_device
*netdev
,
581 struct ethtool_ringparam
*ring
)
583 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
584 struct e1000_hw
*hw
= &adapter
->hw
;
585 e1000_mac_type mac_type
= hw
->mac_type
;
586 struct e1000_tx_ring
*txdr
, *tx_old
;
587 struct e1000_rx_ring
*rxdr
, *rx_old
;
590 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
593 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
596 if (netif_running(adapter
->netdev
))
599 tx_old
= adapter
->tx_ring
;
600 rx_old
= adapter
->rx_ring
;
603 txdr
= kcalloc(adapter
->num_tx_queues
, sizeof(struct e1000_tx_ring
),
608 rxdr
= kcalloc(adapter
->num_rx_queues
, sizeof(struct e1000_rx_ring
),
613 adapter
->tx_ring
= txdr
;
614 adapter
->rx_ring
= rxdr
;
616 rxdr
->count
= max(ring
->rx_pending
, (u32
)E1000_MIN_RXD
);
617 rxdr
->count
= min(rxdr
->count
, (u32
)(mac_type
< e1000_82544
?
618 E1000_MAX_RXD
: E1000_MAX_82544_RXD
));
619 rxdr
->count
= ALIGN(rxdr
->count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
620 txdr
->count
= max(ring
->tx_pending
, (u32
)E1000_MIN_TXD
);
621 txdr
->count
= min(txdr
->count
, (u32
)(mac_type
< e1000_82544
?
622 E1000_MAX_TXD
: E1000_MAX_82544_TXD
));
623 txdr
->count
= ALIGN(txdr
->count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
625 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
626 txdr
[i
].count
= txdr
->count
;
627 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
628 rxdr
[i
].count
= rxdr
->count
;
630 if (netif_running(adapter
->netdev
)) {
631 /* Try to get new resources before deleting old */
632 err
= e1000_setup_all_rx_resources(adapter
);
635 err
= e1000_setup_all_tx_resources(adapter
);
639 /* save the new, restore the old in order to free it,
640 * then restore the new back again
643 adapter
->rx_ring
= rx_old
;
644 adapter
->tx_ring
= tx_old
;
645 e1000_free_all_rx_resources(adapter
);
646 e1000_free_all_tx_resources(adapter
);
649 adapter
->rx_ring
= rxdr
;
650 adapter
->tx_ring
= txdr
;
651 err
= e1000_up(adapter
);
656 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
659 e1000_free_all_rx_resources(adapter
);
661 adapter
->rx_ring
= rx_old
;
662 adapter
->tx_ring
= tx_old
;
669 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
673 static bool reg_pattern_test(struct e1000_adapter
*adapter
, u64
*data
, int reg
,
676 struct e1000_hw
*hw
= &adapter
->hw
;
677 static const u32 test
[] = {
678 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
680 u8 __iomem
*address
= hw
->hw_addr
+ reg
;
684 for (i
= 0; i
< ARRAY_SIZE(test
); i
++) {
685 writel(write
& test
[i
], address
);
686 read
= readl(address
);
687 if (read
!= (write
& test
[i
] & mask
)) {
688 e_err(drv
, "pattern test reg %04X failed: "
689 "got 0x%08X expected 0x%08X\n",
690 reg
, read
, (write
& test
[i
] & mask
));
698 static bool reg_set_and_check(struct e1000_adapter
*adapter
, u64
*data
, int reg
,
701 struct e1000_hw
*hw
= &adapter
->hw
;
702 u8 __iomem
*address
= hw
->hw_addr
+ reg
;
705 writel(write
& mask
, address
);
706 read
= readl(address
);
707 if ((read
& mask
) != (write
& mask
)) {
708 e_err(drv
, "set/check reg %04X test failed: "
709 "got 0x%08X expected 0x%08X\n",
710 reg
, (read
& mask
), (write
& mask
));
717 #define REG_PATTERN_TEST(reg, mask, write) \
719 if (reg_pattern_test(adapter, data, \
720 (hw->mac_type >= e1000_82543) \
721 ? E1000_##reg : E1000_82542_##reg, \
726 #define REG_SET_AND_CHECK(reg, mask, write) \
728 if (reg_set_and_check(adapter, data, \
729 (hw->mac_type >= e1000_82543) \
730 ? E1000_##reg : E1000_82542_##reg, \
735 static int e1000_reg_test(struct e1000_adapter
*adapter
, u64
*data
)
737 u32 value
, before
, after
;
739 struct e1000_hw
*hw
= &adapter
->hw
;
741 /* The status register is Read Only, so a write should fail.
742 * Some bits that get toggled are ignored.
745 /* there are several bits on newer hardware that are r/w */
748 before
= er32(STATUS
);
749 value
= (er32(STATUS
) & toggle
);
750 ew32(STATUS
, toggle
);
751 after
= er32(STATUS
) & toggle
;
752 if (value
!= after
) {
753 e_err(drv
, "failed STATUS register test got: "
754 "0x%08X expected: 0x%08X\n", after
, value
);
758 /* restore previous status */
759 ew32(STATUS
, before
);
761 REG_PATTERN_TEST(FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
762 REG_PATTERN_TEST(FCAH
, 0x0000FFFF, 0xFFFFFFFF);
763 REG_PATTERN_TEST(FCT
, 0x0000FFFF, 0xFFFFFFFF);
764 REG_PATTERN_TEST(VET
, 0x0000FFFF, 0xFFFFFFFF);
766 REG_PATTERN_TEST(RDTR
, 0x0000FFFF, 0xFFFFFFFF);
767 REG_PATTERN_TEST(RDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
768 REG_PATTERN_TEST(RDLEN
, 0x000FFF80, 0x000FFFFF);
769 REG_PATTERN_TEST(RDH
, 0x0000FFFF, 0x0000FFFF);
770 REG_PATTERN_TEST(RDT
, 0x0000FFFF, 0x0000FFFF);
771 REG_PATTERN_TEST(FCRTH
, 0x0000FFF8, 0x0000FFF8);
772 REG_PATTERN_TEST(FCTTV
, 0x0000FFFF, 0x0000FFFF);
773 REG_PATTERN_TEST(TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
774 REG_PATTERN_TEST(TDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
775 REG_PATTERN_TEST(TDLEN
, 0x000FFF80, 0x000FFFFF);
777 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x00000000);
780 REG_SET_AND_CHECK(RCTL
, before
, 0x003FFFFB);
781 REG_SET_AND_CHECK(TCTL
, 0xFFFFFFFF, 0x00000000);
783 if (hw
->mac_type
>= e1000_82543
) {
784 REG_SET_AND_CHECK(RCTL
, before
, 0xFFFFFFFF);
785 REG_PATTERN_TEST(RDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
786 REG_PATTERN_TEST(TXCW
, 0xC000FFFF, 0x0000FFFF);
787 REG_PATTERN_TEST(TDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
788 REG_PATTERN_TEST(TIDV
, 0x0000FFFF, 0x0000FFFF);
789 value
= E1000_RAR_ENTRIES
;
790 for (i
= 0; i
< value
; i
++) {
791 REG_PATTERN_TEST(RA
+ (((i
<< 1) + 1) << 2),
792 0x8003FFFF, 0xFFFFFFFF);
795 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x01FFFFFF);
796 REG_PATTERN_TEST(RDBAL
, 0xFFFFF000, 0xFFFFFFFF);
797 REG_PATTERN_TEST(TXCW
, 0x0000FFFF, 0x0000FFFF);
798 REG_PATTERN_TEST(TDBAL
, 0xFFFFF000, 0xFFFFFFFF);
801 value
= E1000_MC_TBL_SIZE
;
802 for (i
= 0; i
< value
; i
++)
803 REG_PATTERN_TEST(MTA
+ (i
<< 2), 0xFFFFFFFF, 0xFFFFFFFF);
809 static int e1000_eeprom_test(struct e1000_adapter
*adapter
, u64
*data
)
811 struct e1000_hw
*hw
= &adapter
->hw
;
817 /* Read and add up the contents of the EEPROM */
818 for (i
= 0; i
< (EEPROM_CHECKSUM_REG
+ 1); i
++) {
819 if ((e1000_read_eeprom(hw
, i
, 1, &temp
)) < 0) {
826 /* If Checksum is not Correct return error else test passed */
827 if ((checksum
!= (u16
)EEPROM_SUM
) && !(*data
))
833 static irqreturn_t
e1000_test_intr(int irq
, void *data
)
835 struct net_device
*netdev
= (struct net_device
*)data
;
836 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
837 struct e1000_hw
*hw
= &adapter
->hw
;
839 adapter
->test_icr
|= er32(ICR
);
844 static int e1000_intr_test(struct e1000_adapter
*adapter
, u64
*data
)
846 struct net_device
*netdev
= adapter
->netdev
;
848 bool shared_int
= true;
849 u32 irq
= adapter
->pdev
->irq
;
850 struct e1000_hw
*hw
= &adapter
->hw
;
854 /* NOTE: we don't test MSI interrupts here, yet
855 * Hook up test interrupt handler just for this test
857 if (!request_irq(irq
, e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
860 else if (request_irq(irq
, e1000_test_intr
, IRQF_SHARED
,
861 netdev
->name
, netdev
)) {
865 e_info(hw
, "testing %s interrupt\n", (shared_int
?
866 "shared" : "unshared"));
868 /* Disable all the interrupts */
869 ew32(IMC
, 0xFFFFFFFF);
873 /* Test each interrupt */
874 for (; i
< 10; i
++) {
875 /* Interrupt to test */
879 /* Disable the interrupt to be reported in
880 * the cause register and then force the same
881 * interrupt and see if one gets posted. If
882 * an interrupt was posted to the bus, the
885 adapter
->test_icr
= 0;
891 if (adapter
->test_icr
& mask
) {
897 /* Enable the interrupt to be reported in
898 * the cause register and then force the same
899 * interrupt and see if one gets posted. If
900 * an interrupt was not posted to the bus, the
903 adapter
->test_icr
= 0;
909 if (!(adapter
->test_icr
& mask
)) {
915 /* Disable the other interrupts to be reported in
916 * the cause register and then force the other
917 * interrupts and see if any get posted. If
918 * an interrupt was posted to the bus, the
921 adapter
->test_icr
= 0;
922 ew32(IMC
, ~mask
& 0x00007FFF);
923 ew32(ICS
, ~mask
& 0x00007FFF);
927 if (adapter
->test_icr
) {
934 /* Disable all the interrupts */
935 ew32(IMC
, 0xFFFFFFFF);
939 /* Unhook test interrupt handler */
940 free_irq(irq
, netdev
);
945 static void e1000_free_desc_rings(struct e1000_adapter
*adapter
)
947 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
948 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
949 struct pci_dev
*pdev
= adapter
->pdev
;
952 if (txdr
->desc
&& txdr
->buffer_info
) {
953 for (i
= 0; i
< txdr
->count
; i
++) {
954 if (txdr
->buffer_info
[i
].dma
)
955 dma_unmap_single(&pdev
->dev
,
956 txdr
->buffer_info
[i
].dma
,
957 txdr
->buffer_info
[i
].length
,
959 if (txdr
->buffer_info
[i
].skb
)
960 dev_kfree_skb(txdr
->buffer_info
[i
].skb
);
964 if (rxdr
->desc
&& rxdr
->buffer_info
) {
965 for (i
= 0; i
< rxdr
->count
; i
++) {
966 if (rxdr
->buffer_info
[i
].dma
)
967 dma_unmap_single(&pdev
->dev
,
968 rxdr
->buffer_info
[i
].dma
,
971 kfree(rxdr
->buffer_info
[i
].rxbuf
.data
);
976 dma_free_coherent(&pdev
->dev
, txdr
->size
, txdr
->desc
,
981 dma_free_coherent(&pdev
->dev
, rxdr
->size
, rxdr
->desc
,
986 kfree(txdr
->buffer_info
);
987 txdr
->buffer_info
= NULL
;
988 kfree(rxdr
->buffer_info
);
989 rxdr
->buffer_info
= NULL
;
992 static int e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
994 struct e1000_hw
*hw
= &adapter
->hw
;
995 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
996 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
997 struct pci_dev
*pdev
= adapter
->pdev
;
1001 /* Setup Tx descriptor ring and Tx buffers */
1004 txdr
->count
= E1000_DEFAULT_TXD
;
1006 txdr
->buffer_info
= kcalloc(txdr
->count
, sizeof(struct e1000_tx_buffer
),
1008 if (!txdr
->buffer_info
) {
1013 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1014 txdr
->size
= ALIGN(txdr
->size
, 4096);
1015 txdr
->desc
= dma_zalloc_coherent(&pdev
->dev
, txdr
->size
, &txdr
->dma
,
1021 txdr
->next_to_use
= txdr
->next_to_clean
= 0;
1023 ew32(TDBAL
, ((u64
)txdr
->dma
& 0x00000000FFFFFFFF));
1024 ew32(TDBAH
, ((u64
)txdr
->dma
>> 32));
1025 ew32(TDLEN
, txdr
->count
* sizeof(struct e1000_tx_desc
));
1028 ew32(TCTL
, E1000_TCTL_PSP
| E1000_TCTL_EN
|
1029 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1030 E1000_FDX_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1032 for (i
= 0; i
< txdr
->count
; i
++) {
1033 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*txdr
, i
);
1034 struct sk_buff
*skb
;
1035 unsigned int size
= 1024;
1037 skb
= alloc_skb(size
, GFP_KERNEL
);
1043 txdr
->buffer_info
[i
].skb
= skb
;
1044 txdr
->buffer_info
[i
].length
= skb
->len
;
1045 txdr
->buffer_info
[i
].dma
=
1046 dma_map_single(&pdev
->dev
, skb
->data
, skb
->len
,
1048 if (dma_mapping_error(&pdev
->dev
, txdr
->buffer_info
[i
].dma
)) {
1052 tx_desc
->buffer_addr
= cpu_to_le64(txdr
->buffer_info
[i
].dma
);
1053 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1054 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1055 E1000_TXD_CMD_IFCS
|
1057 tx_desc
->upper
.data
= 0;
1060 /* Setup Rx descriptor ring and Rx buffers */
1063 rxdr
->count
= E1000_DEFAULT_RXD
;
1065 rxdr
->buffer_info
= kcalloc(rxdr
->count
, sizeof(struct e1000_rx_buffer
),
1067 if (!rxdr
->buffer_info
) {
1072 rxdr
->size
= rxdr
->count
* sizeof(struct e1000_rx_desc
);
1073 rxdr
->desc
= dma_zalloc_coherent(&pdev
->dev
, rxdr
->size
, &rxdr
->dma
,
1079 rxdr
->next_to_use
= rxdr
->next_to_clean
= 0;
1082 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1083 ew32(RDBAL
, ((u64
)rxdr
->dma
& 0xFFFFFFFF));
1084 ew32(RDBAH
, ((u64
)rxdr
->dma
>> 32));
1085 ew32(RDLEN
, rxdr
->size
);
1088 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1089 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1090 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1093 for (i
= 0; i
< rxdr
->count
; i
++) {
1094 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rxdr
, i
);
1097 buf
= kzalloc(E1000_RXBUFFER_2048
+ NET_SKB_PAD
+ NET_IP_ALIGN
,
1103 rxdr
->buffer_info
[i
].rxbuf
.data
= buf
;
1105 rxdr
->buffer_info
[i
].dma
=
1106 dma_map_single(&pdev
->dev
,
1107 buf
+ NET_SKB_PAD
+ NET_IP_ALIGN
,
1108 E1000_RXBUFFER_2048
, DMA_FROM_DEVICE
);
1109 if (dma_mapping_error(&pdev
->dev
, rxdr
->buffer_info
[i
].dma
)) {
1113 rx_desc
->buffer_addr
= cpu_to_le64(rxdr
->buffer_info
[i
].dma
);
1119 e1000_free_desc_rings(adapter
);
1123 static void e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1125 struct e1000_hw
*hw
= &adapter
->hw
;
1127 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1128 e1000_write_phy_reg(hw
, 29, 0x001F);
1129 e1000_write_phy_reg(hw
, 30, 0x8FFC);
1130 e1000_write_phy_reg(hw
, 29, 0x001A);
1131 e1000_write_phy_reg(hw
, 30, 0x8FF0);
1134 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter
*adapter
)
1136 struct e1000_hw
*hw
= &adapter
->hw
;
1139 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1140 * Extended PHY Specific Control Register to 25MHz clock. This
1141 * value defaults back to a 2.5MHz clock when the PHY is reset.
1143 e1000_read_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1144 phy_reg
|= M88E1000_EPSCR_TX_CLK_25
;
1145 e1000_write_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_reg
);
1147 /* In addition, because of the s/w reset above, we need to enable
1148 * CRS on TX. This must be set for both full and half duplex
1151 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1152 phy_reg
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1153 e1000_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1156 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter
*adapter
)
1158 struct e1000_hw
*hw
= &adapter
->hw
;
1162 /* Setup the Device Control Register for PHY loopback test. */
1164 ctrl_reg
= er32(CTRL
);
1165 ctrl_reg
|= (E1000_CTRL_ILOS
| /* Invert Loss-Of-Signal */
1166 E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1167 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1168 E1000_CTRL_SPD_1000
| /* Force Speed to 1000 */
1169 E1000_CTRL_FD
); /* Force Duplex to FULL */
1171 ew32(CTRL
, ctrl_reg
);
1173 /* Read the PHY Specific Control Register (0x10) */
1174 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1176 /* Clear Auto-Crossover bits in PHY Specific Control Register
1179 phy_reg
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1180 e1000_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1182 /* Perform software reset on the PHY */
1183 e1000_phy_reset(hw
);
1185 /* Have to setup TX_CLK and TX_CRS after software reset */
1186 e1000_phy_reset_clk_and_crs(adapter
);
1188 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x8100);
1190 /* Wait for reset to complete. */
1193 /* Have to setup TX_CLK and TX_CRS after software reset */
1194 e1000_phy_reset_clk_and_crs(adapter
);
1196 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1197 e1000_phy_disable_receiver(adapter
);
1199 /* Set the loopback bit in the PHY control register. */
1200 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1201 phy_reg
|= MII_CR_LOOPBACK
;
1202 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1204 /* Setup TX_CLK and TX_CRS one more time. */
1205 e1000_phy_reset_clk_and_crs(adapter
);
1207 /* Check Phy Configuration */
1208 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1209 if (phy_reg
!= 0x4100)
1212 e1000_read_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1213 if (phy_reg
!= 0x0070)
1216 e1000_read_phy_reg(hw
, 29, &phy_reg
);
1217 if (phy_reg
!= 0x001A)
1223 static int e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1225 struct e1000_hw
*hw
= &adapter
->hw
;
1229 hw
->autoneg
= false;
1231 if (hw
->phy_type
== e1000_phy_m88
) {
1232 /* Auto-MDI/MDIX Off */
1233 e1000_write_phy_reg(hw
,
1234 M88E1000_PHY_SPEC_CTRL
, 0x0808);
1235 /* reset to update Auto-MDI/MDIX */
1236 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x9140);
1238 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x8140);
1241 ctrl_reg
= er32(CTRL
);
1243 /* force 1000, set loopback */
1244 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x4140);
1246 /* Now set up the MAC to the same speed/duplex as the PHY. */
1247 ctrl_reg
= er32(CTRL
);
1248 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1249 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1250 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1251 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1252 E1000_CTRL_FD
); /* Force Duplex to FULL */
1254 if (hw
->media_type
== e1000_media_type_copper
&&
1255 hw
->phy_type
== e1000_phy_m88
)
1256 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1258 /* Set the ILOS bit on the fiber Nic is half
1259 * duplex link is detected.
1261 stat_reg
= er32(STATUS
);
1262 if ((stat_reg
& E1000_STATUS_FD
) == 0)
1263 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1266 ew32(CTRL
, ctrl_reg
);
1268 /* Disable the receiver on the PHY so when a cable is plugged in, the
1269 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1271 if (hw
->phy_type
== e1000_phy_m88
)
1272 e1000_phy_disable_receiver(adapter
);
1279 static int e1000_set_phy_loopback(struct e1000_adapter
*adapter
)
1281 struct e1000_hw
*hw
= &adapter
->hw
;
1285 switch (hw
->mac_type
) {
1287 if (hw
->media_type
== e1000_media_type_copper
) {
1288 /* Attempt to setup Loopback mode on Non-integrated PHY.
1289 * Some PHY registers get corrupted at random, so
1290 * attempt this 10 times.
1292 while (e1000_nonintegrated_phy_loopback(adapter
) &&
1302 case e1000_82545_rev_3
:
1304 case e1000_82546_rev_3
:
1306 case e1000_82541_rev_2
:
1308 case e1000_82547_rev_2
:
1309 return e1000_integrated_phy_loopback(adapter
);
1311 /* Default PHY loopback work is to read the MII
1312 * control register and assert bit 14 (loopback mode).
1314 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1315 phy_reg
|= MII_CR_LOOPBACK
;
1316 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1323 static int e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1325 struct e1000_hw
*hw
= &adapter
->hw
;
1328 if (hw
->media_type
== e1000_media_type_fiber
||
1329 hw
->media_type
== e1000_media_type_internal_serdes
) {
1330 switch (hw
->mac_type
) {
1333 case e1000_82545_rev_3
:
1334 case e1000_82546_rev_3
:
1335 return e1000_set_phy_loopback(adapter
);
1338 rctl
|= E1000_RCTL_LBM_TCVR
;
1342 } else if (hw
->media_type
== e1000_media_type_copper
) {
1343 return e1000_set_phy_loopback(adapter
);
1349 static void e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1351 struct e1000_hw
*hw
= &adapter
->hw
;
1356 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1359 switch (hw
->mac_type
) {
1362 case e1000_82545_rev_3
:
1363 case e1000_82546_rev_3
:
1366 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1367 if (phy_reg
& MII_CR_LOOPBACK
) {
1368 phy_reg
&= ~MII_CR_LOOPBACK
;
1369 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1370 e1000_phy_reset(hw
);
1376 static void e1000_create_lbtest_frame(struct sk_buff
*skb
,
1377 unsigned int frame_size
)
1379 memset(skb
->data
, 0xFF, frame_size
);
1381 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1382 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1383 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1386 static int e1000_check_lbtest_frame(const unsigned char *data
,
1387 unsigned int frame_size
)
1390 if (*(data
+ 3) == 0xFF) {
1391 if ((*(data
+ frame_size
/ 2 + 10) == 0xBE) &&
1392 (*(data
+ frame_size
/ 2 + 12) == 0xAF)) {
1399 static int e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1401 struct e1000_hw
*hw
= &adapter
->hw
;
1402 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1403 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1404 struct pci_dev
*pdev
= adapter
->pdev
;
1405 int i
, j
, k
, l
, lc
, good_cnt
, ret_val
= 0;
1408 ew32(RDT
, rxdr
->count
- 1);
1410 /* Calculate the loop count based on the largest descriptor ring
1411 * The idea is to wrap the largest ring a number of times using 64
1412 * send/receive pairs during each loop
1415 if (rxdr
->count
<= txdr
->count
)
1416 lc
= ((txdr
->count
/ 64) * 2) + 1;
1418 lc
= ((rxdr
->count
/ 64) * 2) + 1;
1421 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1422 for (i
= 0; i
< 64; i
++) { /* send the packets */
1423 e1000_create_lbtest_frame(txdr
->buffer_info
[i
].skb
,
1425 dma_sync_single_for_device(&pdev
->dev
,
1426 txdr
->buffer_info
[k
].dma
,
1427 txdr
->buffer_info
[k
].length
,
1429 if (unlikely(++k
== txdr
->count
))
1433 E1000_WRITE_FLUSH();
1435 time
= jiffies
; /* set the start time for the receive */
1437 do { /* receive the sent packets */
1438 dma_sync_single_for_cpu(&pdev
->dev
,
1439 rxdr
->buffer_info
[l
].dma
,
1440 E1000_RXBUFFER_2048
,
1443 ret_val
= e1000_check_lbtest_frame(
1444 rxdr
->buffer_info
[l
].rxbuf
.data
+
1445 NET_SKB_PAD
+ NET_IP_ALIGN
,
1449 if (unlikely(++l
== rxdr
->count
))
1451 /* time + 20 msecs (200 msecs on 2.4) is more than
1452 * enough time to complete the receives, if it's
1453 * exceeded, break and error off
1455 } while (good_cnt
< 64 && time_after(time
+ 20, jiffies
));
1457 if (good_cnt
!= 64) {
1458 ret_val
= 13; /* ret_val is the same as mis-compare */
1461 if (time_after_eq(jiffies
, time
+ 2)) {
1462 ret_val
= 14; /* error code for time out error */
1465 } /* end loop count loop */
1469 static int e1000_loopback_test(struct e1000_adapter
*adapter
, u64
*data
)
1471 *data
= e1000_setup_desc_rings(adapter
);
1474 *data
= e1000_setup_loopback_test(adapter
);
1477 *data
= e1000_run_loopback_test(adapter
);
1478 e1000_loopback_cleanup(adapter
);
1481 e1000_free_desc_rings(adapter
);
1486 static int e1000_link_test(struct e1000_adapter
*adapter
, u64
*data
)
1488 struct e1000_hw
*hw
= &adapter
->hw
;
1490 if (hw
->media_type
== e1000_media_type_internal_serdes
) {
1493 hw
->serdes_has_link
= false;
1495 /* On some blade server designs, link establishment
1496 * could take as long as 2-3 minutes
1499 e1000_check_for_link(hw
);
1500 if (hw
->serdes_has_link
)
1503 } while (i
++ < 3750);
1507 e1000_check_for_link(hw
);
1508 if (hw
->autoneg
) /* if auto_neg is set wait for it */
1511 if (!(er32(STATUS
) & E1000_STATUS_LU
))
1517 static int e1000_get_sset_count(struct net_device
*netdev
, int sset
)
1521 return E1000_TEST_LEN
;
1523 return E1000_STATS_LEN
;
1529 static void e1000_diag_test(struct net_device
*netdev
,
1530 struct ethtool_test
*eth_test
, u64
*data
)
1532 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1533 struct e1000_hw
*hw
= &adapter
->hw
;
1534 bool if_running
= netif_running(netdev
);
1536 set_bit(__E1000_TESTING
, &adapter
->flags
);
1537 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1540 /* save speed, duplex, autoneg settings */
1541 u16 autoneg_advertised
= hw
->autoneg_advertised
;
1542 u8 forced_speed_duplex
= hw
->forced_speed_duplex
;
1543 u8 autoneg
= hw
->autoneg
;
1545 e_info(hw
, "offline testing starting\n");
1547 /* Link test performed before hardware reset so autoneg doesn't
1548 * interfere with test result
1550 if (e1000_link_test(adapter
, &data
[4]))
1551 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1554 /* indicate we're in test mode */
1555 e1000_close(netdev
);
1557 e1000_reset(adapter
);
1559 if (e1000_reg_test(adapter
, &data
[0]))
1560 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1562 e1000_reset(adapter
);
1563 if (e1000_eeprom_test(adapter
, &data
[1]))
1564 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1566 e1000_reset(adapter
);
1567 if (e1000_intr_test(adapter
, &data
[2]))
1568 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1570 e1000_reset(adapter
);
1571 /* make sure the phy is powered up */
1572 e1000_power_up_phy(adapter
);
1573 if (e1000_loopback_test(adapter
, &data
[3]))
1574 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1576 /* restore speed, duplex, autoneg settings */
1577 hw
->autoneg_advertised
= autoneg_advertised
;
1578 hw
->forced_speed_duplex
= forced_speed_duplex
;
1579 hw
->autoneg
= autoneg
;
1581 e1000_reset(adapter
);
1582 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1586 e_info(hw
, "online testing starting\n");
1588 if (e1000_link_test(adapter
, &data
[4]))
1589 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1591 /* Online tests aren't run; pass by default */
1597 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1599 msleep_interruptible(4 * 1000);
1602 static int e1000_wol_exclusion(struct e1000_adapter
*adapter
,
1603 struct ethtool_wolinfo
*wol
)
1605 struct e1000_hw
*hw
= &adapter
->hw
;
1606 int retval
= 1; /* fail by default */
1608 switch (hw
->device_id
) {
1609 case E1000_DEV_ID_82542
:
1610 case E1000_DEV_ID_82543GC_FIBER
:
1611 case E1000_DEV_ID_82543GC_COPPER
:
1612 case E1000_DEV_ID_82544EI_FIBER
:
1613 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
1614 case E1000_DEV_ID_82545EM_FIBER
:
1615 case E1000_DEV_ID_82545EM_COPPER
:
1616 case E1000_DEV_ID_82546GB_QUAD_COPPER
:
1617 case E1000_DEV_ID_82546GB_PCIE
:
1618 /* these don't support WoL at all */
1621 case E1000_DEV_ID_82546EB_FIBER
:
1622 case E1000_DEV_ID_82546GB_FIBER
:
1623 /* Wake events not supported on port B */
1624 if (er32(STATUS
) & E1000_STATUS_FUNC_1
) {
1628 /* return success for non excluded adapter ports */
1631 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1632 /* quad port adapters only support WoL on port A */
1633 if (!adapter
->quad_port_a
) {
1637 /* return success for non excluded adapter ports */
1641 /* dual port cards only support WoL on port A from now on
1642 * unless it was enabled in the eeprom for port B
1643 * so exclude FUNC_1 ports from having WoL enabled
1645 if (er32(STATUS
) & E1000_STATUS_FUNC_1
&&
1646 !adapter
->eeprom_wol
) {
1657 static void e1000_get_wol(struct net_device
*netdev
,
1658 struct ethtool_wolinfo
*wol
)
1660 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1661 struct e1000_hw
*hw
= &adapter
->hw
;
1663 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
| WAKE_BCAST
| WAKE_MAGIC
;
1666 /* this function will set ->supported = 0 and return 1 if wol is not
1667 * supported by this hardware
1669 if (e1000_wol_exclusion(adapter
, wol
) ||
1670 !device_can_wakeup(&adapter
->pdev
->dev
))
1673 /* apply any specific unsupported masks here */
1674 switch (hw
->device_id
) {
1675 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1676 /* KSP3 does not support UCAST wake-ups */
1677 wol
->supported
&= ~WAKE_UCAST
;
1679 if (adapter
->wol
& E1000_WUFC_EX
)
1680 e_err(drv
, "Interface does not support directed "
1681 "(unicast) frame wake-up packets\n");
1687 if (adapter
->wol
& E1000_WUFC_EX
)
1688 wol
->wolopts
|= WAKE_UCAST
;
1689 if (adapter
->wol
& E1000_WUFC_MC
)
1690 wol
->wolopts
|= WAKE_MCAST
;
1691 if (adapter
->wol
& E1000_WUFC_BC
)
1692 wol
->wolopts
|= WAKE_BCAST
;
1693 if (adapter
->wol
& E1000_WUFC_MAG
)
1694 wol
->wolopts
|= WAKE_MAGIC
;
1697 static int e1000_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1699 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1700 struct e1000_hw
*hw
= &adapter
->hw
;
1702 if (wol
->wolopts
& (WAKE_PHY
| WAKE_ARP
| WAKE_MAGICSECURE
))
1705 if (e1000_wol_exclusion(adapter
, wol
) ||
1706 !device_can_wakeup(&adapter
->pdev
->dev
))
1707 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1709 switch (hw
->device_id
) {
1710 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1711 if (wol
->wolopts
& WAKE_UCAST
) {
1712 e_err(drv
, "Interface does not support directed "
1713 "(unicast) frame wake-up packets\n");
1721 /* these settings will always override what we currently have */
1724 if (wol
->wolopts
& WAKE_UCAST
)
1725 adapter
->wol
|= E1000_WUFC_EX
;
1726 if (wol
->wolopts
& WAKE_MCAST
)
1727 adapter
->wol
|= E1000_WUFC_MC
;
1728 if (wol
->wolopts
& WAKE_BCAST
)
1729 adapter
->wol
|= E1000_WUFC_BC
;
1730 if (wol
->wolopts
& WAKE_MAGIC
)
1731 adapter
->wol
|= E1000_WUFC_MAG
;
1733 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1738 static int e1000_set_phys_id(struct net_device
*netdev
,
1739 enum ethtool_phys_id_state state
)
1741 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1742 struct e1000_hw
*hw
= &adapter
->hw
;
1745 case ETHTOOL_ID_ACTIVE
:
1746 e1000_setup_led(hw
);
1753 case ETHTOOL_ID_OFF
:
1757 case ETHTOOL_ID_INACTIVE
:
1758 e1000_cleanup_led(hw
);
1764 static int e1000_get_coalesce(struct net_device
*netdev
,
1765 struct ethtool_coalesce
*ec
)
1767 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1769 if (adapter
->hw
.mac_type
< e1000_82545
)
1772 if (adapter
->itr_setting
<= 4)
1773 ec
->rx_coalesce_usecs
= adapter
->itr_setting
;
1775 ec
->rx_coalesce_usecs
= 1000000 / adapter
->itr_setting
;
1780 static int e1000_set_coalesce(struct net_device
*netdev
,
1781 struct ethtool_coalesce
*ec
)
1783 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1784 struct e1000_hw
*hw
= &adapter
->hw
;
1786 if (hw
->mac_type
< e1000_82545
)
1789 if ((ec
->rx_coalesce_usecs
> E1000_MAX_ITR_USECS
) ||
1790 ((ec
->rx_coalesce_usecs
> 4) &&
1791 (ec
->rx_coalesce_usecs
< E1000_MIN_ITR_USECS
)) ||
1792 (ec
->rx_coalesce_usecs
== 2))
1795 if (ec
->rx_coalesce_usecs
== 4) {
1796 adapter
->itr
= adapter
->itr_setting
= 4;
1797 } else if (ec
->rx_coalesce_usecs
<= 3) {
1798 adapter
->itr
= 20000;
1799 adapter
->itr_setting
= ec
->rx_coalesce_usecs
;
1801 adapter
->itr
= (1000000 / ec
->rx_coalesce_usecs
);
1802 adapter
->itr_setting
= adapter
->itr
& ~3;
1805 if (adapter
->itr_setting
!= 0)
1806 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1813 static int e1000_nway_reset(struct net_device
*netdev
)
1815 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1817 if (netif_running(netdev
))
1818 e1000_reinit_locked(adapter
);
1822 static void e1000_get_ethtool_stats(struct net_device
*netdev
,
1823 struct ethtool_stats
*stats
, u64
*data
)
1825 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1827 const struct e1000_stats
*stat
= e1000_gstrings_stats
;
1829 e1000_update_stats(adapter
);
1830 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++, stat
++) {
1833 switch (stat
->type
) {
1835 p
= (char *)netdev
+ stat
->stat_offset
;
1838 p
= (char *)adapter
+ stat
->stat_offset
;
1841 netdev_WARN_ONCE(netdev
, "Invalid E1000 stat type: %u index %d\n",
1846 if (stat
->sizeof_stat
== sizeof(u64
))
1847 data
[i
] = *(u64
*)p
;
1849 data
[i
] = *(u32
*)p
;
1851 /* BUG_ON(i != E1000_STATS_LEN); */
1854 static void e1000_get_strings(struct net_device
*netdev
, u32 stringset
,
1860 switch (stringset
) {
1862 memcpy(data
, e1000_gstrings_test
, sizeof(e1000_gstrings_test
));
1865 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1866 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
1868 p
+= ETH_GSTRING_LEN
;
1870 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1875 static const struct ethtool_ops e1000_ethtool_ops
= {
1876 .get_drvinfo
= e1000_get_drvinfo
,
1877 .get_regs_len
= e1000_get_regs_len
,
1878 .get_regs
= e1000_get_regs
,
1879 .get_wol
= e1000_get_wol
,
1880 .set_wol
= e1000_set_wol
,
1881 .get_msglevel
= e1000_get_msglevel
,
1882 .set_msglevel
= e1000_set_msglevel
,
1883 .nway_reset
= e1000_nway_reset
,
1884 .get_link
= e1000_get_link
,
1885 .get_eeprom_len
= e1000_get_eeprom_len
,
1886 .get_eeprom
= e1000_get_eeprom
,
1887 .set_eeprom
= e1000_set_eeprom
,
1888 .get_ringparam
= e1000_get_ringparam
,
1889 .set_ringparam
= e1000_set_ringparam
,
1890 .get_pauseparam
= e1000_get_pauseparam
,
1891 .set_pauseparam
= e1000_set_pauseparam
,
1892 .self_test
= e1000_diag_test
,
1893 .get_strings
= e1000_get_strings
,
1894 .set_phys_id
= e1000_set_phys_id
,
1895 .get_ethtool_stats
= e1000_get_ethtool_stats
,
1896 .get_sset_count
= e1000_get_sset_count
,
1897 .get_coalesce
= e1000_get_coalesce
,
1898 .set_coalesce
= e1000_set_coalesce
,
1899 .get_ts_info
= ethtool_op_get_ts_info
,
1900 .get_link_ksettings
= e1000_get_link_ksettings
,
1901 .set_link_ksettings
= e1000_set_link_ksettings
,
1904 void e1000_set_ethtool_ops(struct net_device
*netdev
)
1906 netdev
->ethtool_ops
= &e1000_ethtool_ops
;