1 /*******************************************************************************
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4 * Copyright(c) 2013 - 2016 Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 ******************************************************************************/
30 /* Interrupt Throttling and Rate Limiting Goodies */
32 #define I40E_MAX_ITR 0x0FF0 /* reg uses 2 usec resolution */
33 #define I40E_MIN_ITR 0x0001 /* reg uses 2 usec resolution */
34 #define I40E_ITR_100K 0x0005
35 #define I40E_ITR_50K 0x000A
36 #define I40E_ITR_20K 0x0019
37 #define I40E_ITR_18K 0x001B
38 #define I40E_ITR_8K 0x003E
39 #define I40E_ITR_4K 0x007A
40 #define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */
41 #define I40E_ITR_RX_DEF (ITR_REG_TO_USEC(I40E_ITR_20K) | \
43 #define I40E_ITR_TX_DEF (ITR_REG_TO_USEC(I40E_ITR_20K) | \
45 #define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */
46 #define I40E_MIN_INT_RATE 250 /* ~= 1000000 / (I40E_MAX_ITR * 2) */
47 #define I40E_MAX_INT_RATE 500000 /* == 1000000 / (I40E_MIN_ITR * 2) */
48 #define I40E_DEFAULT_IRQ_WORK 256
49 #define ITR_TO_REG(setting) ((setting & ~I40E_ITR_DYNAMIC) >> 1)
50 #define ITR_IS_DYNAMIC(setting) (!!(setting & I40E_ITR_DYNAMIC))
51 #define ITR_REG_TO_USEC(itr_reg) (itr_reg << 1)
52 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
53 * the value of the rate limit is non-zero
55 #define INTRL_ENA BIT(6)
56 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
57 #define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0)
58 #define I40E_INTRL_8K 125 /* 8000 ints/sec */
59 #define I40E_INTRL_62K 16 /* 62500 ints/sec */
60 #define I40E_INTRL_83K 12 /* 83333 ints/sec */
62 #define I40E_QUEUE_END_OF_LIST 0x7FF
64 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
65 * registers and QINT registers or more generally anywhere in the manual
66 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
67 * register but instead is a special value meaning "don't update" ITR0/1/2.
73 I40E_ITR_NONE
= 3 /* ITR_NONE must not be used as an index */
76 /* these are indexes into ITRN registers */
77 #define I40E_RX_ITR I40E_IDX_ITR0
78 #define I40E_TX_ITR I40E_IDX_ITR1
79 #define I40E_PE_ITR I40E_IDX_ITR2
81 /* Supported RSS offloads */
82 #define I40E_DEFAULT_RSS_HENA ( \
83 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
84 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
85 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
86 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
87 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
88 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
89 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
90 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
91 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
92 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
93 BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
95 #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
96 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
97 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
98 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
99 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
100 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
101 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
103 /* Supported Rx Buffer Sizes (a multiple of 128) */
104 #define I40E_RXBUFFER_256 256
105 #define I40E_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */
106 #define I40E_RXBUFFER_2048 2048
107 #define I40E_RXBUFFER_3072 3072 /* Used for large frames w/ padding */
108 #define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */
110 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
111 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
112 * this adds up to 512 bytes of extra data meaning the smallest allocation
113 * we could have is 1K.
114 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
115 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
117 #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
118 #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
119 #define i40e_rx_desc i40e_32byte_rx_desc
121 #define I40E_RX_DMA_ATTR \
122 (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
124 /* Attempt to maximize the headroom available for incoming frames. We
125 * use a 2K buffer for receives and need 1536/1534 to store the data for
126 * the frame. This leaves us with 512 bytes of room. From that we need
127 * to deduct the space needed for the shared info and the padding needed
128 * to IP align the frame.
130 * Note: For cache line sizes 256 or larger this value is going to end
131 * up negative. In these cases we should fall back to the legacy
134 #if (PAGE_SIZE < 8192)
135 #define I40E_2K_TOO_SMALL_WITH_PADDING \
136 ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
138 static inline int i40e_compute_pad(int rx_buf_len
)
140 int page_size
, pad_size
;
142 page_size
= ALIGN(rx_buf_len
, PAGE_SIZE
/ 2);
143 pad_size
= SKB_WITH_OVERHEAD(page_size
) - rx_buf_len
;
148 static inline int i40e_skb_pad(void)
152 /* If a 2K buffer cannot handle a standard Ethernet frame then
153 * optimize padding for a 3K buffer instead of a 1.5K buffer.
155 * For a 3K buffer we need to add enough padding to allow for
156 * tailroom due to NET_IP_ALIGN possibly shifting us out of
157 * cache-line alignment.
159 if (I40E_2K_TOO_SMALL_WITH_PADDING
)
160 rx_buf_len
= I40E_RXBUFFER_3072
+ SKB_DATA_ALIGN(NET_IP_ALIGN
);
162 rx_buf_len
= I40E_RXBUFFER_1536
;
164 /* if needed make room for NET_IP_ALIGN */
165 rx_buf_len
-= NET_IP_ALIGN
;
167 return i40e_compute_pad(rx_buf_len
);
170 #define I40E_SKB_PAD i40e_skb_pad()
172 #define I40E_2K_TOO_SMALL_WITH_PADDING false
173 #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
177 * i40e_test_staterr - tests bits in Rx descriptor status and error fields
178 * @rx_desc: pointer to receive descriptor (in le64 format)
179 * @stat_err_bits: value to mask
181 * This function does some fast chicanery in order to return the
182 * value of the mask which is really only used for boolean tests.
183 * The status_error_len doesn't need to be shifted because it begins
186 static inline bool i40e_test_staterr(union i40e_rx_desc
*rx_desc
,
187 const u64 stat_err_bits
)
189 return !!(rx_desc
->wb
.qword1
.status_error_len
&
190 cpu_to_le64(stat_err_bits
));
193 /* How many Rx Buffers do we bundle into one write to the hardware ? */
194 #define I40E_RX_BUFFER_WRITE 32 /* Must be power of 2 */
195 #define I40E_RX_INCREMENT(r, i) \
198 if ((i) == (r)->count) \
200 r->next_to_clean = i; \
203 #define I40E_RX_NEXT_DESC(r, i, n) \
206 if ((i) == (r)->count) \
208 (n) = I40E_RX_DESC((r), (i)); \
211 #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n) \
213 I40E_RX_NEXT_DESC((r), (i), (n)); \
217 #define I40E_MAX_BUFFER_TXD 8
218 #define I40E_MIN_TX_LEN 17
220 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
221 * In order to align with the read requests we will align the value to
222 * the nearest 4K which represents our maximum read request size.
224 #define I40E_MAX_READ_REQ_SIZE 4096
225 #define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1)
226 #define I40E_MAX_DATA_PER_TXD_ALIGNED \
227 (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
230 * i40e_txd_use_count - estimate the number of descriptors needed for Tx
231 * @size: transmit request size in bytes
233 * Due to hardware alignment restrictions (4K alignment), we need to
234 * assume that we can have no more than 12K of data per descriptor, even
235 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
236 * Thus, we need to divide by 12K. But division is slow! Instead,
237 * we decompose the operation into shifts and one relatively cheap
238 * multiply operation.
240 * To divide by 12K, we first divide by 4K, then divide by 3:
241 * To divide by 4K, shift right by 12 bits
242 * To divide by 3, multiply by 85, then divide by 256
243 * (Divide by 256 is done by shifting right by 8 bits)
244 * Finally, we add one to round up. Because 256 isn't an exact multiple of
245 * 3, we'll underestimate near each multiple of 12K. This is actually more
246 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
247 * segment. For our purposes this is accurate out to 1M which is orders of
248 * magnitude greater than our largest possible GSO size.
250 * This would then be implemented as:
251 * return (((size >> 12) * 85) >> 8) + 1;
253 * Since multiplication and division are commutative, we can reorder
255 * return ((size * 85) >> 20) + 1;
257 static inline unsigned int i40e_txd_use_count(unsigned int size
)
259 return ((size
* 85) >> 20) + 1;
262 /* Tx Descriptors needed, worst case */
263 #define DESC_NEEDED (MAX_SKB_FRAGS + 6)
264 #define I40E_MIN_DESC_PENDING 4
266 #define I40E_TX_FLAGS_HW_VLAN BIT(1)
267 #define I40E_TX_FLAGS_SW_VLAN BIT(2)
268 #define I40E_TX_FLAGS_TSO BIT(3)
269 #define I40E_TX_FLAGS_IPV4 BIT(4)
270 #define I40E_TX_FLAGS_IPV6 BIT(5)
271 #define I40E_TX_FLAGS_FCCRC BIT(6)
272 #define I40E_TX_FLAGS_FSO BIT(7)
273 #define I40E_TX_FLAGS_FD_SB BIT(9)
274 #define I40E_TX_FLAGS_VXLAN_TUNNEL BIT(10)
275 #define I40E_TX_FLAGS_VLAN_MASK 0xffff0000
276 #define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000
277 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29
278 #define I40E_TX_FLAGS_VLAN_SHIFT 16
280 struct i40e_tx_buffer
{
281 struct i40e_tx_desc
*next_to_watch
;
286 unsigned int bytecount
;
287 unsigned short gso_segs
;
289 DEFINE_DMA_UNMAP_ADDR(dma
);
290 DEFINE_DMA_UNMAP_LEN(len
);
294 struct i40e_rx_buffer
{
297 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
305 struct i40e_queue_stats
{
310 struct i40e_tx_queue_stats
{
317 u64 tx_lost_interrupt
;
320 struct i40e_rx_queue_stats
{
322 u64 alloc_page_failed
;
323 u64 alloc_buff_failed
;
324 u64 page_reuse_count
;
328 enum i40e_ring_state_t
{
329 __I40E_TX_FDIR_INIT_DONE
,
330 __I40E_TX_XPS_INIT_DONE
,
331 __I40E_RING_STATE_NBITS
/* must be last */
334 /* some useful defines for virtchannel interface, which
335 * is the only remaining user of header split
337 #define I40E_RX_DTYPE_NO_SPLIT 0
338 #define I40E_RX_DTYPE_HEADER_SPLIT 1
339 #define I40E_RX_DTYPE_SPLIT_ALWAYS 2
340 #define I40E_RX_SPLIT_L2 0x1
341 #define I40E_RX_SPLIT_IP 0x2
342 #define I40E_RX_SPLIT_TCP_UDP 0x4
343 #define I40E_RX_SPLIT_SCTP 0x8
345 /* struct that defines a descriptor ring, associated with a VSI */
347 struct i40e_ring
*next
; /* pointer to next ring in q_vector */
348 void *desc
; /* Descriptor ring memory */
349 struct device
*dev
; /* Used for DMA mapping */
350 struct net_device
*netdev
; /* netdev ring maps to */
352 struct i40e_tx_buffer
*tx_bi
;
353 struct i40e_rx_buffer
*rx_bi
;
355 DECLARE_BITMAP(state
, __I40E_RING_STATE_NBITS
);
356 u16 queue_index
; /* Queue number of ring */
357 u8 dcb_tc
; /* Traffic class of ring */
360 /* high bit set means dynamic, use accessors routines to read/write.
361 * hardware only supports 2us resolution for the ITR registers.
362 * these values always store the USER setting, and must be converted
363 * before programming to a register.
368 u16 count
; /* Number of descriptors */
369 u16 reg_idx
; /* HW register index of the ring */
372 /* used in interrupt processing */
379 bool ring_active
; /* is ring online or not */
380 bool arm_wb
; /* do something to arm write back */
384 #define I40E_TXR_FLAGS_WB_ON_ITR BIT(0)
385 #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1)
388 struct i40e_queue_stats stats
;
389 struct u64_stats_sync syncp
;
391 struct i40e_tx_queue_stats tx_stats
;
392 struct i40e_rx_queue_stats rx_stats
;
395 unsigned int size
; /* length of descriptor ring in bytes */
396 dma_addr_t dma
; /* physical address of ring */
398 struct i40e_vsi
*vsi
; /* Backreference to associated VSI */
399 struct i40e_q_vector
*q_vector
; /* Backreference to associated vector */
401 struct rcu_head rcu
; /* to avoid race on free */
403 struct sk_buff
*skb
; /* When i40evf_clean_rx_ring_irq() must
404 * return before it sees the EOP for
405 * the current packet, we save that skb
406 * here and resume receiving this
407 * packet the next time
408 * i40evf_clean_rx_ring_irq() is called
411 } ____cacheline_internodealigned_in_smp
;
413 static inline bool ring_uses_build_skb(struct i40e_ring
*ring
)
415 return !!(ring
->flags
& I40E_RXR_FLAGS_BUILD_SKB_ENABLED
);
418 static inline void set_ring_build_skb_enabled(struct i40e_ring
*ring
)
420 ring
->flags
|= I40E_RXR_FLAGS_BUILD_SKB_ENABLED
;
423 static inline void clear_ring_build_skb_enabled(struct i40e_ring
*ring
)
425 ring
->flags
&= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED
;
428 enum i40e_latency_range
{
429 I40E_LOWEST_LATENCY
= 0,
430 I40E_LOW_LATENCY
= 1,
431 I40E_BULK_LATENCY
= 2,
434 struct i40e_ring_container
{
435 /* array of pointers to rings */
436 struct i40e_ring
*ring
;
437 unsigned int total_bytes
; /* total bytes processed this int */
438 unsigned int total_packets
; /* total packets processed this int */
439 unsigned long last_itr_update
; /* jiffies of last ITR update */
441 enum i40e_latency_range latency_range
;
445 /* iterator for handling rings in ring container */
446 #define i40e_for_each_ring(pos, head) \
447 for (pos = (head).ring; pos != NULL; pos = pos->next)
449 static inline unsigned int i40e_rx_pg_order(struct i40e_ring
*ring
)
451 #if (PAGE_SIZE < 8192)
452 if (ring
->rx_buf_len
> (PAGE_SIZE
/ 2))
458 #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
460 bool i40evf_alloc_rx_buffers(struct i40e_ring
*rxr
, u16 cleaned_count
);
461 netdev_tx_t
i40evf_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
);
462 void i40evf_clean_tx_ring(struct i40e_ring
*tx_ring
);
463 void i40evf_clean_rx_ring(struct i40e_ring
*rx_ring
);
464 int i40evf_setup_tx_descriptors(struct i40e_ring
*tx_ring
);
465 int i40evf_setup_rx_descriptors(struct i40e_ring
*rx_ring
);
466 void i40evf_free_tx_resources(struct i40e_ring
*tx_ring
);
467 void i40evf_free_rx_resources(struct i40e_ring
*rx_ring
);
468 int i40evf_napi_poll(struct napi_struct
*napi
, int budget
);
469 void i40evf_force_wb(struct i40e_vsi
*vsi
, struct i40e_q_vector
*q_vector
);
470 u32
i40evf_get_tx_pending(struct i40e_ring
*ring
, bool in_sw
);
471 void i40evf_detect_recover_hung(struct i40e_vsi
*vsi
);
472 int __i40evf_maybe_stop_tx(struct i40e_ring
*tx_ring
, int size
);
473 bool __i40evf_chk_linearize(struct sk_buff
*skb
);
476 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
478 * @tx_ring: ring to send buffer on
480 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
481 * there is not enough descriptors available in this ring since we need at least
484 static inline int i40e_xmit_descriptor_count(struct sk_buff
*skb
)
486 const struct skb_frag_struct
*frag
= &skb_shinfo(skb
)->frags
[0];
487 unsigned int nr_frags
= skb_shinfo(skb
)->nr_frags
;
488 int count
= 0, size
= skb_headlen(skb
);
491 count
+= i40e_txd_use_count(size
);
496 size
= skb_frag_size(frag
++);
503 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
504 * @tx_ring: the ring to be checked
505 * @size: the size buffer we want to assure is available
507 * Returns 0 if stop is not needed
509 static inline int i40e_maybe_stop_tx(struct i40e_ring
*tx_ring
, int size
)
511 if (likely(I40E_DESC_UNUSED(tx_ring
) >= size
))
513 return __i40evf_maybe_stop_tx(tx_ring
, size
);
517 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
519 * @count: number of buffers used
521 * Note: Our HW can't scatter-gather more than 8 fragments to build
522 * a packet on the wire and so we need to figure out the cases where we
523 * need to linearize the skb.
525 static inline bool i40e_chk_linearize(struct sk_buff
*skb
, int count
)
527 /* Both TSO and single send will work if count is less than 8 */
528 if (likely(count
< I40E_MAX_BUFFER_TXD
))
532 return __i40evf_chk_linearize(skb
);
534 /* we can support up to 8 data buffers for a single send */
535 return count
!= I40E_MAX_BUFFER_TXD
;
538 * @ring: Tx ring to find the netdev equivalent of
540 static inline struct netdev_queue
*txring_txq(const struct i40e_ring
*ring
)
542 return netdev_get_tx_queue(ring
->netdev
, ring
->queue_index
);
544 #endif /* _I40E_TXRX_H_ */